
AN INTEL COMPANY

™

By Stephen Olsen, Product Management, Wind River

WHEN IT MATTERS, IT RUNS ON WIND RIVER

Choosing the Right System
Software for Medical Devices

EXECUTIVE SUMMARY

Finding the right software for the design of medical devices is critical, as there is

little room for error. Developers have many choices to make, from whether to use a

“roll-your-own” solution or a commercial off-the-shelf product to whether to employ

a real-time operating system or a general purpose operating system such as Linux or

Android. There is no optimal solution for all devices, but understanding the parameters

of the application and its interaction with the target hardware will help developers

narrow their search. This article explores the breadth of considerations that are essential

in making the best choice.

TABLE OF CONTENTS

Executive Summary . 2

Starting Point: Design Considerations . 3

Trends Impacting Medical Device Design . 4

System Requirements for Medical Devices: An Example . 4

Additional System Software Considerations . 5

Commercial vs . Open Source: Decision Criteria . 6

Conclusion . 7

CHOOSING THE RIGHT SYSTEM SOFTWARE FOR MEDICAL DEVICES

2 | White Paper

AN INTEL COMPANY

™

STARTING POINT: DESIGN CONSIDERATIONS

Several years ago, I had Lasik eye surgery . While the procedure

took less than one minute per eye, I found myself wondering about

the software that was used to control the laser . For my procedure I

had a choice between a manually controlled laser or an automatic

tracking laser . I weighed the pros and cons of each scenario, and

eventually I opted for the more complex automatic tracking laser .

But was it the right choice? What would have happened had

I chosen the laser with manual tracking? My sight is better than

20/20 now without glasses, but the surgery got me thinking about

the system software that goes into such medical devices .

This example underscores the point that any discussion about

software for medical devices should begin with one overarching

consideration: Medical devices directly impact human lives . That

means every decision that involves the specifications of the device

also impacts human lives . That said, modern medical devices

come in all shapes and sizes—from very large, elaborate radiation

machines to small, implanted pacemakers that are battery

operated—and they vary greatly in the criticality of their intended

functions . Therefore the first specific consideration in selecting the

right system software should be the intended use case .

How will the device be used? Will it be used primarily by a

healthcare provider, by the patient at home, or both? Will it

collect and store data? Will there be special service modes that

allow access only to a trained technician? Will it be wall powered,

battery powered, or both? Are there charging cycles? Is the device

usable when it’s charging?

The answers to these use-case questions will inform and guide

the system software evaluation and decision criteria . For example,

when systems are small and implantable, the need for real time

is usually negligible and the software associated with these

devices may be relegated to monitoring a small set of sensors and

administering some small amount of therapy . In a maintenance

or data collection mode, the device may receive a radio signal

from outside the body, and this could be done with a low-power

microcontroller that can be built with a simple state machine .

On the other end of the spectrum, systems that employ a general

purpose operating system, such as Linux or Android, are typically

not concerned with memory and physical size constraints . Imaging

systems that are administering a signal into the body and producing

an image from that signal employ a large signal-processing

algorithm that needs to be processed in near real time—for

example, an ultrasound that is imaging a mother’s womb . This is

near real-time because the response can be one second delayed

from the actual signal, but it must closely correlate to the scan,

as the operator will use this feedback to guide the device to give

parents peace of mind .

The majority of portable electronic medical devices fall somewhere

in between these two examples . These systems are somewhat

memory-constrained, battery-operated, and connected devices

that may have real-time constraints as well . The combination of

such attributes almost necessitates a real-time operating system

over a general-purpose operating system .

CHOOSING THE RIGHT SYSTEM SOFTWARE FOR MEDICAL DEVICES

3 | White Paper

AN INTEL COMPANY

™

TRENDS IMPACTING MEDICAL DEVICE DESIGN

In addition to the intended use case, it is important to consider

some of the meta-trends in the medical industry . One such trend is

that an increasingly broad range of professionals is using a variety

of devices to treat their patients . As medical devices become more

ubiquitous, with both professionals and non-professionals using

them—such as in-home care or nursing home situations—the

question is not only whether these devices are capable of doing

their job but, even more importantly, whether anyone with a basic

understanding can operate such a device . Is the device easy to use

in an emergency situation when seconds matter? What happens if

the device fails?

When you combine this trend with the skyrocketing costs of

healthcare, it’s clear the onus is on the embedded software

developer to design a complete solution that goes beyond basic

device functionality . There’s a mandate to minimize cost per capita

of each person’s healthcare by looking at ways to streamline

diagnoses, add innovative ways to administer preventive care,

and in the process find new technologies to minimize the costs of

these devices as they become more pervasive in our society .

Further, the average lifespan of both men and women is

increasing in many countries . With more people living longer,

diseases associated with aging are far more prevalent . We need

to find innovative and cost-effective ways to monitor, diagnose,

and treat these maladies . Embedded medical devices need to

safely communicate information from device to device, device to

network, or even device to a server in the cloud . To go even further

would be to utilize fluid computing by allowing an application to

execute where it is best applied, either in the cloud or on the edge,

depending on the use case . All the while, we must ensure that

communications and data that flow between the device, the edge,

and the cloud are safe and kept in compliance with the Health

Insurance Portability and Accountability Act of 1996 (HIPAA) .

SYSTEM REQUIREMENTS FOR MEDICAL DEVICES:

AN EXAMPLE

Looking across the landscape of medical devices in use today,

there is a wide range of applications—but regardless of size,

shape, and use case, all medical devices share the same need for

system reliability, ease of use, and fault tolerance .

Let’s take a look at the system requirements of one device as an

example: the wall-mounted defibrillator . Defibrillators are the

quiet sentinels seen in hallways and rooms wherever there are

large numbers of people . These devices are involved in both life-

altering and lifesaving situations . They are often used by innocent

bystanders who are not familiar with how the device works—and

in many cases people are faced with learning to use it quickly

because every second matters . The basic system requirements of

a defibrillator include:

1 . A long-term shelf life: It may be wall powered or completely

battery operated, but it must work within a moment’s notice to

monitor a patient’s vitals and, if needed, deliver the necessary

treatment .

2 . An easy-to-use human–machine interface (HMI): The HMI

must be so simple that anyone who can read or hear the

language can use it .

3 . Secure and stable communications: Communications are

essential to enable the defibrillator to self-diagnose .

4 . A multi-CPU design: The design should help ensure efficient

operating performance along with taking advantage of power

management opportunities .

Figure 1: Key healthcare trends and issues

• More Medical Needs
• Frequent Monitoring
• Self-Diagnosis

Aging Population

Privacy • HIPAA
• Electronic Medical Records

•
• Capitation
• Insurance Approval
• Outpatient Care

Cost Containment

• Improved Diagnoses
• Preventive Care
• Better Technology

Quality of Care

CHOOSING THE RIGHT SYSTEM SOFTWARE FOR MEDICAL DEVICES

4 | White Paper

AN INTEL COMPANY

™

Now let’s look at these requirements in a little more detail:

Long-Term Shelf Life

For medical devices that can actually save a person’s life, the need

for long-term shelf life is critical . If it is battery operated, the device

will need to last its entire useful life without being recharged . This

means the system software must be designed to minimize the

use of the battery . One way to do this is to use two processors: a

smaller processor, a type of “sanity check” processor, is used to

keep the system alive, and a larger processor handles all the real-

time events as they happen .

The smaller processor can be used to wake up the device once

a day or once a week to do some evaluation of the hardware

and ensure its readiness . It should also be able to report back to

the administrator so that those monitoring the device know it’s

functioning normally or, in the event of a failure, can arrange a

service call to fix a perceived malfunction .

Once the device is activated, it must wake up the main CPU, the

“event processor .” Among the many responsibilities of this core

is to be capable of delivering an intuitive HMI . This core is also

responsible for monitoring the patient’s vitals and delivering the

electrical shock the patient might need—all this while minimizing

the use of power for the device’s full lifecycle .

Easy-to-Understand HMI

In the event a patient needs the defibrillator, the device wakes up

and instructs the first responder on how to use the device . This

should be done both audibly, via a speaker, as well as visually, via

some type of graphical user interface (GUI) . It is important not

to overcomplicate the GUI, as studies have shown that a simple,

intuitive interface with minimal options will be used by a layman

more quickly than an interface that is more complicated .

A clear and easy-to-use GUI involves instructing the user to

correctly attach the pads on the patient . Once they are placed

on the patient, the device must quickly determine whether the

patient needs a shock . If so, then it charges the capacitors to the

correct dosage and instructs the user to back off the patient so

that they can be shocked without shocking any bystanders, again

in easy-to-understand instructions .

Secure and Stable Communications

After the episode, the unit must phone home to give the data

to the administrator who can relay the pertinent data in a HIPAA

compliant way to the patient’s doctor for further review . Then it

must give instructions to the user on how to restore the system to

its proper place so it is ready for the next event .

Multi-CPU System Design

The use of two cores is recommended, one to monitor the health

of the device on a daily or weekly basis and the other to be

capable of higher power, higher functionality to drive the interface,

assessment of the patient data once the probes are attached, and

shocking the patient .

In this case, the system must meet some communication needs,

which involves the use of a GSM (Global System for Mobile

communications) protocol stack, and during the event a much

higher capacity CPU, to determine if a shock is warranted . Because

of these needs, the use of a simple “round-robin” scheduler is

exceeded and the use of either a real-time operating system or a

general purpose operating system is warranted .

The operating system decision depends on several factors . First,

are there fast boot and low power requirements? In this device

every second counts . Minimizing the amount of software to run

would warrant a real-time operating system, which is typically

many times smaller than a general-purpose operating system .

A smaller footprint means smaller RAM requirements and hence

smaller power use needs . A smaller footprint also means less

code to run . Since time is of the essence, a real-time operating

system is warranted . If a medical device was used in a non-

emergency situation, a general-purpose operating system would

be acceptable and the availability of middleware could be an

advantage .

ADDITIONAL SYSTEM SOFTWARE CONSIDERATIONS

Beyond the four key considerations discussed above, medical

device designers should take into account a broad range of

additional system software attributes, including:

CHOOSING THE RIGHT SYSTEM SOFTWARE FOR MEDICAL DEVICES

5 | White Paper

AN INTEL COMPANY

™

Modularity: Medical devices need to adapt to changing needs in

the network, so the operating system must be built on a modular,

upgradeable, future-proof architecture that separates the core

kernel from middleware, protocols, applications, and other

packages . It should provide a stable core so that middleware, new

protocols, and other packages can be added or upgraded without

changing the core . This modularity will also help manufacturers of

medical devices better differentiate their products and maintain

them competitively over longer periods of time .

Scalability: With the proliferation of medical devices and classes

of devices—ranging from small form factor, single-application

devices to large-scale, complex, multi-application systems—the

scalability of the system software is of utmost importance . A

single RTOS that can scale to meet the unique memory footprint,

functionality, and processing power requirements of multiple

product classes can help manufacturers of embedded systems

increase the return on their operating system investment, cut

development costs by leveraging the economies of scope, and

reduce time-to-market .

Security: Medical device system software needs to support

security features not only to protect against malware and

unwanted or rogue applications but also to deliver secure data

storage and transmission and tamper-proof designs . OS-level

support for these features is critical, since adding them at the user

or application level is ineffective, expensive, and risky . And, since

security threats are always changing, the system software needs

to support the secure upgrade, download, and authentication of

applications to help keep devices secure going forward .

Safety: Clearly, safety is paramount for medical devices because

they could endanger life and malfunctions could cause injury or

death—but not all medical device applications are equally life

critical . When evaluating system software, look for features and

capabilities that allow multiple applications with different levels of

criticality to run on the same hardware platform .

Connectivity: Medical devices are increasingly connected to

public networks for a wide range of applications . This means

the system software may need to support a wide range of

communications standards and protocols such as CAN, Bluetooth,

Continua, IEEE 802 .15 .4, Wi-Fi, and Ethernet—and deliver high-

performance networking capabilities out of the box . In addition

to these capabilities, look for system software that can help

retrofit existing devices with the required connectivity options so

they can be brought online without reworking the core of their

embedded software .

Rich user interface: With customer experience and the user

interface becoming key differentiating features for medical

devices, powerful yet easy-to-use human–machine interaction

capabilities are becoming a must for system software, including

quality 2-D and 3-D graphics engines, support for multiple

monitors and touch screens, and rich graphic design tools .

COMMERCIAL VS . OPEN SOURCE: DECISION CRITERIA

The availability and use of both commercial and open source

development options are pervasive among medical device

manufacturers . Each has unique advantages and trade-offs,

but the choice typically comes down to the completeness and

sophistication of commercial offerings versus the low cost and

ubiquity of open source software .

Commercial offerings are now available specifically for the creation

of medical devices . For example, VxWorks® Plus delivers all of the

rich feature set of VxWorks real-time operating system (RTOS), with

an additional collection of advanced middleware and protocols

for security, safety, networking, connectivity, device manageability,

user interface (UI), and graphics that customers need to create

the most demanding devices for the Internet of Things (IoT) . This

includes features that help meet the requirements of medical

device manufacturers (for up to Class III medical equipment) .

Additionally, it includes a compliance package to facilitate approv-

als from the U .S . Food and Drug Administration (FDA) and other

regulatory agencies worldwide .

Open source software options, such as the Linux operating system,

are also popular for a number of good reasons:

• Distributions are free and can be modified and redistributed

under the GNU General Public License (GPL) .

• Thousands of developers have adopted Linux, making it easier

to find developers who use it frequently and know it intimately .

• Linux runs on virtually any processor and is supported by virtu-

ally all major hardware manufacturers .

• The maturity of Linux has made it a practical choice in medical

device development .

• Linux is feature-rich in tools, management, security, and

graphics—important for medical device screens that require

clarity and readability—and has a large ecosystem of board and

software providers .

CHOOSING THE RIGHT SYSTEM SOFTWARE FOR MEDICAL DEVICES

6 | White Paper

AN INTEL COMPANY

™

For all its advantages, however, using open source software such

as Linux in a medical device also poses a number of challenges .

For example, medical device manufacturers must follow several

FDA guidance documents, and the medical device software

standard IEC 62304 is now recognized or required in most

jurisdictions . In addition, medical devices marketed in the United

States are regulated by the Center for Device and Radiological

Health (CDRH), a branch of the FDA . The FDA makes it clear that

the burden of ensuring safe and reliable performance does not

end with product launch . When evaluating operating systems,

planning for bug fixes and security updates for the entire lifecycle

of the product is recommended .

CONCLUSION

It is incumbent on no organization, vendor, or individual to tout

any particular system software product or approach as superior to

all others for medical device makers . Needs and requirements vary

greatly, as do features, functions, and capabilities . It is important,

however, to evaluate the full range of considerations before

making the selection . After all, human lives are at stake in the

creation and use of medical devices .

One day we may find ourselves at the mercy of some stranger

trying to use a defibrillator that we designed . Do you trust your

own design to work every time—especially when it’s needed at

the most critical time? If we design with this question in mind, the

devices we create will work each and every time . When you’ve

improved the quality of life for everyone who comes into contact

with the medical device you designed—that’s a job well done .

CHOOSING THE RIGHT SYSTEM SOFTWARE FOR MEDICAL DEVICES

AN INTEL COMPANY

™

Wind River is a global leader in delivering software for the Internet of Things . The company’s technology is found in more than 2 billion devices, backed by world-class professional services and
customer support . Wind River delivers the software and expertise that enable the innovation and deployment of safe, secure, and reliable intelligent systems .

© 2018 Wind River Systems, Inc . The Wind River logo is a trademark of Wind River Systems, Inc ., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc . Rev . 02/2018

