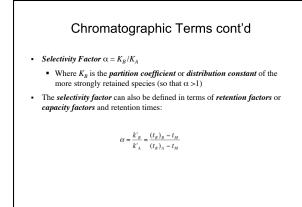

Chromatography - the *separation* of an analyte from a mixture

Classification of Chromatographic Methods


General Classification	Specific Method	Stationary Phase	Type of Equilibrium
1. Gas chromatography (GC)	 a. Gas-liquid chro- matography (GLC) 	Liquid adsorbed or bonded to a solid surface	Partition between gas and liquid
	b. Gas-solid	Solid	Adsorption
2. Liquid chromatography (LC)	 a. Liquid-liquid, or partition 	Liquid adsorbed or bonded to a solid surface	Partition between immiscible liquids
	 b. Liquid-solid, or adsorption 	Solid	Adsorption
	c. Ion exchange	Ion-exchange resin	Ion exchange
	d. Size exclusion	Liquid in interstices of a polymeric solid	Partition/sieving
	e. Affinity	Group specific liquid bonded to a solid surface	Partition between surfac liquid and mobile liquid
 Supercritical fluid chroma- tography (SFC; mobile phase: supercritical fluid) 		Organic species bonded to a solid surface	Partition between supercritical fluid and bonded surface



Chromatographic Terms cont'd

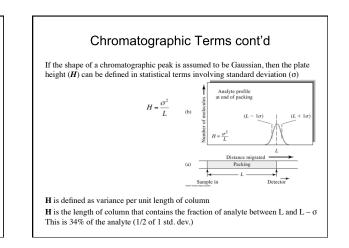
Interpreting the *retention factor* or capacity factor

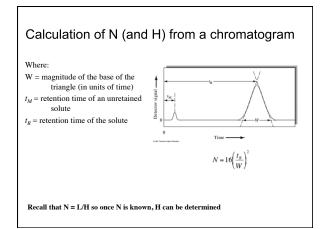
- If $k'_A < 1$; the elution is too rapid for accurate determination of t_R .
- If k'_A > approx. 20-30; the elution is too slow to be practical
- The preferred range for k'_A is between 1 and 10

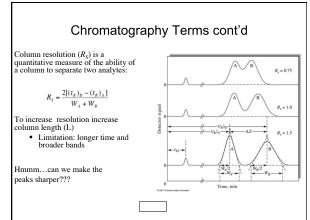
Band Broadening in Chromatographic Separations Zone Broadening or Band Broadening As a solute migrates through a chromatographic column, it will "spread out" and "shorten in height". By minimizing zone broadening, we can maximize resolution!

Chromatographic Terms cont'd

FACTORS EFFECTING ZONE OR BAND BROADENING

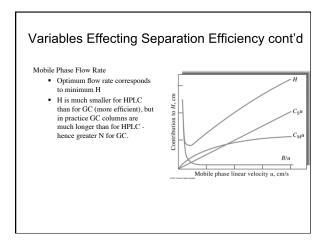

Plate Height (H) and Theoretical Plates (N)

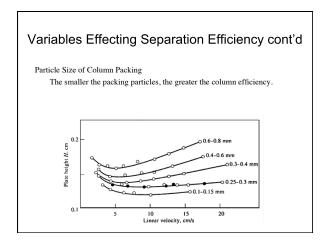

Terms used to quantitatively describe chromatographic column efficiency Column "efficiency" increases as N increases N = L/H

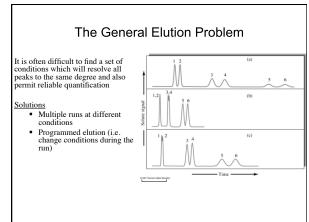

Where:

N = the number of interactions (i.e. transitions between mobile and stationary phases) that a solute has during its residence in the column

H= the distance through the column a solute travels between interactions (typically given in centimeters)




Variables Effecting Separation Efficiency in Column Chromatography


In general, Separation (or Column) Efficiency \uparrow , as N \uparrow and H \downarrow

 $\mathbf{H} = \mathbf{A} + \mathbf{B}/u + \mathbf{C}u$

- Particle Size of Packing (as size \downarrow , N↑ and H \downarrow)
- Immobilized Film Thickness (as film thickness ↓, N↑ and H↓ due to faster diffusion rates in film)
- Viscosity of Mobile Phase (as viscosity \downarrow , N \uparrow and H \downarrow)
- Linear Velocity of Mobile Phase; $u = L/t_M$
- Column Length (as L \uparrow , N \uparrow , but H = constant, and separation efficiency \uparrow)

Name	Symbol of Experimental Quantity	Determined From
Migration time, unretained species	I _M	Chromatogram (Figure 26-7)
Retention time, species A and B	$(t_{\rm P})_{\rm A}$ $(t_{\rm P})_{\rm B}$	Chromatogram (Figures 26-7 and 26-12)
Adjusted retention time for A	$(t'_{\mathbf{p}})_{\mathbf{A}}$	$(t'_{\mathbf{p}})_{\mathbf{A}} = (t_{\mathbf{p}})_{\mathbf{A}} - t_{\mathbf{M}}$
Peak widths for A and B	W_A, W_B	Chromatogram (Figures 26-7 and 26-12)
Length of column packing	L	Direct measurement
Volumetric flow rate	F	Direct measurement
Linear flow velocity	и	F and column dimensions (Equations 26- and 26-7)
Stationary-phase volume	Vs	Packing preparation data
Concentration of analyte in mobile and stationary phases	C _M , C _S	Analysis and preparation data

Name	Calculation of Derived Quantities	Relationship to Other Quantities
Linear mobile-phase velocity	$u = \frac{L}{t_M}$	
Volume of mobile phase	$V_M = t_M F$	
Retention factor	$k = \frac{t_{\rm R} - t_{\rm M}}{t_{\rm M}}$	$k = \frac{KV_s}{V_M}$
Distribution constant	$K = \frac{kV_M}{V_S}$	$K = \frac{c_s}{c_M}$
Selectivity factor	$\alpha = \frac{(t_R)_B - t_M}{(t_R)_A - t_M}$	$\alpha = \frac{k_{\rm B}}{k_{\rm A}} = \frac{K_{\rm B}}{K_{\rm A}}$
Resolution	$R_{\rm s} = \frac{2[(t_{\rm R})_{\rm B} - (t_{\rm R})_{\rm A}]}{W_{\rm A} + W_{\rm B}}$	$R_{\rm s} = \frac{\sqrt{N}}{4} \left(\frac{\alpha - 1}{\alpha} \right) \left(\frac{k_{\rm B}}{1 + k_{\rm B}} \right)$
Number of plates	$N = 16 \left(\frac{t_R}{W}\right)^2$	$N = 16R_s^2 \left(\frac{\alpha}{\alpha - 1}\right)^2 \left(\frac{1 + k_B}{k_B}\right)^2$
Plate height	$H = \frac{L}{N}$	
Retention time	$(t_R)_B = \frac{16R_s^2H}{\mu} \left(\frac{\alpha}{\alpha-1}\right)^2 \frac{(1+k_B)^3}{(k_B)^2}$	