
Chord: A Versatile Platform for Program Analysis

Mayur Naik

April 15, 2011



Part I

Preface

2



Chapter 1

Organization of this Guide

Chord is a program analysis platform that is both stand-alone, in that it provides many standard analyses for users
to run, and extensible, in that it allows users to write their own analyses, possibly atop the provided analyses. As
a result, Chord has two kinds of users: end-users, who only wish to run predefined analyses, and developers, who
additionally wish to write and run their own analyses.

For convenience, this user guide consists of two parts: a guide for end-users and a guide for developers. Unlike end-
users, developers need to understand Chord’s source code and API, and code written by them is executed as part of
a Chord run. Hence, the guide for end-users concerns how to run Chord, and the guide for developers concerns how
to extend Chord.
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Chapter 2
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• BuDDy, a BDD library

• GNU Trove, a primitive collections library for Java

• Java2HTML and Java2Html, Java-to-HTML tools

• Saxon, an XSLT processor

Chord was supported in part by grants from the National Science Foundation, an equipment grant from Intel, and
a Microsoft fellowship during 2005-2007.

4

http://joeq.sourceforge.net/
http://www.javassist.org/
http://bddbddb.sourceforge.net/
http://ant-contrib.sourceforge.net/
http://buddy.sourceforge.net/
http://trove4j.sourceforge.net/
http://www.java2html.com/
http://www.java2html.de/
http://saxon.sourceforge.net/


Part II

Guide for End-Users

5



Chapter 3

What is Chord?

Chord is a program analysis platform that enables users to productively design, implement, evaluate, and combine
a broad variety of static and dynamic program analyses for Java bytecode. It has the following key features:

• It provides various off-the-shelf analyses (e.g., various may-alias and call-graph analyses; thread-escape analysis;
static slicing analysis; static and dynamic concurrency analyses for finding races, deadlocks, and atomicity
violations; etc.)

• It allows users to express a broad range of analyses, including both static and dynamic analyses, analy-
ses written imperatively in Java or declaratively in Datalog, summary-based as well as cloning-based inter-
procedural context-sensitive analyses, iterative refinement-based analyses, client-driven analyses, and combined
static/dynamic analyses.

• It executes analyses in a demand-driven fashion, caches results computed by each analysis for reuse by other
analyses without re-computation, and can execute analyses without dependencies between them in parallel.

• It guarantees that the result is the same regardless of the order in which different analyses are executed;
moreover, results can be shared across different runs.

Chord is intended to work on a variety of platforms, including Linux, Windows/Cygwin, and MacOS. It is open-
source software distributed under the New BSD License. Improvements by users are welcome and encouraged. The
project website is http://jchord.googlecode.com/.
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Chapter 4

Getting Started

This chapter describes how to download, install, and run Chord. Section 4.1 describes how to obtain pre-built
binaries of Chord. Section 4.2 describes how to obtain the source code of Chord and Section 4.2 explains how to
build it. Finally, Section 4.4 describes how to run Chord.

4.1 Downloading Binaries

To obtain Chord’s pre-built binaries, download and uncompress file chord-bin-2.0.tar.gz. It includes the following
files:

1. chord.jar, which contains the class files of Chord and of libraries used by Chord.

2. libbuddy.so, buddy.dll, and libbuddy.dylib: you can keep one of these files depending upon whether you
intend to run Chord on Linux, Windows/Cygwin, or MacOS, respectively. These files are needed only if you
want BDD library BuDDy to be used when the BDD-based Datalog solver bddbddb in Chord runs analyses
written in Datalog.

3. libchord_instr_agent.so: this file is needed only if you want the JVMTI-based bytecode instrumentation
agent to be used when Chord runs dynamic analyses.

Novice users can ignore items (2) and (3) until they become more familiar with Chord. The binaries mentioned in
items (2) and (3) might not be compatible with your machine, in which case you can either forgo using them (with
hardly any noticeable difference in functionality), or you can download the sources (see Section 4.2) and build them
yourself (see Section 4.3).

4.2 Downloading Source Code

To obtain Chord’s source code, download and uncompress the following files:
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8 CHAPTER 4. GETTING STARTED

• Mandatory: file chord-src-2.0.tar.gz, which contains Chord’s source code and jars of libraries used by Chord.

• Optional: file chord-libsrc-2.0.tar.gz, which contains the source code of libraries used by Chord (e.g., joeq,
javassist, bddbddb, etc.)

Alternatively, you can obtain the latest development snapshot from the SVN repository by running the following
command:

svn checkout http://jchord.googlecode.com/svn/trunk/ chord

Instead of checking out the entire trunk/, which contains several sub-directories, you can check out specific sub-
directories:

• main/ contains Chord’s source code and jars of libraries used by Chord.

• libsrc/ contains the source code of libraries used by Chord (e.g., joeq, javassist, bddbddb, etc.).

• test/ contains Chord’s regression tests.

• many more; these might eventually move under main/.

Files chord-2.0-src.tar.gz and chord-2.0-libsrc.tar.gz mentioned above are essentially stable releases of the
main/ and libsrc/ directories, respectively.

4.3 Compiling the Source Code

Compiling Chord’s source code requires the following software:

• JVM for Java 5 or higher, e.g. IBM J9 or Oracle HotSpot.

• Apache Ant, a Java build tool.

Chord’s main directory contains a file named build.xml which is interpreted by Apache Ant. To see the various
possible targets, simply run command “ant” in that directory.

To compile Chord, run command “ant compile” in the same directory. This will compile Chord’s Java sources
from src/ to class files in classes/, as well as build a jar file chord.jar that contains these class files as well as
those in the jars of libraries that are used by Chord and are provided under lib/ (e.g., joeq.jar, javassist.jar,
bddbddb.jar, etc.). Additionally:

http://jchord.googlecode.com/files/chord-src-2.0.tar.gz
http://jchord.googlecode.com/files/chord-libsrc-2.0.tar.gz
http://www.ibm.com/developerworks/java/jdk/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org/
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• If system property chord.use.buddy is set to true, then the C source code of BDD library BuDDy from
directory bdd/ will be compiled to a shared library named (libbuddy.so on Linux, buddy.dll on Windows,
and libbuddy.dylib on MacOS; this library is used by BDD-based Datalog solver bddbddb in Chord for
running analyses written in Datalog.

• If system property chord.use.jvmti is set to true, then the C++ source code of the JVMTI-based bytecode
instrumentation agent from directory agent/ will be compiled to a shared library named libchord_instr_
agent.so on all architectures; this agent is used in Chord for computing analysis scope dynamically and for
running dynamic analyses.

Properties chord.use.buddy and chord.use.jvmti are defined in a file named chord.properties in Chord’s main
directory. The default value of both these properties is false. If you set either of them to true, then you will also
need a utility like GNU Make (to run the Makefile’s in directories bdd/ and agent/) and a C++ compiler (to build
the above shared libraries).

4.4 Running Chord

Running Chord requires a JVM supporting Java 5 or higher. There are two equivalent ways to run Chord. One way,
which is available in both the source and binary installations of Chord, is to run the following command:

java -cp <CHORD_MAIN_DIR>/chord.jar -D<key1>=<val1> ... -D<keyN>=<valN> chord.project.Boot

where <CHORD_MAIN_DIR> denotes the directory containing file chord.jar; that directory is also expected to contain
any shared libraries in Chord’s installation (e.g., libbuddy.so and libchord_instr_agent.so).

The alternative, which is available only in the source installation of Chord, is to run the following command:

ant -f <CHORD_MAIN_DIR>/build.xml -D<key1>=<val1> ... -D<keyN>=<valN> run

This approach requires Apache Ant (a Java build tool) to be installed on your machine. We use this approach
throughout this documentation. Also, we omit the “-f<CHORD_MAIN_DIR>/build.xml” argument on the command-
line for brevity.

Each “-D<key>=<val>” argument above sets the system property named <key> to the value denoted by <val>.
The only way to specify inputs to Chord is via system properties; there is no command-line argument processing.
Chapter 5 describes all system properties recognized by Chord.

http://buddy.sourceforge.net/
http://bddbddb.sourceforge.net/


Chapter 5

Chord Properties

The only way to specify inputs to Chord is by means of system properties. There is no command-line argument
processing in Chord and any command-line arguments are ignored. Section 5.1 explains how to set properties and
Section 5.2 explains the meaning of properties recognized by Chord. Notation [<...>] is used in this chapter to
denote the value of the property named <...>.

5.1 How to Set Properties

A property can be passed to Chord in any of several ways. The reason for providing multiple ways is to provide
users with shorthand ways for defining properties once and for all for a particular Java program under analysis, or
even once and for all across all Chord runs. The following are the different ways by which a property can be passed
to Chord in decreasing order of precedence:

1. How: On the command-line via the “-D<key>=<val>” format.

When: Use this option to specify properties specific to the current run of Chord.

Typical usage of this option is by running the following command:

ant -D<key1>=<val1> ... -D<keyN>=<valN> run

2. How: Via a user-defined properties file whose location is specified by property chord.props.file.

When: Use this option to specify once and for all properties of the Java program to be analyzed (e.g.,
property chord.main.class specifying the name of that program’s main class). Chapter 6 presents an example
properties file that defines the program properties that are most commonly used. Section 5.2.1 presents all
program properties that are recognized by Chord.

The default value of property chord.props.file is [chord.work.dir]/chord.properties. Property chord.
work.dir specifies the directory in which Chord must run; its default value is the current directory.
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There are three ways to use this option of setting properties:

The first way is to override the default value of property chord.work.dir on the command-line. This requires
naming the above properties file as chord.properties, placing it in the directory in which Chord will run,
denoted <WORK_DIR> (e.g., this could be the top-level directory of the program to be analyzed), and running
the following command:

ant -Dchord.work.dir=<WORK_DIR> run

The second way is to override the default value of property chord.props.file on the command-line. In this
case, the properties file can be in any user-desired location, denoted <PROPS_FILE>, and Chord will run in the
current directory:

ant -Dchord.props.file=<PROPS_FILE> run

The third (and most flexible) way is to override the default values of both properties chord.work.dir and
chord.props.file on the command-line.

3. How: Via the properties file named chord.properties that is already provided in Chord’s main directory.

When: Use this option to specify once and for all properties you would like to hold in every run of Chord
(e.g., property chord.max.heap specifying the maximum heap memory size to be used by the JVM running
Chord).

5.2 Recognized Properties

The following properties are recognized by Chord. The separator for list-valued properties can be either a blank
space, a comma, a colon, or a semi-colon.

5.2.1 Java Program Properties

This section describes properties of the Java program to be analyzed, such as its main class, the location(s) of its
class files and Java source files, and command-line arguments to be used when running the program.

chord.work.dir

Type: location
Description: Working directory during Chord’s execution. This is usually the top-level directory of the
input Java program.
Default value: current working directory

chord.props.file
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Type: location
Description: Properties file loaded by Chord at the beginning before doing anything else. Any of the
below properties may be defined in this file to avoid defining them on the command line (using the
-D<key>=<val> format) every time Chord is run. Each relative file/directory name in the value of any
property defined in this file is treated relative to Chord’s working directory (which is specified by property
chord.work.dir).
Default value: [chord.work.dir]/chord.properties

chord.main.class

Type: class
Description: Fully-qualified name of the main class of the input Java program (e.g., com.example.Main).

chord.class.path

Type: path
Description: Classpath of the input Java program. It does not need to include boot classes (i.e., classes
in [sun.boot.class.path]) or standard extensions (i.e., classes in jar files in directory [java.home]
/lib/ext/).
Default value: ""

chord.src.path

Type: path
Description: Source path of the input Java program.
Default value: ""
Note: Chord analyzes only Java bytecode, not Java source code. This property is used only by the task
of converting Java source files into HTML files by analyses that need to present their results at the Java
source code level (by calling method chord.program.Program.g().HTMLizeJavaSrcFiles()).

chord.run.ids

Type: string list
Description: List of IDs to identify runs of the input Java program.
Default value: 0
Note: This property is used only when Chord runs the input Java program, namely, when it is asked to
compute the analysis scope dynamically (i.e., when [chord.scope.kind]=dynamic) or when it is asked
to run a dynamic analysis.

chord.args.<id>

Type: string
Description: Command-line arguments string to be used for the input Java program in the run having
ID <id>.
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Default value: ""
Note: This property is used only when Chord runs the input Java program, namely, when it is asked to
compute the analysis scope dynamically (i.e., when [chord.scope.kind]=dynamic) or when it is asked
to run a dynamic analysis.

chord.runtime.jvmargs

Type: string
Description: Arguments to JVM which runs the input Java program.
Default value: "-ea -Xmx1024m"
Note: This property is used only when Chord runs the input Java program, namely, when it is asked to
compute the analysis scope dynamically (i.e., when [chord.scope.kind]=dynamic) or when it is asked
to run a dynamic analysis.

5.2.2 Analysis Scope Properties

This section describes properties that specify how the analysis scope of the input Java program is computed. See
Chapter 7 for more details.

chord.scope.kind

Type: [dynamic|rta|cha]
Description: Algorithm to compute analysis scope. The choices are dynamic (dynamic analysis), rta
(Rapid Type Analysis), and cha (Class Hierarchy Analysis).
Default value: rta
Note: This property is ignored if property chord.reuse.scope is set to true and the files specified by
properties chord.methods.file and chord.reflect.file exist.

chord.reflect.kind

Type: [none|dynamic|static|static cast]
Description: Algorithm to resolve reflection. The choices are none (do not resolve any reflection),
dynamic (run the program and observe how reflection is resolved), static (resolve reflection statically
but without analyzing casts), and static cast (resolve reflection statically by analyzing casts).
Default value: none

chord.ch.kind

Type: [static|dynamic]
Description: Algorithm to build the class hierarchy. If it is dynamic, then the input Java program is
executed and classes not loaded by the JVM while running the program are excluded while building the
class hierarchy.
Default value: static
Note: This property is relevant only if chord.scope.kind is cha since only this scope computing algo-
rithm queries the class hierarchy.



14 CHAPTER 5. CHORD PROPERTIES

chord.ssa

Type: bool
Description: Do SSA (Static Single Assignment) transformation of the bodies of all methods deemed
reachable by the algorithm used to compute analysis scope.
Default value: true

chord.std.scope.exclude

Type: string list
Description: Partial list of prefixes of names of classes, typically inside the JDK standard library, whose
methods must be treated as no-ops.
Default value: ""

chord.ext.scope.exclude

Type: string list
Description: Partial list of prefixes of names of classes, typically outside the JDK standard library,
whose methods must be treated as no-ops.
Default value: ""

chord.scope.exclude

Type: string list
Description: Complete list of prefixes of names of classes whose methods must be treated as no-ops.
Default value: "[chord.std.scope.exclude],[chord.ext.scope.exclude]"

chord.std.check.exclude

Type: string list
Description: Partial list of prefixes of names of classes, typically inside the JDK standard library, to be
excluded by analyses. Interpretation of this property is analysis-specific.
Default value: "java.,javax.,sun.,com.sun.,com.ibm., org.apache.harmony."

chord.ext.check.exclude

Type: string list
Description: Partial list of prefixes of names of classes, typically outside the JDK standard library, to
be excluded by analyses. Interpretation of this property is analysis-specific.
Default value: ""

chord.check.exclude
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Type: string list
Description: Complete list of prefixes of names of classes to be excluded by analyses. Interpretation of
this property is analysis-specific.
Default value: "[chord.std.check.exclude],[chord.ext.check.exclude]"

5.2.3 Functionality Properties

This section describes properties that dictate what task(s) Chord must perform.

chord.build.scope

Type: bool
Description: Compute the analysis scope of the input Java program using the algorithm.
Default value: false
Note: The analysis scope is computed regardless of the value of this property if another task (e.g., an
analysis specified via property chord.run.analyses) demands it.

chord.run.analyses

Type: string list
Description: List of names of analyses to be run in order.
Default value: ""
Note: If the analysis is written in Java, its name is specified via statement name="..." in its @Chord
annotation. If the analysis is written in Datalog, its name is specified via a line of the form “# name=...”.

chord.print.methods

Type: string list
Description: List of methods whose intermediate representation to print to standard output.
Default value: ""
Note: Specify each method in format mname:mdesc@cname where mname is the method’s name, mdesc is
the method’s descriptor, and cname is the name of the method’s declaring class. In cname, use ‘.’ instead
of ‘/’, and use ‘#’ instead of ‘$’.

chord.print.classes

Type: string list
Description: List of classes whose intermediate representation to print to standard output.
Default value: ""
Note: In class names, use ‘.’ instead of ‘/’, and use # instead of the dollar character.

chord.print.all.classes
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Type: bool
Description: Print intermediate representation of all classes in scope to standard output.
Default value: false

chord.print.rels

Type: string list
Description: List of names of program relations whose contents must be printed to files [chord.out.
dir]/<RELNAME>.txt where <RELNAME> denotes the relation name.
Default value: ""
Note: This functionality must be used with caution as certain program relations, albeit represented
compactly as BDDs, may contain a large number (e.g., millions) of tuples, resulting in voluminous output
when printed in explicit form to a text file. See Section 15.2 for a more efficient way to query the contents
of program relations (namely, by using the debug target provided in file build.xml in Chord’s main
directory).

chord.print.project

Type: bool
Description: Create files targets_sortby_name.html, targets_sortby_kind.html, and targets_
sortby_producers.html in directory [chord.out.dir], publishing all tasks and targets defined by anal-
yses in paths [chord.java.analysis.path] and [chord.dlog.analysis.path].
Default value: false

chord.print.results

Type: bool
Description: Print the results of analyses in HTML. Interpretation of this property is analysis-specific.
Default value: true

chord.verbose

Type: int in the range [0..5]
Description: Control the verbosity of messages during Chord’s execution.
Default value: 1

5.2.4 Project Properties

This section describes properties regarding analyses executed by Chord.

chord.classic

Type: bool
Description: Whether to use the classic project (as opposed to the modern project). See Chapter11 for
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the difference between the two kinds of projects.
Default value: true

chord.std.java.analysis.path

Type: path
Description: Partial classpath of analyses written in Java (i.e., @Chord-annotated classes). Convention-
ally, it includes all Java analyses that are predefined in Chord.
Default value: The absolute path of file chord.jar.

chord.ext.java.analysis.path

Type: path
Description: Partial classpath of analyses written in Java (i.e., @Chord-annotated classes). Convention-
ally, it includes all user-defined analyses.
Default value: ""

chord.java.analysis.path

Type: path
Description: Complete classpath of analyses written in Java (i.e., @Chord-annotated classes).
Default value: [chord.std.java.analysis.path]:[chord.ext.java.analysis.path]

chord.std.dlog.analysis.path

Type: path
Description: Partial path of analyses written in Datalog (i.e., files with suffix .dlog). Conventionally,
it includes all Datalog analyses that are predefined in Chord.
Default value: The absolute path of file chord.jar.

chord.ext.dlog.analysis.path

Type: path
Description: Partial path of analyses written in Datalog (i.e., files with suffix .dlog). Conventionally,
it includes all user-defined Datalog analyses.
Default value: ""

chord.dlog.analysis.path

Type: path
Description: Complete path of analyses written in Datalog (i.e., files with suffix .dlog).
Default value: [chord.std.dlog.analysis.path]:[chord.ext.dlog.analysis.path]
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5.2.5 Instrumentation Properties

This section describes properties regarding bytecode instrumentation and dynamic analysis.

chord.use.jvmti

Type: bool
Description: Whether the JVMTI-based bytecode instrumentation agent from main/agent/ must be
used for running dynamic analyses.
Default value: false

chord.instr.kind

Type: [offline|online]
Description: The kind of bytecode instrumentation. The choices are offline and online (load-time).
Default value: offline

chord.trace.kind

Type: [full|pipe]
Description: The medium by which an event-generating JVM and an event-handling JVM communicate
in a dynamic analysis. The choices are regular file and POSIX pipe.
Default value: full

chord.trace.block.size

Type: int
Description: Number of bytes to read/write in a single operation from/to the event trace file in a
multi-JVM dynamic analysis.
Default value: 4096

chord.dynamic.haltonerr

Type: bool
Description: Whether to terminate Chord if the input Java program terminates abnormally during
dynamic analysis.
Default value: true

chord.dynamic.timeout

Type: int
Description: The amount of time, in milliseconds, after which to kill the process running the given
program during dynamic analysis, or -1 if the process must never be killed.
Default value: -1
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chord.max.cons.size

Type: int
Description: Maximum number of bytes over which events generated during the execution of any
constructor in the given program may span.
Default value: 50000000
Note: This property is relevant only for dynamic analyses which want events of the form BEF NEW h t
o to be generated (see Section 14.3). The problem with generating such events at run-time is that the
ID o of the object freshly created by thread t at object allocation site h cannot be instrumented until
the object is fully initialized (i.e., its constructor has finished executing). Hence, Chord first generates a
“crude dynamic trace”, which has events of the form BEF NEW h t and AFT NEW h t o generated before and
after the execution of the constructor, respectively. A subsequent pass generates a “final dynamic trace”,
which replaces each BEF NEW h t event by BEF NEW h t o. For this purpose, however, Chord must buffer
all events generated between the BEF NEW and AFT NEW events, and this property specifies the number of
bytes over which these events may span. If the actual number of bytes exceeds the value specified by
this property (e.g., if the constructor throws an exception and the AFT NEW event is not generated at all),
then Chord simply generates event BEF NEW h i 0 (i.e., it treats the created object as having ID 0, which
is the ID also used for null).

5.2.6 Caching Properties

This section describes properties that specify what must be reused by Chord, if available, from previous runs instead
of recomputing.

chord.reuse.scope

Type: bool
Description: Compute analysis scope using the information in files specified by properties chord.
methods.file and chord.reflect.file, if both of those files exist.
Default value: false
Note: Property chord.scope.kind is ignored if this property is set to true and the two files exist.

chord.reuse.rels

Type: bool
Description: Load each desired program relation named <name> from the BDD stored in file [chord.
bddbddb.work.dir]/<name>.bdd, if the file exists.
Default value: false

chord.reuse.traces

Type: bool
Description: Reuse event traces stored in file(s) chord.trace.file]_full_ver0_runM.txt for dynamic
analysis, if those files exist, where M ranges over run IDs specified by property chord.run.ids. Property
chord.trace.kind must be set to full if this property is set to true.
Default value: false
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5.2.7 Chord JVM Properties

This section describes properties regarding the JVM that runs Chord.

chord.max.heap

Type: string
Description: Maximum heap memory size of the JVM running Chord.
Default value: 1024m

chord.max.stack

Type: string
Description: Maximum thread stack size of the JVM running Chord.
Default value: 32m

chord.jvmargs

Type: string
Description: Arguments to the JVM running Chord.
Default value: "-showversion -ea -Xmx[chord.max.heap] -Xss[chord.max.stack]"

5.2.8 BDD Properties

This section describes properties concerning BDD-based Datalog solver bddbddb that is used by Chord to run
analyses written in Datalog.

chord.use.buddy

Type: bool
Description: Whether BDD library BuDDy from main/bdd/ must be used by bddbddb.
Default value: false

chord.bddbddb.max.heap

Type: string
Description: Maximum heap memory size of JVM running bddbddb.
Default value: 1024m
Note: bddbddb is invoked in a separate JVM for each analysis written in Datalog that is executed. This
is primarily because multiple Datalog analyses may be executed in a single run of Chord, resulting in
multiple invocations of bddbddb, and it is difficult to reset the state of bddbddb on each invocation.
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5.2.9 Output Location Properties

This section describes properties specifying the names of files and directories output by Chord. Most users will not
need to alter the default values of these properties.

chord.out.file

Type: location
Description: Absolute location of the file to which the standard output stream is redirected during
Chord’s execution.
Default value: null

chord.err.file

Type: location
Description: Absolute location of the file to which the standard error stream is redirected during Chord’s
execution.
Default value: null

chord.out.dir

Type: location
Description: Absolute location of the directory to which Chord dumps all files.
Default value: [chord.work.dir]/chord_output/

chord.reflect.file

Type: location
Description: Absolute location of the file from/to which resolved reflection information is read/written.
Default value: [chord.out.dir]/reflect.txt

chord.methods.file

Type: location
Description: Absolute location of the file from/to which list of methods deemed reachable is read/written.
Default value: [chord.out.dir]/methods.txt

chord.classes.file

Type: location
Description: Absolute location of the file from/to which list of classes deemed reachable is read/written.
Default value: [chord.out.dir]/classes.txt
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chord.bddbddb.work.dir

Type: location
Description: Absolute location of the directory used by BDD-based Datalog solver bddbddb as its
input/output directory (namely, for program domain files *.dom and *.map, and program relation files
*.bdd).
Default value: [chord.out.dir]/bddbddb/

chord.boot.classes.dir

Type: location
Description: Absolute location of the directory from/to which instrumented classes of the input Java
program inside the JDK standard library are read/written by dynamic analyses.
Default value: [chord.out.dir]/boot_classes/

chord.user.classes.dir

Type: location
Description: Absolute location of the directory from/to which instrumented classes of the input Java
program outside the JDK standard library are read/written by dynamic analyses.
Default value: [chord.out.dir]/user_classes/

chord.instr.scheme.file

Type: location
Description: Absolute location of the file specifying the kind and format of events in trace files used by
dynamic analyses.
Default value: [chord.out.dir]/scheme.ser

chord.trace.file

Type: location
Description: Absolute location of trace files used by dynamic analyses.
Default value: [chord.out.dir]/trace
Note: Suffix _full_verN.txt or _pipe_verN.txt is appended to the name of the file, depending upon
whether it is a regular file or a POSIX pipe, respectively, where N is the version of the file (multiple
versions are maintained if the trace is transformed by filters defined by the dynamic analysis; 0 is the
final version). If chord.reuse.traces is set to true, then _full_verN_runM.txt is appended to the
name of the file, where M is the run ID.



Chapter 6

Setting up a Java Program for Analysis

This chapter describes how to setup a Java program for analysis using Chord. Suppose the program has the following
directory structure:

example/
src/

foo/
Main.java
...

classes/
foo/

Main.class
...

lib/
src/

taz/
...

jar/
taz.jar

chord.properties

The above structure is typical: the program’s Java source files are under src/, its class files are under classes/,
and the source and jar files of the libraries used by the program are under lib/src/ and lib/jar/, respectively.
The purpose of the chord.properties file is explained below.

The only way to specify inputs to Chord, including the program to be analyzed, is via system properties. Section
5.1 describes various ways by which properties can be passed to Chord. Here, we describe the simplest approach,
in which all properties of the program to be analyzed that might be needed by Chord are defined in a file named
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chord.properties that is located in the top-level directory of the program (directory example/ above). Then,
Chord can be applied to the program by running the following command:

ant -Dchord.work.dir=<WORK_DIR> run

This command instructs Chord to run in the directory denoted by <WORK_DIR>, where it searches for a file named
chord.properties and loads all properties defined in that file, if it exists. Thus, for the above program, <WORK_DIR>
must be the absolute or relative path of the example/ directory. A sample chord.properties file for the above
program is as follows:

chord.main.class=foo.Main
chord.class.path=classes:lib/jar/taz.jar
chord.src.path=src:lib/src
chord.run.ids=0,1
chord.args.0="-thread 1 -n 10"
chord.args.1="-thread 2 -n 50"

Each relative file/directory name in the value of any property defined in this file (e.g., the lib/src directory name in
the value of property chord.src.path above) is treated relative to the directory specified by property chord.work.
dir, whose default value is the current directory. Section 5.2.1 presents all program properties that are recognized
by Chord. Here, we only describe those that are most commonly used, namely, those defined in the above sample
properties file:

• chord.main.class specifies the fully-qualified name of the main class of the program.

• chord.class.path specifies the application classpath of the program (the JDK standard library classpath is
implicitly included).

• chord.src.path specifies the Java source path of the program. All analyses in Chord operate on Java bytecode.
The only use of this property is to HTMLize the Java source files of the program so that the results of analyses
can be reported at the Java source code level.

• chord.run.ids specifies a list of IDs to identify runs of the program. It is used by dynamic analyses to
determine how many times the program must be run. An additional use of this property is to allow specifying
the command-line arguments to use in the run having ID <id> via property chord.args.<id>, as illustrated
by properties chord.args.0 and chord.args.1 above.

The above command does not do much beyond making Chord load the above properties file. For Chord to do
something interesting, additional properties must be set that specify the function(s) Chord must perform. All
functions are summarized in Section 5.2.3. The most common function is to run one or more analyses on the input
program; it is described in Chapter 13.



Chapter 7

Analysis Scope Construction

A pre-requisite to analyzing a Java program using any program analysis framework, including Chord, is to compute
the analysis scope: which parts of the program to analyze. Several scope construction algorithms (so-called call-
graph algorithms) exist in the literature that differ in scalability (i.e., how large a program they can handle with the
available resources) and precision (i.e., how much of the program they deem is reachable).

Chord implements several standard scope construction algorithms. Besides scalability and precision, an additional
metric of these algorithms in Chord that can be controlled by users is usability, which concerns aspects such as
excluding certain code from being analyzed even if it is reachable, and modeling Java features such as reflection,
dynamic class loading, and native methods. These features affect which code are reachable but, in general, they cannot
be modeled soundly by any program analysis framework. The best a framework can do is provide stubs for commonly-
used native methods in the standard JDK library (e.g., the arraycopy method of class java.lang.System), offer
users a range of options on how to resolve reflection (e.g., an option might be running the program and observing
how reflection is resolved), etc.

Chord computes the analysis scope of the given program either if property chord.build.scope is set to true or if
some other task (e.g., a program analysis specified via property chord.run.analyses) demands it. The following
sections describe Chord’s analysis scope computation in detail. Section 7.1 describes how to reuse the analysis scope
computed in a previous run of Chord for a given program. Section 7.2 describes Chord’s analysis scope construction
algorithms. Finally, Section 7.3 describes how users can exclude certain classes from the analysis scope.

7.1 Scope Reuse

If property chord.reuse.scope has value true and both files specified by properties chord.methods.file and
chord.reflect.file exist, then Chord regards those files as specifying which methods to consider reachable and
how to resolve reflection, respectively.

The format of the file specified by property chord.methods.file is a list of zero or more lines, where each line
is of the form mname:mdesc@cname specifying the method’s name mname, the method’s descriptor mdesc, and the
method’s declaring class cname (e.g., main:([Ljava/lang/String;)V@foo.bar.Main).
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The format of the file specified by property chord.reflect.file is of the form:

# resolvedClsForNameSites
...
# resolvedObjNewInstSites
...
# resolvedConNewInstSites
...
# resolvedAryNewInstSites
...

where each of the above “...” is a list of zero or more lines, where each line is of the form bci!mname:mdesc@cname->
type1,type2,...typeN meaning the call site at bytecode offset bci in the method denoted by mname:mdesc@cname
may resolve to any of reference types type1, type2, ..., typeN. The meaning of the above four sections is as follows.

• resolvedClsForNameSites lists each call to static method forName(String) defined in class java.lang.
Class, along with a list of the types of the named classes.

• resolvedObjNewInstSites lists each call to instance method newInstance() defined in class java.lang.
Class, along with a list of the types of the instantiated classes.

• resolvedConNewInstSites lists each call to instance method newInstance(Object[]) defined in class java.
lang.reflect.Constructor, along with a list of the types of the instantiated classes.

• resolvedAryNewInstSites lists each call to instance method newInstance(Class,int) defined in class java.
lang.reflect.Array, along with a list of the types of the instantiated classes.

The default value of property chord.reuse.scope is false. The default value of properties chord.methods.file
and chord.reflect.file is [chord.out.dir]/methods.txt and [chord.out.dir]/reflect.txt, respectively.
Property chord.out.dir denotes the output directory of Chord; its default value is [chord.work.dir]/chord_
output/. Property chord.work.dir denotes the working directory during Chord’s execution; its default value is the
current directory.

7.2 Scope Construction Algorithms

If property chord.reuse.scope has value false or the files specified by properties chord.methods.file or chord.
reflect.file do not exist, then Chord computes analysis scope using the algorithm specified by property chord.
scope.kind and then writes the list of methods deemed reachable and the reflection resolved by that algorithm to
the files specified by properties chord.methods.file and chord.reflect.file, respectively.

The possible values of property chord.scope.kind are [rta|cha|dynamic] (the default value is rta). The following
subsections describe the scope construction algorithm that Chord runs in each of these three cases. In each case,
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Chord at least expects properties chord.main.class and chord.class.path to be set to the fully-qualified name
of the program’s main class (e.g., com.example.Main) and the program’s application classpath, respectively.

7.2.1 Rapid Type Analysis

If property chord.scope.kind has value rta, then Chord computes analysis scope statically using Rapid Type
Analysis (RTA). RTA is an iterative fixed-point algorithm. It maintains a set of reachable methods M . The initial
iteration starts by assuming that only the main method in the main class is reachable (Chord also handles class
initializer methods but we ignore them here for brevity; we also ignore the set of reachable classes maintained besides
the set of reachable methods). All object allocation sites H contained in methods in M are deemed reachable
(i.e., control-flow within method bodies is ignored). Whenever a dynamically-dispatching method call site (i.e., an
invokevirtual or invokeinterface site) with receiver of static type t is encountered in a method in M , only subtypes
of t whose objects are allocated at some site in H are considered to determine the possible target methods, and each
such target method is added to M . The process terminates when no more methods can be added.

7.2.2 Class Hierarchy Analysis

If property chord.scope.kind has value cha, then Chord computes analysis scope statically using Class Hierarchy
Analysis (CHA). The key difference between CHA and RTA is that for invokevirtual and invokeinterface sites with
receiver of static type t, CHA considers all subtypes of t in the class hierarchy to determine the possible target
methods, whereas RTA restricts them to types of objects allocated in methods deemed reachable so far. As a
result, CHA is highly imprecise in practice, and also expensive since it grossly overestimates the set of reachable
classes and methods. Nevertheless, Chord allows users to control which classes are included in the class hierarchy,
and thereby control the precision and cost of CHA, by setting property chord.ch.kind, whose possible values are
[static|dynamic] (the default value is static).

Chord first constructs the entire classpath of the given program by concatenating in order the following classpaths:

1. The boot classpath, specified by property sun.boot.class.path.

2. The library extensions classpath, comprising all jar files in directory [java.home]/lib/dir/.

3. The application classpath of the given program, specified by property chord.class.path, which is empty by
default.

All classes in the entire classpath (resulting from items 1–3 above) are included in the class hierarchy with the
following exceptions:

• Duplicate classes, i.e., classes with the same name occurring in more than one classpath element; in this case,
all occurrences except the first are excluded.

• Any class whose name’s prefix is specified in the value of property chord.scope.exclude (see Section 7.3).

• If property chord.ch.kind has value dynamic, then Chord runs the given program and observes the set of all
classes the JVM loads; any class not in this set is excluded.
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• If the superclass of a class C is missing or if an interface implemented/extended by a class/interface C is missing,
where “missing” means that it is either not in the classpath resulting from items 1–3 above or it is excluded by
one of these rules, then C itself is excluded. Note that this rule is recursive, e.g., if C has superclass B which
in turn has superclass A, and A is missing, then both B and C are excluded.

7.2.3 Dynamic Analysis

If property chord.scope.kind has value dynamic, then Chord computes analysis scope dynamically, by running the
program and observing the classes that are loaded at run-time. The number of times the program is run and the
command-line arguments to be supplied to the program in each run is specified by properties chord.run.ids and
chord.args.<id> for each run ID <id>. By default, the program is run only once, using run ID 0, and without
any command-line arguments. Only classes loaded in some run are regarded as reachable but all methods of each
loaded class are regarded as reachable regardless of whether they were invoked in the run. The rationale behind
this decision is to both reduce the run-time instrumentation overhead and increase the predictive power of program
analyses performed using the computed analysis scope.

7.3 Scope Exclusion

Chord can be instructed to exclude certain classes in a given program from being analyzed. This functionality might
be desirable, for instance, if the given program contains a larger framework (e.g., Hadoop or Android) which must
not be analyzed. Chord provides three properties for this purpose. The value of each of these properties is a comma-
separated list of prefixes of names of classes. Chord treats the body of each method defined in each such class as a
no-op.

• Property chord.std.scope.exclude is intended to specify classes to be excluded from the scope of all programs
to be analyzed, e.g., classes in the JDK standard library. Its default value is the empty list.

• Property chord.ext.scope.exclude is intended to specify classes to be excluded from the scope of specific
programs to be analyzed. Its default value is the empty list.

• Property chord.scope.exclude specifies the final list of classes to be excluded from scope. Its default value
is [chord.std.scope.exclude]:[chord.ext.scope.exclude].

Note: The value of each of the above properties is a list of prefixes, not regular expressions. A valid value is
“java.,com.sun.”, but not “java.*,com.sun.*”.



Chapter 8

Predefined Analyses

Chord provides many standard analyses. This chapter first explains how to run any such analysis and then provides
descriptions of various predefined analyses.

8.1 Running an Analysis

Each predefined analysis in Chord has a unique name that can be used to run the analysis from the command-
line. The following command runs the analysis named <ANALYSIS_NAME> on the program specified by directory
<WORK_DIR> (see Chapter 6 for how to setup a program):

ant -Dchord.work.dir=<WORK_DIR> -Dchord.run.analyses=<ANALYSIS_NAME> run

For instance, the following command runs a basic may-alias and call-graph analysis (called 0CFA) provided in Chord:

ant -Dchord.work.dir=<WORK_DIR> -Dchord.run.analyses=cipa-0cfa-dlog run

This instructs Chord to run the analysis named cipa-0cfa-dlog, which is defined in file main/src/chord/analyses/
alias/cipa_0cfa.dlog.

The output of the above command is of the form:
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Buildfile: build.xml

run:

[java] Chord run initiated at: Mar 13, 2011 10:31:08 PM

[java] ENTER: cipa-0cfa-dlog

[java] ENTER: T

[java] ENTER: RTA

[java] Iteration: 0

[java] Iteration: 1

[java] Iteration: 2

[java] LEAVE: RTA

[java] SAVING dom T size: 1386

[java] LEAVE: T

[java] ENTER: F

[java] SAVING dom F size: 4120

[java] LEAVE: F

...

[java] ENTER: MputStatFldInst

[java] SAVING rel MputStatFldInst size: 739

[java] LEAVE: MputStatFldInst

[java] ENTER: statIM

[java] SAVING rel statIM size: 3359

[java] LEAVE: statIM

[java] Starting command: ’java ... chord_analyses_alias_cipa_0cfa.dlog’

[java] Relation VH: 541 nodes, 449.0 elements (V0,H0)

[java] Relation FH: 137 nodes, 8.0 elements (H0,F0)

[java] Relation HFH: 199 nodes, 35.0 elements (H0,F0,H1)

[java] Relation IM: 590 nodes, 69.0 elements (I0,M0)

[java] Finished command: ’java ... chord_analyses_alias_cipa_0cfa.dlog’

[java] LEAVE: cipa-0cfa-dlog

[java] Chord run completed at: Mar 13, 2011 10:31:36 PM

[java] Total time: 00:00:27:671 hh:mm:ss:ms

BUILD SUCCESSFUL

Total time: 28 seconds

Each analysis in Chord is written modularly, independent of other analyses, along with lightweight annotations
specifying the inputs and outputs of the analysis. Chord’s runtime automatically computes producer-consumer
relationships between analyses (e.g., determines which analysis produces as output a result that is needed as input
by another analysis). Before running a desired analysis (such as 0CFA in the above example), Chord recursively
runs other analyses until the inputs to the desired analysis have been computed; it finally runs the desired analysis
to produce the outputs of that analysis.

The 0CFA analysis consumes and produces multiple program relations. The consumed program relations include
MputStatFldInst and statIM, each of which is produced by a separate imperative analysis with the corresponding
name, and the produced program relations include VH, FH, HFH, and IM. We next briefly discuss these relations.
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The program relations consumed by the 0CFA analysis contain basic program facts. For instance, MputStatFldInst
is a relation containing each tuple (m,f ,v) such that method m in the input Java program contains a putstatic
instruction of the form “f = v”, while statIM is a relation containing each tuple (i,m) such that m is the target
method of invokestatic instruction i.

The program relations produced by the 0CFA analysis represent points-to information and the call graph of the input
Java program as computed by the analysis. Specifically, relations VH, FH, and HFH represent points-to information
for local variables, static fields, and instance fields, respectively, while relation IM represents the call graph, namely,
it contain each tuple (i,m) such that m is a possible target method of call site i.

Metavariables m, f , i, and v above range over entities in so-called program domains M, F, I, and V, respectively.
A program domain is a set of entities of a certain kind in the input Java program. For instance, M is the domain
representing the set of all methods in the input Java program, F is the domain representing the set of all fields, I
is the domain representing the set of all call sites in methods in M, and V is the domain representing the set of all
local variables of reference type in methods in M. Each of these domains is produced by a separate Java analysis with
the corresponding name. Notice that the analyses producing these domains run upfront because these domains are
consumed by the analyses that produce relations such as MputStatFldInst and statIM, which in turn are consumed
by the desired 0CFA analysis.

During execution, Chord dumps intermediate and final results to files in the directory specified by property chord.
out.dir, whose default value is [chord.work.dir]/chord_output/ and typically does not need to be changed by
users. For the above example, this directory is <WORK_DIR>/chord_output/.

The verbosity of Chord’s output above is controlled by property chord.verbose, whose default value is 1. At
verbosity level 0, the above command produces less voluminous output of the form:

Buildfile: build.xml

run:

[java] Chord run initiated at: Mar 13, 2011 10:35:01 PM

[java] Chord run completed at: Mar 13, 2011 10:35:28 PM

[java] Total time: 00:00:26:297 hh:mm:ss:ms

BUILD SUCCESSFUL

Total time: 26 seconds

8.2 Points-to and Call-Graph Analyses

Chord offers several choices for computing points-to and call-graph information of Java programs. In each of these
choices, the points-to and call-graph information is computed simultaneously (called “on-the-fly call-graph construc-
tion” in the literature in contrast to “ahead-of-time call-graph construction” in which the call graph is computed
first followed by points-to information). On-the-fly approaches are more precise because, in a dynamically dispatch-
ing language like Java, as more points-to facts are discovered, more (dynamically dispatched) methods are deemed
reachable, thereby growing the call graph; the code in these newly added methods in turn results in more points-to
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facts.

Flow-insensitive analysis computes a single abstract heap whereas flow-sensitive analysis computes per-program-point
abstract heaps. Context-insensitive analysis analyzes each method at most once (i.e. in a single abstract context),
whereas context-sensitive analyses potentially analyze each method multiple times, in different abstract contexts.
Thus, flow- and context-sensitive analyses are more precise but less scalable than flow- and context-insensitive
analyses, respectively.

Flow-sensitive analysis does not offer much precision over flow-insensitive analysis in practice, especially in the absence
of strong updates and in the presence of SSA (Static Single Assignment form), a program representation that renders
a flow-insensitive analysis almost as precise as a flow-sensitive analysis. Since analyses in Chord currently perform
only weak updates, and since they all operate on an SSA form of the input Java program by default, the rest of this
section focuses only on flow-insensitive analysis, which is the predominant kind of points-to/call-graph analysis in
Chord.

We describe context-insensitive analysis first because understanding the concepts behind it will help understand the
more sophisticated context-sensitive analyses. We first recall some relevant program domains:
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• M is the domain of all methods.

• I is the domain of all method call sites.

• F is the domain of all (instance and static) fields.

• V is the domain of all local variables of reference type.

• H is the domain of all object allocation sites.

8.2.1 Context-Insensitive Analysis

The context-insensitive points-to/call-graph analysis treats each object allocation site as a separate abstract memory
location; in other words, it can distinguish objects created at different sites but not those created at the same site.
Additionally, it is field-sensitive, in that it distinguishes between different instance fields of the same object, but
array-insensitive, in that it cannot distinguish between different elements of the same array; all array elements are
modeled using a distinguished hypothetical instance field (that has index 0 in domain F).

To run this analysis, run the following command:

ant -Dchord.work.dir=<WORK_DIR> -Dchord.run.analyses=cipa-0cfa-dlog run

where <WORK_DIR> is a directory containing a file named chord.properties that defines properties chord.main.
class and chord.class.path specifying the main class and the application classpath, respectively, of the program
to be analyzed.

This analysis outputs the following relations:

• Call-graph information:

– rootM subset M contains the set of entry methods that may be reachable; this includes the program’s
main method as well as each static initializer method that may be reachable from the main method.

– reachableM subset M contains the set of methods that may be reachable from the program’s main method.

– IM subset (I × M) contains tuples (i,m) such that call site i may call method m.

• Points-to information:

– FH subset (F × H) contains tuples (f,h) such that static field (i.e. global variable) f may point to an
object allocated at site h.

– VH subset (V × H) contains tuples (v,h) such that local variable v may point to an object allocated at
site h.

– HFH subset (H × F × H) contains tuples (h1,f,h2) such that instance field f of some object allocated
at site h1 may point to some object allocated at site h2.
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8.2.2 Context-Sensitive Analysis

In a context-sensitive analysis, there is no longer just one abstract memory location per object allocation site. Rather,
the set of objects a reference can point to depends on the context in which the method containing the reference is
called. Whereas a context-insensitive analysis talks about the domain of methods (M) and the domain of allocation
sites (H), a context-sensitive analysis talks about the domain of abstract contexts, labeled C. Elements of domain C
contain both abstract calling contexts and abstract objects. (These are merged for reasons described below.)

Chord has several context-sensitive analyses, but they all expose the same relations, which are described below:

• Context information:

– C is the domain of all abstract calling contexts and abstract objects. Each element in this domain is a
sequence of zero or more sites, where each site can be a call site or an object allocation site. A sequence
may have mixed call sites and object allocation sites. The most significant site (i.e. the first site) in each
sequence is called the head; the remaining sub-sequence is called the tail. The below three relations relate
a sequence with its head and tail.

– CC subset (C × C) contains tuples (c1,c2) such that context c2 is the tail of context c1.

– CH subset (C × H) contains tuples (c,h) such that object allocation site h is the head of context c.

– CI subset (C × I) contains tuples (c,i) such that call site i is the head of context c.

• Call-graph information:

– rootCM subset (C × M) contains tuples (c,m) such that method m is an entry method in context c.

– reachableCM subset (C × M) contains tuples (c,m) such that method m may be reachable in context c.

– CICM subset (C × I × C × M) contains tuples (c1,i,c2,m) such that call site i in context c1 may call
method m2 in context c2.

• Points-to information:

– FC subset (F × C) contains tuples (f,o) such that static field (i.e. global variable) f may point to object
o.

– CVC subset (C × V × C) contains tuples (c,v,o) such that local variable v may point to object o in
context c of that variable’s declaring method. Note that both o and c are elements of domain C.

– CFC subset (C × F × C) contains tuples (o1,f,o2) such that instance field f of object o1 may point to
object o2.

Under Construction: explain object-sensitive vs context-sensitive, plus how to invoke.

8.3 Static Datarace Analysis

To run Chord’s static datarace analysis, run the following command:
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ant -Dchord.work.dir=<WORK_DIR> -Dchord.run.analyses=datarace-java run

where <WORK_DIR> is a directory containing a file named chord.properties that defines properties chord.main.
class, chord.class.path, and chord.src.path specifying the main class, the application classpath, and the Java
source path, respectively, of the program to be analyzed.

Directory <CHORD_MAIN_DIR>/examples/datarace_test/ provides a toy Java program on which one can run the
datarace analysis. First run ant in that directory (in order to compile the program’s .java files to .class files) and
then run the above command with <WORK_DIR> replaced by examples/datarace_test/. Upon successful completion,
the following files should be produced in directory examples/datarace_test/chord_output/:

• File dataraces_by_fld.html, listing all dataraces grouped by the field on which they occur; all dataraces on
the same instance field or the same static field are listed in the same group, and so are all dataraces on array
elements.

• File dataraces_by_obj.html, listing all dataraces grouped by the abstract object on whose field they occur;
dataraces on all static fields are listed in the same group, and so are dataraces on different instance fields of
the same abstract object.

8.4 Static Deadlock Analysis

To run Chord’s static deadlock analysis, run the following command:

ant -Dchord.work.dir=<WORK_DIR> -Dchord.run.analyses=deadlock-java run

where <WORK_DIR> is a directory containing a file named chord.properties that defines properties chord.main.
class, chord.class.path, and chord.src.path specifying the main class, the application classpath, and the Java
source path, respectively, of the program to be analyzed.

Directory <CHORD_MAIN_DIR>/examples/deadlock_test/ provides a toy Java program on which one can run the
deadlock analysis. First run ant in that directory (in order to compile the program’s .java files to .class files) and
then run the above command with <WORK_DIR> replaced by examples/deadlock_test/. Upon successful completion,
the file deadlocks.html should be produced in directory examples/deadlock_test/chord_output/.
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Chapter 9

Architecture of Chord

This chapter presents the high-level architecture of Chord, depicted below, and describes its key components.

Chord Properties

All inputs to Chord are specified by means of system properties. Chapter 5 describes how to set properties and the
meaning of each property that is recognized by Chord.
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The Java program to be analyzed is also specified via properties. Chapter 6 describes how to setup a Java program for
analysis using Chord. Chord analyzes Java bytecode, not Java source code, and thus only requires the program’s class
files. Certain analyses, however, present their results at the Java source code level, and thus require the program’s
Java source files as well.

Java Program Representation

Chord uses the Joeq Java compiler framework to convert the Java bytecode of the input Java program, one class
file at a time, into a three-address-like intermediate program representation called quadcode that is more suitable for
analysis. Chapter 10 describes the quadcode representation in detail.

Analysis Scope Construction

A pre-requisite to analyzing a Java program using any program analysis framework, including Chord, is to compute
the analysis scope: which parts of the program to analyze. Chord implements several standard scope construction
algorithms from the literature that differ in aspects such as scalability, precision, and usability for the problem at
hand. Chapter 7 describes these algorithms in detail.

Writing and Running Analyses

Chord provides many standard analyses. Chapter 8 describes these analyses and how to run them. Moreover, Chord
allows users to define their own analyses, possibly atop the provided analyses.

A distinctive aspect of Chord is that each analysis is written modularly, independent of other analyses, along with
lightweight annotations specifying the inputs and outputs of the analysis. Chord’s runtime automatically computes
dependencies between analyses (e.g., determines which analysis produces as output a result that is needed as input
by another analysis). Before running a desired analysis, Chord recursively runs other analyses until the inputs to
the desired analysis have been computed; it finally runs the desired analysis to produce the outputs of that analysis.

Chord can be invoked in one of two modes: classic or modern. These two modes defer in the semantics of dependencies
between analyses. In particular, the classic mode is simpler to understand for novice users (the dependencies are only
data dependencies) but has a sequential runtime, whereas the modern mode is harder to understand (there are both
data and control dependencies) but has a parallel runtime that is capable of running analyses without dependencies
between them in parallel. The parallel runtime is based on Habanero-Java, and the semantics of the dependencies
between analyses is based on the Habanero Concurrent Collections (CnC) declarative parallel programming model.
Chapter 11 expands upon the modular architecture of analyses in Chord.

Chord provides various analysis templates: classes containing boilerplate code that can be extended by users to
rapidly prototype different kinds of analyses. An example is class RHSAnalysis, named after [Reps, Horowitz, and
Sagiv 1995], which can be extended by users to write a summary-based inter-procedural context-sensitive static
analysis by merely specifying the abstract domain and intra-procedural transfer functions. Another example is
DynamicAnalysis, which can be extended by users to write a dynamic analysis by merely specifying which of various
provided events to instrument, and the transfer functions for those events. Chapters 12 and 13 describe how to write
and run your own analyses in Chord using the provided analysis templates.

Dynamic Analysis

Chord uses the Javassist Java bytecode manipulation framework for instrumenting bytecode and doing dynamic
analysis. Chord offers the most versatile capabilities of any existing dynamic analysis framework for Java, particularly
the ability to instrument the entire JDK (including classes in package java.lang). Specifically, it includes support for:

http://joeq.sourceforce.net/
http://habanero.rice.edu/hj.html
http://habanero.rice.edu/cnc.html
http://www.javassist.org/
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• offline as well as load-time instrumentation of Java bytecode;

• processing of dynamic analysis events online in the same JVM or offline in a different JVM with an uninstru-
mented JDK (the latter circumvents performance and correctness problems that can arise if a single JVM with
an instrumented JDK is used to generate and handle events); and

• allowing the event-generating and event-handling JVMs to run either serially (by storing the entire trace of
events to a regular file) or in parallel (by streaming the trace of events in a piped file).

Chapter 14 describes all aspects of dynamic analysis in Chord.

Datalog Analysis

A common way to rapidly prototype an analysis in Chord is using a declarative logic-programming language called
Datalog. Chord uses the BDD-based Datalog solver bddbddb to run analyes written in Datalog. Chapter 15 describes
all aspects of such analyses.

http://bddbddb.sourceforge.net/


Chapter 10

Java Program Representation

Chord uses Joeq to translate Java bytecode, one class file at a time, into a three-address-like intermediate represen-
tation of the input Java program called quadcode. This chapter describes all aspects of quadcode and how it relates
to bytecode. It first explains how to pretty-print bytecode and quadcode (Section 10.1) which is useful for debugging
analyses and deciphering their output. The remaining sections describe the quadcode representation along with the
API of Joeq and Chord for navigating it. Briefly, the representation consists of a set of classes that may be loaded
(Section 10.2). The representation of each class consists of a set of members (Section 10.3) which are the fields and
methods of the class. The representation of a concrete method (Section 10.4) consists of a control-flow graph (CFG).
The representation of a CFG (Section 10.5) consists of a set of registers and a set of basic blocks linked by directed
edges denoting flow of control between basic blocks. Each basic block contains zero or more primitive statements
called quads (Section 10.6). Finally, the most common way to traverse all quads is discussed (Section 10.7).

10.1 Pretty-Printing

Consider the following Java program contained in file examples/hello_world/src/test/HelloWorld.java in Chord’s
main directory:

package test;

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello World!");
}

}

First compile this program by running command ant in directory examples/hello_world/.

40

http://joeq.sourceforge.net/
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To pretty-print the bytecode representation of a class, run the following command:

javap -classpath <CLASS_PATH> -bootclasspath <BOOT_CLASS_PATH> -private -verbose <CLASS_NAME>

where:

• <CLASS_NAME> is the fully-qualified name of the class whose bytecode is to be printed (test.HelloWorld in
our example).

• <CLASS_PATH> is the classpath of that class (examples/hello_world/ in our example).

• <BOOT_CLASS_PATH> is the boot classpath; it is optional and must be supplied if <CLASS_NAME> is a class from
the JDK standard library (e.g., java.util.ArrayList) that has been modified and written to a user-defined
location (e.g., it has been instrumented by Chord and written to chord_output/boot_classes/).

Program javap comes along with the JVM. The output of the above command for our example is as follows:

Compiled from "HelloWorld.java"
public class test.HelloWorld extends java.lang.Object
SourceFile: "HelloWorld.java"
minor version: 0
major version: 49
Constant pool:

const #1 = Method #6.#20; // java/lang/Object."<init>":()V
const #2 = Field #21.#22; // java/lang/System.out:Ljava/io/PrintStream;
const #3 = String #23; // Hello World!
const #4 = Method #24.#25; // java/io/PrintStream.println:(Ljava/lang/String;)V
const #5 = class #26; // test/HelloWorld
const #6 = class #27; // java/lang/Object
const #7 = Asciz <init>;
const #8 = Asciz ()V;
const #9 = Asciz Code;
const #10 = Asciz LineNumberTable;
const #11 = Asciz LocalVariableTable;
const #12 = Asciz this;
const #13 = Asciz Ltest/HelloWorld;;
const #14 = Asciz main;
const #15 = Asciz ([Ljava/lang/String;)V;
const #16 = Asciz args;
const #17 = Asciz [Ljava/lang/String;;
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const #18 = Asciz SourceFile;
const #19 = Asciz HelloWorld.java;
const #20 = NameAndType #7:#8;// "<init>":()V
const #21 = class #28; // java/lang/System
const #22 = NameAndType #29:#30;// out:Ljava/io/PrintStream;
const #23 = Asciz Hello World!;
const #24 = class #31; // java/io/PrintStream
const #25 = NameAndType #32:#33;// println:(Ljava/lang/String;)V
const #26 = Asciz test/HelloWorld;
const #27 = Asciz java/lang/Object;
const #28 = Asciz java/lang/System;
const #29 = Asciz out;
const #30 = Asciz Ljava/io/PrintStream;;
const #31 = Asciz java/io/PrintStream;
const #32 = Asciz println;
const #33 = Asciz (Ljava/lang/String;)V;

{
public test.HelloWorld();
Code:
Stack=1, Locals=1, Args_size=1
0: aload_0
1: invokespecial #1; //Method java/lang/Object."<init>":()V
4: return

LineNumberTable:
line 3: 0

LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Ltest/HelloWorld;

public static void main(java.lang.String[]);
Code:
Stack=2, Locals=1, Args_size=1
0: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;
3: ldc #3; //String Hello World!
5: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V
8: return

LineNumberTable:
line 5: 0
line 6: 8

LocalVariableTable:
Start Length Slot Name Signature
0 9 0 args [Ljava/lang/String;

}
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To pretty-print the quadcode representation of a class, run the following command:

ant -Dchord.work.dir=<WORK_DIR> -Dchord.print.classes=<CLASS_NAME> \
-Dchord.verbose=0 -Dchord.out.file=<OUT_FILE> run

where:

• <WORK_DIR> is a directory (examples/hello_world/ in our example) that contains a file named chord.
properties which defines properties chord.main.class and chord.class.path specifying the main class
and the classpath of the input Java program. Alternatively, these two properties can be defined directly on the
above command-line.

• <CLASS_NAME> is the fully-qualified name of the class whose quadcode is to be printed (test.HelloWorld in
our example). Each occurrence of a ‘$’ in the class name must be replaced by a ‘#’.

• <OUT_FILE> is the file to which the quadcode must be written; if left unspecified, the quadcode is written to
the standard output.

The output of the above command for our example is as follows:

*** Class: test.HelloWorld
Method: main:([Ljava/lang/String;)V@test.HelloWorld

0#1
5#3
5#2
8#4

Control flow graph for main:([Ljava/lang/String;)V@test.HelloWorld:
BB0 (ENTRY) (in: <none>, out: BB2)

BB2 (in: BB0 (ENTRY), out: BB1 (EXIT))
1: GETSTATIC_A T1, .out
3: MOVE_A T2, AConst: "Hello World!"
2: INVOKEVIRTUAL_V println:(Ljava/lang/String;)V@java.io.PrintStream, (T1, T2)
4: RETURN_V

BB1 (EXIT) (in: BB2, out: <none>)

Exception handlers: []
Register factory: Registers: 3
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10.2 Whole Program

This and the following sections describe the quadcode representation along with the API of Joeq and Chord for
navigating it. This API is contained in packages chord.program, joeq.Class, and joeq.Compiler.Quad.

The quadcode representation of the whole program is a unique global object of class chord.program.Program which
can be obtained by calling static method chord.program.Program.g(). This class provides a rich API (in the form
of public instance methods) to access various parts of the representation, most notably:

IndexSet<jq_Type> getTypes() All types referenced in classes that may be loaded.
IndexSet<jq_Reference> getClasses() All classes that may be loaded.*
IndexSet<jq_Method> getMethods() All methods that may be called.

* Includes both classes/interfaces and array types, represented as objects of jq_Class and jq_Array, respectively;
both these are subclasses of jq_Reference.

See Chapter 7 for how Chord determines which classes may be loaded and which methods may be called.

The quadcode representation of each type is a unique object of the appropriate subclass of joeq.Class.jq_Type in
the following hierarchy:

jq_Type
|

------------------------------------
| |

jq_Primitive jq_Reference
|

-------------------------------
| |

jq_Class jq_Array

10.3 Class Members

Each primitive type (e.g., boolean, int, etc.) is represented by a unique jq_Primtive object. Each class and each
interface type is represented by a unique jq_Class object. Each array type is represented by a unique jq_Array
object.

Members (i.e., fields and methods) of the class/interface represented by an object of class joeq.Class.jq_Class
can be accessed using the following API provided by that class.

String getName() Fully-qualified name of the class, e.g., “java.lang.
String[]”.

jq_InstanceField[] getDeclaredInstanceFields() All instance fields declared in the class.
jq_StaticField[] getDeclaredStaticFields() All static fields declared in the class.
jq_InstanceMethod[] getDeclaredInstanceMethods() All instance methods declared in the class.
jq_StaticMethod[] getDeclaredStaticMethods() All static methods declared in the class.

http://chord.stanford.edu/javadoc/chord/program/package-summary.html
http://chord.stanford.edu/javadoc/joeq/Class/package-summary.html
http://chord.stanford.edu/javadoc/joeq/Compiler/Quad/package-summary.html
http://chord.stanford.edu/javadoc/chord/program/Program.html
http://chord.stanford.edu/javadoc/chord/program/Program.html#g()
http://chord.stanford.edu/javadoc/joeq/Class/jq_Type.html
http://chord.stanford.edu/javadoc/joeq/Class/jq_Class.html
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Chord uses format mName:mDesc@cName, described in class chord.program.MethodSign, to uniquely identify each
field and each method in the input Java program, where mName denotes the name of the field/method, mDesc denotes
the descriptor of the field/method (see below), and cName denotes the fully-qualified name of the class declaring the
field/method. For instance, “main:[Ljava/lang/String;@test.HelloWorld” uniquely identifies the main method
in the example above. We next review field descriptors and method descriptors from the Java bytecode specification.

A field descriptor represents the type of a local variable or a (static or instance) field. It is a series of characters
generated by the grammar:

FieldDescriptor : FieldType
FieldType : BaseType | ObjectType | ArrayType
BaseType : B | C | D | F | I | J | S | Z

ObjectType : L <classname> ;
ArrayType : [ ComponentType

ComponentType : FieldType

The characters of BaseType, the ‘L’ and ‘;’ of ObjectType, and the ‘[’ of ArrayType are all ASCII characters. The
<classname> represents a fully qualified class or interface name. The interpretation of the field types is as shown in
the below table:

BaseType Character Type Interpretation
B byte signed byte
C char Unicode character
D double double-precision floating-point value
F float single-precision floating-point value
I int integer
J long long integer
L<classname>; reference an instance of class <classname>
S short signed short
Z boolean true or false
[ reference one array dimension

For example, the descriptor of type int is simply I. The descriptor of an instance variable of type Object is
“Ljava/lang/Object;”. Note that the internal form of the fully qualified name for class Object is used. The
descriptor of a multidimensional double array of type “double[][][]” is “[[[D”.

A method descriptor represents the types of the arguments and return result of a method:

MethodDescriptor : ( ParameterDescriptor* ) ReturnDescriptor
ParameterDescriptor : FieldType

ReturnDescriptor : FieldType | V

A parameter descriptor represents the type of an argument of a method. A return descriptor represents the type of
the return result of a method. The character ‘V’ indicates that the method returns no value (its return type is void).

The method descriptor is the same whether it is a static or an instance method. Although an instance method is
passed this, a reference to the current class instance, in addition to its intended arguments, that fact is not reflected
in the method descriptor.

http://chord.stanford.edu/javadoc/chord/program/MethodSign.html
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For example, the method descriptor for the method “Objectfoo(inti,doubled,Threadt)” is “(IDLjava/lang/
Thread;)Ljava/lang/Object;”. Note that internal forms of the fully qualified names of Thread and Object are
used in the method descriptor.

10.4 Methods

The quadcode representation of each method is a unique object of class joeq.Class.jq_Method. Components of the
method, most notably its control-flow graph, can be accessed using the following API provided by that class.

String getName() Name of the method.
String getDesc().toString() Descriptor of the method, e.g., “(Ljava/lang/String;)V”.
jq_Class getDeclaringClass() Declaring class of the method.
ControlFlowGraph getCFG() Control-flow graph of the method.*
int getLineNumber(int bci) Line number of the given bytecode offset (-1 if not found).
Quad getQuad(int bci) First quad at the given bytecode offset (null if not found).
Quad getQuad(int bci, Class kind) First quad of the given kind at the given bytecode offset (null if

not found).
Quad getQuad(int bci, Class[] kind) First quad of any given kind at the given bytecode offset (null if

not found).
String toString() Unique identifier of the method in format mName:mDesc@cName.

* The control-flow graph must not be asked if the method is abstract (which can be determined by calling instance
method isAbstract() of jq_Method).

10.5 Control-Flow Graphs

The control-flow graph (CFG) of each method consists of a set of registers, called the register factory, and a directed
graph whose nodes are basic blocks and whose edges denote flow of control between basic blocks.

The CFG of each method is a unique object of class joeq.Compiler.Quad.ControlFlowGraph. Components of the
CFG can be accessed using the following API provided by that class.

getRegisterFactory() Set of all local variables.
EntryOrExitBasicBlock entry() Unique entry basic block.
EntryOrExitBasicBlock exit() Unique exit basic block.
ListIterator.BasicBlock reversePostOrderIterator() Iterator over all basic blocks in reverse post-order.
jq_Method getMethod() Containing method of the CFG.

The register factory contains one register per argument of the method (called local variables) and one register per
temporary in the method body (called stack variables). Temporaries include those declared by programmers as well
as those generated by Joeq. The reason Joeq can generate temporaries is that the quadcode representation, which
is register-based, is constructed from Java bytecode, which is stack-based; moreover, Joeq does the Static Single
Assignment (SSA) transformation by default, which introduces temporaries to ensure that there is at most one
static assignment to any variable. Registers corresponding to local variables are named R0, R1, ..., Rn, while those

http://chord.stanford.edu/javadoc/joeq/Class/jq_Method.html
http://chord.stanford.edu/javadoc/joeq/Compiler/Quad/ControlFlowGraph.html
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corresponding to stack variables are named Tn+1, Tn+2, ..., Tm.

For instance, the register factory of the main method in the example above has 3 registers: R0 denoting the args
argument of the method and T1 and T2 denoting temporaries generated by Joeq.

Each register factory is a unique object of class joeq.Compiler.Quad.RegisterFactory.

Besides the register factory, a CFG has a directed graph whose nodes are basic blocks and whose edges denote flow of
control between basic blocks. Each basic block contains a straight-line sequence of zero or more primitive statements
called quads (Section 10.6). Each CFG is guaranteed to contain at least two basic blocks: a unique entry basic block
with no incoming edges and a unique exit block with no outgoing edges. The entry and exit basic blocks do not
contain any quads.

Each basic block is a unique object of class joeq.Compiler.Quad.BasicBlock (the entry and exit basic blocks are
instances of a subclass joeq.Compiler.Quad.EntryOrExitBasicBlock). Components of the basic block can be
accessed using the following API provided by that class.

int size() Number of quads contained in the basic block.
Quad getQuad(int index) Quad at the given 0-based index.
List.BasicBlock getPredecessors() List of immediate predecessor basic blocks.
List.BasicBlock getSuccessors() List of immediate successor basic blocks.
jq_Method getMethod() Containing method of the basic block.

10.6 Quads

Chord uses format offset!mName:mDesc@cName, described in class chord.program.MethodElem, to uniquely identify
each bytecode instruction in the input Java program, where offset is the (0-based) bytecode offset of the instruction
in its containing method, mName is the name of the method, mDesc is the descriptor of the method, and cName is
the fully-qualified name of the class declaring the method. For instance, “8!main:[Ljava/lang/String;@test.
HelloWorld” uniquely identifies the return instruction in the main method in the example above.

The quadcode representation is register-based, as opposed to Java bytecode that is used to construct it, which
is stack-based. As a result, it uses quads to represent bytecode instructions. A quad is a primitive statement that
consists of an operator and upto four operands. There is no one-to-one correspondence between bytecode instructions
and quads: certain bytecode instructions generate a sequence of more than one quads while others do not generate
any quad. The API of class jq_Method provides various getQuad(...) methods to access the quad(s) corresponding
to a bytecode instruction (see Section 10.4).

Each quad is a unique object of class joeq.Compiler.Quad.Quad. Components of the quad can be accessed using
the following API provided by that class.

http://chord.stanford.edu/javadoc/joeq/Compiler/Quad/RegisterFactory.html
http://chord.stanford.edu/javadoc/joeq/Compiler/Quad/BasicBlock.html
http://chord.stanford.edu/javadoc/joeq/Compiler/Quad/EntryOrExitBsaicBlock.html
http://chord.stanford.edu/javadoc/chord/program/MethodElem.html
http://chord.stanford.edu/javadoc/joeq/Compiler/Quad/Quad.html
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Operator getOperator() Kind of the quad.
int getBCI() Bytecode offset of the quad in its containing method.
String toByteLocStr() Unique identifier of the quad in format offset!mName:mDesc@cName.
String toJavaLocStr() Location of the quad in format fileName:lineNum in Java source code.
String toLocStr() Location of the quad in both Java bytecode and source code.
String toVerboseStr() Verbose description of the quad (its location plus contents).
jq_Method getMethod() Containing method of the quad.

The kind of each quad is determined by its operator which is a unique object of the appropriate subclass of joeq.
Compiler.Quad.Operator in the following hierarchy:

Operator
|
|--- Move
|--- Phi
|--- Unary
|--- Binary
|--- New
|--- NewArray
|--- MultiNewArray
|--- Getstatic
|--- Putstatic
|--- ALoad
|--- AStore
|--- Getfield
|--- Putfield
|--- CheckCast
|--- InstanceOf
|--- ALength
|--- Return
|
|--- Branch
| |
| |--- IntIfCmp
| |--- Goto
| |--- Jsr
| |--- Ret
| |--- LookupSwitch
| |--- TableSwitch
|
|--- Invoke
| |
| |--- InvokeVirtual
| |--- InvokeStatic
| |--- InvokeInterface
|
|--- Monitor

|

http://chord.stanford.edu/javadoc/joeq/Compiler/Quad/Operator.html
http://chord.stanford.edu/javadoc/joeq/Compiler/Quad/Operator.html
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|--- MONITORENTER
|--- MONITOREXIT

The number and kinds of operands of each quad depends upon the kind of the operator. Each of the above subclasses
of Operator provides an API to access the operands of the quad. For instance, the components of a Getfield quad
q of the form “l = b.f” can be accessed as follows:

Operand lo = Getfield.getSrc(q);
Operand bo = Getfield.getBase(q);
if (lo instanceof RegisterOperand && bo instanceof RegisterOperand) {

Register l = ((RegisterOperand) lo).getRegister();
Register b = ((RegisterOperand) bo).getRegister();
jq_Field f = Getfield.getField(q).getField();
...

}

10.7 Traversing Quadcode

A common way to traverse all quads in the input Java program is as follows:
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import chord.program.Program;
import joeq.Compiler.Quad.QuadVisitor;
import joeq.Class.jq_Method;
import joeq.Compiler.Quad.ControlFlowGraph;
import joeq.Util.Templates.ListIterator;
import joeq.Compiler.Quad.BasicBlock;
import joeq.Compiler.Quad.Quad;

QuadVisitor qv = new QuadVisitor.EmptyVisitor() {
public void visitMove(Quad q) { ... }
public void visitPhi(Quad q) { ... }
public void visitUnary(Quad q) { ... }
...

};
Program program = Program.g();
for (jq_Method m : program.getMethods()) {

if (!m.isAbstract()) {
ControlFlowGraph cfg = m.getCFG();
ListIterator.BasicBlock it = cfg.reversePostOrderIterator();
while (it.hasNext()) {

BasicBlock b = it.nextBasicBlock();
for (int i = 0; i < b.size(); i++) {

Quad q = b.getQuad(i);
q.accept(qv);

}
}

}
}



Chapter 11

A Chord Project: Tasks, Targets, and
Dependencies

In order to facilitate heavy reuse and rapid prototyping, each analysis in Chord is written modularly, independent
of other analyses, along with lightweight annotations specifying the inputs and outputs of the analysis. In each run,
upon startup, Chord organizes all analyses and their inputs and outputs (collectively called analysis results) using a
global entity called a project. More concretely, a project consists of a set of analyses called tasks, a set of analysis
results called targets, and a set of data/control dependencies between tasks and targets.

The project built in a particular run is of either of the following two kinds, depending upon whether the value of
property chord.classic is true or false, respectively.

• a classic project, represented as an object of class chord.project.ClassicProject.

• a modern project, represented as an object of class chord.project.ModernProject.

The project representation can be obtained by calling static method g() of the corresponding class. A classic project
is built by default. The two kinds of projects differ primarily in that the only kind of dependencies in a classic
project are data dependencies whereas both data and control dependencies are allowed in a modern project. The
key advantage of a modern project is that it can schedule independent tasks in parallel whereas a classic project
always runs tasks sequentially. This chapter focusses on classic projects as the runtime for modern projects is still
under development. We next explain how Chord builds a classic project (a set of tasks, a set of targets, and a set of
dependencies between them).

Tasks: There are two kinds of tasks corresponding to the two broad kinds of analyses in Chord. They are summarized
in the following table:

51

http://chord.stanford.edu/javadoc/chord/project/ClassicProject.html
http://chord.stanford.edu/javadoc/chord/project/ModernProject.html
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Kind: imperative (see Chapter 12) declarative (see Chapter 15)

Location:

a .class file in the path denoted by property
chord.java.analysis.path compiled

from a @Chord-annotated class implementing
interface chord.project.ITask

a .dlog file in the path denoted by property
chord.dlog.analysis.path

Name: via stmt name="<NAME>" in @Chord annotation via line “# name=<NAME>” in .dlog file

Form: an instance of the @Chord-annotated class
an instance of class

chord.project.analyses.DlogAnalysis

Each task in Chord is of the form “\{C1,...,Cn\}T\{P1,...,Pm\}” where:

• T is the code provided by the user to be executed when the task is executed,

• C1, ..., Cn are the names of zero or more targets specified by the user as being consumed by the task, and

• P1, ..., Pm are the names of zero or more targets specified by the user as being produced by the task.

The consumed targets may be produced by other tasks and, likewise, the produced targets may be consumed by
other tasks.

Targets: The set of targets in a project includes each target that is specified as consumed/produced by some task
in the project. When defining tasks, the user implicitly or explicitly provides the class (type) of each target. Chord
reports a runtime error if a target has no type or has multiple types. Otherwise, it creates a separate instance of
that class to represent that target.

Dependencies: Chord computes a dependency graph as a directed graph whose nodes are all tasks and targets
computed as above, and:

• There is an edge from a target C to a task T if the user has specified that T consumes C.

• There is an edge from a task T to a target P is the user has specified that T produces P.

We next present an example project to illustrate various concepts in the rest of this chapter:

{} T1 { R1 }
{} T2 { R2 }
{ R4} T3 { R2 }
{ R1, R2 } T4 { R3, R4 }

The set of tasks in this project is { T1, T2, T3, T4 } and the set of targets in the project is { R1, R2, R3, R4 }. The
dependency graph is as follows:

http://chord.stanford.edu/javadoc/chord/project/ITask.html
http://chord.stanford.edu/javadoc/chord/project/analyses/DlogAnalysis.html
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Class chord.project.ClassicProject provides a rich API (in the form of public instance methods) for accessing
tasks and targets in the project, for running tasks, and for resetting tasks and targets. The most commonly used
methods are as follows:

ITask getTask(String name) Representation of the task named name.
Object getTrgt(String name) Representation of the target named name.
ITask runTask(String name) Execute the task named name.
boolean isTaskDone(String name) Whether task named name has alread been executed.
boolean isTrgtDone(String name) Whether target named name has already been computed.
void setTaskDone(String name) Force task named name to not be executed the next time it is demanded.
void setTrgtDone(String name) Force target named name to not be computed the next time it is demanded.
void resetTaskDone(String name) Force task named name to be executed the next time it is demanded.
void resetTrgtDone(String name) Force target named name to be computed the next time it is demanded.

We next explain the above methods.

The getTask(name) provides the representation of the unique task with the specified name, if it exists, and a runtime
error otherwise.

The getTrgt(name) provides the representation of the unique target with the specified name, if it exists, and a
runtime error otherwise.

A “done” bit, initialized to false, is kept with each task and each target in the project. The runTask(name) method
runs the task with the specified name, if it exists, and reports a runtime error otherwise. Running a task proceeds
as follows. If the done bit of the task is true, no action is taken. Otherwise, suppose the task is of the form
“\{C1,...,Cn\}T\{P1,...,Pm\}”. Then, the following two actions are taken in order:

1. For each of the consumed targets C1, ..., Cn whose done bit is false, the unique task in the project producing
that target is run recursively. A runtime error is reported if no such task exists or if multiple such tasks exist.

2. Once all consumed targets are done, the code T of this task itself is run.

3. Finally, the done bit of this task as well as of each of its produced tasks P1, ..., Pn is set to true.

It is the user’s responsibility to ensure termination in the case in which there are cycles in the dependency graph.
The isTaskDone(name) and isTrgtDone(name) methods can be used in the code T of any task to enquire whether

http://chord.stanford.edu/javadoc/chord/project/ClassicProject.html
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the “done” bit of the task or target with the specified name is set to true. Moreover, methods setTaskDone(name),
setTrgtDone(name) can be used to set the done bit of the task or target with the specified name to true, and
likewise, methods resetTaskDone(name) and resetTrgtDone(name) can be used to set the done bit to false.

It is possible to run tasks from the command-line of Chord by specifying the value of property chord.run.analyses
as a comma-separated list of the names of tasks to be run in order (see Chapter 13).

We next illustrate the above concepts using the above example. Suppose Chord is run with the value of property
chord.run.analyses as “T4”. This causes runTask(T4) to be called. The done bit of task T4 is initialized to false.
Hence, the done bit of its first consumed target R1 is checked. Since it is also initialized to false, the unique task
producing target R1 is demanded. However, multiple tasks T1 and T2 producing target R1 are found in the project,
resulting in a runtime error which reports the ambiguity between tasks T1 and T2.

To resolve the ambiguity (say in favor of task T1), the user can specify the value of property chord.run.analyses
as “T1,T4”. This time, runTask(T1) is called followed by runTask(T4). Since the done bit of task T1 is initialized
to false and it has no consumed targets, runTask(T1) simply executes the code of task T1, and sets the done bit
of task T1 and of its only produced target R1 to true. Next, the call to runTask(T4) proceeds as described in the
previous run above, but this time the done bit of target R1 consumed by task T4 is set to true. Hence, the demand
for the unique task producing target R1 (and the ensuing ambiguity runtime error) is averted. However, this time
a different problem occurs: the done bit of the other target R2 consumed by task T4 is initialized to false, which
results in a call to runTask(T3) (since task T3 is the unique task that produces target R2), which in turn results in
a call to runTask(T4). The result is infinite mutually-recursive calls to runTask(T4) and runTask(T3) unless the
code of task T3 or T4 averts it by calling setTaskDone or setTrgtDone on some task or target in the cycle. This
scenario resulting from a cycle in the dependence graph is rare in practice. It typically occurs in the case of iterative
refinement-based client-driven analyses: the output of such an analysis in one iteration is fed as an input to the same
analysis in a subsequent iteration. The code of such an analysis (task) must explicitly control execution as described
above to avert infinite recursion.



Chapter 12

Writing an Analysis

Chord provides several analysis templates: classes containing boilerplate code that can be extended by users to
rapidly prototype different kinds of analyses. These classes are organized in the following hierarchy in package
chord.project.analyses:

JavaAnalysis
|
|--- ProgramDom
|
|--- ProgramRel
|
|--- DlogAnalysis
|
|--- RHSAnalysis
| |
| |--- ForwardRHSAnalysis
| |
| |--- BackwardRHSAnalysis
|
|--- BasicDynamicAnalysis

|
|--- DynamicAnalysis

The following sections describe each of these analysis templates in more detail.

12.1 JavaAnalysis

Class chord.project.analyses.JavaAnalysis is the most general template for writing an analysis. An analysis
can be created using this template by extending this class as follows:
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import chord.project.Chord;
import chord.project.ClassicProject;
import chord.project.analyses.JavaAnalysis;
import chord.program.Program;

@Chord(
name = "<ANALYSIS_NAME>",
consumes = { "C1", ..., "Cn" },
produces = { "P1", ..., "Pm" },
namesOfTypes = { "C1", ..., "Cn", "P1", ..., "Pm" },
types = { A1.class, ..., An.class, B1.class, ..., Bm.class }

)
public class ExampleAnalysis extends JavaAnalysis {

@Override public void run() {
Program program = Program.g();
ClassicProject project = ClassicProject.g();
A1 c1 = (A1) project.getTrgt("C1");
...
An cn = (An) project.getTrgt("Cn");
B1 p1 = (B1) project.getTrgt("P1");
...
Bm pm = (Bm) project.getTrgt("Pm");
// compute produced targets p1, ..., pm from program and
// consumed targets c1, ..., cn
...

}
}

To run the analysis, class ExampleAnalysis must be compiled to a .class file that occurs in some element (directory
or jar/zip file) of the path specified by property chord.java.analysis.path. This causes the analysis to be included
in a Chord project as a task that is represented as a separate object of class ExampleAnalysis.

The @Chord annotation, defined in class chord.project.Chord, specifies via fields the following aspects of the
analysis:

• Field name specifies the name of the analysis (<ANALYSIS_NAME>).

• Field consumes specifies the names of targets that are consumed by the analysis (C1, ..., Cn).

• Field produces specifies the names of targets that are produced by the analysis (P1, ..., Pm).

• Fields namesOfTypes and types specify the types of targets. There is a 1-to-1 correspondence between the
arrays denoted by these two fields, e.g., the type of the target named C1 is class A1, and so on. In principle,
the type of any target in the project can be specified here. In practice, however, the types of only the targets
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declared as consumed/produced by this analysis are specified. Moreover, although the type of each target that
is consumed/produced by the above analysis is specified in the above annotation, in practice the types of hardly
any targets need to be explicitly specified, because they can be automatically inferred by Chord from analyses
created using more specialized templates discussed below that also consume/produce those targets.

The code of the analysis must be supplied in the run() method. This method typically does the following in order:
(1) retrieves the program being analyzed and the representation of each consumed/produced target from the project;
(2) performs some computation that uses the program and the consumed targets as inputs; and (3) writes the outputs
of the computation to the produced targets.

The analysis templates presented in the following sections are more specialized forms of the JavaAnalysis template:
they constrain the number and kinds of consumed/produced targets and/or the analysis code in the run() method.

12.2 ProgramDom

Class chord.project.analyses.ProgramDom is a template for writing a program domain analysis. A program domain
represents an indexed set of values of a fixed kind, typically from the program being analyzed, such as the set of
all methods in the program, the set of all fields in the program, etc. Indices are assigned starting from 0 and in
the order in which values are added to the set. A program domain primarily serves as an input to Datalog analyses
(see Section 12.4). Thus, it is a kind of target (i.e., analysis result) in a Chord project. A common way to define a
program domain is to create a program domain analysis by extending class ProgramDom as follows:

import chord.project.Chord;
import chord.project.ClassicProject;
import chord.project.analyses.ProgramDom;
import chord.program.Program;

@Chord(
name = "<DOM_NAME>",
consumes = { "C1", ..., "Cn" }

)
public class ExampleDom extends ProgramDom<DOM_TYPE> {

@Override public void fill() {
Program p = Program.g();
ClassicProject project = ClassicProject.g();
A1 c1 = (A1) project.getTrgt("C1");
...
An cn = (An) project.getTrgt("Cn");
// populate domain using program and consumed targets c1, ..., cn
for (...) {

DOM_TYPE e = ...;
add(e);

}

http://chord.stanford.edu/javadoc/chord/project/analyses/ProgramDom.html
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}
}

To run the analysis, class ExampleDom must be compiled to a .class file that occurs in some element (directory or
jar/zip file) of the path specified by property chord.java.analysis.path. This causes the analysis to be included
in a Chord project as a task that is represented as a separate object of class ExampleDom. Moreover, that object also
denotes a target in the Chord project. Both the task and target have the same name <DOM_NAME>.

The ProgramDom template can be viewed as providing the following specialized form of the general JavaAnalysis
template:

• It consumes any number and kinds of targets explicitly declared in the @Chord annotation (C1, ..., Cn).

• It produces a single target, namely, the defined program domain itself (named <DOM_NAME> and of type
ExampleDom). It is a runtime error to explicitly declare any produced targets in the @Chord annotation (see
below).

• Its run() method adds values to the defined program domain. Typically, it suffices to override the fill()
method (which is called by the run() method) and call from it the add(e) method for each value e to be added
to the domain in order.

It is a runtime error to explicitly specify any produced targets in the @Chord annotation of a class extending
ProgramDom. If you wish to define an analysis that produces additional targets besides a program domain, then
you can still define the program domain in a class such as ExampleDom that extends ProgramDom, but you must not
annotate it with the @Chord annotation (since this annotation causes the class to be egarded as defining an analysis).
Instead, define the analysis in a separate class that extends JavaAnalysis, as follows:

import chord.project.Chord;
import chord.project.ClassicProject;
import chord.project.analyses.JavaAnalysis;

@Chord(
name = "<ANALYSIS_NAME>",
consumes = { "C1", ..., "Cn" },
produces = { "<DOM_NAME>", ... }

)
public class ExampleAnalysis extends JavaAnalysis {

@Override public void run() {
ExampleDom d = (ExampleDom) ClassicProject.g().getTrgt("<DOM_NAME>");
d.run(); // produce domain named <DOM_NAME>
...

}
}
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Note that targets C1, ..., Cn that were declared as consumed in the @Chord annotation of class ExampleDom (and
any other fields such as namesOfTypes and types) must now be provided in the @Chord annotation of class
ExampleAnalysis.

12.3 ProgramRel

Class chord.project.analyses.ProgramRel is a template for writing a program relation analysis. A program
relation represents a set of tuples over one or more fixed program domains. A program relation primarily serves as
an input or output of Datalog analyses (see Section 12.4). Thus, it is a kind of target (i.e., analysis result) in a
Chord project. A common way to define a program relation is to create a program domain analysis by extending
class ProgramRel as follows:

import chord.project.Chord;
import chord.project.ClassicProject;
import chord.project.analyses.ProgramDom;
import chord.project.analyses.ProgramRel;
import chord.program.Program;

@Chord(
name = "<REL_NAME>",
consumes = { "C1", ..., "Cn" },
sign = "<DOM_NAMES>:<DOM_ORDER>"

)
public class ExampleRel extends ProgramRel {

@Override public void fill() {
Program p = Program.g();
ProgramDom<T1> d1 = doms[0];
...
ProgramDom<Tm> dm = doms[m-1];
ClassicProject project = ClassicProject.g();
A1 c1 = (A1) project.getTrgt("C1");
...
An cn = (An) project.getTrgt("Cn");
// populate relation using program, its domains d1, ..., dm, and
// consumed targets c1, ..., cn
for (...) {

T1 o1 = ...;
Tm om = ...;
add(o1, ..., om);

}
}

}

http://chord.stanford.edu/javadoc/chord/project/analyses/ProgramRel.html
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To run the analysis, class ExampleRel must be compiled to a .class file that occurs in some element (directory or
jar/zip file) of the path specified by property chord.java.analysis.path. This causes the analysis to be included
in a Chord project as a task that is represented as a separate object of class ExampleRel. Moreover, that object also
denotes a target in the Chord project. Both the task and target have the same name <REL_NAME>.

The ProgramRel template can be viewed as providing the following specialized form of the general JavaAnalysis
template:

• It consumes any number and kinds of targets explicitly declared in the @Chord annotation (C1, ..., Cn) as well as
implicit targets corresponding to the program domains in the schema of the defined program relation (named
D1, ..., Dm and having type ProgramDom).

• It produces a single target, namely, the defined program relation itself (named <REL_NAME> and of type
ExampleRel). It is a runtime error to explicitly declare any produced targets in the @Chord annotation (see
below).

• Its run() method adds tuples to the defined program relation. Typically, it suffices to override the fill()
method (which is called by the run() method) and call from it the add(o1, ..., om) method for each tuple
(o1, ..., om) to be added to the relation.

Unlike for program domains, the order in which tuples are added to a program relation is irrelevant. But the relative
ordering of the program domains over which the program relation is declared matters heavily for performance.
This is because each program relation in Chord is represented symbolically (as oppoosed to explicitly) using a data
structure called a Binary Decision Diagram (BDD for short). This in turn is because in pratice, a program relation
(e.g., one representing context-sensitive points-to information) can contain millions or billions of tuples even for
a moderately-sized input Java program; representing such a large number of tuples explicitly is prohibitively and
needlessly expensive. The size of a BDD, on the other hand, does not depend at all upon the number of tuples in the
program relation that the BDD represents. Instead, it depends heavily upon the relative ordering of the program
domains over which the program relation is declared. Hence, the @Chord annotation on a class such as ExampleRel
that extends ProgramRel is required to have a sign field whose value is the sign of the program relation. A sign is
a string of the form <DOM_NAMES>:<DOM_ORDER> where:

• <DOM_NAMES> is mandatory and specifies the relation’s schema: a comma-separated list of names of the domains
over which the relation is defined, with each domain name suffixed with a non-negative integer that is typically
0 and must be unique across multiple occurrences of the same domain name. The order of domain names in
the schema is irrelevant: users must pick this order purely based on what order they find most convenient to
remember.

For example, suppose the program relation represents the result of Class Hierarchy Analysis (CHA), i.e., it
contains each tuple of the form (m1,t,m2) such that method m2 is the resolved method of an invokevirtual
or invokeinterface call with resolved method m1 on an object of class t. Let M and T denote the names
of the program domains representing the set of all methods and the set of all classes, respectively, in the
Java program being analyzed. Then, <DOM_NAMES> for this program relation could be any of “M0,T0,M1”,
“M1,T0,M0”, “M0,T1,M1”, and so on.

• <DOM_ORDER> is optional and determines the relation’s representation as a BDD. It is a permutation of the
names in DOM_NAMES> with a separator ‘ ’ or ‘x’ between consecutive names. The order of names in this list, and
the kind of separators used between them, are what determines both the size of the BDD and the performance
of operations on it (such as join, selection, projection, etc.).
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An example value of <DOM_ORDER> for the CHA program relation above with <DOM_LIST> as “M0,T0,M1” is
“M0xM1_T0”; another example value is “M1_T0_M0”.

Chapter 15 describes how BDDs are represented (Section 15.3) and how you can tune their size and the performance
of operations on them (Section 15.2).

It is a runtime error to explicitly specify any produced targets in the @Chord annotation of a class extending
ProgramRel. If you wish to define an analysis that produces additional targets besides a program relation, then
you can still define the program relation in a class such as ExampleRel that extends ProgramRel, but you must not
annotate it with the @Chord annotation (since this annotation causes the class to be egarded as defining an analysis).
Instead, define the analysis in a separate class that extends JavaAnalysis, as follows:

import chord.project.Chord;
import chord.project.ClassicProject;
import chord.project.analyses.JavaAnalysis;

@Chord(
name = "<ANALYSIS_NAME>",
consumes = { "C1", ..., "Cn" },
produces = { "<REL_NAME>", ... },
namesOfSigns = { "<REL_NAME>", ... },
signs = { "<DOM_ORDER>:<DOM_NAME>", ... }

)
public class ExampleAnalysis extends JavaAnalysis {

@Override public void run() {
ExampleRel r = (ExampleRel) ClassicProject.g().getTrgt("<REL_NAME>");
r.run(); // produce program relation named <REL_NAME>

}
}

Note that targets C1, ..., Cn that were declared as consumed in the @Chord annotation of class ExampleRel (and
any other fields such as namesOfTypes and types) must now be provided in the @Chord annotation of class
ExampleAnalysis. Just like the 1-to-1 correspondence between the values of fields namesOfTypes and types, there
is a 1-to-1 correspondence between the values of fields namesOfSigns and signs, which allow relating the name of
any program relation in the project with its sign.

12.4 DlogAnalysis

A common way to rapidly prototype analyses in Chord is using a declarative logic-programming language called
Datalog. A Datalog analysis is defined in a .dlog file that primarily specifies the following:
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• A set of program domains D1, ..., Dk. A program domain is a set of values of a fixed kind. Each program
domain in a Chord project is a target that is represented as a separate object of class ProgramDom (see Section
12.2).

• A set of program relations, including input relations I1, ..., In and output relations O1, ..., Om. A program
relation is a set of tuples over one or more fixed program domains D1, ..., Dk. Each program relation in a Chord
project is a target that is represented as a separate object of class ProgramRel (see Section 12.3).

• A set of rules (constraints) R specifying how to compute the output relations from the input relations.

An example such file is shown in Chapter 15 which also explains all aspects of Datalog analyses.

To run the analysis, the .dlog file must occur in some element (directory or jar/zip file) of the path specified
by property chord.dlog.analysis.path. This causes the analysis to be included in a Chord project as a task
that is represented as a separate object of class chord.project.analyses.DlogAnalysis. Note that, unlike class
JavaAnalysis, users must not extend class DlogAnalysis but must instead define the analysis in a .dlog file.

The DlogAnalysis template can be viewed as providing the following specialized form of the general JavaAnalysis
template:

• It consumes targets D1, ..., Dk of type ProgramDom and I1, ..., In of type ProgramRel.

• It produces targets O1, ..., Om of type ProgramRel.

• Its run() method executes Datalog solver bddbddb to compute output relations O1, ..., Om from input relations
I1, ..., In by solving constraints R.

12.5 DynamicAnalysis

Under construction

12.6 RHSAnalysis

Under construction

http://chord.stanford.edu/javadoc/chord/project/analyses/DlogAnalysis.html
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Running an Analysis

This chapter describes how to run an analysis in Chord. Broadly, there are two kinds of analyses in Chord, summa-
rized in the following table:

Kind: imperative (see Chapter 12) declarative (see Chapter 15)

Location:

a .class file in the path denoted by property
chord.java.analysis.path compiled

from a @Chord-annotated class implementing
interface chord.project.ITask

a .dlog file in the path denoted by property
chord.dlog.analysis.path

Name: via stmt name="<NAME>" in @Chord annotation via line “# name=<NAME>” in .dlog file

In its most general form, the command for running an analysis is as follows:

ant -Dchord.work.dir=<WORK_DIR> -Dchord.run.analyses=<ANALYSIS_NAME> \
-Dchord.dlog.analysis.path=<DLOG_ANALYSIS_PATH> \
-Dchord.java.analysis.path=<JAVA_ANALYSIS_PATH> run

where:

• <WORK_DIR> is a directory containing a file named chord.properties that defines various properties of the
program to be analyzed that might be needed by the analysis being run, such as the program’s main class, the
program’s application classpath, etc. (see Chapter 6).

• <ANALYSIS_NAME> is the name of the analysis to run. More generally, it can be a comma-separated list of
names of analyses to run in order.

• <JAVA_ANALYSIS_PATH> is a path specifying all imperative analyses that might be needed to run the desired
analysis.
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• <DLOG_ANALYSIS_PATH> is a path specifying all declarative analyses that might be needed to run the desired
analysis.

In order to facilitate heavy reuse and rapid prototyping, each analysis in Chord is written modularly, independent
of other analyses, along with lightweight annotations specifying the inputs and outputs of the analysis. Chord’s
runtime automatically computes producer-consumer relationships between analyses (e.g., determines which analysis
produces as output a result that is needed as input by another analysis). Before running the desired analysis named
<ANALYSIS_NAME>, Chord recursively runs other analyses until the inputs to the desired analysis have been computed;
it finally runs the desired analysis to produce the outputs of that analysis. Chapter 11 explains this process in detail.
Each of these analyses must occur in the path denoted by <JAVA_ANALYSIS_PATH> or <DLOG_ANALYSIS_PATH>,
depending upon whether the analysis is written imperatively or declaratively, respectively.

Chord provides shorthand ways for specifying analysis paths by means of the following six properties:

Analysis Kind Predefined User-defined All
imperative chord.std.java.analysis.path chord.ext.java.analysis.path chord.java.analysis.path
declarative chord.std.dlog.analysis.path chord.ext.dlog.analysis.path chord.dlog.analysis.path

The paths specified by the chord.std.*.analysis.path properties conventionally include all “standard” analyses:
analyses that are predefined in Chord. The default value of each of these properties is the absolute path of file
chord.jar. Normally, users must not change the value of these properties.

The paths specified by the chord.ext.*.analysis.path properties conventionally include all “external” analyses:
analyses that are written by users. The default value of each of these properties is the empty path.

The paths specified by the chord.*.analysis.path properties include all analyses: both standard and external
ones. The default value of each of these properties is simply the concatenation of the values of the corresponding
two properties above that specify the paths of standard and external analyses. Normally, users must not change the
value of these properties.

Running the above command can cause Chord to report a runtime error in the following scenarios:

• Either no included analysis or multiple included analyses are named <ANALYSIS_NAME>.

• A result declared as consumed by the analysis named <ANALYSIS_NAME> (or by some analysis on which the
specified analysis is dependent directly or transitively) is either not declared as produced by any included
analysis or is declared as produced by multiple included analyses.

To fix the error resulting from the “missing analysis” case in both the above scenarios, simply include the missing
analysis in the path specified by properties chord.*.analysis.path.

To fix the error resulting from the “ambiguous analysis” case in both the above scenarios, the names A1, ..., An of
all analyses that were involved in the ambiguity are provided in the error report. Suppose Ai is the desired analysis
from this set. Then, one way to fix the error is to exclude all analyses in that set except analysis Ai from the path
specified by properties chord.*.analysis.path. A better way is to specify the names of multiple analyses in the
value of property chord.run.analyses (recall that this property allows a comma-separated list of names of analyses
to be run in order). Specifically, the value of this property must specify the name of the desired analysis Ai before
the name of the analysis that caused the ambiguity error.
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The above command is for users who have defined their own analyses and wish to run them. The following simpler
command that uses the default values for properties chord.*.analysis.path suffices for users who only wish to run
analyses predefined in Chord:

ant -Dchord.work.dir=<WORK_DIR> -Dchord.run.analyses=<ANALYSIS_NAME> run

Section 8.1 illustrates this command using an example predefined analysis in Chord.



Chapter 14

Dynamic Analysis

This chapter describes all aspect of dynamic analysis in Chord. Section 14.1 describes how to write a dynamic
analysis, Section 14.2 describes how to compile and run it, and Section 14.3 describes common dynamic analysis
events supported in Chord.

14.1 Writing a Dynamic Analysis

Follow the following steps to write your own dynamic analysis.

Create a class extending chord.project.analyses.DynamicAnalysis and override the appropriate methods in it.
The only methods that must be compulsorily overridden are method getInstrScheme(), which must return an
instance of the “instrumentation scheme” required by your dynamic analysis (i.e., the kind and format of events
to be generated during an instrumented program’s execution) plus each process<event>(<args>) method that
corresponds to event <event> with format <args> enabled by the chosen instrumentation scheme. See Section 14.3
for the kinds of supported events and their formats.

A sample such class MyDynamicAnalysis is shown below:
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import chord.project.Chord;

import chord.project.analyses.DynamicAnalysis;

import chord.instr.InstrScheme;

// ***TODO***: analysis won’t be recognized by Chord without this annotation

@Chord(name = "<ANALYSIS_NAME>")

public class MyDynamicAnalysis extends DynamicAnalysis {

InstrScheme scheme;

@Override

public InstrScheme getInstrScheme() {

if (scheme != null)

return scheme;

scheme = new InstrScheme();

// ***TODO***: Choose (<event1>, <args1>), ... (<eventN>, <argsN>)

// depending upon the kind and format of events required by this

// dynamic analysis to be generated for this during an instrumented

// program’s execution.

scheme.set<event1>(<args1>);

...

scheme.set<eventN>(<argsN>);

return scheme;

}

@Override

public void initAllPasses() {

// ***TODO***: User code to be executed once and for all

// before all instrumented program runs start.

}

@Override

public void doneAllPasses() {

// ***TODO***: User code to be executed once and for all

// after all instrumented program runs finish.

}

@Override

public void initPass() {

// ***TODO***: User code to be executed once before each instrumented program run starts.

}

@Override

public void donePass() {

// ***TODO***: User code to be executed once after each instrumented program run finishes.

}

@Override

public void process<event1>(<args1>) {

// ***TODO***: User code for handling events of kind <event1> with format <args1>.

}

...

@Override

public void process<eventN>(<argsN>) {

// ***TODO***: User code for handling events of kind <eventN> with format <argsN>.

}
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}

14.2 Compiling and Running a Dynamic Analysis

Compile the analysis by placing the directory containing class MyDynamicAnalysis created above in the path defined
by property chord.ext.java.analysis.path.

Provide the IDs of program runs to be generated (say 1, 2, ..., M) and the command-line arguments to be used
for the program in each of those runs (say <args1>, ..., <argsM>) via properties chord.run.ids=1,2,...,N and
chord.args.1=<args1>, ..., chord.args.M=<argsM>. By default, chord.run.ids=0 and chord.args.0="", that is,
the program will be run only once (using run ID 0) with no command-line arguments.

To run the analysis, set property chord.run.analyses to <ANALYSIS_NAME> (recall that <ANALYSIS_NAME> is the
name provided in the @Chord annotation for class MyDynamicAnalysis created above).

Note: The IBM J9 JVM on Linux is highly recommended if you intend to use Chord for dynamic program analysis,
as it allows you to instrument the entire JDK; using any other platform will likely require excluding large parts of
the JDK from being instrumented. Additionally, if you intend to use online (load-time) bytecode instrumentation in
your dynamic program analysis, then you will need JDK 6 or higher, since this functionality requires the java.lang.
instrument API with class retransformation support (the latter support is available only in JDK 6 and higher).

You can change the default values of various properties for configuring your dynamic analysis; see Section 5.2.2 and
Section 5.2.5 in Chapter 5. For instance:

• You can set property chord.scope.kind to dynamic so that the program scope is computed dynamically (i.e.,
by running the program) instead of statically.

• You can exclude certain classes (e.g., JDK classes) from being instrumented by setting properties chord.std.
scope.exclude, chord.ext.scope.exclude, and chord.scope.exclude.

• You can choose between online (i.e. load-time) and offline bytecode instrumentation by setting property
chord.instr.kind to online or offline.

• You can require the event-generating and event-handling JVMs to be one and the same (by setting property
chord.trace.kind to none), or to be separate (by setting property chord.trace.kind to full or pipe,
depending upon whether you want the two JVMs to exchange events by a regular file or a POSIX pipe,
respectively). Using a single JVM can cause correctness/performance issues if event-handling Java code itself
is instrumented (e.g., say the event-handling code uses class java.util.ArrayList which is not excluded from
program scope). Using separate JVMs prevents such issues since the event-handling JVM runs uninstrumented
bytecode (only the event-generating JVM runs instrumented bytecode). If a regular file is used to exchange
events between the two JVMs, then the JVMs run serially: the event-generating JVM first runs to completion,
dumps the entire dynamic trace to the regular file, and then the event-handling JVM processes the dynamic
trace. If a POSIX pipe is used to exchange events between the two JVMs, then the JVMs run in lockstep.
Obviously, a pipe is more efficient for very long traces, but it not portable (e.g., it does not currently work on
Windows/Cygwin), and the traces cannot be reused across Chord runs (see the following item).
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• You can reuse dynamic traces from a previous Chord run by setting property chord.reuse.traces to true.
In this case, you must also set property chord.trace.kind to full.

• You can set property chord.dynamic.haltonerr to false to prevent Chord from terminating even if the
program on which dynamic analysis is being performed crashes.

Chord offers much more flexibility in crafting dynamic analyses. You can define your own instrumentor (by sub-
classing chord.instr.CoreInstrumentor instead of using the default chord.instr.Instrumentor) and your own
event handler (by subclassing chord.runtime.CoreEventHandler instead of using the default chord.runtime.
EventHandler). You can ask the dynamic analysis to use your custom instrumentor and/or your custom event han-
dler by overriding methods getInstrumentor() and getEventHandler(), respectively, defined in chord.project.
analyses.CoreDynamicAnalysis. Finally, you can define your own dynamic analysis template by subclassing
chord.project.analyses.CoreDynamicAnalysis instead of subclassing the default chord.project.analyses.
DynamicAnalysis.

14.3 Common Dynamic Analysis Events

Chord provides support for instrumenting common dynamic analysis events. The below table describes these events.
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Event Kind Description
EnterMainMethod(t) After thread t enters method m (in domain M).
EnterMethod(m, t) After thread t enters method m (in domain M).
LeaveMethod(m, t) Before thread t leaves method m (in domain M).
EnterLoop(w, t) Before thread t begins loop w (in domain W).
LoopIteration(w, t) Before thread t starts a new iteration of loop w (in domain W).
LeaveLoop(w, t) After thread t finishes loop w (in domain W).
BasicBlock(b, t) Before thread t enters basic block b (in domain B).
Quad(p, t) Before thread t executes quad at program point p (in domain P).

BefMethodCall(i, t, o)
Before thread t executes the method invocation statement at program
point i (in domain I) with this argument as object o.
Note: Not generated before constructor calls; use BefNew event.

AftMethodCall(i, t, o)
After thread t executes the method invocation statement at program
point i (in domain I) with this argument as object o.
Note: Not generated after constructor calls; use AftNew event.

BefNew(h, t, o) Before thread t executes a new bytecode instruction and allocates fresh
object o at program point h (in domain H).

AftNew(h, t, o) After thread t executes a new bytecode instruction and allocates fresh
object o at program point h (in domain H).

NewArray(h, t, o) After thread t executes a newarray bytecode instruction and allocates
fresh object o at program point h (in domain H).

GetstaticPrimitive(e, t, f) After thread t reads primitive-typed static field f (in domain F) at pro-
gram point e (in domain E).

GetstaticReference(e, t, f, o) After thread t reads object o from reference-typed static field f (in
domain F) at program point e (in domain E).

PutstaticPrimitive(e, t, f) After thread t writes primitive-typed static field f (in domain F) at
program point e (in domain E).

PutstaticReference(e, t, f, o) After thread t writes object o to reference-typed static field f (in domain
F) at program point e (in domain E).

GetfieldPrimitive(e, t, b, f) After thread t reads primitive-typed instance field f (in domain F) of
object b at program point e (in domain E).

GetfieldReference(e, t, b, f, o) After thread t reads object o from reference-typed instance field f (in
domain F) of object b at program point e (in domain E).

PutfieldPrimitive(e, t, b, f) After thread t writes primitive-typed instance field f (in domain F) of
object b at program point e (in domain E).

PutfieldReference(e, t, b, f, o) After thread t writes object o to reference-typed instance field f (in
domain F) of object b at program point e (in domain E).

AloadPrimitive(e, t, b, i) After thread t reads the primitive-typed element at index i of array
object b at program point e (in domain E).

AloadReference(e, t, b, i, o) After thread t reads object o from the reference-typed element at index
i of array object b at program point e (in domain E).

AstorePrimitive(e, t, b, i) After thread t writes the primitive-typed element at index i of array
object b at program point e (in domain E).

AstoreReference(e, t, b, i, o) After thread t writes object o to the reference-typed element at index i
of array object b at program point e (in domain E).

ThreadStart(i, t, o) Before thread t calls the start() method of java.lang.Thread at pro-
gram point i (in domain I) and spawns a thread o.

ThreadJoin(i, t, o) Before thread t calls the join() method of java.lang.Thread at pro-
gram point i (in domain I) to join with thread o.

AcquireLock(l, t, o) After thread t executes a statement of the form “monitorenter o” or
enters a method synchronized on o at program point l (in domain L).

ReleaseLock(r, t, o) Before thread t executes a statement of the form “monitorexit o” or
leaves a method synchronized on o at program point r (in domain R).

Wait(i, t, o) Before thread t calls the wait() method of java.lang.Object on object
o at program point i (in domain I).

Notify(i, t, o) Before thread t calls the notify() or notifyAll() method of java.
lang.Object on object o at program point i (in domain I).



Chapter 15

Datalog Analysis

A common way to rapidly prototype an analysis in Chord is using a declarative logic-programming language called
Datalog. This chapter describes all aspects of Datalog analyses in Chord. Section 15.1 explains how to write and run a
Datalog analysis. Section 15.2 explains how to tune its performance. Finally, Section 15.3 explains the representation
of BDDs (Binary Decision Diagrams) which are a data structure central to executing Datalog analyses.

15.1 Writing a Datalog Analysis

A Datalog analysis declares a bunch of input/output program relations, each over one or more program domains, and
provides a bunch of rules (constraints) specifying how to compute the output relations from the input relations. It can
be defined in any file with suffix .dlog in any directory in the path specified by property chord.dlog.analysis.path.
An example Datalog analysis is shown below:

71
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# name=datarace-dlog

# Program domains

.include "E.dom"

.include "F.dom"

.include "T.dom"

# BDD variable order

.bddvarorder E0xE1_T0_T1_F0

# Input/intermediate/output program relations

field(e:E0,f:F0) input

write(e:E0) input

reach(t:T0,e:E0) input

alias(e1:E0,e2:E1) input

escape(e:E0) input

unguarded(t1:T0,e1:E0,t2:T1,e2:E1) input

hasWrite(e1:E0,e2:E1)

candidate(e1:E0,e2:E1)

datarace(t1:T0,e1:E0, t2:T1,e2:E1) output

# Analysis constraints

hasWrite(e1,e2) :- write(e1).

hasWrite(e1,e2) :- write(e2).

candidate(e1,e2) :- field(e1,f), field(e2,f), hasWrite(e1,e2), e1 <= e2.

datarace(t1,e1,t2,e2) :- candidate(e1,e2), reach(t1,e1), reach(t2,e2), \

alias(e1,e2), escape(e1), escape(e2), unguarded(t1,e1,t2,e2).

Any line that begins with a “#” is regarded a comment, except a line of the form “#name=<ANALYSIS_NAME>”, which
specifies the name <ANALYSIS_NAME> of the Datalog analysis. Each Datalog analysis is expected to have exactly one
such line. The above Datalog analysis is named datarace-dlog.

The “.include"<DOM_NAME>.dom"” lines specify each domain named <DOM_NAME> that is needed by the Datalog
analysis, i.e., each domain over which any relation that is input/output by the Datalog analysis is defined. The
declaration of each such relation specifies the relation’s schema: all the domains over which the relation is defined. If
the same domain appears multiple times in a relation’s schema then contiguous integers starting from 0 must be used
to distinguish them; for instance, in the above example, candidate is a binary relation, both of whose attributes
have domain E, and they are distinguished as E0 and E1.

Each relation is represented symbolically (as opposed to explicitly) using a graph-based data structure called a
Binary Decision Diagram (BDD for short). Each domain containing N elements is assigned log2(N) BDD variables.
The size of a BDD and the efficiency of operations on it depends heavily on the order of these BDD variables. The
“.bddvarorder<BDD_VAR_ORDER>” line in the Datalog analysis enables the Datalog analysis writer to specify this
order. It must list all domains along with their numerical suffixes, separated by ‘ ’ or ‘x’. Using a ‘ ’ between two
domains, such as T0 T1, means that the BDD variables assigned to domain T0 precede those assigned to domain T1
in the BDD variable order for this Datalog analysis. Using a ‘x’ between two domains, such as E0xE1, means that
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the BDD variables assigned to domains E0 and E1 will be interleaved in the BDD variable order for this Datalog
analysis. See Section 15.3 for more details on BDD representations.

Each Datalog analysis rule is a Horn clause of the form “R(t) :- R1(t1), ..., Rn(tn)” meaning that if relations
R1, ..., Rn contain tuples t1, ..., tn respectively, then relation R contains tuple t. A backslash may be used at the end
of a line to break long rules for readability. The Datalog analysis solver bddbddb used in Chord does not apply any
sophisticated optimizations to simplify the rules; besides the BDD variable order, the manner in which these rules
are expressed heavily affects the performance of the solver. For instance, an important manual optimization involves
breaking down long rules into multiple shorter rules communicating via intermediate relations. See Section 15.2 for
hints on tuning the performance of Datalog analyses.

Running a Datalog analysis is no different from running any other kind of analysis in Chord. See Chapter 13 for
how to run an analysis.

15.2 Tuning Performance

There are several tricks analysis writers can try to improve the performance of bddbddb, the Datalog solver used by
Chord, often by several orders of magnitude. Try these tricks by running the following command:

ant -Ddlog.file=<FILE> -Dwork.dir=<DIR> solve

where <FILE> is the file defining the Datalog analysis to be tuned, and <DIR> is the directory containing the
program domains (*.dom files) and program relations (*.bdd files) consumed by the analysis (this is by default the
chord_output/bddbddb/ directory generated by a previous run of Chord.

1. Set properties noisy=yes, tracesolve=yes, and fulltracesolve=yes on the above command line and observe
which rule gets “stuck” (i.e., takes several seconds to solve). fulltracesolve is seldom useful, but noisy and
tracesolve are often very useful. Once you identify the rule that is getting stuck, it will also tell you which
relations and which domains used in that rule, and which operation on them, is taking a long time to solve.
Then try to fix the problem with that rule by doing either or both of the following:

• Break down the rule into multiple rules by creating intermediate relations (the more relations you have
on the RHS of a rule the slower it generally takes to solve that rule).

• Change the relative order of the domains of those relations in the BDD variable order (note that you can
use either ‘ ’ or ‘x’ between a pair of domains).

2. Once you have ensured that none of the rules is getting “stuck”, you will notice that some rules are applied
too many times, and so although each application of the rule itself isn’t taking too much time, the cumulative
time for the rule is too much. After finishing solving a Datalog analysis, bddbddb prints how long each rule
took to solve (both in terms of the number of times it was applied and the cumulative time it took). It sorts
the rules in the order of the cumulative time. You need to focus on the rules that took the most time to solve
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(they will be at the bottom of the list). Assuming you removed the problem of rules getting “stuck”, the rules
will roughly be in the order of the number of times they were applied. Here is an example:

OUT> Rule VH(u:V0,h:H0) :- VV(u:V0,v:V1), VH(v:V1,h:H0), VHfilter
(u:V0,h:H0).
OUT> Updates: 2871
OUT> Time: 6798 ms
OUT> Longest Iteration: 0 (0 ms)
OUT> Rule IM(i:I0,m:M0) :- reachableI(i:I0), specIMV(i:I0,m:M0,v:V0), VH(v:V0,_:H0).
OUT> Updates: 5031
OUT> Time: 6972 ms
OUT> Longest Iteration: 0 (0 ms)

Notice that the second rule was applied 5031 times whereas the first was applied 2871 times. More importantly,
the second rule took 6972 milliseconds in all, compared to 6798 for the first rule. Hence, you should focus on
the second rule first, and try to speed it up. This means that you should focus only on relations IM, reachableI,
specIMV, and VH, and the domains I0, M0, V0, and H0. Any changes you make that do not affect these
relations and domains are unlikely to make your solving faster. In general, look at the last few rules, not just
the last one, and try to identify the “sub-analysis” of the Datalog analysis that seems problematic, and then
focus on speeding up just that sub- analysis.

3. You can add the .split keyword at the end of certain rules as a hint to bddbddb to decompose those rules
into simpler ones that can be solved faster. You can also set property split_all_rules=yes as shorthand for
splitting all rules without adding the .split keyword to any of them, though I seldom find splitting all rules
helpful.

4. You can try to decompose a single Datalog analysis file into two separate Datalog analysis files. Of course,
you cannot separate mutually-recursive rules into two different analyses, but if you unnecessarily club together
rules that could have gone into different analyses, then they can put conflicting demands on bddbddb (e.g., on
the BDD variable order). So if rule 2 uses the result of rule 1 and rule 1 does not use the result of rule 2, then
put rule 1 and rule 2 in separate Datalog analyses.

5. Observe the sizes of the BDDs representing the relations that are input and output. bddbddb prints both the
number of tuples in each relation and the number of nodes in the BDD. Try changing the BDD variable order
for the domains of the relation, and observe how the number of nodes in the BDD for that relation change. You
will notice that some orders perform remarkably better than others. Then note down these orders as invariants
that you will not violate as you tweak other things.

6. The relative order of values *within* domains (e.g., in domains named M, H, C, etc. in Chord) affects the
performance of bddbddb, but I’ve never tried changing this and studying its effect. It might be worth trying.
For instance, John Whaley’s PLDI’04 paper describes a specific way in which he numbers contexts (in domain
C) and that it was fundamental to the speedup of his “infinity”-CFA points-to analysis.

7. Finally, it is worth emphasizing that BDDs are not magic. If your algorithm itself is fundamentally hard to
scale, then BDDs are unlikely to help you a whole lot. Secondly, many things are awkward to encode as integers
(e.g., the abstract contexts in domain C in Chord) or as Datalog rules. For instance, I’ve noticed that summary-
based context-sensitive program analyses are hard to express in Datalog. The may-happen-in-parallel analysis
provided in Chord shows a relatively simple kind of summary-based analysis that uses the Reps-Horwitz-Sagiv
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tabulation algorithm. But this is as far as I could get—more complicated summary-based algorithms are best
written in Java itself instead of Datalog.

15.3 BDD Representation

Each domain containing N elements is assigned log2(N) BDD variables in the underlying BDD factory with con-
tiguous IDs. For instance, domain F0 containing [128..256) elements will be assigned 8 variables with IDs (say)
63,64,65,66,67,68,69,70 and domain Z0 containing [8..16) elements will be assigned 4 variables with IDs (say)
105,106,107,108.

If two domains are uninterleaved in the declared domain order in a Datalog program (i.e., ‘ ’ is used instead of ‘x’
between them), then the BDD variables assigned to those domains are ordered in reverse order in the underlying
BDD factory. For instance, the BDD variable order corresponding to the declared domain order F0 Z0 is (in level2var
format) “70,69,68,67,66,65,64,63,108,107,106,105”.

If two domains are interleaved in the declared domain order in a Datalog program (i.e., ‘x’ is used instead of ‘ ’
between them), then the BDD variables assigned to those domains are still ordered in reverse order of IDs in the
underlying BDD factory, but they are also interleaved. For instance, the BDD variable order corresponding to the
declared domain order F0xZ0 is (in level2var format) “70,108,69,107,68,106,67,105,66,65,64,63”.

Each BDD variable is at a unique “level” which is its 0-based position in the BDD variable order in the underlying
BDD factory.

We will next illustrate the format of a BDD stored on disk (in a .bdd file) using the following example:

# V0:16 H0:12
# 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# 82 83 84 85 86 87 88 89 90 91 92 93
28489 134
39 36 33 30 27 24 21 18 15 12 9 6 3 0 81 79 77 75 73 71 69 67 65 63 61 59 57 55 \

53 51 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52 37 34 31 28 25 22 19 16 \
13 10 7 4 1 117 116 115 114 113 112 111 110 109 108 107 106 50 49 48 47 46 45 \
44 43 42 41 40 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 \
86 85 84 83 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 \
38 35 32 29 26 23 20 17 14 11 8 5 2

287 83 0 1
349123 84 287 0
349138 85 0 349123
...

The first comment line indicates the domains in the relation (in the above case, V0 and H0, represented using 16 and
12 unique BDD variables, respectively).
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If there are N domains, there are N following comment lines, each specifying the BDD variables assigned to the
corresponding domain.

The following line has two numbers: the number of nodes in the represented BDD (28489 in this case) and the number
of variables in the BDD factory from which the BDD was dumped to disk. Note that the number of variables (134
in this case) is not necessarily the number of variables in the represented BDD (16+12=28 in this case) though it is
guaranteed to be greater than or equal to it.

The following line specifies the BDD variable order in var2level format. In this case, the specified order subsumes
V0 H0 (notice that levels “81 79 77 75 73 71 69 67 65 63 61 59 57 55 53 51”, which are at positions “14 15 ... 28 29”
in the specified order are lower than levels “105 104 103 102 101 100 99 98 97 96 95 94” which are at positions “82
83 .. 92 93”).

Each of the following lines specifies a unique node in the represented BDD; it has format “X V L H” where:

• X is the ID of the BDD node

• V is the ID of the bdd variable labeling that node (unless it is 0 or 1, in which case it represents a leaf node)

• L is the ID of the BDD node’s low child

• H is the ID of the BDD node’s high child

The order of these lines specifying BDD nodes is such that the lines specifying the BDD nodes in the L and H entries
of each BDD node are guaranteed to occur before the line specifying that BDD node (for instance, the L entry 287
on the second line and the R entry 349123 on the third line are IDs of BDD nodes specified on the first and second
lines, respectively).

Note on Terminology: The support of a BDD b is another BDD r = b.support() that represents all the variables
used in b. The support BDD r is a linear tree each of whose nodes contains a separate variable, the low branch
is 0, and high branch is the node representing the next variable. To list all the variables used in a BDD b use
r.scanSet(). Needless to say, scanSet() simply walks along the high branches starting at the root of BDD r.
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