Unit 11: Circles Test Review ## 1. Use the figure. Name the circle. Name a radius of the circle. Name the diameter of the circle. Name a chord. Name a tangent. Name a secant. 2. Find the exact circumference and area given that: B. diameter= 12in C = A = A = - 3. The wheels on Elliot's truck each have a circumference of 22π inches. Determine the radius of each wheel. Determine the area of the wheel. - 4. The diameter of a circular swimming pool is 15 feet. Find the exact circumference and area. - 5. Given that the circumference is 20π km, find the exact area. 6. Find the exact circumference of the circle. 7. Find the exact circumference of the circle. 8. In $\bigcirc C$, $\widehat{mAB} = 72$. Assume all lines which appear to be diameters are actual diameters. Find: m<ACD=____ m<BCD=____ mBD = $\widehat{mABD} = \underline{\hspace{1cm}}$ 9.In $\bigcirc A$, $m \angle BAD = 110$. Find \widehat{mDE} . 10. Find the exact **LENGTH** of the arc. 11. Find the exact **<u>LENGTH</u>** of *the arc*. 12. The figure represents a Japanese fan of 32 cm radius. Find the <u>length</u> of the \widehat{AB} . Round to the nearest hundredth. Keep in terms of pi. 13.If $m \angle X = 126$ and m<W= 57, find: $m < Z = \underline{\hspace{1cm}}$ m<Y=____ mWXY=_____ $\widehat{mWZY} =$ 14. In $\bigcirc O$, AB = 12 centimeters, OE = 4 centimeters, OF = 4 centimeters, and $\widehat{mCD} = 123^{\circ}$. Find CF. Find the radius. Find \widehat{mAB} CF=____ radius=____ $\widehat{mAB} = \underline{\hspace{1cm}}$ 15. In $\bigcirc O$, AM = -2x + 37 and MB = 6x + 5. Find x. 16.If DE = 12 inches, OF = 10 inches, and OF is perpendicular to DE A. Find the distance from the center to the chord and the distance from the chord to Point F. _____inches from center to chord _____ inches from chord to point F. - B. If $\widehat{mDF} = 63^\circ$, what is \widehat{mFE} ? - 17. Chords XY and WV are equidistant from the center of $\bigcirc O$. If XY = 2x + 30 and WV = 5x 12, find x. - 18. Find the radius of a circle if a 48-meter chord is 7 meters from the center. Draw it! 19.In $\odot D$, $\overline{AB} \cong \overline{CB}$ and m arc CE = 50. Find $m \angle BCE$. 20. a.) Find $m \angle ABC$. b.) Find x. c.) Find \widehat{WX} , d.) Find *m∠RPQ*. 21. Find the measure of each angle. $m \angle 1 = \underline{\qquad} m \angle 2 = \underline{\qquad} m \angle 3 = \underline{\qquad}$ 22. If AB is tangent to $\bigcirc C$ at A, find BC and AB. (Use exact values) BC=____ AB = ____ 23. a)If MN, NO, and MO are tangent to $\bigcirc P$, find x. RS. b) PQ, QR, RS, and SP are tangent to $\bigcirc X$. Find 24.If x is 12, is BC tangent to the circle? Explain your answer. 25. Find x. 26. Find x. 27. 28. If \overrightarrow{AB} is tangent to $\bigcirc P$ at B, find $m \angle 1$. - a. 43b. 86 - c. 137d. 274 29. Find $m \angle PQR$ if \overrightarrow{QP} and \overrightarrow{QR} are tangent to $\bigcirc X$. - 70 a. - b. 110 - c. 125 - d. 140 a) b) c.) e.) f.) Find x. - 31. Find the radius of the circle whose equation is $(x + 3)^2 + (y 7)^2 = 289$. - a. 7 - b. 17 - d. 289 - 32. Find the center of the circle whose equation is $(x + 11)^2 + (y 7)^2 = 121$. - a. (-11, 7) c. (121, 49) b. (11, -7) - d. 11 - 33. Find the equation of a circle with center (0, 0) and radius 4. a. $$x^2 + y^2 = 4$$. b. $x^2 + y^2 = 16$. c. $$(x-4)^2 + (y-4)^2 = 16$$ b. $$x^2 + y^2 = 16$$ d. $$4x + 4y = 16$$ 34. Find the equation of a circle whose center is at (2, 3) and radius is 6. a. $$(x + 2)^2 + (y + 3)^2 = 6$$. b. $(x - 2)^2 + (y - 3)^2 = 6$. c. $$(x + 2)^2 + (y + 3)^2 = 36$$ d. $(x - 2)^2 + (y - 3)^2 = 36$ $$(x-2)^2 + (y-3)^2 = 6$$ $$d (x-2)^2 + (y-3)^2 = 36$$ - 35. Identify the graph of $(x 3)^2 + (y + 2)^2 = 4$. c. b. d. 36. Find the equation of $\bigcirc P$. - a. $x^2 + (y 3)^2 = 4$. b. $x^2 + (y 3)^2 = 2$. - c. $(x-3)^2 + y^2 = 2$ d. $(x-3)^2 + y^2 = 4$ 37. Write the equation of a circle whose diameter has endpoints (2,7) and (-6,15). 38. Write the equation of a circle with the center at (-2,1) and a radius with the endpoint (1,0). 39. If the radius of circle Q is 5m and QZ = 3m, find the following measures. ZD = _____ AZ = ____ $\widehat{mAD} = \widehat{mBA} =$