
HYPOTHESIS AND THEORY
published: 14 March 2017

doi: 10.3389/fnsys.2017.00010

Cinematic Operation of the Cerebral
Cortex Interpreted via Critical
Transitions in Self-Organized
Dynamic Systems
Robert Kozma1,2* and Walter J. Freeman3

1College of Information and Computer Sciences, University of Massachusetts, Amherst, MA, USA, 2Department of
Mathematical Sciences, University of Memphis, Memphis, TN, USA, 3Department of Molecular and Cell Biology, University of
California at Berkeley, Berkeley, CA, USA

Edited by:
Yan Mark Yufik,

Virtual Structures Research, Inc.,
USA

Reviewed by:
Alianna JeanAnn Maren,

Northwestern University, USA
Paul John Werbos,

Retired, USA

*Correspondence:
Robert Kozma

rkozma@memphis.edu

Received: 07 October 2016
Accepted: 16 February 2017
Published: 14 March 2017

Citation:
Kozma R and Freeman WJ

(2017) Cinematic Operation of the
Cerebral Cortex Interpreted via

Critical Transitions in Self-Organized
Dynamic Systems.

Front. Syst. Neurosci. 11:10.
doi: 10.3389/fnsys.2017.00010

Measurements of local field potentials over the cortical surface and the scalp of animals
and human subjects reveal intermittent bursts of beta and gamma oscillations. During
the bursts, narrow-band metastable amplitude modulation (AM) patters emerge for a
fraction of a second and ultimately dissolve to the broad-band random background
activity. The burst process depends on previously learnt conditioned stimuli (CS), thus
different AM patterns may emerge in response to different CS. This observation leads to
our cinematic theory of cognition when perception happens in discrete steps manifested
in the sequence of AM patterns. Our article summarizes findings in the past decades
on experimental evidence of cinematic theory of cognition and relevant mathematical
models. We treat cortices as dissipative systems that self-organize themselves near a
critical level of activity that is a non-equilibrium metastable state. Criticality is arguably
a key aspect of brains in their rapid adaptation, reconfiguration, high storage capacity,
and sensitive response to external stimuli. Self-organized criticality (SOC) became an
important concept to describe neural systems. We argue that transitions from one AM
pattern to the other require the concept of phase transitions, extending beyond the
dynamics described by SOC. We employ random graph theory (RGT) and percolation
dynamics as fundamental mathematical approaches to model fluctuations in the cortical
tissue. Our results indicate that perceptions are formed through a phase transition from
a disorganized (high entropy) to a well-organized (low entropy) state, which explains the
swiftness of the emergence of the perceptual experience in response to learned stimuli.

Keywords: cinematic theory of cognition, AM pattern, criticality, phase transition, Freeman K set, Hebbian
assembly, graph theory, neuropercolation

INTRODUCTION

It is now commonplace to regard cerebral cortex as an organ maintaining itself in a dynamic
state at the edge of criticality (de Arcangelis et al., 2014; Plenz and Niebur, 2014). Criticality
in mathematics and physics relates to a point of sudden transition from one state to another.
In thermodynamics, the term denotes a point on the phase boundary between solid, liquid and
gas phases. Near the critical point, the state of the system changes drastically with the variation
of some control parameter, which behavior has been observed in the operation of the cortex
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(Freeman, 2008; Fraiman and Chialvo, 2012; Freeman et al.,
2012). Metastability is a related fundamental behavior employed
in characterizing brain dynamics and cognition (Bressler and
Kelso, 2001; Freeman and Holmes, 2005; Tognoli and Kelso,
2014). Metastability indicates a continuous interplay between
phase synchrony and phase scattering in a system with many
interacting components (van Straaten and Stam, 2013; Zalesky
et al., 2014; Freeman, 2015).

How does the cortex maintain a critical state? Nuclear
physicists use the concept of criticality to denote the threshold,
at which nuclear fission reaction is maintained. The critical
state of the fission chain reaction is achieved by a delicate
balance between the material composition of the reactor and
its geometrical properties. The criticality condition is expressed
as the identity of geometrical curvature (buckling) and material
curvature. Critical processes in nuclear reactors are designed in
a way to satisfy strictly linear operational regimes, in order to
guarantee stability of the underlying coupled reactor dynamic
process (Upadhyaya et al., 1980; Kozma, 1985; March-Leuba and
Rey, 1993). In brains, however, nonlinear feedback effects are
of primary importance in sustaining complex cortical dynamics
(Kozma and Freeman, 2001; Tagliazucchi and Chialvo, 2012).
Our answer to the question on the origin of sustained critical
state in brains is that mutual excitation between populations of
cortical neurons maintains criticality, in combination with the
refractory period that prevents exponential grow, thus stabilizes
the dynamics (Freeman, 1975, 2004a).

In the past decade, neuroscientists successfully employed the
concept of self-organized criticality (SOC) to neural processes
(Beggs, 2008; Friston et al., 2012; Fingelkurts et al., 2013; Palva
et al., 2013; Plenz and Niebur, 2014). These and many other
studies point to scale-free dynamics in the cortex resembling
cascades of sand piles duringmetastable states (Bak, 1996; Jensen,
1998; Petermann et al., 2009). SOC, however, cannot describe
the existence of robust critical regions with sustained metastable
dynamics, neither the rapid transitions from one metastable
state to the other (Tognoli and Kelso, 2014). Bonachela et al.
(2010) describe brains as ‘‘pseudo-critical’’ and suggest that
we should ‘‘. . . look for more elaborate (adaptive/evolutionary)
explanations, beyond simple self-organization.’’ Reinforcement
learning (RL) is crucial in producing rapid transitions from
one metastable state to the other (Freeman, 1979). RL sensitizes
the cortex selectively and creates spatially extended Hebbian
cell assemblies (HCAs). Once HCAs are formed, they respond
collectively to conditional stimuli. Stimulating any part of the
assembly triggers a rapid increase in synaptic gain, leading to
the explosive increase in the activity, until the activation density
reaches saturation (Freeman, 2015). HCAs manifest emergent
neural packets facilitating the understanding of perceptual
experiences (Yufik and Friston, 2016).

Synchronized bursts of neural activity have been observed
and analyzed extensively in the literature. This includes the
description of spike bursts in interacting excitatory-inhibitory
neural populations (see, e.g., Hindmarsh and Rose, 1984;
Izhikevich, 2000; Coombes and Bressloff, 2005; Srinivasan
et al., 2013). Mathematical models based on chaos theory have
been proved to be useful to describe these bursts patterns

(Hansel and Sompolinsky, 1992; Tsuda, 2001; Kozma, 2003).
Recent breakthroughs include the comprehensive description
of sharp wave ripples representing episodic memory effects
(Buzsáki, 2015) and systematic analysis of spike bursts (Werbos
and Davis, 2016). Our work addresses experimental and
theoretical findings of transient synchronization in mesoscopic
neural populations and their interpretation based on the concept
of phase transitions in random graph theory (RGT) and statistical
physics.

Since the early 2000s, phase transition in RGT has been
employed as a useful mathematical concept to model the
dynamics of the cortical tissue (Kozma et al., 2001). The random
graph description of the cortex, called ‘‘neuropercolation,’’
implements a hierarchy of cortical models (Kozma et al., 2005).
Non-local interactions between neural populations via long
axonal projections are crucial in describing cortical dynamics.
There are extensive studies to model small-world effects (Watts
and Strogatz, 1998) in structural and functional brain networks
tuned to criticality (Bullmore and Sporns, 2009, 2012; Turova,
2012; Haimovici et al., 2013; Sporns, 2013; Alagapan et al., 2016).
The level of system noise, the ratio of non-local connections
corresponding to long axons, and the strength of inhibitory
effects are key variables that allow controlling the transitions
between opposite phases (Kozma and Puljic, 2015). In the
absence of non-local connections, diffusion-like effects dominate
the spatio-temporal dynamics, which fall short of producing the
required rapid cortical transitions. With the help of non-local
connections, we were able to generate and maintain phase
transitions exhibiting rapid transitions between synchronized
and desynchronized phases (Puljic and Kozma, 2008, 2010;
Kozma and Puljic, 2015).

Phase transitions between disordered and ordered neural
states provide key insights to understand and interpret
the observed cortical space-time neurodynamics. Disordered
states are characterized by random dispersion of active and
inactive sites, while the emergence of metastable amplitude
modulation (AM) patterns signify more ordered states. In
the disorganized phase, the individual microscopic neurons
are loosely coupled, which facilitates them processing sensory
information individually. In the organized phase, the neurons
are strongly coupled into populations producing metastable
macroscopic AM patterns (Freeman, 2014). Transitions from
one AM pattern to the other produce a sequence of metastable
cortical states, which can be viewed as neural correlates of
cognitive activity in the framework of the cinematic theory of
cognition (Freeman, 2006, 2007; Kozma and Freeman, 2016).
The cinematic theory of cognition is related to the concept of
perception occurring in discrete epochs (Crick and Koch, 2003),
and to the model of pulsating consciousness manifested via
neuronal activity packages (Yufik, 2013).

This essay summarizes our decades-long experimental and
theoretical studies supporting the concept of the cinematic theory
of cognition. We review the theory of criticality in the cerebral
cortex based on self-organized dynamics of neural populations,
manifested in the form of sequential phase transitions between
metastable AM patterns. In our interpretation, phase transitions
are responsible for the rapid responses to sensory stimuli
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observed in cognitive processing and for the emergence of our
perceptual experiences according to the cinematic theory of
cognition.

CONSTRUCTING THE SELF-ORGANIZED
PERCEPTION CYCLE

Metastable AM Patterns Manifest the
Organized Phase of Cortical Dynamics
From the variety of the available brain monitoring techniques,
here we focus on recordings EEG and ECoG potentials.
Intracranial experiments with electrode arrays over the cortex
have been conducted in various laboratories, providing a
window on the electrophysiological processes underlying brain
functions (Freeman, 1975; Skarda and Freeman, 1987; Canolty
et al., 2010; Panagiotides et al., 2011; Buzsáki et al., 2012). A
state-of-art overview of brain imaging using EEG and ECoG
monitoring techniques is given by Freeman and Quian-Quiroga
(2013), including single trial experiments, high-density arrays,
and spatio-temporal spectral analysis. More traditional Fourier
analysis is often supplemented by Hilbert transform, which is
especially beneficial in the characterization of rapidly changing,
metastable activity patterns.

We illustrate the experimental results concerning the
presence of highly organized metastable AM patterns and their
intermittent collapse to a disorganized state using the example of
rabbits, conducted in the Freeman neurophysiology laboratory
at UC Berkeley (Freeman and Barrie, 2000). Rabbits were
implanted with intracranial electrode arrays over their sensory
cortices and trained using the well established, RL paradigm.
In the experiment displayed in Figure 1, an ECoG array of
8 × 8 electrodes is fixed over the visual cortex of the rabbit.
The measurement is 6 s long with a visual stimulus presented
to the animal at time instant t = 3 s; thus there is a 3 s
pre-stimulus and a 3 s post-stimulus period. Figure 1, upper
plot, shows the 64 ECoG traces filtered in the gamma band
30–36 Hz (Davis et al., 2013). There is a base level of background
activity during the 3 s expectancy state without stimulus. During
the ∼1 s interval following the stimulus several gamma bursts
appear. Finally, after about 1 s following the stimulus (at time

instants >4 s), the activity returns to the background state. The
novelty of the results lies in the development of quantitative
measures to characterize the sequence of metastable states, using
various pragmatic information indices (Freeman, 2004a; Davis
et al., 2013).

Using Hilbert transform for each of the 64 ECoG signals,
complex valued analytic signals are obtained with amplitude and
phase components. The analytic amplitude represents the power
of the ECoG signal, while the phase can be used to monitor
synchronization effects. In Figure 1, lower plot, the amplitudes
of the 64 analytic signals are shown. In the pre-stimulus period,
the amplitudes fluctuate at a low level, indicating a sustained,
disorganized background activity. There are several beats during
the ∼1 s period following the stimulus, which demonstrate
intermittent bursts of power in the gamma band. These bursts
signify the emergence of metastable AM patterns (for details, see
Freeman, 1975, 2004a, 2014).

The existence of an AM pattern indicates that the cortical
dynamics is constrained to a narrow attractor basin in response
to a given stimulus. This is a highly structured (organized) state
with significant coordination between the 64 ECoG channels. In
spite of the individual differences between the ECoG channels,
they have significant commonality in their behaviors; namely,
they rise, reach a maximum, and decrease in synchrony. This
means that the AM pattern is largely time-invariant during the
100–200 ms of its existence, although its overall intensity varies
in time. The relevance of AM patterns in defining the cognitive
state of the animal has been demonstrated by using AM patterns
as classification tools to discriminate between stimuli (Freeman,
1979; Kozma and Freeman, 2001). The AM patterns provide us
with an observation window to monitor the cognitive process
using ECoG/EEG techniques. When the input is removed, the
cortical dynamics is released from its constrained state, the AM
pattern disappears, and the cortex returns to the disorganized,
background state.

The AM patterns do not represent the input stimuli in any
practical sense; rather they correspond to the meaning of the
input. They continuously change during the life of the animal
through a learning process, as a result of past experiences, present
state and future goals of the subject. If a new stimulus does not
match a previously learnt experience, the response of the cortex

FIGURE 1 | Rabbit ECoG data measured over the visual cortex using an 8 × 8 array of electrodes. The duration of the experiment is 6 s, with a visual
stimulus (light flash) presented to the animal at t = 3 s; the signals were filtered over the gamma band (30–36 Hz). The subplots show 64 curves corresponding to the
ECoG signals (top) and the analytic signals (bottom), respectively. The analytic signals have been calculated using Hilbert transform, from Davis et al. (2013).
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is a rapidly decaying oscillation. If the stimulus is presented again
and again to the animal, the connections between excitatory
neurons are strengthened in a process called Hebbian learning.
As the result, the response decays less and less, which ultimately
leads to sustained narrow-band oscillations due to the formation
of a HCAs. The emergence of narrow-band oscillations is crucial
for the efficient memory readout based on metastable AM
patterns. The role of Hebbian reinforcement of connections
between co-activated neurons has been demonstrated in large
neuron populations, including the hippocampus, sensorimotor
and speech areas (Buzsáki, 2005; Pulvermüller and Fadiga, 2010;
Lopes-dos-Santos et al., 2013). In the computational domain,
Hebbian RL has been implemented in various neural network
models (see, e.g., Amit, 1995; Wennekers and Palm, 2009).

The example of the olfactory system with convergent-
divergent connections is illustrated in Figure 2 (Freeman, 1979).
Input is transmitted via the primary olfactory nerve (PON) to
the olfactory bulb, where the HCA is shown by black dots. By
stimulating any subset of the HCA, the whole HCA is activated
and produces narrow-band oscillations, thus exhibits the key
property of generalization over the category of the sensory
stimulus. Activations from the bulb are projected to the olfactory
cortex through the lateral olfactory tract (LOT). The increased
strengths of mutual excitatory connections (Kee) in the Hebbian
assembly strongly enhance gamma oscillations in response to
learned stimuli (Baird et al., 1991; Kozma and Freeman, 2001).
In the context of the present work it is to be emphasized that
he formation of HCAs and their rapid activation in response
to learned stimuli are important conditions of cortical phase
transitions (Freeman, 2015).

Background Activity and “Null Spikes”
The low overall magnitudes of the ECoG and analytic signals in
Figure 1 before the stimulus onset (t < 3 s) indicate that the

FIGURE 2 | Illustration of the topographic mapping that characterizes
the olfactory input pathway. (A) Input is transmitted via the primary
olfactory nerve (PON) to the olfactory bulb having excitatory (upper) and
inhibitory (lower) layers, where the Hebbian assembly is shown (black dots).
The Hebbian assembly is ignited with the stimulation of any of its subsets and
leads to a phase transition from broad-band background activity to
narrow-band oscillations, which are projected to the olfactory cortex through
the lateral olfactory tract (LOT). (B) The increased strengths of mutual
excitatory connections (Kee) in the Hebbian assembly strongly enhance
gamma oscillations in response to learnt stimuli (Freeman, 1979).

background activity is a state of relatively low energy as compared
to the high-energy burst of the AM patterns. Moreover, the
energy of the background oscillations is distributed over a wide
range of frequencies as opposed to the narrow-band (gamma)
oscillations contributing the formation of AM patterns. In fact,
the background conforms to power-law dynamics with a power
exponent ranging between −2 and −4 (Freeman and Zhai,
2009). It is generated by mutual excitation among populations of
cortical excitatory neurons, which activity places great demand
on bodily metabolism even in brains at rest, sometimes referred
to as ‘‘dark energy’’ (Raichle, 2006).

The background activity is characterized by weak correlation
and strong desynchronization between individual channels. The
overall low background activity level may briefly drop to near
zero for some channels, which phenomenon is called ‘‘null spike’’
(Freeman, 2008; Kozma and Freeman, 2008). During null spikes,
the analytic phase of the background exhibits sudden changes,
jumps, discontinuities; the channels have significant dispersion
in their analytic phases. If the background is described as a
disordered phase compared to the ordered phase with metastable
AM patterns, then the null spikes clearly represent extreme
disorder, which we characterize as singularity. The singularity
is embedded in the background activity. At the singularity, we
observe that the analytic amplitude diminishes and the analytic
phase dispersion increases explosively. The very low power
of the null spike means that the interactions between neural
populations are suppressed. This provides favorable conditions
for inputs to have a significant impact on the behavior of
neural populations, especially through igniting relevant Hebbian
assemblies, which facilitate a consequent rapid propagation of
activities.

Null spikes are interpreted as the sites of nucleation initiating
a phase transition, following the analogy of crystallization or
condensation. For example, when a liquid is converted to a solid
phase, the solidification starts as a specific point on the surface,
and expands from that point rapidly as the liquid to solid phase
transition progresses. Similarly, condensation of steam into the
liquid phase starts at a point on the surface; the incipient drop
grows from that location by expanding the boundary between the
liquid and vapor phases. Following these examples, the initiation
of null spike on the cortex may signify the start of the phase
transition in the brain dynamics from disorganized phase to
organized phase. In brains, the organized phase appears in the
form of an emergent AM pattern with increasing power at the
frequency of the carrier wave (gamma power).

The synchronized pattern emerges at the wake of a phase
gradient rapidly propagating over the surface of the cortex. This
phase gradient has the form of a cone and it is called ‘‘phase
cone’’ (Freeman, 2004b). Note that there are many phase cones
that appear and disappear all the time, however, those phase
cones are mostly small (microscopic), and do not grow to the
macroscopic size characteristic of a phase transition. Only when
the drop of the analytic power coincides with the presence of a
suitable stimulus, can we observe the rapid growth of a phase
cone to sizes covering large cortical areas. The location of the
apex of the cone varies randomly from each burst to the next
and has no relation to the stimulus. The conic apex is in itself
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a singularity, and there is some preliminary evidence that its
location may correspond to the location of the preceding null
spike (Freeman, 2015).

The Collapse of AM Patterns
AM patterns represent highly organized states of the cortex,
which ultimately dissolve through gradual erosion under
continual bombardment by sensory stimuli. The collapse of AM
patterns can be viewed as a phase transitions from a synchronized
to a disorganized state. In physics, such a conversion is
described as evaporation of a liquid, or melting of a solid
substance. This phase transition requires energy transferred to
the system.

AM patterns are synchronized bursts of the activities of large
masses of neurons, which emerge through phase transitions
initiated by null spikes and exists for a fraction of a second (theta
rates). There is a characteristic frequency of the burst in the
gamma band due to the interaction of excitatory and inhibitory
populations, but there is a marked distribution of frequencies
of the myriads of individual feedback loops that contribute to
the formation of the AM pattern (Kozma and Freeman, 2008).
It is inevitable that variations in these frequencies produce
oscillations that become less and less synchronized, thus the
collective order of the neural populations decreases. As a result,
the overall power of the oscillations diminishes and the AM
patterns collapse (Freeman, 2014).

The elimination of the AM pattern drives the dynamics
back to the background level, which will produce another AM
pattern and the whole cycle starts again. The presence of the
continual cycle of the emergence and destruction of metastable
AM patterns is an important property of cortical dynamics,
which is a lifelong process. In the next section, this cycle is
discussed in the context of the cinematic theory of cognition,
while energy considerations are described afterwards.

CINEMATIC MODEL OF PERCEPTION AS
A SEQUENCE OF PHASE TRANSITIONS

ECoG measurements with intermittent transitions between
synchronized and desynchronized brain states are interpreted in
the framework of the cinematic theory of cognition (Freeman,
2007; Kozma and Freeman, 2016). Accordingly, neocortex
processes information in frames like a cinema. Metastable AM
patterns manifest the ‘‘frames,’’ and the phase transitions provide
the ‘‘shutter’’ from one frame to the next. Moving from one
metastable pattern to the other corresponds to successive images
in a movie, which we interpret using the synergetic approach
to information processing (Haken, 1983). Haken proposed that
state transitions are essential for information transfer between
hierarchical levels, by which a collection of particles create an
order parameter and in circular causality enslaves the activity of
the particles. Cortical AM patterns are the manifestations of the
enslavement of individual neural oscillations by collective EEG
dynamics (Freeman, 2007).

Figure 3 illustrates the sequential processing in the cinematic
model of cognition; the top two diagrams show the superimposed
64 ECoG signals (pass band: 20–28 Hz) and the corresponding

curves of the analytic power, respectively. The time evolution
displays a sequence of beats having relatively high power,
separated by periods with diminishing analytic power (marked
by blue vertical bars). The duration of a beat is about
100–200 ms, and a metastable AM pattern is sustained during
this period. The blue bars correspond to brief time periods of
transition from one beat to the other. During the transition,
the AM patterns collapse to a singularity (null spike), when the
synchrony disappears and the phase relationships exhibit high
dispersion.

The cinematic theory employs two main components of
cortical dynamics that occur sequentially, namely, the movie
frame and the shutter.

• The frames are defined by the metastable AM patterns,
which describe a phase with synchronous activity and
macroscopic order. The metastable AM patterns represent
a transmission mode of operation, i.e., they convey the
knowledge contained in the meaning of the stimulus that
gave rise to AM patterns. At the ordered phase, the cortex
ignores the impact of the irrelevant input stimuli, until the
AM pattern finally erodes and leads to the disorganized phase
(shutter).

• The shutter is brief (∼20 ms) and it corresponds to the
collapse of order due to the desynchronization of the neural
activity. This is the receiving phase of the perception cycle,
when the analytic power drops near zero and the dynamics
becomes susceptible to input stimuli. Once a relevant stimulus
is selected, it activates a HCA and induces rapid growth
of a large phase cone, which extends over distant cortical
areas.

The cinematic theory describes two types of phase transitions,
one with the emergence of order from disorder in the form of
AM patterns, and the other is the collapse of order manifested in
the dissolution of the AM patterns.

• Transition from disorder to order: AM patterns emerge
rapidly following the initiation by a null spike under the
influence of a relevant stimulus. The large cones are initiated
and maintained by corresponding HCAs. These large-scale
phase cones enslave the cortical dynamics and lead to the
emergence of order in the form of AM patterns. Without
activating a HCA, the incipient phase cones cannot grow to
macroscopic level, rather they remain localized, and the impact
of the input stimuli rapidly fades away.

• Transitions from order to disorder: the degradation of the
AM patterns is gradual, under the constant impact of input
stimuli. At first, AM patterns are highly synchronized and
resist to perturbations in the form of the emergence and
collapse of small phase cones during the metastable state.
Ultimately, however, the synchrony erodes, the power of the
population activity decreases, and the dynamics returns to the
disorganized background phase.

The existence of metastable AM patterns and their ultimate
collapse can be interpreted in the context of SOC. There are
incipient, smaller phase cones during themetastable AMpatterns
(Freeman, 2004b), which resemble avalanches of various sizes
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FIGURE 3 | Illustration of the self-organized perception cycle based on the cinematic theory of cognition. (A) Superimposed band-pass filtered ECoG
signals. (B) The 64 analytic amplitudes show beats with high amplitudes, interrupted with periods of reduced power, marked by blue bars (null spikes). The high
amplitudes between the blue bars correspond to metastable amplitude modulation (AM) patterns carrying the cognitive content (frames). The null spikes are
singularities localized in space and time, with high dispersion of the phases (shutter). (C) Following the singularity, large phase cones emerge, which manifest
transition from microscopic disorder to macroscopic order (illustration by Chris Gralapp), from Kozma and Freeman (2016).

that maintain the state of SOC (Bak, 1996; Jensen, 1998; Beggs
and Plenz, 2003). The power law distribution of avalanche sizes
suggests that the neural tissue is in the dynamic state of criticality.
These incipient phase cones manifest the dissipation of energy
in weak bursts. Such incipient cones may manifest the SOC
metastable state, however, they are different from the large-
scale phase cones emerging during the phase transitions. SOC
cannot describe the sequence of transient patterns observed in
the perception cycle and described here in the context of the
cinematic theory of cognition. Neuropercolation is a suitable
mathematical tool to describe cortical phase transitions, as
summarized next (Kozma and Puljic, 2015).

DISCUSSION ON GRAPH THEORY
INTERPRETATION OF CORTICAL PHASE
TRANSITIONS

The perception cycle is a sequence of transitions between
synchronized and desynchronized states. EEG and ECoG
measurements provide a window of observation into this cycle
by monitoring synchronization properties of the AM patterns.

A prominent example of synchronization-desynchronization
transitions in the cortex is depicted in Figure 4, where
the analytical phase difference is shown in the vertical
axis, against time and space (x and y axes). Uniformly
distributed phase differences indicate synchrony across the array,
while highly variable phase differences mark the presence of
desynchronization. The upper segment of Figure 4 is based on
the 8× 8 array of electrodes with rabbits, while the lower segment
is based on intracranial measurements of the EEG of human
volunteers using a linear array of 64 electrodes (Freeman, 2004b).
One can see extended periods of global synchrony indicated
by dominant blue colors, i.e., uniformly low values of phase
differences. The periods of synchrony are interrupted by brief
desynchronization events shown by a range of colors due to the
large spread of the phase differences.

A family of hierarchical models of cortical dynamics has been
developed originally for the olfactory system (Freeman, 1979),
which is called now Freeman K (Katchalsky) sets. Freeman K sets
have been applied as a general neural network model to describe
chaotic dynamic memories using encoding of external data in
a sequence of spatial oscillatory patterns, mimicking cortical
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FIGURE 4 | Synchronization-desynchronization effects seen in EEG
measurements with humans (lower part) and ECoG with rabbits (upper
part); there are extended periods with low phase differences across
space (blue color), interrupted by short periods with large phase
differences (variable colors). The window of the 8 × 8 array was
5.6 × 5.6 mm for the rabbit data (upper half), while a 1 × 64 curvilinear array
(189 mm long) was used over the scalp of normal human volunteers (lower
half; Freeman, 2004b).

AM patterns. The original mathematical formulation of the
model was based on a set of second-order ordinary differential
equations (ODEs) with distributed parameters (for an overview,
see Kozma and Freeman, 2001). Freeman K sets have been used
in the past decades for pattern recognition, time series prediction,
autonomous navigation and control, and clustering in cyber-
security domains (Harter and Kozma, 2005; Kozma et al., 2007;
Freeman and Kozma, 2010; Rosa and Piazentin, 2016).

An alternative implementation of Freeman K sets uses
RGT instead of ODEs and it is called ‘‘neuropercolation’’
(Kozma et al., 2001, 2005; Kozma, 2007). Neuropercolation
is based on a mathematical approach combining cellular
automata on lattices and random graphs. Neuropercolation
considers the interconnected network of neural populations
as large-scale random graphs, which exhibit phase transitions
near some well-defined critical states. Neuropercolation
includes sparse rewiring of connections creating small-
world effects (Watts and Strogatz, 1998), as well as the
interaction of excitatory and inhibitory populations (Puljic
and Kozma, 2008). It has clear advantages as compared
to ODEs in characterizing rapid transients and phase
transitions, due to the inherent flexibility of the graph theory
framework (Kozma and Puljic, 2013, 2015; Janson et al.,
2016).

FIGURE 5 | Illustration of the results obtained by the neuropercolation model of Freeman K sets with excitatory and inhibitory neural populations.
Phase lags (vertical axis) are depicted for individual channels across time (x axis) and space (y axis). In the model we use the noise level (p) as a control parameter,
which allows tuning the system to criticality. The supercritical state (A) has highly variable phase differences without synchrony, corresponding to p = 0.13. Criticality
is obtained in plot (B) with probability value p = 0.15, which drives the system to spontaneous, intermittent synchronization across the array (Kozma and Puljic, 2013).
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Figure 5 illustrates the results obtained by the
neuropercolation model using Freeman K sets with excitatory
and inhibitory populations. Figure 5A shows the supercritical
state with highly variable phase differences (no synchrony),
while Figure 5B is an example of the near critical state with
intermittent synchronization-desynchronization transitions.
The criticality of the system is controlled by the overall noise
level (p); p = 0.13 belongs to a supercritical state (no synchrony),
while p = 0.15 results in critical state with synchronization-
desynchronization transitions; from Kozma and Puljic (2013).
Note that the calculated synchronization-desynchronization
transitions across space and time resemble the dynamics
observed in measurements with ECoG/EEG arrays. This result
supports the hypothesis that the transitions between organized
and disorganized phases in the cortex may be the consequence
of the cortex residing in a metastable state near criticality.

CONCLUSIONS

Brains constitute only 2% of the human body but they use
disproportionately high amount of energy (over 20%), which
shows that creating intelligence requires a large amount of
metabolic energy. Therefore, energy considerations are very
important to understand the nature of biological intelligence in
our brains, as well as in attempting to create artificial intelligence
in machines.

The cortical energy cycle is summarized as follows, starting
from a disordered background state of high entropy and
low analytic amplitude. Upon the activation of a HCA by
a meaningful stimulus, the synchronized activity of neural
populations rapidly propagates across the cortex and creates
highly structured AM patterns with low entropy states oscillating
in a narrow frequency band (gamma). The formation of AM
patterns can be viewed as a condensation process that leads to
the dissipation of excess energy in the form of heat that is carried
away in the blood stream.

The AM pattern is maintained for some time in a metastable
dynamic state that seems to conform to SOC. Synchronized
activity of extended neural populations is clearly documented

through low phase dispersion between ECoG/EEG channels.
Some disturbances in the analytic phase of the cortical tissue
appear in the form of small-scale phase cones, which disappear
soon after they are formed, obeying the rules of self-similar
dynamics of sand piles. The energy released during the formation
of the AM pattern is replenished through the metabolism, thus
the oxygen debt is repaid (Freeman et al., 2012; Freeman, 2014).

The synchrony represented in the AM pattern is under
constant threat by the bombardment of input stimuli and
it leads to a degradation of the structure, which can be
viewed as an evaporation process. Consequently, the neurons
uncouple their dynamics as they are released from the binding
represented by the structure. Ultimately, the AM pattern
disintegrates, the overall level of firing activity decreases, and the
analytic amplitude diminishes. The system returns to a chaotic
background state and the cycle is completed (for a detailed
description of the cycle, see Kozma and Freeman, 2016).

EEG/ECoG techniques provide insight on the perception
cycle in the cortex. Synchronization-desynchronization
transitions can be measured by noninvasive scalp EEG (Ruiz
et al., 2010; Panagiotides et al., 2011), which allows monitoring
the cognitive activity of normal subjects during routine daily
activities (Freeman and Quian-Quiroga, 2013). This creates the
opportunity to develop various brain-computer interfaces to
improve the quality of life of the healthy human population and
people with disabilities.
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