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DNA Packaging Is a
Formidable Challenge

Single DNA molecule in human chromosome
ca. 5 cm long

Diploid genome contains ca. 2 meters of DNA
Nucleus of human cell ca. 5 um in diameter

Human metaphase chromosome ca. 2.5 um
in length

10,000 to 20,000 packaging ratio required



Overview of
DNA
Packaging
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NET RESULT: EACH DNA MOLECULE HAS BEEN
PACKAGED INTO A MITOTIC CHROMOSOME THAT
IS 10,000-FOLD SHORTER THAN ITS EXTENDED LENGTH

Figure 4-55. Molecular Biology of the Cell, 4th Edition.
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Packaging in Interphase Nucleus
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Chromatin Composition

Complex of DNA and histones in 1:1
mass ratio

Histones are small basic proteins

- highly conserved during evolution

- abundance of positively charged aa’s
(lysine and arginine) bind negatively
charged DNA

Four core histones: H2A, H2B, H3, H4
in 1:1:1:1 ratio
Linker histone: H1 in variable ratio



Chromatin Fibers

(a) 11-nm fiber (b) 30-nm fiber
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« beads = nucleosomes  physiological ionic

« compaction = 2.5X strength (0.15 M KClI)
+ low ionic strength buffer * compaction = 42X

+ H1 not required H1 required



Micrococcal Nuclease Digestion of
Chromatin
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Figure 4-23 part 1 of 2 Molecular Biology of the Cell 5/e (© Garland Science 2008)



Stochiometry of Histones and DNA
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Structure of Core Nucleosome

1.65 left handed turns of DNA around histone octamer

side view bottom view

© histone H2A () histone H2B @) histone H3 @ histone H4

Figure 4-24 Molecular Biology of the Cell 5/e (© Garland Science 2008)



Histone Structure
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Figure 4-26. Molecular Biology of the Cell, 4th Edition.



Assembly of a Histone Octamer
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Figure 4-26 part 1 of 2 Molecular Biology of the Cell 5/e (© Garland Science 2008)
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Nucleosomes Are Dynamic

wrapped nucleosome unwrapped nucleosome rewrapped
exists for 250 exists for 10-50 nucleosome
milliseconds milliseconds
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Figure 4-28 Molecular Biology of the Cell 5/e (© Garland Science 2008)



Chromatin Remodeling

ATP-dependent
chromatin remodeling
complex

CATALYSIS OF
NUCLEOSOME SLIDING

Figure 4-29 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Large complexes of = 10 proteins

Use energy of ATP hydrolysis to partially disrupt
histone-DNA contacts

Catalyze nucleosome sliding or nucleosome removal



-nm Chromatin Fiber Structure
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Models for H1 and Core Histone
Tails in Formation of 30-nm Fiber
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Figure 4-31. Molecular Biology of the Cell, 4th Edition.
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Figure 4-32. Molecular Biology of the Cell, 4th Edition



Histone Tails

Figure 6-31a
Molecular Cell Biology, Sixth Edition
© 2008 W.H. Freeman and Company



Covalent Modifications of Histone Tails Control
Chromatin Function
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Enzymes that Modify Histones

 Histone acetyltransferases (HATS)

 Histone deacetylases (HDACS)

« Histone methyl transferases (HMTSs)

 Histone kinases

LYSINE ACETYLATION AND METHYLATION ARE COMPETING REACTIONS
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Meanings of Histone ‘Code’
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Figure 4-44a Molecular Biology of the Cell 5/e (© Garland Science 2008)
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Figure 4-44b Molecular Biology of the Cell 5/e (© Garland Science 2008)



Transcriptional Regulators
Modify Histone Acetylation

Repressor-directed histone deacetylation

Deacetylation of histone

@ = Acetyl group




Transcriptional Regulators Modify
Histone Acetylation

Activator-directed histone hyperacetylation




Histone Code Readers

« Code reader
s complexes recognize
particular marks on
\ chromatin

BINDS AND
ATTRACTS OTHER

cowoas L @ Attract additional
' protein complexes

that execute

biological function

attachment to other components in nucleus,
leading to gene expression, gene silencing,
or other biological function

ure 4-43 Molecular Biology of the Cell 5/e (© Garland Science 2008)



Formation of Heterochromatin
Silences Gene Expression

Heterochromatin-regions of || = _osifile.

darkly staining chromatin in
eukaryotic nuclei

Transcriptionally silent DNA

Centromeres, telomeres are
heterochromatic

Genes near heterochromatin ks =" ¢
show metastable expression . ~ S8 &% Ty
patterns LR
- position effect variegation in flies ]
- telomere position effects in yeast

.........
R
,,,,,,



Formation of Heterochromatin in
Mammalian Cells

* Requires specific
modification:
Histone H3 lysine 9
trimethylation

(H3K9Me,) by H3K9

HMT

 Heterochromatin
protein 1 (HP1)
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Boundary Elements Prevent
Spread of Heterochromatin
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Histone Variants Have Special

Functions

histone fold
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Figure 4-41 Molecular Biology of the Cell 5/e (© Garland Science 2008)

SPECIAL FUNCTION

transcriptional activation

centromere function and
kinetochore assembly

DNA repair and
recombination

gene expression,
chromosome segregation

transcriptional repression,
X-chromosome inactivation



Centromeres Are Heterochromatic
and Contain Specialized
Nucleosome

centromere-specific centromere-specific
proteins kinetochore protein  histone H3

. (B) _ (C)
centromere-specific conventional

nucleosome histone H3
(A)

Figure 4-49. Molecular Biology of the Cell, 4th Edition.
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Higher Order Packaging
(300-nm fiber)

Loop of
30-nm
chromatin
fiber

Chromosome
scaffold

Protein ==

Mechanism of looping unknown



Mitotic Chromosome Condensation

* Depends on SMC (structural maintenance of
chromosomes) proteins, which are conserved
from bacteria to man

(SMC2 & SMC4)
- Cohesins (SMC1 & SMC3)

- large proteins with coiled-coiled domains and
ATPase domains

Hinge
domain ‘

Coiled-coil {
domain

Head

Figure 6-38a



Model of Cohesin in Mitotic
Chromosomes

Figure 4-73c Molecular Biology of the Cell 5/e (© Garland Science 2008)



Molecular Basis of Cohesion
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