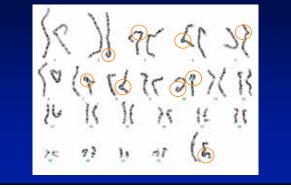

Chromosome Analysis

• The best whole genome analysis technique currently available is


Chromosome Analysis

- G-banding provides a visual examination of the entire genome
- It therefore provides the best coverage but not the best resolution
- Banding resolution differs from preparation to preparation

Diagnostic Limits of Conventional Cytogenetic Analysis

- "Obvious" Aneuploidies & Rearrangements should be easily diagnosed
- The smaller the region of gain/loss, the harder it is to detect
- At Absolute best, imbalances in the realm of 2-5Mb may be detected
 - Most banding resolutions will allow detection of gains/deletions of >5Mb
- · Absolute best is dependent on banding resolution

How Does Banding Resolution Impact Diagnostic Ability ?

How Does Banding Resolution Impact Diagnostic Ability ?

- Small & Subtle aberrations may be missed
 Depends on Banding Resolution & Specimen Preparation
 Most clinical labs strive for 550 band level resolution in
- postnatal studies and greater than 400 bands in prenatal studies. The resolution in bone marrows and products of conception are often at or below the 400 band level
 Make do with what you have and accept the limitations

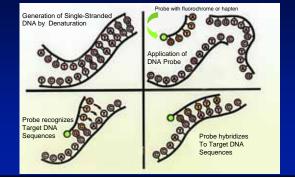
Molecular Cytogenetics

Expanding the resolution of conventional cytogenetic analysis

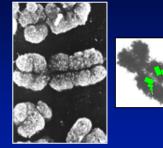
 Application of the techniques of Molecular Biology to cytogenetic preparations

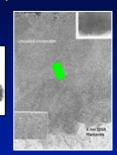
Clinical Applications of Molecular Cytogenetics

 Molecular cytogenetic techniques provide a way to detect complicated, cryptic and submicroscopic rearrangements that remain undetected or undecipherable by conventional cytogenetic analysis


FLUORESCENCE IN SITU HYBRIDIZATION

 FISH is a physical DNA mapping technique in which a DNA probe labeled with a marker molecule is hybridized to chromosomes on a slide, and visualized using a fluorescence microscope




 The marker molecule is either fluorescent itself, or is detected with a fluorescently labeled antibody.

HYBRI DI ZATI ON STEPS

Chromatin Compaction

Metaphase chromosome is compacted into a structure that is 50,000 times shorter than its extended length

Classification of Chromosomal Sequences

Beta satellite

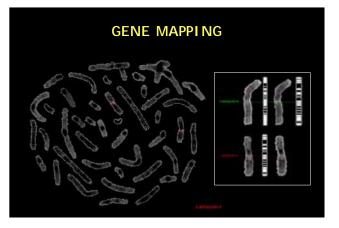
Alpha satellite

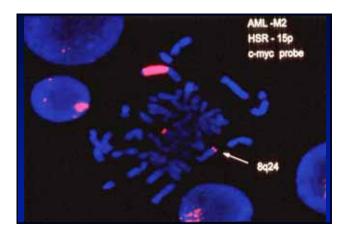
Classical satellite

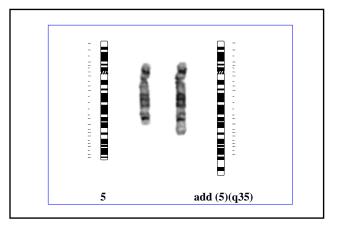
Telomeric sequences

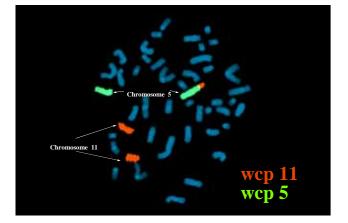
Unique gene sequences

Partial chromosome paints


Whole chromosome paints


FISH APPLICATIONS

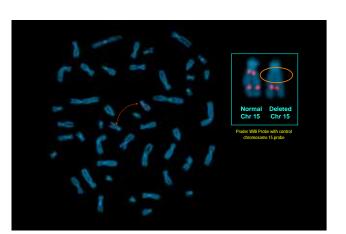

- Gene Mapping
- Chromosome Identification
- Aneuploidy Detection
- Sexing for X-Linked diseases
- Marker chromosome Identification
- Total chromosome Analysis
- Translocation Analysis
- Unique Sequence DNA DetectionMicrodeletion Syndrome Analysis
- Gene Amplification Analysis
- Mouse Chromosome Research


FISH TECHNIQUES

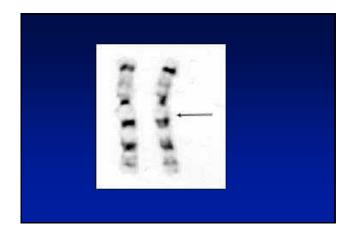
- Metaphase FISH
- Interphase FISH
- Reverse FISH
- Multi-color FISH (M-FISH; SKY)
- PRINS
- Fiber FISH
- CGH
- DNA Arrays (Chip technology)

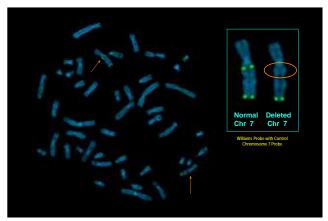
Microdeletion Syndromes

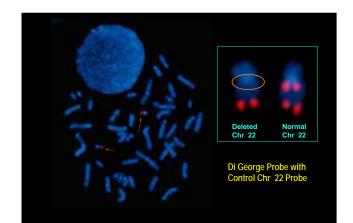
- Deletions of a megabase or so of DNA that are most often too small to be seen under the microscope
- Produce well defined contiguous gene syndromes which demonstrate superimposed features of several different mendelian diseases(X-linked or autosomal)
- Defined by high resolution banding or molecular cytogenetic techniques


Microdeletion Studies Using *FISH*

Syndrome	Chromosome Location	Probe/Gene Locus
DiGeorge	22q11.2	D22S75
Velocardiofacial	22q11.2	D22S76
Miller-Dieker	17p13.3	D17S379
Smith-Magenis	17p11.2	D17S29
Prader-Willi	15q11.2	SNRPN
Angelman	15q11.12	D15S10
Williams	7q11.23	Elastin
Cri du chat	5p15.2	D5S23
Wolf-Hirschhorn	4p16.3	D4S96







FISH on Interphase Nuclei is Useful in Specific Clinical Situations

- Prenatal diagnosis aneuploidy screening by FISH looks at interphase nuclei derived from chorionic villi or amniocytes
- Preimplantation Genetic Diagnosis aneuploidy screening by FISH looks at interphase blastomere nuclei

Interphase FISH vs Metaphase FISH

- Prenatal diagnosis aneuploidy screening by FISH looks at interphase nuclei derived from chorionic villi or amniocytes
- Preimplantation Genetic Diagnosis aneuploidy screening by FISH looks at interphase blastomere nuclei

From Metaphase To Interphase

Chromosomes Enumeration by Rapid Prenatal Interphase FISH

- Trisomies 13, 18 & 21 and Monosomy X are the most common aneuploidies related to maternal age or fetal abnormality
- Routine chromosome analysis take 7-10 days
- Prenatal Interphase FISH provides a rapid way to screen for the common aneuploidies in uncultured amniotic fluid cells in about 1-2 days

Chromosomes Enumeration in Chorionic Villi and Amniocytes by Rapid Prenatal Interphase FISH

Interphase Amniocyte

Benefits of Prenatal Interphase FISH

- Trisomies 13, 18 & 21 and Monosomy X are the most common aneuploidies related to maternal age or fetal abnormality
- Routine chromosome analysis take 7-10 days
- Prenatal Interphase FISH provides a rapid way to screen for the common aneuploidies in uncultured amniotic fluid cells in about 1-2 days
 - Reduces emotional burden on the patient and/or physician in the face of an increased risk for chromosome abnormalities following an abnormal screening result

> Opportunity to reduce anxiety through earlier decision making

Sensitivity of Prenatal Interphase FISH

Abnormality	Sensitivity	Specificity	PPV	NPV
Trisomy 13	98.6%	100%	100%	99.98%
Aneuploidy 18	99.5%	100%	100%	99.8%
Trisomy 21	100%	100%	100%	100%
45,X	100%	99.98%	98.5%	100%
Other Sex	100%	100%	100%	100%
All ^r detectable	99.6%	99.98%	99.8%	99.96%

Study looked at 5197 pregnancies

• Review of Lit includes ~ 30,000 pregnancies

Preimplantation Genetic Diagnosis

- PGD is a very early form of prenatal diagnosis
- Oocytes or embryos obtained *in vitro* through assisted reproductive techniques are biopsied
 Polar bodies for the oocytes
 - ✤ Blastomeres for the embryos
- Only Embryos shown to be free of the disease under consideration are subsequently used for transfer

Preimplantation Genetic Diagnosis

Method

- Generate Oocytes/embryos in vitro by ART
- Biopsy Polar Body/1-2 cells from embryos
- * FISH or PCR for genetic diagnosis

• Patients

- Repeated terminations
- Moral or religious objections to termination
- Repeated miscarriages due to chromosome abnormality
- Infertile couples

Biopsy

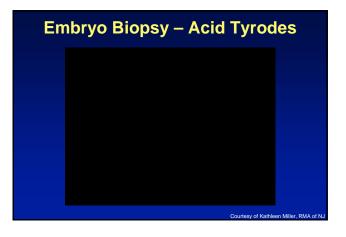
- Polar Body
- Cleavage Stage
- Blastocyst

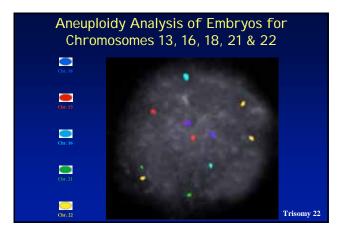
Polar Body Biopsy

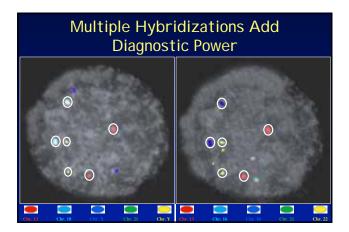
Used by few groups in USA

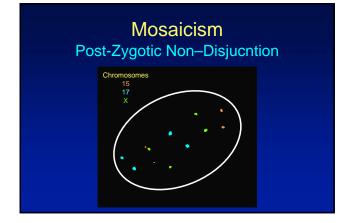
- Need the first and second polar body
- Labour intensive
- Only maternal chromosomes examined

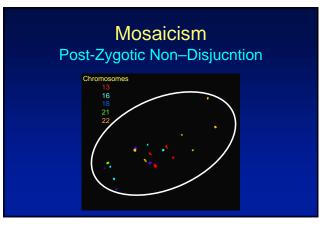
From Veeck – Atlas of Embryology

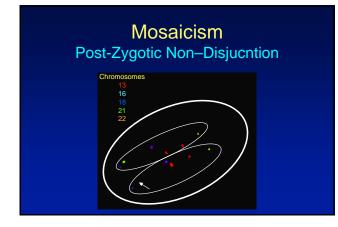

Day 3 - Cleavage Stage

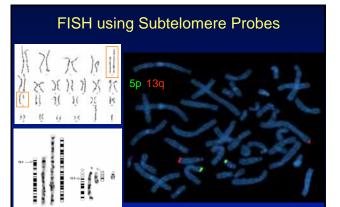

From Veeck – Atlas of Embryology

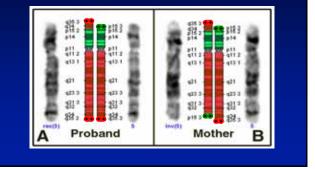

Used by majority of groups

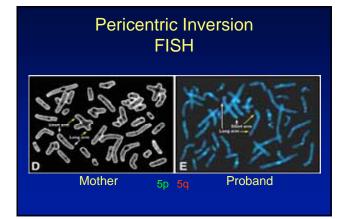

- Biopsy at 6-10 cell stage
- Blastomeres totipotent
- 1-2 cells for analysis

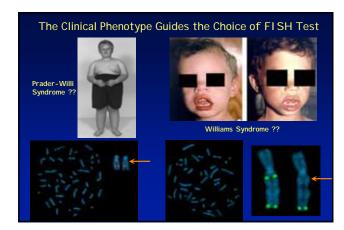


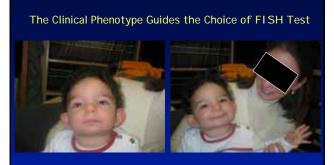




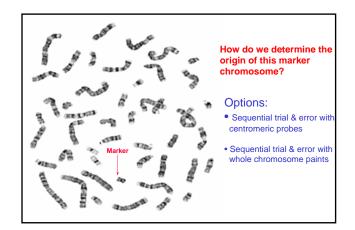



Telomeres

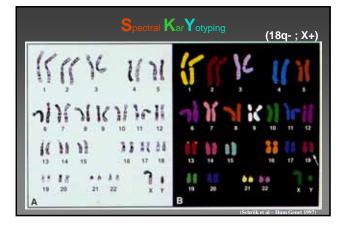

- Highest concentration of genes of any chromosomal region – therefore sub-microscopic deletions and duplications would have a significant impact
- Increased genetic recombination at telomeres
 - Male rate higher than female for most chromosomes
 - Telomeres play a critical role in chromosome pairing at meiosis



Pericentric Inversion



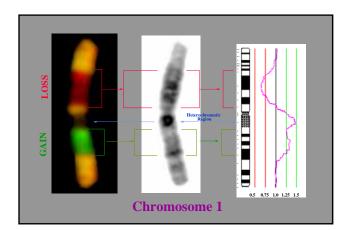
What FISH test do we do in this case ???

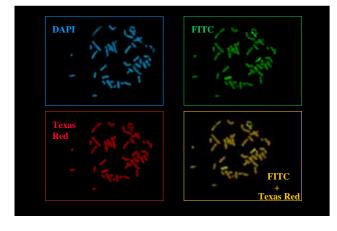


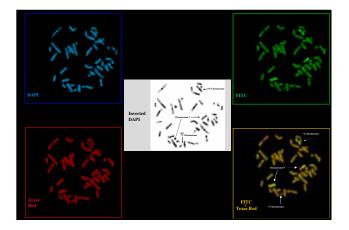
Detection of Partial Aneuploidies – An expensive FI SHing Expedition

- Unbalanced rearrangements
- Marker chromosomes
- Cryptic translocations
- Cryptic deletions
- Suspected Microdeletions with nonspecific clinical abnormalities

The Need for New Technologies

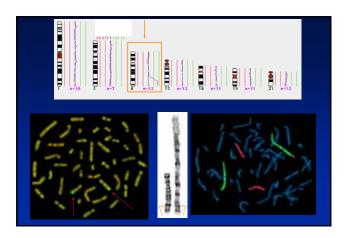

COMPARATIVE GENOMIC HYBRIDIZATION

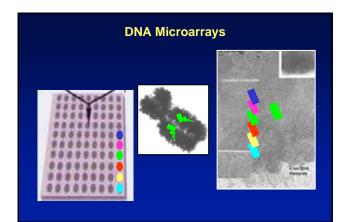

CGH

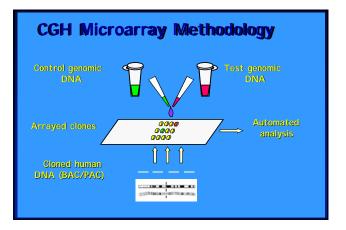

- Identifies chromosomal gains and losses in a single hybridization procedure
- Effectively reveals any DNA sequence copy number changes (i.e., gains, amplifications, losses and deletions) in a particular specimen and maps these changes on normal chromosomes

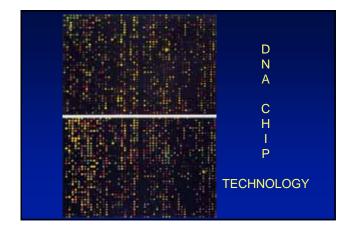
CGH

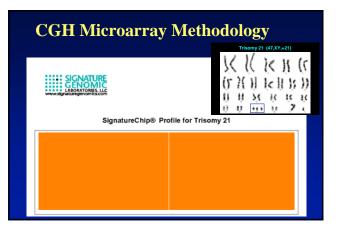
- In situ hybridization of differentially labelled specimen DNA & <u>normal</u> reference DNA to <u>normal</u> human metaphase chromosome spreads.
- Specimen & reference DNA can be distinguished by their different fluorescent colors.

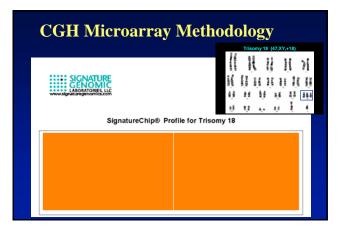

OVERVIEW OF CGH

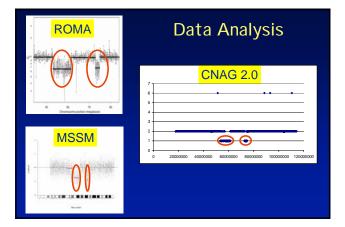

The major steps in CGH involve:


- Preparation of normal metaphase spreads
- Isolation of high molecular weight DNA from specimen (test) and reference (normal) samples.
- Labelling of specimen & reference DNA with different color fluorochromes


OVERVIEW OF CGH (cont)


- In situ hybridization of the labelled specimen & reference DNAs to normal metaphase spreads
- Washing off unbound DNA
- Counterstaining metaphase spreads with DAPI
- Fluorescent microscopy to visualize & capture color ratio differences along the chromosomes




SignatureChip® Profile for DiGeorge Syndrome - del(22)(q11.2q11.2)

Patient Clinical Info

Delayed major motor milestones, including rolling over at 4 months, sitting without support at 8 months, and walking at 22 months. He had been receiving regular physical therapy for delay in gross motor skills. He spoke in short sentences and understood complex commands. There were no facial dysmorphisms besides slightly cupped ears and no medical problems except for severe eczema.

Normal development status at 3 yrs, except for mild delay in gross motor skills and coordination.

A		в		
andrea General		100		
46,XY,t(3;10)(q23;q11.2),del(13)(q14.3q21.2)				
		8 4		

MICROARRAYS IN CLINICAL CYTOGENETICS

- Precise identification of extra or missing material
 Important for diagnostic and prognostic value
- Important for identifying those genes causative of the clinical phenotype
- Single step global genome scan prevents
 FISHing expedition
- DNA based analysis
- Quality of metaphase spreads is not a consideration
- Non-viable tissues are amenable to analysis

Benefits of CGH/Microaray Analysis in Clinical Genetics

The ability to define more precisely the chromosomal material comprising marker chromosomes and unbalanced translocations may help to further define critical chromosomal regions which are associated with normal and adverse phenotypic outcomes and thus provide prognostic information for genetic counseling.

Benefits of CGH Analysis in Clinical Genetics

It is therefore prudent for investigators who are utilizing the newer molecular cytogenetic techniques to report their findings in conjunction with the clinical presentation so that a comprehensive database can be constructed.

Benefits of CGH Analysis in Clinical Genetics

Information derived from such a database would directly benefit prenatally ascertained cases of chromosomal imbalance, providing couples with a means to make rational and informed decisions concerning the pregnancy. In pediatric cases, such information may provide the parents with a realistic prognosis and be important for the clinical management of the infant.