
Chu spaces as a semantic bridge between linear

logic and mathematics

Vaughan Pratt ∗

Dept. of Computer Science
Stanford University

Stanford, CA 94305-2140
pratt@cs.stanford.edu

July 27, 2004

Abstract

The motivating role of linear logic is as a “logic behind logic.” We
propose a sibling role for it as a logic of transformational mathematics
via the self-dual category of Chu spaces, a generalization of topological
spaces. These create a bridge between linear logic and mathematics by
soundly and fully completely interpreting linear logic while fully and
concretely embedding a comprehensive range of concrete categories
of mathematics. Our main goal is to treat each end of this bridge
in expository detail. In addition we introduce the dialectic lambda-
calculus, and show that dinaturality semantics is not fully complete
for the Chu interpretation of linear logic.

Keywords: Chu spaces, linear logic, universal mathematics.

1 Introduction

Linear logic was introduced by J.-Y. Girard as a “logic behind logic.” It
separates logical reasoning into a core linear part in which formulas are
merely moved around, and an auxiliary nonlinear part in which formulas
may be deleted and copied. The core, multiplicative linear logic (MLL),
is a substructural logic whose basic connectives are linear negation A⊥,
and linear conjunction or “tensor” A ⊗ B with unit 1. MLL’s axioma-
tization resembles relevance logic in lacking weakening, from ` B derive

∗This work was supported by ONR under grant number N00014-92-J-1974

1

A ` B, but differs from it in also lacking contraction, from A,A ` B
derive A ` B. MLL obeys A⊥⊥ ∼= A, associativity and commutativity
of tensor, and linear distributivity, the transformability of positive occur-
rences of (A−◦B) ⊗ C into A−◦(B ⊗ C), where linear implication A−◦B
abbreviates (A⊗B⊥)⊥. The auxiliary part adds the operations of ordinary
product “with” A&B (synonymous with A × B) with unit > and obeying
(A−◦B)&(A−◦C) ∼= A−◦(B&C), and exponential !A serving to retract
linear logic to intuitionistic logic via (inter alia) !(A&B) ∼= !A⊗!B and
!> ∼= 1, licensing the derivation of !A ` B from either ` B or !A, !A ` B.

The question arises as to the denotational semantics of linear logic: what
is it about? Is it only an analytical tool of proof theory, or can it be un-
derstood as the logic of some foundationally significant domain in the same
sense that first order logic is the logic of relational structures, and modal
logic that of Kripke structures?

Girard has considered various semantics for linear logic: phase seman-
tics and coherent spaces [Gir87], Hilbert spaces, and more recently Banach
spaces. Phase semantics has truth-valued entailment and resembles Birkhoff
and von Neumann’s quantum logic [BvN36], while the other three have the
set-valued entailment characteristic of categorical logic: A ` B as the set of
morphisms from A to B.

A number of other models have also been proposed. Inspired by Blass
[Bla92], Abramsky and Jagadeesan [AJ94] have interpreted linear logic over
sequential games, further studied by Hyland and Ong [HO93]. Barr has
proposed fuzzy relations as a model [Bar96], while Blute [Blu96] has taken
Hopf algebras as an interpretation of noncommutative linear logic.

Chu spaces, the model we treat here, were first proposed by Barr [Bar91]
and Lafont and Streicher [LS91]. Generalizing an idea of Mackey [Mac45],
Barr defined general V -enriched Chu spaces, whose carrier, cocarrier, and
alphabet k are objects of a symmetric monoidal closed category V , forming
the category Chu(V, k) studied by Barr’s student P. Chu [Bar79, appendix].
Lafont and Streicher treated ordinary Chu spaces, the case V = Set, under
the rubric of games.

None of the above models, Chu spaces included, would appear to have
been proposed with the goal in mind of foundational generality of the kind
associated with relational structures in their role as the standard model of
first order logic. Rather their intended purpose seems to be as “occasional
models”: each is presumed to have some intrinsic interest in its own right,
and the main concerns revolve around the quality of the model as a denota-
tional semantics for linear logic: how closely it matches the structure of LL
proofs.

2

Furthermore none of them stands out as the standard model of linear
logic. Coherent spaces have the distinction that Girard based his original
axiomatization on their structure, and in that sense coherent spaces can
be said to be the motivating model for linear logic. But that motivation
would appear to be insight into proof theory rather than any independent
foundational role for coherent spaces.

So the interest to date in denotational semantics of linear logic appears
to be entirely as an analytical tool of proof theory. In this role it can serve for
example to expose patterns in the operational or computational behavior of
the rules of linear logic that are not obvious from direct consideration of that
behavior. Indeed there has been considerable interest in the computational
implications of linear logic, particularly for concurrency, and it is a good
question to what extent the proof theoretic and computational aspects of
linear logic can be separated, both being operational.

It is our thesis that the denotational semantics of linear logic in fact
serves two dual purposes. On the one hand, in its role as an analytical tool
of proof theory it expresses aspects of structure in mathematical proofs and
computations. On the other, in the role we propose for it here, it expresses
the transformational structure of universal mathematics, extending higher
order categorical logic [LS86] from its previous narrow preoccupation with
cartesian closed categories, where it has the form of intuitionistic logic, to
the broader universe of “the rest of mathematics,” where it takes on the
shape of linear logic.

That this is an extension is testified to by the operator !A. As normally
understood on the operational side !A liberates the formula A to permit
weakening and contraction. On the denotational side however the ! op-
eration serves to retract the larger universe of mathematics to a smaller
cartesian closed subuniverse constituting the domain of intuitionistic logic.
From this perspective intuitionistic logic is the logic of set-like and poset-like
structures, whereas linear logic is that of the larger class of all structures,
ranging from the extreme discreteness of sets to the extreme coherence of
complete atomic Boolean algebras [Pra95].

These two roles, proof theory and transformational mathematics, are not
necessarily best served by the same denotational semantics. In particular
Girard has argued the need for a denotational semantics of linear logic suf-
ficiently concrete as to reflect the cut-elimination process itself [Gir89, §III].
Categorical logic as an abstraction of transformational mathematics on the
other hand does not need this much detail at least in its basic form and is
therefore better served by the more abstract cut-free semantics implicit in
our choice of axiom systems for linear logic, and in the modeling of cut-free

3

proofs by dinatural transformations.
The rest of this paper is laid out in three sections, introducing Chu spaces

and treating each end of the bridge created by Chu spaces between linear
logic and mathematics.

Section 2 gives an overview of Chu spaces, treating their intrinsic prop-
erties, their morphisms, and those operations on them relevant to linear
logic.

Section 3 considers semantics for which soundness and completeness of
linear logic, understood as a categorical logic, may be judged for the category
of functors on Chu(Set,Σ). The papers of Barr and Lafont and Streicher
cited above have described the objects of that category, namely the functors
interpreting the terms of linear logic. However they have not mentioned the
morphisms between those functors, needed to interpret the proofs between
terms that make the system a categorical logic.

Morphisms between functors are usually taken to be natural transfor-
mations. However linear logic contains functors of mixed variance1 such as
A−◦A, for which mere naturality is not enough. Elsewhere [Pra97] we have
shown that when the morphisms are taken to be ordinary dinatural trans-
formations, as done by Blute and Scott [BS96a, BS96b] for their Lauchli
semantics of linear logic, then Girard’s MIX-free axiomatization of multi-
plicative linear logic is sound and fully complete for the fragment admitting
at most two occurrences of each atom. In Section 3 we show that this result
cannot be extended to four occurrences. This is not surprising in the light of
the limitations of ordinary dinaturality in other settings such as higher or-
der intuitionistic logic, where a strengthening of dinaturality is required for
full completeness, e.g. logical transformations as defined in terms of certain
kinds of logical relations [Plo80]. We have recently showed, with H. Devara-
jan, D. Hughes, and G. Plotkin [DHPP99], that strengthening dinaturality
to binary logicality rescues this situation for Chu spaces. Contrasting with
this situation, A. Tan has shown [Tan97] that MLL with MIX is fully com-
plete for dinatural transformations in Girard’s ∗-autonomous category Coh
of coherence spaces.

We also introduce in this section the dialectic λ-calculus, as a novel
way of introducing duality into the simply-typed λ-calculus, namely by sup-
plementing the usual notion a:A of evidence a for proposition A with x··A,
evidence x against A, for which Chu spaces provide a natural interpretation.
We interpret a linear dialectic λ-calculus whose types are those expressible in
a variant of MLL that while not fully expressive for all of MLL nevertheless

1One might call these sesquifunctors by analogy with sesquilinear functions.

4

is rich enough to express all MLL theorems.
Section 4 gives evidence for the universality of ordinary Chu spaces. A

small hint of this universality may be found in Lafont and Streicher [ibid.],
who observed that vector spaces over any field are representable as Chu
spaces over the underlying set of that field, and that coherent spaces and
topological spaces are both representable as Chu spaces over 2 = {0, 1}.

As it turns out Chu spaces can represent far more. The main modes of
structure for sets that are traditionally employed in mathematics are rela-
tional and topological, either separately or together, with algebraic structure
being obtained from relational. Chu spaces subsume both kinds of structure,
in their full generality, with the one mechanism. Rather than blending the
two, as done with say topological groups, there is a single uniform construc-
tion. The homogeneous universe of Chu spaces appears to span the entire
range of structures, having sets at the discrete end, complete atomic Boolean
algebras at the “coherent” end, and finite-dimensional vector spaces, com-
plete semilattices, etc. in the middle, constituting what we have called the
Stone gamut [Pra95]. As we have previously shown [Pra93, Pra95], archivally
documented here, this representation of relational and topological structures
is formalized as a full, faithful, and concrete functor from the category of
k-ary relational structures and their homomorphisms to the category of Chu
spaces over an alphabet of cardinality 2k, or 2k+1 when there is topology,
being concrete in the sense of preserving the underlying sets.

In this paper we show also that every small category C embeds fully
in Chu(Set, |C|), and that every small concrete category embeds fully and
concretely in Chu(Set,Σ) where Σ is the disjoint union of the underlying
sets of the category, i.e. the totality of elements.

In competition with Chu spaces for this role as universal structured ob-
jects are such structures as directed graphs and semigroups, whose universal
nature was observed in the late sixties in work of Trnková, Hedrĺın, Lam-
bek and others [Trn66, HL69, PT80] showing that the respective categories
of such fully embed all small and all algebraic categories. However those
embeddings are not concrete, typically representing even finite objects as
uncountable graphs or semigroups contrary to the intuitive understanding
of the represented objects.

In contrast, the above representations by Chu spaces are all concrete.
That is, the Chu representation of a concrete structure given by our embed-
dings has the same underlying set, and the licensed transformations of those
structures, whether by homomorphisms, continuous functions, or whatever,
remain the same functions, but now with a uniform licensing criterion, that
of being a morphism of Chu spaces. All that changes is the representation of

5

the structure associated to those sets. Our representation of classes of sets
and classes of functions between them is thus with the same sets and func-
tions, differing only in how those functions are specified and not in which
ones the specification selects.

One would think that the greater generality of V -enriched spaces would
embrace more mathematics, but counterintuitively the opposite seems to be
the case: the closer V is to the “center” of the “Stone gamut” coordinatizing
mathematics [Pra95] the smaller is the universe encompassed by Chu(V, k).
Taking V = Set, located at the apparent edge of the universe, appears to
subsume all other V ’s while having the additional advantage of accessibility,
sets being simpler and more familiar than the objects of pretty much any
other choice for V .

For those interested in more hands-on experience with Chu spaces than
can be had from this static paper, http://boole.stanford.edu/live is the
URL for Chu Spaces Live, an interactive menu-driven Chu space calculator
written by Larry Yogman. It permits the user to create and operate on
Chu spaces with the operations described in Section 2.3, and includes a
substantial tutorial.

2 Chu Spaces

2.1 Objects

A Chu space A = (A, r,X) over an alphabet Σ consists of a set A of points,
a set X of dual points or states, and a function r : A × X → Σ relating
points and states. We refer to A as the carrier, X as the cocarrier, and r as
the interaction matrix.

It is convenient to view Chu spaces as organized either by rows or by
columns. For the former, we define r̂ : A → (X → Σ) as r̂(a)(x) = r(a, x),
and refer to the function r̂(a) : X → Σ as row a of A. Dually we define
ř : X → (A→ Σ) as ř(x)(a) = r(a, x) and call ř(x) : A→ Σ column x of A.

Even before defining any notion of morphism between Chu spaces we
can say that two Chu spaces are isomorphic when they are identical up to
a renaming of their points and states, i.e. when there is a bijection between
their points, and another between their states, such that they have the same
matrix via that bijection.

We call A separated when its matrix has no repeated rows, that is, when
r̂ is injective (r̂(a) = r̂(b) implies a = b). The separated collapse of A
is the result of identifying equal rows. Formally it is defined as the Chu

6

space (r̂(A), r′, X) where r̂(A) = {r̂(a) | a ∈ A} (so r̂(A) ⊆ ΣX) and
r′(a, x) = a(x) for a ∈ r̂(A) and x ∈ X.

Dually A is extensional when it has no repeated columns. The exten-
sional collapse of A is defined as (A, r′, ř(X)) where ř(X) = {ř(x) | x ∈ X}
(so ř(X) ⊆ ΣA) and r′(a, x) = x(a) for a ∈ A and x ∈ ř(X). A normal Chu
space is one which is its own extensional collapse. Normal spaces may be
written as (A,X), r being understood to be application.

When A is both separated and extensional we call it biextensional. The
biextensional collapse of a Chu space is the result of identifying equal rows,
and equal columns, to produce a biextensional Chu space. We could define
the biextensional collapse of (A, r,X) to be the extensional collapse of the
separated collapse or vice versa, but here we have a dilemma: for the former
the points are of type ΣX and the states of type ΣΣX

while for the latter
the respective types are ΣΣA

and ΣA. We can resolve this democratically by
taking the biextensional collapse to be (r̂(A), r′, ř(X)) where r′(r̂(a), ř(x)) =
r(a, x), making the respective types ΣX and ΣA. This differs from both the
separated and extensional collapses in that it retains both A and X.

Two Chu spaces are called point-equivalent (resp. state-equivalent) when
they have isomorphic separated (resp. extensional) collapses. Equivalent
Chu spaces are simply those that are both point-equivalent and state-equi-
valent.

Every operation defined on general Chu spaces, e.g. those of Section
2.3, has its counterpart for biextensional Chu spaces obtained by taking the
biextensional collapse as needed.

A discrete Chu space is a normal Chu space (A,X) for which X = ΣA.

2.2 Chu Transforms

A Chu transform is a pair (f, g) consisting of functions f : A → B and
g : Y → X such that s(f(a), y) = r(a, g(y)) for all a in A and y in Y .
This equation is a primitive form of adjointness, which we therefore call the
adjointness condition. Such an adjoint pair (f, g) is called a Chu transform
from A to B.

Adjoint pairs (f, g) : A → B and (f ′, g′) : B → C, where C = (C, t, Z),
compose via (f ′, g′)(f, g) = (f ′f, gg′). This composite is itself an adjoint
pair because for all a in A and z in Z we have t(f ′f(a), z) = s(f(a), g′(z)) =
r(a, gg′(z)). The associativity of this composition is inherited from that of
composition in Set, while the pair (1A, 1X) of identity maps on respectively
A and X is an adjoint pair and is the identity Chu transform on A.

7

The notion of isomorphism of Chu spaces can now be defined more for-
mally as a Chu transform whose functions are bijections.

The category whose objects are Chu spaces over Σ and whose mor-
phisms are Chu transforms composing as above is denoted Chu(Set,Σ).
The full subcategory consisting of the biextensional Chu spaces is denoted
chu(Set,Σ), so-called “little chu,” with parent category “big Chu.”

Yet another definition of isomorphism of Chu spaces is that it is an
isomorphism of Chu(Set,Σ).

By the usual abuse of notation we permit a function f : A→ B between
sets to be referred to as a function f : A → B between Chu spaces, whence a
function from B⊥ to A⊥ means a function from Y to X. We call a function
f : A → B continuous when it has an adjoint from B⊥ to A⊥, i.e. when
there exists a function g : Y → X making (f, g) a Chu transform. When A
is extensional g is determined uniquely by f .

Like discrete topological spaces, discrete Chu spaces transform like sets.
More generally, if A is discrete and B is any Chu space then the Chu trans-
forms from A to B are exactly the functions from A to B.

2.3 Multiplicative Operations

We now define a number of operations on Chu spaces. These operations are
of independent interest but our rationale for them in this paper will be as
interpretations of the connectives of linear logic, which we treat in the next
section. The main operations for this paper are the multiplicatives, which
we therefore treat first.

Negation. The dual or linear negation A⊥ of A = (A, r,X) is defined as
(X, r ,̆ A) where r˘ : X ×A→ Σ satisfies r (̆x, a) = r(a, x).

When A is separable, A⊥ is extensional; likewise when A is extensional,
A⊥ is separable. Thus negation preserves biextensionality, whence both big
Chu and little chu are biextensional.

The definition of A⊥ makes A⊥⊥ not merely isomorphic to A but equal
to it.

Tensor. The tensor product A ⊗ B of A = (A, r,X) and B = (B, s, Y)
is defined as (A×B, t,F) where F ⊂ Y A ×XB is the set of all pairs (f, g)
of functions f : A → Y , g : B → X for which s(b, f(a)) = r(a, g(b)) for all
a ∈ A and b ∈ B, and t : (A×B)×F is given by t((a, b), f) = s(b, f(a)) (=
r(a, g(b))).

Associated with tensor product is the tensor unit 1, namely the space
({0}, r,Σ) where r(0, k) = k.

8

A⊗B can be understood as interacting conjunction as follows. Its points
(a, b) are to be understood as the possible interactions of the points a ∈ A
with the points b ∈ B. Each state (f, g) indicates which state B appears
to be in when viewed from point a of A, namely f(a), and symmetrically
which state A appears to be in when viewed from point b of B, namely g(b).

Tensor is conjunction in the sense that the total constraint on the states
of A ⊗ B is representable as the conjunction of the constraints imposed
separately by each of A and B, respectively (i) and (ii) in the following.

Elsewhere we have proposed tensor product as an operation of process
algebra, called orthocurrence or flow-through [Pra86, CCMP91].

When A and B are extensional it suffices to take F to consist instead of
all functions m : A×B → Σ such that (i) for every a ∈ A there exists y ∈ Y
such that for all b ∈ B, m(a, b) = s(b, y); and (ii) for every b ∈ B there
exists x ∈ X such that for all a ∈ A, m(a, b) = r(a, x). Extensionality of A
ensures that the y promised in (i) is the unique y for which š(y) = λb.m(a, b),
whence m uniquely determines the f : A → Y of the first definition of F
above, with the view from point a of A being the state λb.m(a, b) of B.
Likewise extensionality of B ensures that the same m uniquely determines
g, with the view from point b of B being the state λa.m(a, b) of A. This
puts the m’s in this definition of F in bijection with the (f, g) pairs in the
first definition of F , via m(a, b) = s(b, f(a)) = r(a, g(b)).

A state of A⊗B may be visualized as a solution to an A×B crossword
puzzle having no blacked-out squares. To this end we construe a state ofA as
a word of “length” A over the alphabet Σ, with each point a of A constituting
a “position” in the word. It is unimportant what order if any we attach to
these positions. The set of states of A constitutes the dictionary of vertical
words for the puzzle, and that of B the horizontal dictionary. The states of
A⊗B are then all possible solutions to the puzzle, namely all possible A×B
matrices whose columns are words of A and whose rows are words of B.

When A and B are extensional, A⊗ B is extensional by definition: two
distinct functions in F must differ at a particular point (a, b). It need not
however be separable, witness A ⊗ A where A is the 2-point 2-state space
with matrix 00

01 . The two “crossword solutions” here are 00
00 and 00

01 . Hence
A⊗A is a 4-point 2-state space three of whose points are represented by the
row 00 and one by the row 01. The biextensional collapse of this identifies
the three 00 rows to yield the biextensional space 00

01 .
Functoriality. We have defined A⊥ and A ⊗ B only for Chu spaces.

We now make these operations functors on Chu(Set,Σ) by extending their
respective domains to include morphisms.

9

Given (f, g) : A → B, (f, g)⊥ : B⊥ → A⊥ is defined to be (g, f). This
suggests writing the adjoint g as f⊥, which we do henceforth.

Given functions f : A → A′ and g : B → B′, define f ⊗ g : A ⊗
B → A′ ⊗ B′ to be the function (f ⊗ g)(a, b) = (f(a), g(b)). When f and
g are continuous, so is f ⊗ g, whose adjoint (f ⊗ g)⊥ from G to F (where
G and F consist respectively of pairs (h′ : A′ → Y ′, k′ : B′ → X ′) and
(h : A→ Y, k : B → X)) sends h′ : A′ → Y ′ to g⊥h′f : A→ Y .

Laws. Tensor is commutative and associative, albeit only up to a natural
isomorphism: A⊗B ∼= B⊗A and A⊗(B⊗C) ∼= (A⊗B)⊗C. The naturality
of these isomorphisms follows immediately from that of the corresponding
isomorphisms in Set. We show their continuity separately for each law.

For commutativity, the isomorphism is (γ, δ) : (A⊗B)→ (B⊗A) where
A⊗ B = (A× B, t,F), B ⊗ A = (B × A, u,G), γ : A⊗B → B⊗A satisfies
γ(a, b) = (b, a), and δ : G → F satisfies δ(g, f) = (f, g). The continuity
of (γ, δ) then follows from u(γ(a, b), (g, f)) = u((b, a), (g, f)) = r(a, g(b)) =
s(b, f(a)) = t((a, b), (f, g)) = t((a, b), δ⊥(g, f)), for all (a, b) in A × B and
(g, f) in G.

For associativity, let A = (A, r,X), B = (B, s, Y), and C = (C, t, Z).
Observe that both (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) can be understood as
(A × B × C, u,F) where F consists of all functions m : A × B × C → Σ
satisfying the conjunction of three conditions: (i) for all b, c there exists x
such that for all a, m(a, b, c) = r(a, x); (ii) for all c, a there exists y such that
for all b, m(a, b, c) = s(b, y); and (iii) for all a, b there exists z such that for all
c, m(a, b, c) = t(c, z). In the imagery of crosswords, A, B and C supply the
dictionaries for the respective axes of a three-dimensional crossword puzzle,
with λa.m(a, b, c) denoting the word in m at point (b, c) of B × C parallel
to the A axis and similarly for the word λb.m(a, b, c) at (c, a) parallel to the
B axis and λc.m(a, b, c) at (a, b) parallel to the C axis.

With this observation we can now describe the isomorphism between
(A ⊗ B) ⊗ C and A ⊗ (B ⊗ C): on the points it is the usual set-theoretic
isomorphism of (A × B) × C and A × (B × C), while on the states it is
the correspondence pairing each map m : (A × B) × C → Σ with the map
m′ : A× (B ×C)→ Σ satisfying m′(a, (b, c)) = m((a, b), c). It is immediate
that this pair of bijections is a Chu transform. Hence tensor is associative
up to this isomorphism.2

The tensor unit behaves as such, i.e. A⊗ 1 ∼= A, via the evident isomor-
2If Set is organized to make cartesian product associative “on the nose”, i.e. up to

identity, possible assuming the Axiom of Choice though not if Set is not skeletal [Mac71,
p.161], then tensor product in Chu(Set, Σ) is also associative on the nose.

10

phism pairing (a, 0) with a.
Linear Implication. We define linear implication, namely A−◦B, as (A⊗

B⊥)⊥. It follows that A−◦B = (F , t, A× Y) where F is the set of all pairs
(f, g), f : A → B and g : Y → X, satisfying the adjointness condition for
Chu transforms.

For little chu, biextensional spaces, the crossword puzzle metaphor ap-
plies. A function f : A → B may then be represented as an A×Y matrix m
over Σ, namely m(a, y) = s(f(a), y), while a function g : B⊥ → A⊥ may be
represented as a Y ×A matrix over Σ, namely m(y, a) = r(a, g(y)). For such
spaces we then have an alternative characterization of continuity: a func-
tion is continuous just when the converse (transpose) of its representation
represents a function from B⊥ to A⊥.

With biextensional arguments A−◦B is separable but not necessarily
extensional for the same reason A ⊗ B is extensional but not necessarily
separable. Hence to make A−◦B biextensional, equal columns must be iden-
tified.

2.4 Other operations

Besides the multiplicative operations, linear logic has additives, which are
generalizable to limits and colimits, and exponentials.

Additives The additive connectives of linear logic are plus A ⊕ B and
with A&B, with respective units 0 and >.
A⊕B is defined as (A+B, t,X × Y) where A+B is the disjoint union

of A and B while t(a, (x, y)) = r(a, x) and t(b, (x, y)) = s(b, y). Its unit 0
is the discrete empty space having no points and one state. For morphisms
f : A → A′, g : B → B′, f ⊕ g : A⊕B → A′ ⊕B′ sends a ∈ A to f(a) ∈ A′
and b ∈ B to g(b) ∈ B′. With as the De Morgan dual of plus is defined for
both objects and morphisms by A&B = (A⊥ ⊕ B⊥)⊥, while > = 0⊥.

Limits and Colimits The additives furnish Chu spaces with only finite
discrete limits and colimits. In particular A⊕ B is a coproduct of A and B
while A&B is a product of them.

In fact Chu(Set,Σ) is bicomplete, having all small limits and colimits,
which it inherits in the following straightforward way from Set. Given any
diagram D : J → Chu(Set,Σ) where J is a small category, the limit of D is
obtained independently for points and states in respectively Set and Set◦.

Exponentials The exponential !A serves syntactically to “loosen up” the
formula A so that it can be duplicated or deleted. It achieves this by adding
enough states to A. Semantically as an operation on Chu(Set,Σ) it serves
to retract that domain to a cartesian closed subcategory.

11

A candidate for this subcategory is that of the discrete Chu spaces
(A,ΣA), a subcategory equivalent to the category Set of sets and func-
tions. This exponential adds all possible states to A to make it discrete,
the ultimate in “loosening up.” A larger subcategory that is also cartesian
closed is that of the comonoids, which we now define.

A comonoid in Chu(Set,Σ) is a Chu space A for which the diagonal
function δ : A → A⊗A and the unique function ε : A → 1 are continuous
(where 1 is the tensor unit). These two functions constitute the interpre-
tation of duplication and deletion respectively, in that δ(a) = (a, a) (a is
duplicated) and ε(a) = () (a is deleted).

An equivalent definition of comonoid is as a Chu space A such that (i)
for each element of Σ there exists a column of A all of whose entries are that
element (this makes ε continuous), and (ii) every state of A⊗A construed
as an A × A matrix has for its main diagonal a column of A (this makes δ
continuous).

It is immediate that discrete Chu spaces satisfy both (i) and (ii) and
hence are comonoids.

A normal comonoid is a comonoid that is a normal Chu space (A,X), one
whose state set X is a subset of ΣA. The comonoid generated by a normal
Chu space A = (A,X), denoted !A, is defined as the normal comonoid
(A, Y) having the least Y ⊇ X. That this Y exists is a corollary of the
following lemma.

Lemma 1 Given any family of comonoids (A,Xi) with fixed carrier A,
(A,

⋂
iXi) is a comonoid. (When the family is empty we define

⋂
iXi to

be ΣA.)

Proof: The case of the empty family is covered by the remark three
paragraphs back.

The unique function from (A,X) to 1 is continuous just when X includes
every constant function. All the Xi’s must have this property and therefore
so does their intersection.

Given A = (A,X), δ : A → A⊗A is continuous just when every A×A
crossword solution with dictionary X has for its leading diagonal a word
from X. It follows that if a solution uses words found in every dictionary
Xi, then the diagonal is found in every Xi. Hence the dictionary

⋂
iXi also

has this property.
Therefore (A,

⋂
iXi) is a comonoid.

The domain of the ! operation is easily extended to arbitrary Chu spaces
by first taking the extensional collapse.

12

M. Barr has pointed out to us that !A is cofree for the category of
extensional Chu spaces over Σ, but not for the larger category of all Chu
spaces over Σ.

3 Relationship of Chu Spaces to Linear Logic

3.1 Language

We have already encountered the linear logic connectives in the form of
functors on Chu(Set,Σ), which we shall take as the Chu interpretations of
the linear logic connectives. What makes linear logic a logic is its axiom-
atization and its relationship to those interpretations, the subject of this
section. We give two axiomatizations, systems S1 and S2, the latter being
more suited to interpretation over Chu spaces. In the process we give a tight
correspondence between the two systems in terms of linkings and switchings.

Linear logic is usually axiomatized in terms of Gentzen sequents Γ ` ∆.
However it can also be axiomatized in Hilbert style, with A ` B denoting
not a Gentzen sequent but rather that B is derivable from A in the system,
the approach we follow here. We confine our attention to the multiplicative
fragment, MLL, further simplified by omitting the constants 1 and 1⊥ = ⊥,
which is sufficient to illustrate the relationship between the Chu interpreta-
tion of the linear logic connectives and their axiomatization.

It will be convenient to assume a normal form for the language in which
implications A−◦B have been expanded as A⊥...

.............

............................... B and all negations have
been pushed down to the leaves. Accordingly we define a formula A (B,
C,. . .) to be either a literal P (an atom or propositional variable or its
negation), a conjunction A ⊗ B of two formulas, or a disjunction A...

.............

............................... B of
two formulas. When P is a literal of the form Q⊥ then P⊥ denotes the
literal Q. This simplifies the axiom system by permitting double negation,
the De Morgan laws, and all properties of implication to be omitted from
the axiomatization. Call this monotone MLL.

3.2 Axiomatization

We axiomatize MLL with one axiom schema together with rules for associa-
tivity, commutativity, and linear or weak distributivity.

13

T (P⊥
1

...
.............
............................... P1)⊗ . . .⊗ (P⊥

n
...
.............
............................... Pn), n ≥ 1

A1 (A⊗B)⊗ C ` A⊗ (B ⊗ C)
A2 (A...

.............

............................... B)...
.............
............................... C ` A...

.............

............................... (B...
.............
............................... C)

C1 A⊗B ` B ⊗A
C2 A...

.............

............................... B ` B...
.............
............................... A

D (A...
.............
............................... B)⊗ C ` A...

.............

............................... (B ⊗ C)
E1 A⊗B ` A′ ⊗B′

E2 A...
.............
............................... B ` A′...

.................................. B′

Table 1. System S1. (A ` A′ and B ` B′)

The rules have the interesting feature of all having exactly one premise.3

This makes the system cut-free, lacking the cut rule either in the form “from
A−◦B and B−◦C infer A−◦C,” or as modus ponens, “from A and A−◦B infer
C.” It also performs all collecting of theorems at the outset in a single axiom
rather than later via a rule of the form A,B ` A ⊗ B. We may then treat
` as a binary relation on formulas, being defined as the reflexive transitive
closure of the binary relation whose pairs are all substitution instances of
the above rules. We read A ` B as A derives B, or B is deducible from A.

Rules A1 and A2 express associativity of ⊗, while Rules C1 and C2
express its symmetry (commutativity). Rule D is linear distributivity. Rules
E1 and E2 express functoriality; they assume A ` A′ and B ` B′, allowing
the rules to be applied to subformulas. The ` defined by this system is not
altered by imposing the restriction that either A ` A′ be an instance of one
of the rules A1-D, and B = B′, or vice versa, i.e. when only one side of
A⊗B can be rewritten by E1 at a time.

An instance of T is determined by a choice of association for the n − 1
⊗’s and a choice of n literals (atoms P or negated atoms P⊥). When P⊥

i

is instantiated with Q⊥ the resulting double negation is cancelled, as in the
instance (Q⊥...

.............

............................... Q)⊗ ((P⊥...
.............
............................... P)⊗ (Q...

.............

............................... Q⊥)) which instantiates P1 with Q and
P3 with Q⊥.

An MLL theorem B is any formula deducible from an instance A of axiom
schema T, i.e. one for which A ` B holds. For example (P ⊗ Q)−◦(P ⊗
Q), which abbreviates (P⊥...

.............

............................... Q⊥)...
.............
............................... (P ⊗ Q), can be proved as follows from

instance (P⊥...
.............
............................... P)⊗ (Q⊥...

.............

............................... Q) of T.
3We view T purely as an axiom and not also as a rule with no premises.

14

(P⊥...
.............
............................... P)⊗ (Q⊥...

.............

............................... Q) ` P⊥...
.............
............................... (P ⊗ (Q⊥...

.............

............................... Q)) (D)
` P⊥...

.............

............................... ((Q⊥...
.............
............................... Q)⊗ P) (C1, E2)

` P⊥...
.............
............................... (Q⊥...

.............

............................... (Q⊗ P)) (D,E2)
` P⊥...

.............

............................... (Q⊥...
.............
............................... (P ⊗Q)) (C1, E2)

` (P⊥...
.............
............................... Q⊥)...

.............

............................... (P ⊗Q)) (A2)

3.3 Semantics

Multiplicative linear logic has essentially the same language as propositional
Boolean logic, though only a proper subset of its theorems. But whereas
the characteristic concern of Boolean logic is truth, separating the true from
the false, that of linear logic is proof, connecting premises to consequents.

In Boolean logic proofs are considered syntactic entities. While MLL
derivations in S1 are no less syntactic intrinsically, they admit an abstraction
which can be understood as the underlying semantics of MLL, constituting
its abstract proofs. These are cut-free proofs, S1 being a cut-free system.

Define a linking L of a formula A to be a matching of complementary
pairs or links P, P⊥ of literal occurrences. Call such a pair (A,L) a cut-
free proof structure [Gir87], or just proof structure as we shall be working
exclusively with cut-free proofs.

There exist both syntactic and semantic characterizations of theorems
in terms of linkings, which Danos and Regnier have shown to be equivalent
[DR89].

For the syntactic characterization, every MLL derivation of a theorem A
determines a proof structure as follows. The proof structure determined by
an instance of T matches P⊥

i and Pi in each conjunct. Since the rules neither
delete nor create subformulas but simply move them around, the identities
of the literals are preserved and hence so is their linking. Hence the rules
can be understood as transforming not just formulas but proof structures.
Call a proof structure sound, or a proof net, when it can be derived from
that of an axiom instance by the rules of S1. It is immediate that A is a
theorem if and only if it has a sound proof structure.

For the semantic characterization, define a switching σ for a formula A to
be a marking of one disjunct in each disjunction occurring inA; since disjunc-
tions are binary and there are n of them, there are 2n possible switchings.
A linking L of A and a switching σ for L together determine an undirected
graph G(A,L, σ) whose vertices are the 4n − 1 subformulas of A, consist-
ing of 2n literals, n − 1 conjunctions, and n disjunctions, and whose edges
consist of:

15

(i) the n pairs (Pi, P⊥
i) of literals matched by the linking;

(ii) the 2n−2 pairs (B,C) where B is a conjunction in A and C is either
of B’s two conjuncts; and

(ii) the n pairs (B,C) where B is a disjunction in A and C is the disjunct
in B marked by σ (n disjunctions hence n such edges).

(The linear logic literature refers to G(A,L, σ) itself as a switching.)
Call a proof structure (A,L) valid when for all switchings σ for L,

G(A,L, σ) is a tree (connected acyclic graph).4

The more usual term for this notion in the linear logic literature is “proof
structure satisfying the Danos-Regnier criterion.” However the criterion
seems to us semantical in the same sense as validity in Boolean proposi-
tional calculus, which is defined as truth over all assignments of truth values
to variables. If we regard linear logic as fundamentally a proof-oriented “con-
nectionist” logic, in contradistinction to Boolean logic as a truth-oriented
“separationist” logic, and if we view switching as the connectionist counter-
part of truth assignment, then a condition that universally quantifies over
all switchings is just as much a notion of validity as is one that universally
quantifies over all truth assignments.

With this perspective we may then restate Danos and Regnier’s cele-
brated theorem [DR89] as follows.

Theorem 2 (Danos-Regnier) A proof structure is sound if and only if it is
valid.

This result constitutes a form of completeness result for MLL. However
it is stronger than the usual notion of completeness in that it sets up a
bijection between syntactic and semantic criteria for theoremhood called full
completeness, the term coined by Abramsky and Jagadeesan for their game
semantics of MLL [AJ92] but equally applicable to switching semantics.
Here the bijection is identification: the valid linking that each sound linking
is paired with is itself. The sound linkings of A constitute abstract proofs
of A, semantically justified by their validity. For transformational semantics
as treated in section 3.8, the corresponding bijection is between cut-free
proofs (as sound linkings) and transformations meeting a suitable naturality
condition such as dinaturality or binary logicality.

4There being 4n − 1 vertices and 4n − 2 edges, had G(A, L, σ) failed to be a tree it
would necessarily have done so by both being disconnected and containing a cycle.

16

3.4 Syntactic Expression of Linking

The boundary between syntax and semantics is not sharp, and semantical
information can often be encoded syntactically. For example the satisfying
assignments of a Boolean formula can be represented syntactically by putting
the formula in disjunctive normal form, with each disjunct (conjunction of
literals) then denoting those satisfying assignments for which the positive
literals in the disjunct are assigned true and the negative false. When all
the atoms occurring in a formula occur in every disjunct, either positively
or negatively, the disjuncts are in bijection with the satisfying assignments.

The semantical notions of linking and switching can likewise be incorpo-
rated into MLL formulas. We begin with linking, the key idea for which is
to label each atom with the name of the link it belongs to.

In general a formula A may have many linkings or no linking. But for
a binary formula, one such that every atom occurring in A does so once
positively and once negatively (e.g. when all Pi’s of T are distinct), there
exists a unique linking. Conversely a linking of an arbitrary formula A
determines a binary formula A′ obtained from A by assigning distinct names
to the links and subscripting each atom with the name of the link it belongs
to. It follows that the notions of a proof structure and a binary formula can
be used interchangeably. It should be borne in mind that the theoremhood
question for a formula is in general harder than for a proof structure or a
binary formula.

Since we will be dealing only with proof structures (A,L) in this section,
we may assume for the rest of this section that all formulas are binary. The
links still exist but they are now uniquely determined by A alone, having
been absorbed into the language. G(A,L, σ) becomes just G(A, σ), and
instead of saying the linking L of A is sound or valid we can simply say that
the binary formula A is provable or valid respectively. The Danos-Regnier
theorem then says more simply that a binary formula A is provable if and
only if it is valid.

3.5 Syntactic Expression of Switching

Switching semantics is well motivated in that it serves as a crucial stepping
stone for all known completeness proofs of other MLL semantics. A more
intrinsic motivation for it however is based on the notion of information flow
in proofs. In the Chu interpretation this flow is realized by transformations.
However the flow can be understood abstractly in its own right, which we
treat prior to considering the transformational interpretation of such flows.

17

The key idea here is the choice of A⊥−◦B or A◦−B⊥ as direction-encoding
synonyms for the direction-neutral A...

.............

............................... B. Marking ...
.............
............................... with each of two

possible directions permits us to reconcile the commutativity of ...
.............
............................... with our

λ-calculus interpretation of the axiom and rules of system S2.
The customary direction of flow in assigning a denotation to an expres-

sion is upwards in the tree, with the denotation of the expression flowing
from leaves to root. But now consider the theorem (P⊗(P−◦Q))−◦Q. There
is a natural direction of flow starting from P through P−◦Q and ending at
Q. The flow at P−◦Q would seem to go from the P leaf up to the −◦ thence
down to the Q leaf.

Now this theorem is just an abbreviation of (P⊥...
.............
............................... (P ⊗Q⊥))...

.............

............................... Q, whose
connectives can be reassociated and permuted to yield P⊥...

.............

............................... (Q...
.............
............................... (P ⊗Q⊥)).

The latter can be abbreviated as P−◦(Q⊥−◦(P ⊗ Q⊥)), with the flow now
taking on the form of a pair of flows from P to P and from Q⊥ to Q⊥,
changing the apparent direction of one of the two ...

.............

............................... ’s.
This example suggests the possibility of correlating switchings with the-

orems stated using implications. In fact there exists a very good correlation
taking the form of a bijection between the essential switchings of a binary
theorem A and the set of bi-implicational expressions of A, terms that we
now define.

Essential switchings. Given a binary theorem A, the tree G(A, σ) in-
duced by a switching σ is made a directed graph by orienting its edges
towards the root. Non-link edges, namely those connecting a conjunction
or disjunction to one of its operands, may be oriented either downwards or
upwards (we follow the usual convention of putting the root of a parse tree
at the top; the linear logic literature tends to invert this). Call a conjunction
or disjunction downwards or upwards in G(A, σ) according respectively to
whether or not a downwards edge is incident on it. The root is necessarily
upwards. For example in (P⊥...

.............

............................... (P ⊗ Q⊥))...
.............
............................... Q, P ⊗ Q is downwards for all

switchings save that in which the first ...
.............
............................... is switched to the right and the

second to the left, and for that switching the links are oriented P⊥ to P and
Q to Q⊥.

We now analyze the topology of G = G(A, σ) at any given ...
.............
............................... . For any

subformula B = C ...
.............
............................... D, if the edge from B (meaning the root of B) to

whichever of C or D it is directly connected to is removed, G must separate
into two trees. The tree containing vertex B cannot contain either C or D
or there would be a cycle when the corresponding edge from B is put in.
Hence the other tree must contain both C and D.

Now suppose B is an upward disjunction. Then whichever of C or D was
directly connected to B in G must be the root of the tree containing it, and

18

the other of C or D a leaf. This is interchanged by changing the switching
at B, which has the side effect of reversing all edges along the path between
C and D.

If however B is a downward disjunction, then both C and D are leaves
of their common tree. Changing the switching at B does not change this
fact, nor the orientation of any edge in either tree.

In the above example (P⊥...
.............
............................... (P⊗Q⊥))...

.............

............................... Q, when the second ...
.............
............................... is switched

to the right, the first ...
.............
............................... becomes downwards. In that case the path to

the root starts at P⊥ and proceeds via P , P ⊗ Q⊥, Q⊥, and Q ending
at the root (P⊥...

.............

............................... (P ⊗ Q⊥))...
.............
............................... Q; the direction of the first ...

.............

............................... connects the
vertex P⊥...

.............

............................... (P ⊗ Q⊥) to one of P⊥ or P ⊗ Q⊥. Changing that connection
does not reverse any edge but merely replaces one downwards edge from
P⊥...

.............

............................... (P ⊗Q⊥) by the other.
An essential switching is one that records the direction only of the up-

ward disjunctions for that switching. We can think of the downwards dis-
junctions as being recorded as X for don’t-care. This has the effect of
identifying those switchings differing only at their downward disjunctions.
Thus (P⊥...

.............

............................... (P ⊗Q⊥))...
.............
............................... Q has only three essential switchings because when

the second ...
.............
............................... is switched to the right we ignore the now downward first ...

.............

............................... .

3.6 Bi-Implication

We would like to interpret the formulas A⊗B and A...
.............
............................... B as types. With the

Chu interpretations of these connectives in mind, we regard entities of the
former type as pairs, and of the latter as functions, either from A⊥ to B or
from B⊥ to A.

Now the connectives appearing in the rules of S1 are just ⊗ and ...
.............
............................... ,

without any negations A⊥. It would be a pity to have to introduce negations
as a side effect of interpreting A...

.............

............................... B as consisting of functions. To avoid this
we shall make −◦ perform the role of ...

.............

............................... , allowing us to talk of functions of
type A−◦B.

This works fine except for rule C2, commutativity of ...
.............
............................... , which must

rewrite A−◦B as B⊥−◦A⊥. To avoid having negation appear in C2 we
adopt A◦−B as a synonym for B⊥−◦A⊥.

With this motivation we introduce the language of bi-implicational MLL.
A formula in this language is one that is built up from literals using ⊗, −◦,
and ◦−.

We axiomatize bi-implicational MLL as follows. The axiom and rules
are obtained from System S1 by rewriting each A...

.............

............................... B in T or on the left
side of a rule by either A⊥−◦B or A◦−B⊥ in all possible combinations, with

19

the negations pushed down to the metavariables (A,B,C, . . .) and with any
resulting negative metavariables then instantiated with their complement.

T (P1◦−◦P1)⊗ . . .⊗ (Pn◦−◦Pn), n ≥ 1
A1 (A⊗B)⊗ C ` A⊗ (B ⊗ C)
A2 (A⊗B)−◦C ` A−◦(B−◦C)
A2′ (A−◦B)◦−C ` A−◦(B◦−C)
A2′′ (A◦−B)◦−C ` A◦−(B ⊗ C)
C1 A⊗B ` B ⊗A
C2 A−◦B ` B◦−A
C2′ A◦−B ` B−◦A
D (A−◦B)⊗ C ` A−◦(B ⊗ C)
D′ (A◦−B)⊗ C ` A◦−(B◦−C)
E1 A⊗B ` A′ ⊗B′

E2 A′−◦B ` A−◦B′

E3 A◦−B′ ` A′◦−B

Table 2. System S2

By P◦−◦P we mean the choice of P−◦P or P◦−P , where P is a literal
as for system S1, with the choice made independently for each of the n
implications of T. Thus T has 2n instantiations for any given selection of n
literals. As before we assume A ` A′ and B ` B′ for E1-E3.

As with system S1, the only negations are on literals and remain there,
and the rules do not mention negation, catering solely for ⊗, −◦, and ◦−.

Theorem 3 The binary theorems of S2 are in bijection with the pairs (A, σ)
where A is a binary theorem of S1 and σ is an essential switching for A.

(Note that different linkings of the same nonbinary theorem can affect
which switchings are essential. Hence we cannot strengthen this to a bijec-
tion between the theorems of S2 and pairs (A, σ) where A is a theorem of
S1, since not all linkings of A need be compatible with the same σ.)
Proof: We exhibit a map in each direction and prove that they compose
in either order to the respective identity. Neither map by itself requires
induction on length of proofs to specify the map, but does require it in
order to prove theoremhood of the result.

We translate theorems of S2 to formulas of S1 via bi-implication expan-
sion. This is simply the result of rewriting each A−◦B as A⊥...

.............

............................... B and A◦−B

20

as A...
.............
............................... B⊥ and pushing the negations down to the literals via De Morgan’s

laws for ⊗ and ...
.............
............................... , canceling double negations.5

Applying this translation to S2 converts it to S1. It follows by induction
on length of proofs that every theorem of S2 translates in this way to a
theorem of S1.

For the other direction, we are given a binary theorem A of S1 together
with a switching σ and want a theorem of S2. We can specify a formula
without using induction on length of proofs by appealing to the Danos-
Regnier theorem. The switching determines a graph G(A, σ), oriented as in
the description above of essential switchings.

Rewrite each downward disjunction B = C ...
.............
............................... D as (C⊥ ⊗ D⊥)⊥. Note

that this rewriting ignores the direction of switching at this ...
.............
............................... . Rewrite

each upward disjunction B = C ...
.............
............................... D as either C◦−D⊥ or C⊥−◦D according

to whether C or D respectively is the marked disjunct. Lastly rewrite each
downward conjunction B ⊗C as either (B⊥◦−C)⊥ or (B−◦C⊥)⊥ according
to whether the path from B ⊗ C goes to B or C respectively. Cancel any
double negations that arise directly from this translation. Call the final
result the σ-translation of A.

We now claim that the σ-translation of a binary theorem of S1 is a for-
mula in the language of S2. To see this observe that the negations introduced
by this rewriting appear only on downward edges. Morever every downward
edge between two compound subformulas (i.e. not involving a literal) re-
ceives a negation at each end, whence all such negations may be cancelled
directly without bothering to apply De Morgan’s laws to push negations
down. The only remaining negations are then those on nonlink edges in-
volving literals. If the literal is P⊥ then we have another pair of negations
that may be cancelled. If it is P then leave the negation in place so that
it becomes P⊥, and observe that the literal to which P (now negated) is
linked is P⊥. It follows that the only remaining negations are at literals,
and furthermore that links connect occurrences of the same literal (in S1
they connected complementary pairs). Such a formula is in the language of
S2.

We further claim that this formula is a theorem of S2. To see this proceed
by induction of the length of proofs in S1. For the basis case, translating
an instance of T in S1 turns the i-th disjunctions into one of P−◦P , P◦−P ,
P⊥−◦P⊥, or P⊥◦−P⊥ depending on the sign of Pi in the S1 theorem and
the direction determined by σ for that ...

.............

............................... in the σ-translation.
5For noncommutative l inear logic [Abr90] the De Morgan laws also reverse order; here

we leave the order unchanged so as to preserve the exact structure of all formulas.

21

For the inductive step, every way of rewriting the ...
.............
............................... ’s on the left of

a rule of S1 as either −◦ or ◦− is represented on the left of some rule of
S2. (Associativity has only three such combinations rather than four for
essentially the same reason that (P⊥...

.............

............................... (P ⊗Q⊥))...
.............
............................... Q has only three essential

switchings: when the second ...
.............
............................... is switched to the right the first ...

.............

............................... becomes
downwards, and translates to ⊗ which does not have separate notations for
its two directions.) Hence every step of an S1 derivation can be mimicked
by an S2 step, preserving the claimed bijection. This completes the proof of
the claim.

It should now be clear that the two translations are mutually inverse,
establishing the bijection claimed by the theorem.

What we have shown in effect is that S1 and S2 are equivalent axiom-
atizations of MLL, modulo the difference in language and the additional
information in S2 about the switching. From the Danos-Regnier theorem
we have that each binary theorem A of S1 in monotone MLL corresponds
to a set of theorems of S2 in bi-implicational MLL, one for each essential
switching of A.

Higher Order Theorems. Note that rule D’ of S2 may increase order
(depth of nesting of implications in the antecedent). This allows S2 to prove
theorems of arbitrarily high order limited only by n. For example with n = 3
we can proceed using only D’ as follows to obtain a theorem of order 5.

(P−◦P)⊗ ((Q−◦Q)⊗ (R−◦R)) ` (P−◦P)⊗ (((R−◦R)−◦Q)−◦Q)
` ((((R−◦R)−◦Q)−◦Q)−◦P)−◦P

Starting from an axiom of order one, each step adds two to the order.
Thus if we had started with n implications, in n− 1 steps we would by the
above process prove a theorem of order 2n− 1.

Negative Literals. Having avoided negation everywhere else it seems
a shame to have negative literals in formulas. This is unavoidable if S1
theorems such as (P ...

.............

............................... P)−◦(P ...
.............
............................... P) are to have S2 counterparts, since such

theorems cannot be expressed in the bi-implicational language using only
positive literals.

3.7 The Dialectic λ-Calculus

One popular formulation of constructive logic is based on the notion of evi-
dence a for a proposition A, written a : A. The Curry-Howard isomorphism
of types and propositions reads a : A ambiguously as an element a of type

22

A, and as evidence a for proposition A. It further reads A×B ambiguously
as the product of types A and B, and as conjunction of propositions; thus
evidence a for A and b for B constitutes evidence (a, b) for the conjunction
A×B. Similarly A→ B is read as the function space from A to B and the
implication of B by A. Evidence for an implication A → B takes the form
of a function f : A → B which given evidence a for A produces evidence
f(a) for B.

Proofs as evidence for theorems may in a suitable setting be identified
with closed terms of the simply-typed λ-calculus. For example the closed
term λ(a, b) : A × B . (b, a) : B × A proves the theorem A × B → B × A
while λa : A . λb : B . a : A proves A→ (B → A).

From the viewpoint of System S2 above, the λ-calculus has the limitation
that the direction of f : A→ B is always from A toB. This is not compatible
with switching semantics, which capriciously chooses a direction for every
...
.............
............................... . This is where Chu spaces enter the picture. A Chu space consists of not

one but two sets A and X, both of which can be thought of evidence. But
whereas points a ∈ A serve as evidence for A, states x of X, the underlying
set of A⊥, can be thought of as evidence against A, i.e. evidence for the
negation A⊥, an interpretation suggested by G. Plotkin [conversation].

Now we could write x : A⊥ but this requires writing A⊥ in the rules,
which we would like to avoid as not matching up well to S2. Instead we
shall introduce a new notation x··A, dual to a : A, expressing that x is
evidence against A, permitting us to avoid saying “evidence for A⊥.” In the
Chu space interpretation of a proposition A as a Chu space A = (A, r,X),
evidence a for A is a point of A while evidence x against A is a state of A.

We realize evidence for A−◦B as an adjoint pair (f ; f ′) of functions,
one mapping evidence for A to evidence for B, the other mapping evidence
against B to evidence against A. (Abbreviating (f ; f ′) to f is permitted;
the use of semicolon instead of comma avoids the ambiguity that would oth-
erwise arise when say the pair ((f ; f ′), g) is abbreviated to (f, g).) Evidence
for B◦−A is then (f ′; f), as an application of commutativity. Note this is
not the same thing as evidence against A−◦B, i.e. for A ⊗ B⊥, namely a
pair (a, x) consisting of evidence for A and evidence against B.

With Gödel’s Dialectica interpretation and the work of de Paiva [dP89a,
dP89b] in mind, we call this variant of the simply-typed λ-calculus the
dialectic λ-calculus. The two language features distinguishing it from the
simply-typed λ-calculus, taken to have the usual exponentiation operator
→ and also × for convenience, are a second implication ←, and the notion
x··A of evidence against, dual to evidence for, a : A.

The linear dialectic λ-calculus imposes the additional requirement that

23

every λ-binding binds exactly one variable occurrence in the formula. We
distinguish the linear case in the manner of linear logic by writing ⊗, −◦,
and ◦− in place of ×, →, and ←.

We now specify in full the language of the linear dialectic λ-calculus.
Examples of all constructs can be found in Table 3 below. Terms are built
up from variables a, b, . . . , x, y, . . . and types A,B, . . . using λ-abstraction,
application, and pairing. All terms are typed either positively or negatively.

A type is any bi-implicational MLL formula A all of whose literals are
positive. The atoms P,Q, . . . of A constitute its ground types. In the ter-
minology of context-free or BNF grammars, P,Q, . . . here play the role of
terminal symbols or actual type variables while A,B, . . . serve as nontermi-
nal symbols or type metavariables.

A variable a, b, . . . , x, y, . . . of the λ-calculus is either positively typed
as in a : A or negatively typed as in x··A. Both positively and negatively
typed variables are drawn from the same set of variables, but by convention
we will usually use a, b, c, . . . for positively typed variables and x, y, z, . . . for
negative as an aid to keeping track of the sign of its type.

A positive application MN consists of a pair of terms positively typed
respectively A−◦B and A,6 and is positively typed B. A negative application
MN consists of a pair of terms, with M positively typed A◦−B and N
negatively typed A, and is negatively typed B. For linearity M and N must
have no free variables in common, either as an occurrence or as λa.

A positive or consistent pair is a term (M : A,N : B) positively typed
by A ⊗ B. A negative or conflicting pair is either a term (M : A,N ··B)
negatively typed by A−◦B or (M ··A,N : B) negatively typed by A◦−B.
For linearity M and N must have no λ-variables in common, either as an
occurrence or as λa. (In consequence of this and the corresponding rule for
application, a λ-variable can appear just once in the form λa.)

A positive λ-abstraction is a term λa : A . M : B positively typed A−◦B,
and the variable a must occur in M with positive type A. A negative λ-
abstraction is a term λx··A . M ··B positively typed B◦−A, and the variable
x must occur in M with negative type A.

When the variable a of a λ-abstraction is positively typed by a con-
junction or negatively typed by an implication (in which case we will have
usually written x rather than a), a may be expanded as the pair (a1, a2)
where the ai’s are variables of the appropriate type and sign depending on

6Were we trying to follow noncommutative linear logic more closely we would presum-
ably write positive applications in the reverse order, NM , along with some other order
reversals.

24

A and its sign. This expansion may be applied recursively to the ai’s, as for
example in rule A1 of Table 3 below.

When a is positively typed by an implication, a may be written (a1; a2)
but the ai’s do not have any type of their own independent of that of a.
Unlike λ-bound pairs (a, b), λ-bound functions (a1; a2) cannot be split up,
and the occurrence of the ai’s in M is restricted to either (a1; a2) positively
typed by the implication A (either A1−◦A2 or A1◦−A2) or (a2; a1) positively
typed by the reverse implication (respectively either A2◦−A1 or A2−◦A1).

This completes the specification of the language of the linear dialectic
λ-calculus.

The usual syntactic approach to defining the meaning of any λ-calculus
is in terms of reduction rules. To avoid getting too far afield here we shall
instead view λ-terms as denoting Chu transforms parametrized by choice
of Chu spaces over some fixed alphabet Σ interpreting the ground types.
For example, given an interpretation of ground type P as a Chu space A,
λa : P . a : P is the identity function 1A on A. Technically speaking such
an interpretation of a λ-term is a natural transformation (more precisely
dinatural), but we defer that point of view to the next section since the
idea of a parametrized function is natural enough in its own right when
represented as a typed λ-term.

We interpret System S2 in the linear dialectic λ-calculus as follows. The
i-th atomic implication in an instantiation of axiom T has one of four forms
interpreted as follows:

(i) Pi−◦Pi as λai : Pi . ai : Pi;
(ii) P⊥

i ◦−P⊥
i as λai··P⊥

i . ai··P⊥
i ;

(iii) Pi◦−Pi as λxi··Pi . xi··Pi; and
(iv) P⊥

i −◦P⊥
i as λxi : P⊥

i . xi : P⊥
i .

These constitute the four ways of typing the identity function 1Pi on Pi,
which we construe as either a ground type or if Pi is a negative literal then
the negation of ground type. All four types are necessary if one wishes to
be able to interpret every theorem of S2 in this way.

Interpret T itself as consisting of those n identity functions, associated
into pairs of pairs however the conjunctions are associated. For example
the instance (P−◦P) ⊗ ((Q⊥◦−Q⊥) ⊗ (R⊥−◦R⊥)) of T is interpreted as
(1P : P−◦P, (1Q : Q⊥◦−Q⊥, 1R : R⊥−◦R⊥)).

With this interpretation of the axiom instance as the starting point,
interpret successive theorems in a proof by applying the following transfor-
mations, each associated with the correspondingly labeled inference rule of
S2. In the derivation A ` B via rule R, the transformation associated by
Table 3 to rule R maps the λ-term interpreting A to that interpreting B.

25

A1 λ((a, b), c) : (A⊗B)⊗ C . (a, (b, c)) : A⊗ (B ⊗ C)
A2 λf : (A⊗B)−◦C . λa : A . λb : B . f(a, b) : C
A2′ λf : (A−◦B)◦−C . λa : A . λy··B . f(a, y)··C
A2′′ λf : (A◦−B)◦−C . λx··A . λb : B . f(x, b)··C
C1 λ(a, b) : A⊗B . (b, a) : B ⊗A
C2 λ(f ; f ′) : A−◦B . (f ′; f) : B◦−A
C2′ λ(f ; f ′) : A◦−B . (f ′; f) : B−◦A
D λ(f, c) : (A−◦B)⊗ C . λa : A . (f(a), c) : B ⊗ C
D′ λ(f, c) : (A◦−B)⊗ C . λx··A . (f(x), c)··B◦−C
E1 λ(a, b) : A⊗B . (f(a), g(b)) : A′ ⊗B′

E2 λh : A′−◦B . ghf : A−◦B′

E3 λh : A◦−B′ . g′hf ′ : A′◦−B

Table 3. Transformations Associated to Rules of S2

Rules E1-E3 assume that A ` A′ is realized by (f ; f ′) : A−◦A′ and
B ` B′ by (g; g′) : B−◦B′.

Rule A1 transforms evidence ((a, b), c) for (A ⊗ B) ⊗ C to (a, (b, c))
as evidence for A ⊗ (B ⊗ C). Rule A2 maps the function f witnessing
(A⊗B)−◦C to the function λa . λb . f(a, b) witnessing A−◦(B−◦C).

Rule A2’ maps witness f for (A−◦B)◦−C to λa . λy . f(a, y) which
given evidence a for A and y against B, constituting evidence against A−◦B,
produces evidence f(a, y) against C.

The remaining rules are interpreted along the same lines.

Theorem 4 Every theorem of S2 is interpreted by Table 3 as a transfor-
mation represented by a closed term of the linear dialectic λ-calculus.

Proof: This is a straightforward consequence of the form of Table 3. The
interpretations of the axiom instances and the rules are in the language, con-
tain no free variables, λ-bind exactly one variable, and are typed compatibly
with the rules. Free variables in A,B,C remain free after transformation,
by the requirement that all λ-bound variables are distinct. The theorem
then follows by induction on the length of Π.

It is a nice question to characterize those terms of the linear dialectic
λ-calculus for which the converse holds: every closed term of the linear
dialectic λ-calculus meeting that characterization interprets some theorem.
Taking this a step further, a calculus with reduction rules should permit a
notion of normal form permitting a strenthening of the above theorem to a
bijection between certain terms in normal form and cut-free proofs.

26

3.8 Transformational Semantics

The dialectic λ-calculus has provided a syntactic connection with Chu spaces
by depending on its mixture of points and states as positive and negative
evidence, and moreover has furnished us with a potentially useful library of
transformations of Chu spaces, namely those defined by Table 3.

The trouble with such syntactically defined classes of transformations is
that it is easy to imagine extending the class by extending the language with
whatever operations we might have overlooked. The intrinsic interest in the
class would be more compelling if it had a language-independent definition,
such that the operations of our language constituted a complete basis for
that class, as with conjunction, negation, and the constant 0 for the class of
Boolean operations.

The appropriate semantic notion is naturality, in which the interpreta-
tion of a proof of A as an element of the interpretation of A is required to
remain “constant” as the latter varies in response to variations in the atoms
of A. For example λa : A . a : A is in an intuitive sense “constantly” the
identity function, yet its domain and codomain must necessarily track A as
it ranges over different sets, groups, or whatever category we are working
in.

Naturality is formalized by interpreting terms A,B as functors
FA, FB : D → C from a category D of values for variables appearing in
terms to a category C of values for terms (where D will for us be Cn where
n is the number of variables), and entailments A ` B as natural transfor-
mations τ : FA → FB. A transformation is a “variable morphism” varying
over D, defined as a family of morphisms τx : FA(a)→ FB(a) of C indexed
by objects a of D.

A transformation is natural when for all morphisms f : a→ b of D, the
diagram on the left of the following figure commutes.

F (a) τa−→ G(a)
F (f)

y yG(f)

F (b) τb−→ G(b)

F (a,a) τa−→ G(a, a)
F (f, a)

x yG(a, f)
F (b,a) G(a, b)

F (b, f)
y xG(f, b)

F (b,b) τb−→ G(b, b)

This basic notion of naturality is only defined for terms that are (covari-
antly) functorial in their variables, i.e. for variables all of whose occurrences
have the same sign. (In linear logic a variable P all of whose occurrences
are negative may be replaced by a negated variable Q⊥; the new variable Q

27

then occurs only positively and the resulting formula is no less general.) The
diagram on the right generalizes naturality to the case of mixed variance,
where the same variable may occur both positively and negatively, as in the
entailment A−◦A ` A⊥−◦A⊥. Here F (a′, a) separates the negative occur-
rences a′ from the positive occurrences a. When this diagram commutes for
all morphisms f : a→ b of D τ is called dinatural.

Elsewhere [Pra97] we have shown that the dinatural transformations
between functors in Chu built up with tensor and perp soundly interpret
MLL in that every cut-free MLL proof has a distinct interpretation as a
dinatural transformation. We showed furthermore that for Binary MLL,
that fragment of MLL having one positive and one negative occurrence of
each variable, dinatural transformations are a complete interpretation in
that every dinatural transformation interprets some cut-free proof. Here
we show that the latter result does not extend to formulas containing four
occurrences of a variable.

Theorem 5 Both big Chu(Set, 2) and little chu(Set, 2) contain spurious
dinaturals on A−◦A, in the sense that such dinaturals correspond to no MLL
proof of (A−◦A)−◦(A−◦A).

Proof: Ideally there would be one proof for both big and little Chu,
using biextensional spaces for the counterexample but without depending
on biextensionality in the argument. Unfortunately we have not found such
a proof and have different proofs for each case. We begin with big Chu.

Call a Chu space inconsistent when it has no states, and consistent oth-
erwise. Let τ : I−◦I be the transformation that, at each inconsistent space
A, is the functional on A−◦A taking f : A−◦A to the identity function, and
to f otherwise. Such a τ is not among the transformations corresponding to
MLL proof nets and is therefore spurious. Its dinaturality is easily verified
for A,B both consistent or both inconsistent. (When both are inconsistent,
so is A−◦A, and furthermore the Chu transforms constituting the points of
A−◦A are all functions on the carrier A.)

When A is inconsistent and B is consistent there are no test morphisms
from A to B to witness failure of dinaturality.

When A is consistent and B is inconsistent, B−◦A has no points while
A−◦B has no states, whence there is a unique Chu morphism from B−◦A to
A−◦B, forcing the dinaturality diagram to commute. Hence τ is dinatural.

We now prove the corresponding theorem for little chu. The analogue of
the inconsistent spaces for this case will be those biextensional Chu spaces
which contain both a row of all zeros and a column of all zeros. Call these
the Type I spaces, and the rest the Type II spaces.

28

Claim: A−◦A is Type I if and only if A is.
(If) We need to show that A−◦A has both a zero row, namely a con-

stantly zero function, and zero column, namely a pair (a, x) in A × X at
which every function is zero. The former is representable because A (in its
role as target of A−◦A) has a constantly zero row, and is continuous because
A in the role of source has a constantly zero column. The latter follows by
taking a to be the point indexing A’s zero row, and x the state indexing its
zero column.

(Only if) If A−◦A is of Type I then it has a zero row, i.e. a zero function,
possible only ifA as source has a zero column and as target a zero row. Hence
A must also be Type I.

We now define the transformation τA at Type I spaces A to be the
constantly zero function on A → A, and at all other Chu spaces the identity
function on A → A, both easily seen to be continuous by the above claim.
This τ is spurious, again because it corresponds to no MLL proof net.

For dinaturality, observe that the dinaturality hexagon commutes for
any pair A,B of Chu spaces of the same type and for any Chu transform
f : A → B. For A,B of Type I this is because going round the hexagon
either way yields the zero row. For Type II it is because f commutes with
identities.

When A and B are of opposite types, one of the two homsets Hom(A,B)
or Hom(B,A) must be empty, the former when A lacks a zero column or B
lacks a zero row, the latter when it is B that lacks the zero column or A that
lacks the zero row. If Hom(A,B) is empty then there can be no hexagon
because there is no f : A → B. If Hom(B,A) is empty then the hexagon
commutes vacuously, its starting object being empty. We have thus shown
that τ is dinatural.

We conclude that dinaturality semantics is too weak for full completeness
of Chu semantics in MLL. This weakness of dinaturality has already been
observed in other contexts, e.g. Set as a model of intuitionistic logic where
A → A ` A → A also has spurious dinaturals as pointed out by Paré
and Román [PR98]. Constructive intuitionistic logic has as the proofs from
A → A (the set of all functions on the set A) to itself just the Church
numerals, those functions sending f : A→ A to fn : A→ A for some fixed
natural number n independent of A. However the spurious transformation
sending f in A → A to f |A|!! can be seen to be dinatural in the category
FinSet of finite sets, though not in the category Pos of posets.

A stronger criterion than dinaturality is invariance under logical relations
[Plo80] instead of just morphisms. In collaboration with H. Devarajan, D.

29

Hughes, and G. Plotkin we have shown full completeness of MLL for binary
logical transformations over Chu spaces.

4 Relationship of Chu Spaces to Mathematics

4.1 Relational Structures

A relational structure of a given similarity type or signature (m,n, σ) is anm-
tuple of sets A1, A2, . . . , Am together with an n-tuple of relations R1, . . . , Rn
where each Rj ⊆ Aσ(j,1) × Aσ(j,2) × . . . Aσ(j,α(j)) is a subset of α(j) Ai’s
determined by σ. These are the models standardly used in first order logic,
typically with m = 1, the homogeneous case. A homomorphism between
two structures A,A′ with the same signature is an m-tuple of functions
fi : Ai → A′

i such that for each 1 ≤ j ≤ n and for each (a1, . . . , aα(j)) ∈ Rj
of A, (f(a1), . . . , f(aα(j))) ∈ R′

j . The class of relational structures having
a given signature together with the class of homomorphisms between them
form a category.

There is no loss of generality in restricting to homogeneous (singlesorted)
structures because the carriers of a heterogeneous structure may be com-
bined with disjoint union to form a single carrier. The original sorts can be
kept track of by adding a new unary predicate for each sort which is true
just of the members of that sort. This ensures that homomorphisms remain
type-respecting.

There is also no loss of generality in restricting to a single relation since
the structural effect of any family of nonempty relations can be realized
by the natural join of those relations, of arity the sum of the arities of the
constituent relations. A tuple of the composite relation can then be viewed
as the concatenation of tuples of the constituent relations. The composite
relation consists of those tuples each subtuple of which is a tuple of the
corresponding constituent relation.

This reduces our representation problem for relational structures to that
of finding a Chu space to represent the structure (A,R) where R ⊆ An

for some ordinal n. The class Strn of all such n-ary relational structures
(A,R) is made a category by taking as its morphisms all homomorphisms
between pairs (A,R), (A′, R′) of such structures, defined as those functions
f : A→ A′ such that for all (a1, . . . , an) ∈ R, (f(a1), . . . , f(an)) ∈ R′. Every
category whose objects are (representable as) n-ary relational structures and
whose morphisms are all homomorphisms between them is a full subcategory
of Strn. For example the category of groups and group homomorphisms is
a full subcategory of Str3, since groups are fully and faithfully represented

30

by the ternary relation ab = c.
We represent (A,R) as the Chu space (A, r,X) over 2n (subsets of n =

{0, 1, . . . , n−1}) where (i) X ⊆ (2A)n ∼= (2n)A consists of those n-tuples
(x1, . . . , xn) of subsets of A such that every (a1, . . . , an) ∈ R is incident
on (x1, . . . , xn) in the sense that there exists i for which ai ∈ xi; and (ii)
r(a, x) = {i|a ∈ xi}.

This representation is concrete in the sense that the representing Chu
space has the same carrier as the structure it represents.

Theorem 6 A function f : A → B is a homomorphism between (A,R)
and (B,S) if and only if it is a continuous function between the respective
representing Chu spaces (A, r,X) to (B, s, Y).

Proof: (→) For a contradiction let f : A→ B be a homomorphism which
is not continuous. Then there must exist a state (y1, . . . , yn) of B for which
f−1(y1), . . . , f−1(yn)) is not a state of A. Hence there exists (a1, . . . , an) ∈ R
for which ai 6∈ f−1(yi) for every i. But then f(ai) 6∈ yi for every i, whence
(f(a1), . . . , f(an)) 6∈ S, impossible because f is a homomorphism.

(←) Suppose f is continuous. Given (a1, . . . , an) ∈ R we shall show that
(f(a1), . . . , f(an)) ∈ S. For if not then ({f(a1)}, . . . , {f(an)}) is a state of B.
Then by continuity, (f−1({f(a1)}), . . . , f−1({f(an)})) is a state of A. Hence
for some i, ai ∈ f−1({f(ai)}), i.e. f(ai) ∈ {f(ai)}, which is impossible.

As an example, groups as algebraic structures determined by a carrier
and a binary operation can also be understood as ternary relational struc-
tures. Hence groups can be represented as Chu spaces over 8 (subsets of
{0, 1, 2}) as above, with the continuous functions between the representing
Chu spaces being exactly the group homomorphisms between the groups
they represent.

The above theorem can be restated in categorical language as follows.
Any full subcategory C of the category of n-ary relational structures and
their homomorphisms embeds fully and concretely in Chu(Set, 2n). That
is, there exists a full and faithful functor F : C → Chu(Set, 2n) such that
FU = U ′F where U : C → Set and U ′ : Chu(Set, 2n) are the respective
forgetful functors.

4.2 Topological Relational Structures

A natural generalization of this representation is to topological relational
structures (A,R,O), where R ⊆ An and O ⊆ 2A is a set of subsets of A
constituting the open sets of a topology on A. (R itself may or may not be
continuous with respect to O in some sense, but this is immaterial here.)

31

Such a structure has a straightforward representation as a Chu space
over 2n+1, as follows. Take X = X ′ × O where X ′ ⊆ (2A)n is the set of
states on A determined by R as in the previous subsection. Hence X ⊆
(2A)n+1. With this new representation the continuous functions will remain
homomorphisms with respect to R, but in addition they will be continuous
in the ordinary sense of topology with respect to the topology O.

For example topological groups can be represented as Chu spaces over
16.

This is an instance of a more general technique for combining two struc-
tures on a given set A. Let (A, r,X1) and (A, s,X2) be Chu spaces over Σ1,
Σ2 respectively, having carrier A in common. Then (A, t,X1×X2) is a Chu
space over Σ1 × Σ2, where t(a, (x1, x2)) = (r(a, x1), s(a, x2)).

If now (A′, t′, X ′
1×X ′

2) is formed from (A′, r′, X ′
1) over Σ1 and (A′, s′, X ′

2)
over Σ2, then f : A → A′ is a continuous function from (A, t,X1 × X2) to
(A′, t′, X ′

1 ×X ′
2) if and only if it is continuous from (A, r,X1) to (A′, r′, X ′

1)
and also from (A, s,X2) to (A′, s′, X ′

2). For if (f, g1) and (f, g2) are the
latter two Chu transforms, with g1 : X ′

1 → X1 and g2 : X ′
2 → X2, then the

requisite g : X ′
1 × X ′

2 → X1 × X2 making (f, g) an adjoint pair is simply
g(x1, x2) = (g1(x1), g2(x2)). The adjointness condition is then immediate.

4.3 Concretely Embedding Small Categories

The category of n-ary relational structures and their homomorphisms is a
very uniformly defined concrete category. It is reasonable to ask whether the
objects of less uniformly defined concrete categories can be represented as
Chu spaces. The surprising answer is that Chu(Set,Σ) fully and concretely
embeds every concrete category C of cardinality (total number of elements
of all objects, which are assumed disjoint) at most that of Σ, no matter how
arbitrary its construction, save for one small requirement, that objects with
empty underlying set be initial in C.

We begin with a weaker embedding theorem not involving concreteness
which in effect combines the two Yoneda embeddings, namely the embedding
of C into SetC

◦
and of C◦ into SetC . The difference is that whereas these

two targets of the Yoneda embeddings depend nontrivially on the structure
of C, that of our embedding depends only on the cardinality |C|, the number
of arrows of C.

This theorem shows off to best effect the relationship between Chu struc-
ture and category structure, being symmetric with respect to points and
states. The stronger concrete embedding that follows modifies this proof
only slightly but enough to break the appealing symmetry.

32

Theorem 7 Every small category C embeds fully in Chu(Set, |C|).

Proof:
Define the functor F : C → Chu(Set, |C|) as F (b) = (A, r,X) where

A = {f : a → b | a ∈ ob(C)}, X = {h : b → c | c ∈ ob(C)}, and
r(f, h) = hf = f ;h, the converse of composition. That is, the points of this
space are all arrows into b, its states are all arrows out of b, and the matrix
entries f ;h are all composites a

f→ b
h→ c of inbound arrows with outbound.

(A, r,X) is separable because X includes the identity morphism 1b, for
which we have s(f, 1b) = f ; 1b = f , whence f 6= f ′ implies s(f, 1b) 6=
s(f ′, 1b). Likewise A includes 1b and the dual argument shows that (A, r,X)
is extensional.

For morphisms take F (g : b → b′) to be the pair (ϕ,ψ) of functions
ϕ : A → A′, ψ : X ′ → X defined by ϕ(f) = f ; g, ψ(h) = g;h. This is a
Chu transform because the adjointness condition ϕ(f);h = f ;ψ(h) for all
f ∈ A, h ∈ X ′ has f ; g;h on both sides. In fact the condition expresses
associativity and no more.

To see that F is faithful consider g, g′ : b → b′. Let F (g) = (ϕ,ψ),
F (g′) = (ϕ′, ψ′). If F (g) = F (g′) then g = 1b; g = ϕ(1b) = ϕ′(1b) = 1b; g′ =
g′.

For fullness, let (ϕ,ψ) be any Chu transform from F (b) to F (b′). We
claim that (ϕ,ψ) is the image under F of ϕ(1b). For let F (ϕ(1b)) = (ϕ′, ψ′).
Then ϕ′(f) = f ;ϕ(1b) = f ;ϕ(1b); 1b′ = f ; 1b;ψ(1b′) = f ;ψ(1b′) = ϕ(f),
whence ϕ′ = ϕ. Dually ψ′ = ψ.

Comparing this embedding with the covariant Yoneda embedding of C in
SetC

◦
, we observe that the latter realizes ϕg directly while deferring ψg via

the machinery of natural transformations. The contravariant embedding,
of C in (SetC)◦ (i.e. of C◦ in SetC) is just the dual of this, realizing ψg
directly and deferring ϕg. Our embedding in Chu avoids functor categories
altogether by realizing both simultaneously.

The adjointness condition can be more succinctly expressed as the dinat-
urality in b of composition mabc : C(a, b)×C(b, c)→ C(a, c). The absence of
b from C(a, c) collapses the three nodes of the right half of the dinaturality
hexagon to one, shrinking it to the square

C(a, b)× C(b′, c)
1×ψg−→ C(a, b)× C(b, c)

ϕg × 1
y ymabc

C(a, b′)× C(b′, c)
mab′c−→ C(a, c)

33

Here 1×ψg abbreviates C(a, b)×C(g, c) and ϕg×1 abbreviates C(a, g)×
C(b′, c). Commutativity of the square asserts ϕg(f);h = f ;ψg(h) for all
f : a → b and h : b′ → c. By letting a and c range over all objects of C
we extend this equation to the full force of the adjointness condition for the
Chu transform representing g.

This embedding is concrete with respect to the forgetful functor which
takes the underlying set of b to consist of the arrows to b. From that perspec-
tive it is a special case of the following, which allows the forgetful functor to
be almost arbitrary. The one restriction we impose is that objects of C with
empty underlying set be initial. When this condition is met we say that C
is honestly concrete.

Theorem 8 Every small honestly concrete category (C,U) embeds fully and
concretely in Chu(Set,

∑
b∈ob(C) U(b)).

Here the alphabet Σ is the disjoint union of the underlying sets of the
objects of C. In the previous theorem the underlying sets were disjoint by
construction and their union consisted simply of all the arrows of C. Now
it consists of all the elements of C marked by object of origin.
Proof: Without loss of generality assume that the underlying sets of
distinct objects of C are disjoint. Then we can view Σ as simply the set of
all elements of objects of C. Modify F (b) = (A, r,X) in the proof of the
preceding theorem by taking A = U(b) instead of the set of arrows to b.
When U(b) 6= ∅ take X as before, otherwise take it to be just {1b}. Lastly
take r(f, h) = U(h)(f) where f ∈ U(b), i.e. application of concrete U(h) to
f instead of composition of abstract h with f . (We stick to the name f , even
though it is no longer a function but an element, to reduce the differences
from the previous proof to a minimum.)

(A, r,X) is separable for the same reason as before. For extensionality
there are three cases. When U(b) = ∅ we forced extensionality by taking
X to be a singleton. Otherwise, for h 6= h′ : b → c, i.e. having the same
codomain, U faithful implies that U(h) and U(h′) differ at some f ∈ U(b).
Finally, for h : b → c, h′ : b → c′ where c 6= c′, any f ∈ U(b) suffices to
distinguish U(h)(f) from U(h′)(f) since U(c) and U(c′) are disjoint.

For morphisms take F (g : b → b′) to be the pair (ϕ,ψ) of functions ϕ :
A → A′, ψ : X ′ → X defined by ϕ(f) = U(g)(f), ψ(h) = U(hg). This is a
Chu transform because the adjointness condition U(h)(ϕ(f)) = U(ψ(h))(f)
for all f ∈ A, h ∈ X ′ has U(hg)(f) on both sides.

This choice of ϕ makes ϕ = U(g), whence F is faithful simply because
U is.

34

For fullness, let (ϕ,ψ) be any Chu transform from F (b) to F (b′). We
break this into two cases.

(i) U(b) empty. In this case there is only one Chu transform from F (b)
to F (b′), and by honesty there is one from b to b′, ensuring fullness.

(ii) U(b) nonempty. We claim that ψ(1b′) is a morphism g : b→ b′, and
that F (g) = (ϕ,ψ). For the former, ψ(1b′) is a state of F (b) and hence a
map from b. Let f ∈ U(b). By adjointness U(1b′)(ϕ(f)) = U(ψ(1b′))(f) but
the left hand side is an element of U(b′) whence ψ(1b′) must be a morphism
to b′.

Now let F (ψ(1b′)) = (ϕ′, ψ′). Then for all f ∈ U(b), U(ψ′(h))(f) =
U(h ◦ψ(1b′))(f) = U(h)(U(ψ(1b′))(f)) = U(h)(U(1b′)(ϕ(f))) = U(h)(ϕ(f))
= U(ψ(h))(f). Hence U(ψ′(h)) = U(ψ(h)). Since U is faithful, ψ′(h) =
ψ(h). Hence ψ′ = ψ. Since F (b) is separable, ϕ′ = ϕ.

4.4 Homomorphism = Continuous, generalized

Theorem 6 identified homomorphisms between relational structures with
continuous functions between their respective representations as Chu spaces.
Here we extend this result to arbitrary extensional Chu spaces by defining
a homomorphism of Chu spaces to be a property-preserving function for a
suitably abstract notion of property of a Chu space.

Fix an alphabet Σ. For any set A we define a Σ-preproperty of A, or
just preproperty when context determines Σ, to be a subset of ΣA. In
particular ΣA constitutes the identically true preproperty of A, while the
empty set is its identically false preproperty. The Σ-preproperties of A form
a power set, namely 2ΣA

, and as such a complete atomic Boolean algebra,
with intersection and union as respectively conjunction and disjunction.

We refer to the 2-preproperties of A, those for which Σ = 2 = {0, 1}, as
its logical preproperties. These are just the ordinary Boolean propositions
over A construed as a set of variables, of which there are 22|A|

. Each proposi-
tion is represented by the set of its satisfying assignments, those assignments
of truth values to variables that make the proposition true, with each as-
signment being represented by the set of variables assigned true. Thus if
A = {a, b, c} then the preproperty {{a, b}, {a, b, c}} represents the proposi-
tion a∧ b, and can be transliterated directly as the disjunctive normal form
(DNF) proposition (a∧ b∧ c)∨ (a∧ b∧ c), having one disjunct per satisfying
assignment in which every variable in A occurs exactly once. The logical
preproperties of A constitute the free Boolean algebra 22A

on A.
All this extends to infinite A we provided we qualify “Boolean algebra”

with “complete atomic” and allow infinite DNF propositions. This qualifi-

35

cation was not needed for finite A because it is vacuous in that case.
Given an arbitrary Chu space A = (A, r,X) we define a property of A to

be a preproperty of A containing every column of A. As such the properties
of A form the principal filter generated by the set ř(X) of columns of A,
which itself is the strongest property of A, implying all other properties of A
and also being the conjunction of those properties. This filter is the power
set 2ΣA−X , and is a sublattice of the Boolean algebra 2ΣA

though not a
subBoolean algebra of it.

To every function f : A → B we associate a function f́: 2ΣA → 2ΣB

defined as f́(Y) = {g : B → Σ | gf ∈ Y } for Y ⊆ ΣA. To avoid notational
clutter we think of f́ as merely an extension of f and say that f sends Y
to f́(Y). A homomorphism of Chu spaces A = (A, r,X), B = (B, s, Y) is
a function f : A → B such that f́(ř(X)) ⊇ š(Y). This is equivalent to
requiring that f send properties of A to properties of B, justifying the term
“homomorphism.” As further clutter control, without loss of generality we
restrict attention in this section to normal Chu spaces, which simplifies the
above condition to f́(X) ⊆ Y .

Theorem 9 A function f : A→ B is a homomorphism from A to B if and
only if it is a continuous function from A to B.

Proof: The function f : A → B is a homomorphism if and only if
f(X) ⊃ Y , if and only if every g : B → Σ in Y satisfies gf ∈ X, if and only
if f is continuous.

We may relate this result to Theorem 6 by identifying an n-tuple with the
property whose states are those n-tuples (x1, . . . , xn) on which that n-tuple
is incident.

5 Conclusion

We have exhibited embeddings in Chu of two quite different notions of
“general” category. One is that of relational structures and their homo-
morphisms, possibly with topological structure and the requirement that
the homomorphisms be continuous. The other is that of an arbitrary small
category, possibly concrete. Both embeddings are concrete. The first is con-
crete in the ordinary sense of the representing object (A, r,X) having as its
underlying set A the carrier of the represented relational structure. The sec-
ond is concrete with respect to arrows-to as elements, or to the underlying
sets of the objects when these are provided.

36

Quite a few categories are known that are universal to the extent of fully
embedding all small categories, as well as all algebraic categories. However
those embeddings are highly artificial, relying on the ability of such objects
as graphs and semigroups to code the compositional structure of morphisms
that compose at an object to be so represented. Any representation based
on clever coding introduces irrelevant complexity into the mathematics of
objects so represented. Furthermore the coding obscures the ordinary ele-
ments of concrete objects, further undermining our intuitions about concrete
objects.

These embeddings provide a sense in which the denotational semantics
of linear logic can be understood to be at least as general as that of first-
order logic. This is not to say that the generality is achieved at the same
level. A model of first order logic is a relational structure, and the models
of a given theory form a category. A model of linear logic on the other hand
is the category itself, whose objects are the denotations of mere formulas.

This is the basic difference between first order or elementary logic and
linear logic. First order logic reasons about the interior of a single object,
the domain of discourse being the elements or individuals that exist in that
object together with the relationships that hold between them. Linear logic
reasons instead about how things appear on the outside, understanding the
structure of objects externally in terms of how they interact rather than
internally in terms of what they might contain. The fundamental interaction
is taken to be that of transformation of one object into another. Elements
and their relationships are not discussed explicitly, but their existence and
nature is inferred from how the objects containing them interact.

This being the essence of the categorical way of doing mathematics,
linear logic so construed must therefore be the categorical logic of general
mathematics. As such it is sibling to intuitionistic categorical logic, whose
domain of discourse is confined to cartesian closed mathematics, having as
its exemplar category Set. The thesis we have presented here is that the
examplar category of general mathematics is Chu(Set,−).

Acknowledgments. The program realized in Section 4 was suggested to
us by Michael Barr. The interpretation of states of a Chu space as evidence
against a proposition was suggested to us by Gordon Plotkin.

References

[Abr90] V. Michele Abrusci. Non-commutative intuitionistic linear
propositional logic. Zeitschrift für Mathematische Logik und

37

Grundlagen der Mathematik, 36:297–318, 1990.

[AJ92] S. Abramsky and R. Jagadeesan. Games and full complete-
ness for multiplicative linear logic. In Foundations of Software
Technology and Theoretical Computer Science, Lecture Notes in
Computer Science, New Delhi, 1992. Springer-Verlag. Also Im-
perial College Report DoC 92/24.

[AJ94] Samson Abramsky and Radha Jagadeesan. Games and full com-
pleteness for multiplicative linear logic. Journal of Symbolic
Logic, 59(2):543–574, 1994.

[Bar79] M. Barr. ∗-Autonomous categories, volume 752 of Lecture Notes
in Mathematics. Springer-Verlag, 1979.

[Bar91] M. Barr. ∗-Autonomous categories and linear logic. Math Struc-
tures in Comp. Sci., 1(2):159–178, 1991.

[Bar96] M. Barr. Fuzzy models of linear logic. Mathematical Structures
in Computer Science, 6(3):301–312, 1996.

[Bla92] Andreas Blass. A game semantics for linear logic. Annals of
Pure and Applied Logic, 56:183–220, 1992.

[Blu96] R. F. Blute. Hopf algebras and linear logic (with appendix by M.
Barr). Mathematical Structures in Computer Science, 6(2):189–
217, April 1996.

[BS96a] R.F. Blute and P.J. Scott. Linear Läuchli semantics. Annals of
Pure and Applied Logic, 77:101–142, 1996.

[BS96b] R.F. Blute and P.J. Scott. The shuffle Hopf algebra and non-
commutative full completeness. Submitted to J. Symbolic Logic,
1996.

[BvN36] G. Birkhoff and J. von Neumann. The logic of quantum mechan-
ics. Annals of Mathematics, 37:823–843, 1936.

[CCMP91] R.T Casley, R.F. Crew, J. Meseguer, and V.R. Pratt. Temporal
structures. Math. Structures in Comp. Sci., 1(2):179–213, July
1991.

[DHPP99] H. Devarajan, D. Hughes, G. Plotkin, and V. Pratt. Full com-
pleteness of the multiplicative linear logic of chu spaces. In Proc.

38

14th Annual IEEE Symp. on Logic in Computer Science, pages
234–243, Trento, Italy, July 1999.

[dP89a] V. de Paiva. The dialectica categories. In Categories in Com-
puter Science and Logic, volume 92 of Contemporary Mathemat-
ics, pages 47–62, held June 1987, Boulder, Colorado, 1989.

[dP89b] V. de Paiva. A dialectica-like model of linear logic. In Proc.
Conf. on Category Theory and Computer Science, volume 389 of
Lecture Notes in Computer Science, pages 341–356, Manchester,
September 1989. Springer-Verlag.

[DR89] V. Danos and L. Regnier. The structure of multiplicatives.
Archive for Mathematical Logic, 28:181–203, 1989.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–
102, 1987.

[Gir89] J.-Y. Girard. Towards a geometry of interaction. In Categories in
Computer Science and Logic, volume 92 of Contemporary Math-
ematics, pages 69–108, held June 1987, Boulder, Colorado, 1989.

[HL69] Z. Hedrĺın and J. Lambek. How comprehensive is the category
of semigroups. J. Algebra, 11:195–212, 1969.

[HO93] J.M.E. Hyland and C.-H.L. Ong. Fair games and full com-
pleteness for multiplicative linear logic without the mix-rule.
Available by ftp from ftp.comlab.ox.ac.uk as fcomplete.ps.gz in
/pub/Documents/techpapers/Luke.Ong, 1993.

[LS86] J. Lambek and P. Scott. Introduction to Higher-Order Categor-
ical Logic. Cambridge University Press, 1986.

[LS91] Y. Lafont and T. Streicher. Games semantics for linear logic. In
Proc. 6th Annual IEEE Symp. on Logic in Computer Science,
pages 43–49, Amsterdam, July 1991.

[Mac45] G. Mackey. On infinite dimensional vector spaces. Trans. Amer.
Math. Soc., 57:155–207, 1945.

[Mac71] S. Mac Lane. Categories for the Working Mathematician.
Springer-Verlag, 1971.

39

[Plo80] G.D. Plotkin. Lambda definability in the full type hierarchy. In
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 363–373. Academic Press, 1980.

[PR98] R. Paré and L. Román. Dinatural numbers. J. Pure and Applied
Algebra, 128:33–92, 1998.

[Pra86] V.R. Pratt. Modeling concurrency with partial orders. Int. J.
of Parallel Programming, 15(1):33–71, February 1986.

[Pra93] V.R. Pratt. The second calculus of binary relations. In Pro-
ceedings of MFCS’93, volume 711 of Lecture Notes in Computer
Science, pages 142–155, Gdańsk, Poland, 1993. Springer-Verlag.

[Pra95] V.R. Pratt. The Stone gamut: A coordinatization of mathe-
matics. In Logic in Computer Science, pages 444–454. IEEE
Computer Society, June 1995.

[Pra97] V.R. Pratt. Towards full completeness of the linear
logic of chu spaces. In Electronic Notes in Theoreti-
cal Computer Science, volume 6, Pittsburgh, 1997. URL:
http://www.elsevier.nl/locate/entcs/volume6.html, 18 pages.

[PT80] A. Pultr and V. Trnková. Combinatorial, Algebraic and Topo-
logical Representations of Groups, Semigroups, and Categories.
North-Holland, 1980.

[Tan97] A. Tan. Full completeness for models of linear logic. PhD thesis,
King’s College, University of Cambridge, October 1997.

[Trn66] V. Trnková. Universal categories. Comment. Math.
Univ.Carolinae, 7:143–206, 1966.

40

