Unit 11: Circles Test Review

1. Use the figure.

Name the circle.
Name a radius of the circle.
Name the diameter of the circle.
Name a chord.
Name a tangent.
Name a secant.
2. Find the exact circumference and area given that:
A. radius $=4 \mathrm{~cm}$
B. diameter= 12 in
$\mathrm{C}=$
$\mathrm{C}=$
$\mathrm{A}=$

$$
\mathrm{A}=
$$

3. The wheels on Elliot's truck each have a circumference of 22π inches. Determine the radius of each wheel.Determine the area of the wheel.
4. The diameter of a circular swimming pool is 15 feet. Find the exact circumference and area.
5. Given that the circumference is $20 \pi \mathrm{~km}$, find the exact area.
6.Find the exact circumference of the circle.

6. Find the exact circumference of the circle.

7. In $\odot C, \overparen{m A B}=72$. Assume all lines which appear to be diameters are actual diameters.

Find:
$\mathrm{m}<\mathrm{ACD}=$ \qquad
$\mathrm{m}<\mathrm{BCD}=$
$m \overparen{B D}=$ \qquad
$m \widehat{A B D}=$
9.In $\odot A, m \angle B A D=110$. Find $m \overparen{D E}$.

10. Find the exact LENGTH of the arc.

11. Find the exact LENGTH of the arc.

12. The figure represents a Japanese fan of 32 cm radius. Find the length of the $\overparen{A B}$. Round to the nearest hundredth. Keep in terms of pi.

13.If $m \angle X=126$ and $\mathrm{m} \angle \mathrm{W}=57$, find:

$\mathrm{m}<\mathrm{Z}=$ \qquad
$\mathrm{m}<\mathrm{Y}=$ \qquad
$\mathrm{m} \overrightarrow{W X Y}=$ \qquad
$m \overrightarrow{W Z Y}=$ \qquad
14. In $\odot O, A B=12$ centimeters, $O E=4$ centimeters, $O F=4$ centimeters, and $\widetilde{m C D}=123^{\circ}$. Find $C F$. Find the radius. Find $\mathrm{m} \overparen{A B}$

$\mathrm{CF}=$ \qquad
radius $=$ \qquad
$m \overparen{A B}=$ \qquad
15. In $\odot O, A M=-2 \mathrm{x}+37$ and $\mathrm{MB}=6 \mathrm{x}+5$. Find x .

16.If $D E=12$ inches, $\mathrm{OF}=10$ inches, and $O F$ is perpendicular to $D E$

A. Find the distance from the center to the chord and the distance from the chord to Point F .
\qquad inches from center to chord
\qquad inches from chord to point F .
B. If $\mathrm{m} \overparen{D F}=63^{\circ}$, what is $\mathrm{m} \overparen{F E}$?
17. Chords $X Y$ and $W V$ are equidistant from the center of $\bigodot O$. If $X Y=2 x+30$ and $W V=5 x-12$, find x.
18. Find the radius of a circle if a 48 -meter chord is 7 meters from the center. Draw it!
19.In $\odot D, \overline{A B} \cong \overline{C B}$ and m arc $C E=50$. Find $m \angle B C E$.

20. a.) Find $m \angle A B C$.

c.) Find $m \overparen{m X}$,

b.) Find x.

d.) Find $m \angle R P Q$.

21.Find the measure of each angle. $m \angle 1=$ \qquad $m \angle 2=$ \qquad $m \angle 3=$

22. If $A B$ is tangent to $\odot C$ at A, find $B C$ and $A B$. (Use exact values)

$$
\mathrm{BC}=\quad \mathrm{AB}=
$$

\qquad
23. a)If $M N, N O$, and $M O$ are tangent to $\odot P$, find x. RS.

b) $P Q, Q R, R S$, and $S P$ are tangent to $\odot X$. Find

24.If x is 12 , is BC tangent to the circle? Explain your answer.

25. Find x .

26. Find x .

Find the measure of the numbered angle.
27.

28. If $\overleftrightarrow{A B}$ is tangent to $\bigodot P$ at B, find $m \angle 1$.

a. 43
b. 86
c. 137
d. 274
29. Find $m \angle P Q R$ if $\overrightarrow{Q P}$ and $\overrightarrow{Q R}$ are tangent to $\odot X$.

a. 70
b. 110
c. 125
d. 140
30.Find the missing angles. Assume the lines that appear to be tangent are tangent.

e.)

f.) Find x.

31. Find the radius of the circle whose equation is $(x+3)^{2}+(y-7)^{2}=289$.
a. 7
b. 17
c. 34
d. 289
32. Find the center of the circle whose equation is $(x+11)^{2}+(y-7)^{2}=121$.
a. $(-11,7)$
b. $(11,-7)$
c. $(121,49)$
d. 11
33. Find the equation of a circle with center $(0,0)$ and radius 4 .
a. $x^{2}+y^{2}=4$.
b. $x^{2}+y^{2}=16$.
c. $(x-4)^{2}+(y-4)^{2}=16$
d. $4 x+4 y=16$
34. Find the equation of a circle whose center is at $(2,3)$ and radius is 6 .
a. $(x+2)^{2}+(y+3)^{2}=6$.
b. $(x-2)^{2}+(y-3)^{2}=6$.
c. $(x+2)^{2}+(y+3)^{2}=36$
d. $(x-2)^{2}+(y-3)^{2}=36$
35. Identify the graph of $(x-3)^{2}+(y+2)^{2}=4$.
a.

c.

d.

b.

\qquad 36. Find the equation of $\odot P$.

a. $\quad x^{2}+(y-3)^{2}=4$.
b. $x^{2}+(y-3)^{2}=2$.
c. $(x-3)^{2}+y^{2}=2$
d. $(x-3)^{2}+y^{2}=4$
37. Write the equation of a circle whose diameter has endpoints $(2,7)$ and $(-6,15)$.
38. Write the equation of a circle with the center at $(-2,1)$ and a radius with the endpoint $(1,0)$.
39. If the radius of circle O is 5 m and $\mathrm{OZ}=3 \mathrm{~m}$, find the following measures.

$Z \mathrm{D}=$ \qquad $A Z=$ \qquad
$\overparen{m A D}=$ \qquad $\overparen{m B A}=$ \qquad

