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Preface

This text is an introduction to the basic principles of electrical engineering. It is the outgrowth of
lecture notes prepared by this author while employed by the electrical engineering and computer
engineering departments as adjunct instructor at various colleges and universities. Many of the
examples and problems are based on the author’s industrial experience. The text is an expansion
of our previous publication, Circuit Analysis I with MATLAB® Applications, ISBN 9780
970951120, and this text, in addition to MATLAB scripts for problem solution, includes
several Simulink® and SimPowerSystems® models. The pages where these models appear are
indicated n the Table of Contents.

The book is intended for students of college grade, both community colleges and universities. It
presumes knowledge of first year differential and integral calculus and physics. While some
knowledge of differential equations would be helpful, it is not absolutely necessary. Chapters 9 and
10 include stepbystep procedures for the solutions of simple differential equations used in the
derivation of the natural and forces responses. Appendices D and E provide a thorough review of
complex numbers and matrices respectively.

In addition to several problems provided at the end of each chapter, this text includes multiple-
choice questions to test and enhance the reader’s knowledge of this subject. Moreover, the
answers to these questions and detailed solutions of all problems are provided at the end of each
chapter. The rationale is to encourage the reader to solve all problems and check his effort for
correct solutions and appropriate steps in obtaining the correct solution. And since this text was
written to serve as a selfstudy, primary, or supplementary textbook, it provides the reader with a
resource to test the reader’s knowledge.

A previous knowledge of MATLAB® would be very helpful. However he material of this text can
be learned without MATLAB, Simulink and SimPowerSystems. This author highly recommends
that the reader studies this material in conjunction with the inexpensive Student Versions of The
MathWorks™ Inc., the developers of these outstanding products, available from:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760 
Phone: 508-647-7000,
www.mathworks.com
info@mathworks.com. 

Appendix A of this text provides a practical introduction to MATLAB, Appendix B is an
introduction to Simulink, and Appendix C is an introduction to SimPowerSystems. These
packages will be invaluable in later studies such as the design of analog and digital filters.



Preface

Like any other new book, this text may contain some grammar and typographical errors;
accordingly, all feedback for errors, advice and comments will be most welcomed and greatly
appreciated. 

Orchard Publications
39510 Paseo Padre Parkway
Suite 315
Fremont, California 94538
www.orchardpublications.com
info@orchardpublications.com
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Chapter 1

Basic Concepts and Definitions

his chapter begins with the basic definitions in electric circuit analysis. It introduces the
concepts and conventions used in introductory circuit analysis, the unit and quantities used
in circuit analysis, and includes several practical examples to illustrate these concepts.

Throughout this text, a left justified horizontal bar will denote the beginning of an example, and
a right justified horizontal bar will denote the end of the example. These bars will not be shown
whenever an example begins at the top of a page or at the bottom of a page. Also, when one
example follows immediately after a previous example, the right justified bar will be omitted.

1.1 The Coulomb
Two identically charged (both positive or both negative) particles possess a charge of one coulomb

when being separated by one meter in a vacuum, repel each other with a force of  newton

where . The definition of coulomb is illustrated in Figure 1.1.

Figure 1.1. Definition of the coulomb

The coulomb, abbreviated as , is the fundamental unit of charge. In terms of this unit, the

charge of an electron is  and one negative coulomb is equal to  electrons.
Charge, positive or negative, is denoted by the letter  or .

1.2 Electric Current and Ampere

Electric current  at a specified point and flowing in a specified direction is defined as the instan-
taneous rate at which net positive charge is moving past this point in that specified direction, that
is,

(1.1)

T

10 7– c2

c velocity of light 3 108 m s=

Vacuum

q q1 m

F 10 7– c2 N=
q=1 coulomb

C

1.6 10 19–  C 6.24 1018
q Q

i

i dq
dt
------ q

t
------

t 0
lim= =
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The unit of current is the ampere abbreviated as  and corresponds to charge  moving at the
rate of one coulomb per second. In other words,

(1.2)

Note: Although it is known that current flow results from electron motion, it is customary to
think of current as the motion of positive charge; this is known as conventional current flow.

To find an expression of the charge  in terms of the current , let us consider the charge  trans-
ferred from some reference time  to some future time . Then, since

the charge  is

or

or

(1.3)

Example 1.1  

For the waveform of current i shown in Figure 1.2, compute the total charge  transferred
between

a.  and 

b.  and 

A q

1  ampere 1  coulomb
1  ondsec

-----------------------------=

q i q
t0 t

i dq
dt
------=

q
q t0

t i td
t0

t

=

q t  q t0 – i td
t0

t

    =

q t  i td
t0

t

  + q t0 =

q

t 0= t 3 s=

t 0= t 9 s=
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Electric Current and Ampere

Figure 1.2. Waveform for Example 1.1

Solution:

We know that

Then, by calculating the areas, we find that:

a. For 0 < t < 2 s, area = ½  (2  30 mA) = 30 mC 
For 2 < t < 3 s, area = 1  30 = 30 mC 

Therefore, for 0 < t < 3 s, total charge = total area = 30 mC + 30 mC = 60 mC.

b.For 0 < t < 2 s, area = ½  (2  30 mA) = 30 mC 
For 2 < t < 6 s, area = 4  30 = 120 mC
For 6 < t < 8 s, area = ½  (2  30 mA) = 30 mC
For 8 < t < 9 s, we observe that the slope of the straight line for t > 6 s is 30 mA / 2 s, or 15
mA / s. Then, for 8 < t < 9 s, area =   ½  {1(15)} = 7.5 mC. 

Therefore, for 0 < t < 9 s, total charge = total area = 30 + 120 + 30 7.5 = 172.5 mC.

Convention: We denote the current  by placing an arrow with the numerical value of the cur-
rent next to the device in which the current flows. For example, the designation shown in Figure
1.3 indicates either a current of  is flowing from left to right, or that a current of  is
moving from right to left.

Figure 1.3. Direction of conventional current flow

1 2 3 4 5 6 7 8

30

20

10

0

30

20

10

9

i mA 

t s 

q t 0=
t i td

0

t

 Area 0
t= =

i

2 A 2–  A

2 A 2 A

Device



Chapter 1  Basic Concepts and Definitions

14 Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

Caution: The arrow may or may not indicate the actual conventional current flow. We will see
later in Chapters 2 and 3 that in some circuits (to be defined shortly), the actual direction of the
current cannot be determined by inspection. In such a case, we assume a direction with an arrow
for said current ; then, if the current with the assumed direction turns out to be negative, we
conclude that the actual direction of the current flow is opposite to the direction of the arrow.
Obviously, reversing the direction reverses the algebraic sign of the current as shown in Figure
1.3.

In the case of timevarying currents which change direction from timetotime, it is convenient
to think or consider the instantaneous current, that is, the direction of the current which flows at
some particular instant. As before, we assume a direction by placing an arrow next to the device
in which the current flows, and if a negative value for the current i is obtained, we conclude that
the actual direction is opposite of that of the arrow.

1.3 Two Terminal Devices
In this text we will only consider twoterminal devices. In a twoterminal device the current
entering one terminal is the same as the current leaving the other terminal* as shown in Figure
1.4.

Figure 1.4. Current entering and leaving a twoterminal device

Let us assume that a constant value current (commonly known as Direct Current and abbreviated
as DC) enters terminal  and leaves the device through terminal  in Figure 1.4. The passage of
current (or charge) through the device requires some expenditure of energy, and thus we say that
a potential difference or voltage exists “across” the device. This voltage across the terminals of the
device is a measure of the work required to move the current (or charge) through the device.

Example 1.2  

In a twoterminal device, a current  enters the left (first) terminal. 

a. What is the amount of current which enters that terminal in the time interval ?

b. What is the current at ?

c. What is the charge  at  given that ?

* We will see in Chapter 5 that a two terminal device known as capacitor is capable of storing energy.

i

Two terminal device

Terminal A                  Terminal B

7 A 7 A

A B

i t  20 100t mAcos=

10 t 20 ms –

t 40 ms=

q t 5 ms= q 0  0=
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Voltage (Potential Difference)

Solution:

a.

b.

c.

1.4 Voltage (Potential Difference)
The voltage (potential difference) across a twoterminal device is defined as the work required
to move a positive charge of one coulomb from one terminal of the device to the other terminal.

The unit of voltage is the volt (abbreviated as  or ) and it is defined as

(1.4)

Convention: We denote the voltage  by a plus (+) minus () pair. For example, in Figure 1.5,
we say that terminal  is  positive with respect to terminal  or there is a potential differ-
ence of  between points  and . We can also say that there is a voltage drop of  in
going from point  to point . Alternately, we can say that there is a voltage rise of  in
going from  to .

Figure 1.5. Illustration of voltage polarity for a twoterminal device

Caution: The (+) and () pair may or may not indicate the actual voltage drop or voltage rise.
As in the case with the current, in some circuits the actual polarity cannot be determined by

i t0

t 20 100cos t
10– 10 3–

20 10 3– 20 100cos  20 10 3–  20 100cos  10– 10 3– –= =

20 2 20 – cos–cos 40 mA==

i t 0.4 ms=
20 100cos t t 0.4 ms=

20 40cos 20 mA= = =

q t  i t q 0 +d
0

5 10 3–

 20 100cos t td
0

5 10 3–

 0+= =

0.2


------- 100t 0
5 10 3–sin 0.2


------- 

2
--- 0–sin 0.2


-------  C= ==

V v

1  volt 1  joule
1  coulomb
-----------------------------=

v
A 10 V B

10 V A B 10 V
A B 10 V

B A

T
w

o 
te

rm
in

al
   

  d
ev

ic
e

A

B

+
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inspection. In such a case, again we assume a voltage reference polarity for the voltage; if this ref-
erence polarity turns out to be negative, this means that the potential at the (+) sign terminal is
at a lower potential than the potential at the () sign terminal. 

In the case of timevarying voltages which change (+) and () polarity from timetotime, it is
convenient to think the instantaneous voltage, that is, the voltage reference polarity at some partic-
ular instance. As before, we assume a voltage reference polarity by placing (+) and () polarity
signs at the terminals of the device, and if a negative value of the voltage is obtained, we conclude
that the actual polarity is opposite to that of the assumed reference polarity. We must remember
that reversing the reference polarity reverses the algebraic sign of the voltage as shown in Figure
1.6.

 
Figure 1.6.  Alternate ways of denoting voltage polarity in a twoterminal device

Example 1.3  

The  (currentvoltage) relation of a nonlinear electrical device is given by

(10.5)

a. Use MATLAB®* to sketch this function for the interval 

b. Use the MATLAB quad function to find the charge at  given that 

Solution:

a. We use the following script to sketch .

t=0: 0.1: 10; it=0.1.*(exp(0.2.*sin(3.*t))1);
plot(t,it), grid, xlabel('time in sec.'), ylabel('current in amp.')

The plot for  is shown in Figure 1.7.

*  MATLAB and Simulink are registered marks of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760,
www.mathworks.com. An introduction to MATLAB is given in Appendix A, and an introduction to Simulink is given in
Appendix B. Simulink operates in the MATLAB environment. The SimPowerSystems is another product of The
MathWorks and operates in the Simulink environment.

Two terminal device
A 
+

B


12 v

Same deviceA 
+
B


12 v



i v–

i t  0.1 e0.2 3tsin 1– =

0 t 10 s 

t 5 s= q 0  0=

i t 

i t 
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Voltage (Potential Difference)

Figure 1.7. Plot of  for Example 1.3

b. The charge  is the integral of the current , that is,

(1.6)

We will use the MATLAB int(f,a,b) integration function where f is a symbolic expression, and
a and b are the lower and upper limits of integration respectively.

Note: 

When MATLAB cannot find a solution, it returns a warning. For this example, MATLAB
returns the following message when integration is attempted with the symbolic expression of
(1.6).

t=sym('t'); % Refer to Appendix A, Page A10, for a discussion on symbolic expressions
s=int(0.1*(exp(0.2*sin(3*t))1),0,10)

When this script is executed, MATLAB displays the following message:

Warning: Explicit integral could not be found.
In C:\MATLAB 12\toolbox\symbolic\@sym\int.m at line 58

s = int(1/10*exp(1/5*sin(3*t))-1/10,t = 0. . 10)

0 1 2 3 4 5 6 7 8 9 10
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

time in sec.

cu
rr

en
t i

n 
am

p.

i t 

q t  i t 

q t  i t  td
t0

t1

 0.1 e0.2 3tsin 1–  td
0

t1

= =
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We will use numerical integration with Simpson’s rule. MATLAB has two quadrature functions
for performing numerical integration, the quad* and quad8. The description of these can be seen
by typing help quad or help quad8. at the MATLAB command prompt. Both of these functions
use adaptive quadrature methods; this means that these methods can handle irregularities such as
singularities. When such irregularities occur, MATLAB displays a warning message but still pro-
vides an answer.

For this example, we will use the quad function. It has the syntax q=quad(‘f’,a,b,tol), and per-
forms an integration to a relative error tol which we must specify. If tol is omitted, it is understood

to be the standard tolerance of . The string ‘f’ is the name of a user defined function, and a
and b are the lower and upper limits of integration respectively.

First, we need to create and save a function mfile.† We define it as shown below, and we save it
as CA_1_Ex_1_3.m. This is a mnemonic for Circuit Analysis I, Example 1.3.

function t = fcn_example_1_3(t); t = 0.1*(exp(0.2*sin(3*t))1);

With this file saved as CA_1_Ex_1_3.m, we write and execute the following script.

charge=quad('CA_1_Ex_1_3',0,5)

and MATLAB returns

charge =

    0.0170

1.5 Power and Energy

Power  is the rate at which energy (or work)  is expended. That is,

(1.7)

Absorbed power is proportional both to the current and the voltage needed to transfer one cou-
lomb through the device. The unit of power is the . Then, 

(1.8)

and

* For a detailed discussion on numerical analysis and the MATLAB functions quad and quad8, the reader may refer to
Numerical Analysis Using MATLAB® and Excel, ISBN 9781934404034. 

† For more information on function mfiles, please refer to Appendix A, Page A26.

10 3–

p W

Power p dW
dt

---------= =

watt

Power p volts amperes vi joul
coul
----------- coul

sec 
----------- joul

sec 
---------- watts= = = = = =
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Power and Energy

(1.9)

Passive Sign Convention: Consider the twoterminal device shown in Figure 1.8.

Figure 1.8. Illustration of the passive sign convention

In Figure 1.8, terminal  is  volts positive with respect to terminal  and current i enters the
device through the positive terminal . In this case, we satisfy the passive sign convention and

 is said to be absorbed by the device.

The passive sign convention states that if the arrow representing the current i and the (+) ()
pair are placed at the device terminals in such a way that the current enters the device terminal
marked with the (+) sign, and if both the arrow and the sign pair are labeled with the appropri-
ate algebraic quantities, the power absorbed or delivered to the device can be expressed as

. If the numerical value of this product is positive, we say that the device is absorbing
power which is equivalent to saying that power is delivered to the device. If, on the other hand,
the numerical value of the product  is negative, we say that the device delivers power to
some other device. The passive sign convention is illustrated with the examples in Figures 1.9
and 1.10.

 
Figure 1.9. Examples where power is absorbed by a twoterminal device

Figure 1.10. Examples where power is delivered to a twoterminal device

In Figure 1.9, power is absorbed by the device, whereas in Figure 1.10, power is delivered to the
device.

1 watt 1 volt 1 ampere=

 Two terminal device
+ 

v

i
A B

A v B
A

power p vi= =

p vi=

p vi=

Two terminal device
A 
+

B


12 v

Same deviceA 
+
B


12 v

=

2 A 2 A

Power = p = (12)(2) = 24 w Power = p = (12)(2) = 24 w

Two terminal device 1
A 
+

B


A 
+
B



 p = (cos5t)(5sin5t) = 2.5sin10t w

Two terminal device 2

i=6cos3t

v=18sin3t v=cos5t

i=5sin5t

 p = (18sin3t)(6cos3t) = 54sin6t w
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Example 1.4  
It is assumed a 12volt automotive battery is completely discharged and at some reference time

, is connected to a battery charger to trickle charge it for the next 8 hours. It is also assumed
that the charging rate is

For this 8hour interval compute:

a. the total charge delivered to the battery 

b. the maximum power (in watts) absorbed by the battery

c. the total energy (in joules) supplied

d. the average power (in watts) absorbed by the battery

Solution:

The current entering the positive terminal of the battery is the decaying exponential shown in
Figure 1.11 where the time has been converted to seconds.

Figure 1.11. Decaying exponential for Example 1.4

Then,
a.

b.

Therefore,

c.

t 0=

i t  8e t 3600–  A     0 t 8  hr 
0                      otherwise




=

(A)

t (s)

i(t)

8

28800

i 8e t 3600§–=

q t 0=
15000 i td

0

15000

 8e t 3600– td
0

28800


8

1– 3600
----------------------e t– 3600

0

28800
= = =

8– 3600 e 8– 1–  28800  C  or  28.8  kC=

imax 8 A (occurs at t=0)=

pmax vimax 12 8 96 w= = =

W p td vi td
0

28800

 12 8e t 3600–
0

28800

 dt 96
1– 3600

----------------------e t– 3600
0

28800
= = = =

3.456 105 1 e 8––  345.6 KJ.=
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Active and Passive Devices

d.

Example 1.5  

The power absorbed by a nonlinear device is . If , how much
charge goes through this device in two seconds?

Solution:

The power is

then, the charge for 2 seconds is

The twoterminal devices which we will be concerned with in this text are shown in Figure 1.12. 

Linear devices are those in which there is a linear relationship between the voltage across that
device and the current that flows through that device. Diodes and Transistors are nonlinear
devices, that is, their voltagecurrent relationship is nonlinear. These will not be discussed in
this text. A simple circuit with a diode is presented in Chapter 3.

1.6 Active and Passive Devices
Independent and dependent voltage and current sources are active devices; they normally (but
not always) deliver power to some external device. Resistors, inductors and capacitors are passive
devices; they normally receive (absorb) power from an active device.

Pave
1
T
--- p td

0

T


1

28800
--------------- 12 8e t 3600–

0

28800

 dt 345.6 103
28.8 103
---------------------------- 12 w.= = = =

p 9 e0.16t2

1– = v 3 e0.4t 1+ =

p vi,  i p
v
---

9 e0.16t2

1– 

3 e0.4t 1+ 
------------------------------- 9 e0.4t 1+  e0.4t 1– 

3 e0.4t 1+ 
--------------------------------------------------- 3 e0.4t 1–  A= = = = =

q t0

t i td
t0

t

 3 e0.4t 1–  td
0

2


3

0.4
-------e0.4t

0

2
3t 0

2– 7.5 e0.8 1–  6– 3.19 C= = = = =
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Figure 1.12. Voltage and current sources and linear devices

 

+  Ideal Independent Voltage Source  Maintains same voltage 
regardless of the amount of current that flows through it.v or v(t) Its value is either constant (DC) or sinusoidal (AC).

Ideal Independent Current Source  Maintains same current 
regardless of the voltage that appears across its terminals.

i or i(t) Its value is either constant (DC) or sinusoidal (AC).

+  Dependent Voltage Source  Its value depends on another 
voltage or current elsewhere in the circuit. Here,      is a

        or constant and      is a resistance as defined in linear devices

Dependent Current Source  Its value depends on another 
current or voltage elsewhere in the circuit. Here,      is a
constant and      is a conductance as defined in linear devices 

      Linear Devices

R

CiC 

        Independent and Dependent Sources
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vR
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diL   
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Inductance L
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diL   
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vL
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C = slo
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dvC   
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k1v k2i

k4vk3i

k1
k2

  k3
k4

vR RiR=

vR

iR iG

iG GvG=

below. When denoted as         it is referred to as voltage    

below. 

k1v

referred to as current controlled voltage source.

 When denoted as        it is referred to as current    

or

k3i
controlled current source and when denoted as k4v it is     
referred to as voltage controlled current source.

controlled voltage source and when denoted as k2 i it is 
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Circuits and Networks

1.7 Circuits and Networks
A network is the interconnection of two or more simple devices as shown in Figure 1.13.

Figure 1.13. A network but not a circuit

A circuit is a network which contains at least one closed path. Thus every circuit is a network but
not all networks are circuits. An example is shown in Figure 1.14.

Figure 1.14. A network and a circuit

1.8 Active and Passive Networks
Active Network is a network which contains at least one active device (voltage or current
source).

Passive Network is a network which does not contain any active device.

1.9 Necessary Conditions for Current Flow
There are two conditions which are necessary to set up and maintain a flow of current in a net-
work or circuit. These are:

1. There must be a voltage source (potential difference) present to provide the electrical work
which will force current to flow.

2. The circuit must be closed.

These conditions are illustrated in Figures 1.15 through 1.17.

Figure 1.15 shows a network which contains a voltage source but it is not closed and therefore,
current will not flow.

+

R L C

vS

+


L C

vS

R1
R2
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Figure 1.15. A network in which there is no current flow

Figure 1.16 shows a closed circuit but there is no voltage present to provide the electrical work for
current to flow.

Figure 1.16. A closed circuit in which there is no current flow

Figure 1.17 shows a voltage source present and the circuit is closed. Therefore, both conditions
are satisfied and current will flow.

Figure 1.17. A circuit in which current flows

1.10 International System of Units
The International System of Units (abbreviated SI in all languages) was adopted by the General
Conference on Weights and Measures in 1960. It is used extensively by the international scien-
tific community. It was formerly known as the Metric System. The basic units of the SI system are
listed in Table 1.1.

+

R L C

vS

R1

R2
R3

R4

+


R L

C
vS
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International System of Units

The SI uses larger and smaller units by various powers of 10 known as standard prefixes. The com-
mon prefixes are listed in Table 1.2 and the less frequently in Table 1.3. Table 1.4 shows some
conversion factors between the SI and the English system. Table 1.5 shows typical temperature
values in degrees Fahrenheit and the equivalent temperature values in degrees Celsius and
degrees Kelvin. Other units used in physical sciences and electronics are derived from the SI
base units and the most common are listed in Table 1.6.

TABLE 1.1  SI Base Units

Unit of Name Abbreviation

Length Metre m

Mass Kilogram kg

Time Second s

Electric Current Ampere A

Temperature Degrees Kelvin °K

Amount of Substance Mole mol

Luminous Intensity Candela cd

Plane Angle Radian rad

Solid Angle Steradian sr

TABLE 1.2  Most Commonly Used SI Prefixes

Value Prefix Symbol Example

Giga G 12 GHz (Gigahertz) = 12 × 10 9 Hz

Mega M 25 MW (Megaohms) = 25 × 10 6 W (ohms)

Kilo K 13.2 KV (Kilovolts) = 13.2 × 10 3 volts

centi c 2.8 cm (centimeters) = 2.8 x 10 –2 meter

milli m 4 mH (millihenries) = 4 × 10 –3 henry

micro µ 6 µw (microwatts) = 6 × 10 –6 watt 

nano n 2 ns (nanoseconds) = 2 × 10 –9 second

pico p 3 pF (picofarads) = 3 × 10 –12 Farad

109

106

103

10 2–

10 3–

10 6–

10 9–

10 12–
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TABLE 1.3  Less Frequently Used SI Prefixes

Value Prefix Symbol Example
Exa E 1 Em (Exameter) = 1018 meters

Peta P 5 Pyrs (Petayears) = 5 × 1015 years

Tera T 3 T$ (Teradollars) = 3 × 1012 dollars

femto f 7 fA (femtoamperes) = 7 × 10 –15 ampere

atto a 9 aC (attocoulombs) = 9 × 10 –18 coulomb

TABLE 1.4  Conversion Factors

1 in. (inch) 2.54 cm (centimeters)

1 mi. (mile) 1.609 Km (Kilometers)

1 lb. (pound) 0.4536 Kg (Kilograms)

1 qt. (quart) 946 cm3 (cubic centimeters)

1 cm (centimeter) 0.3937 in. (inch)

1 Km (Kilometer) 0.6214 mi. (mile)

1 Kg (Kilogram) 2.2046 lbs (pounds)

1 lt. (liter) = 1000 cm3 1.057 quarts

1 Å (Angstrom) 10 –10 meter

1 mm (micron) 10 –6 meter

TABLE 1.5 Temperature Scale Equivalents

°F °C °K

–523.4 –273 0

32 0 273

0 –17.8 255.2

77 25 298

98.6 37 310

212 100 373

1018

1015

1012

10 15–

10 18–
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Sources of Energy

1.11 Sources of Energy
The principal sources of energy are from chemical processes (coal, fuel oil, natural gas, wood
etc.) and from mechanical forms (water falls, wind, etc.). Other sources include nuclear and
solar energy.

Example 1.6  
A certain type of wood used in the generation of electric energy and we can get 12,000 BTUs
from a pound (lb) of that wood when burned. Suppose that a computer system that includes a

TABLE 1.6  SI Derived Units

Unit of Name Formula
Force Newton 

Pressure or Stress Pascal  

Work or Energy Joule  

Power Watt 

Voltage Volt 

Resistance Ohm  

Conductance Siemens  or  

Capacitance Farad  

Inductance Henry  

Frequency Hertz 

Quantity of Electricity Coulomb  

Magnetic Flux Weber 

Magnetic Flux Density Tesla  

Luminous Flux Lumen 

Illuminance Lux  

Radioactivity Becquerel 

Radiation Dose Gray  

Volume Litre  

N  N kg m s2=

Pa  Pa N m2=

J  J N m=

W  W J s=

V  V W A=

   V A=

S   1–  S A V=

F  F A s V=

H  H V s A=

Hz  Hz 1 s=

C  C A s=

Wb  Wb V s=

T  T Wb m2=

lm  lm cd sr=

lx  lx lm m2=

Bq  Bq s 1–=

Gy  S J kg=

L  L m3 10 3–=
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monitor, a printer, and other peripherals absorbs an average power of 500 w gets its energy from
that burned wood and it is turned on for 8 hours. It is known that 1 BTU is equivalent to 778.3 ft
lb of energy, and 1 joule is equivalent to 0.7376 ftlb.

Compute:

a. the energy consumption during this 8hour interval

b. the cost for this energy consumption if the rate is $0.15 per kwhr 

c. the amount of wood in lbs burned during this time interval.

Solution:

a. Energy consumption for 8 hours is

b. Since ,

c. Wood burned in 8 hours,

Energy W Pavet 500 w 8 hrs  3600 s
1 hr

---------------- 14.4 Mjoules= = =

1 kilowatt hour– 3.6 106 joules=

Cost $0.15
kw hr–
------------------- 1 kw hr–

3.6 106 joules
---------------------------------------- 14.4 106 $0.60= =

14.4 106 joules 0.7376 f t lb–
joule

---------------- 1 BTU
778.3 f t lb–
-------------------------------- 1 lb

12000 BTU
---------------------------- 1.137 lb=
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Summary

1.12 Summary

 Two identically charged (both positive or both negative) particles possess a charge of one cou-

lomb when being separated by one meter in a vacuum, repel each other with a force of 

newton where .  Thus, the force with which two
electrically charged bodies attract or repel one another depends on the product of the charges
(in coulombs) in both objects, and also on the distance between the objects. If the polarities
are the same (negative/negative or positive/positive), the socalled coulumb force is repulsive;
if the polarities are opposite (negative/positive or positive/negative), the force is attractive. For
any two charged bodies, the coulomb force decreases in proportion to the square of the
distance between their charge centers.

 Electric current is defined as the instantaneous rate at which net positive charge is moving past
this point in that specified direction, that is,

 The unit of current is the ampere, abbreviated as A, and corresponds to charge q moving at the
rate of one coulomb per second.

 In a twoterminal device the current entering one terminal is the same as the current leaving
the other terminal.

 The voltage (potential difference) across a twoterminal device is defined as the work required
to move a positive charge of one coulomb from one terminal of the device to the other termi-
nal.

 The unit of voltage is the volt (abbreviated as V or v) and it is defined as

 Power p is the rate at which energy (or work) W is expended. That is,

 Absorbed power is proportional both to the current and the voltage needed to transfer one
coulomb through the device. The unit of power is the watt and 

 The passive sign convention states that if the arrow representing the current i and the plus
(+) minus () pair are placed at the device terminals in such a way that the current enters the
device terminal marked with the plus (+) sign, and if both the arrow and the sign pair are
labeled with the appropriate algebraic quantities, the power absorbed or delivered to the

10 7– c2

c velocity of light 3 108 m s=

i dq
dt
------ q

t
------

t 0
lim= =

1  volt 1  joule
1  coulomb
-----------------------------=

Power p dW
dt

---------= =

1 watt 1 volt 1 ampere=
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device can be expressed as . If the numerical value of this product is positive, we say that
the device is absorbing power which is equivalent to saying that power is delivered to the
device. If, on the other hand, the numerical value of the product  is negative, we say
that the device delivers power to some other device.

 An ideal independent voltage source maintains the same voltage regardless of the amount of
current that flows through it.

 An ideal independent current source maintains the same current regardless of the amount of
voltage that appears across its terminals.

 The value of an dependent voltage source depends on another voltage or current elsewhere in
the circuit.

 The value of an dependent current source depends on another current or voltage elsewhere in
the circuit.

 Ideal voltage and current sources are just mathematical models. We will discuss practical volt-
age and current sources in Chapter 3.

 Independent and Dependent voltage and current sources are active devices; they normally (but
not always) deliver power to some external device.

 Resistors, inductors, and capacitors are passive devices; they normally receive (absorb) power
from an active device.

 A network is the interconnection of two or more simple devices.

 A circuit is a network which contains at least one closed path. Thus every circuit is a network
but not all networks are circuits. 

 An active network is a network which contains at least one active device (voltage or current
source).

 A passive network is a network which does not contain any active device.

 To set up and maintain a flow of current in a network or circuit there must be a voltage source
(potential difference) present to provide the electrical work which will force current to flow
and the circuit must be closed.

 Linear devices are those in which there is a linear relationship between the voltage across that
device and the current that flows through that device.

 The International System of Units is used extensively by the international scientific commu-
nity. It was formerly known as the Metric System. 

 The principal sources of energy are from chemical processes (coal, fuel oil, natural gas, wood
etc.) and from mechanical forms (water falls, wind, etc.). Other sources include nuclear and
solar energy.

p vi=

p vi=
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Exercises

1.13 Exercises
Multiple choice

1. The unit of charge is the
A. ampere
B. volt
C. watt
D. coulomb
E. none of the above

2. The unit of current is the
A. ampere
B. coulomb
C. watt
D. joule
E. none of the above

3. The unit of electric power is the
A. ampere
B. coulomb
C. watt
D. joule
E. none of the above

4. The unit of energy is the
A. ampere
B. volt
C. watt
D. joule
E. none of the above

5. Power is
A. the integral of energy
B. the derivative of energy
C. current times some constant 
D. voltage times some constant 
E. none of the above

6. Active voltage and current sources
A. always deliver power to other external devices
B. normally deliver power to other external devices
C. neither deliver or absorb power to or from other devices
D. are just mathematical models
E. none of the above

k
k
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7. An ideal independent voltage source
A. maintains the same voltage regardless of the amount of current that flows through it
B. maintains the same current regardless of the voltage rating of that voltage source
C. always delivers the same amount of power to other devices
D. is a source where both voltage and current can be variable
E. none of the above

8. An ideal independent current source
A. maintains the same voltage regardless of the amount of current that flows through it
B. maintains the same current regardless of the voltage that appears across its terminals
C. always delivers the same amount of power to other devices
D. is a source where both voltage and current can be variable
E. none of the above

9. The value of a dependent voltage source can be denoted as
A.  where k is a conductance value
B.  where k is a resistance value
C.  where k is an inductance value
D.  where k is a capacitance value
E. none of the above 

10. The value of a dependent current source can be denoted as
A.  where k is a conductance value
B.  where k is a resistance value
C.  where k is an inductance value
D.  where k is a capacitance value
E. none of the above 

Problems

1. A two terminal device consumes energy as shown by the waveform below, and the current
through this device is . Find the voltage across this device at t = 0.5, 1.5,
4.75 and 6.5 ms. Answers: 

kV
kI
kV
kI

kV
kI
kV
kI

i t  2 4000t Acos=

2.5 V 0 V 2.5 V 2.5 V–

1 t (ms)

W (mJ)

0

10

2 753 4 6

5
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2. A household light bulb is rated 75 watts at 120 volts. Compute the number of electrons per
second that flow through this bulb when it is connected to a 120 volt source.

Answer: 

3. An airplane, whose total mass is 50,000 metric tons, reaches a height of 32,808 feet in 20 min-
utes after takeoff. 

a. Compute the potential energy that the airplane has gained at this height. 
Answer: 

b. If this energy could be converted to electric energy with a conversion loss of 10%, how
much would this energy be worth at $0.15 per kilowatthour? Answer: 

c. If this energy were converted into electric energy during the period of 20 minutes, what
average number of kilowatts would be generated? Answer: 

4. The power input to a television station transmitter is 125 kw and the output is 100 kw which
is transmitted as radio frequency power. The remaining 25 kw of power is converted into
heat.

a. How many BTUs per hour does this transmitter release as heat? 
Answer: 

b. How many electronvolts per second is this heat equivalent to?

Answer: 

3.9 1018 electrons s

1 736 MJ

$65.10

1 450 Kw

1 BTU 1054.8 J=

85 234 BTU hr

1 electron volt– 1.6 10 19–  J=

1.56 10 23  electron volts–
 sec.

------------------------------------------
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1.14 Answers / Solutions to EndofChapter Exercises
Dear Reader:

The remaining pages on this chapter contain answers to the multiplechoice questions and solu-
tions to the exercises.

You must, for your benefit, make an honest effort to answer the multiplechoice questions and
solve the problems without first looking at the solutions that follow. It is recommended that first
you go through and answer those you feel that you know. For the multiplechoice questions and
problems that you are uncertain, review this chapter and try again. If your answers to the prob-
lems do not agree with those provided, look over your procedures for inconsistencies and compu-
tational errors. Refer to the solutions as a last resort and rework those problems at a later date.

You should follow this practice with the multiplechoice and problems on all chapters of this
book.
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Answers / Solutions to EndofChapter Exercises

Multiple choice

1. D

2. A

3. C

4. D

5. B

6. B

7. A

8. B

9. B

10. A

Problems

1.

a.

b.

c.

v p
i
--- dW dt

i
------------------ slope

i
--------------= = =

slope 0
1 ms 5 mJ

1 ms
------------ 5 J s= =

v t 0.5 ms=
5 J s

2 4000 0.5 10 3–  Acos
---------------------------------------------------------------- 5 J s

2 2 Acos
------------------------- 5 J s

2 A
------------- 2.5 V= = = =

slope 1
2 ms 0=

v t 1.5 ms=
0
i
--- 0 V= =

slope 4
5 ms 5–  mJ

1 ms
--------------- 5–  J s= =

v t 4.75 ms=
5–  J s

2 4000 4.75 10 3–  Acos
------------------------------------------------------------------- 5–  J s

2 19 Acos
---------------------------- 5–  J s

2  Acos
---------------------- 5–  J s

2 A–
----------------- 2.5 V= = = = =
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d.

2.

3.

where  and 

Then,

a.

slope 6
7 ms 5–  mJ

1 ms
--------------- 5–  J s= =

v t 6.5 ms=
5–  J s

2 4000 6.5 10 3–  Acos
---------------------------------------------------------------- 5–  J s

2 26 Acos
---------------------------- 5–  J s

2 A
----------------- 2.5–  V= = = =

i p
v
--- 75 w

120 V
--------------- 5

8
--- A= = =

q i td
t0

t

=

q t 1 s=
5
8
--- td

0

1 s


5
8
---t

0

1 s 5
8
--- C s= = =

5
8
--- C s 6.24 1018 electrons

1 C
------------------------------------------------------ 3.9 1018 electrons s=

Wp Wk
1
2
---mv2= =

m mass in kg= v velocity in meters sec.=

33 808 ft 0.3048 m
ft

----------------------- 10 000 m 10 Km= =

20 minutes 60 sec.
min

----------------- 1 200 sec.=

v 10 000 m
1 200 sec.
-------------------------- 25

3
------ m s= =

50 000 metric tons 1 000 Kg
metric ton
--------------------------- 5 107  Kg=

Wp Wk
1
2
--- 5 107  25

3
------ 
  2

173.61 107  J 1 736 MJ= = =
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Answers / Solutions to EndofChapter Exercises

b.

and with 10% conversion loss, the useful energy is

c.

4.
a.

b.

1 joule 1 watt-sec=

1 736 106J 1 watt-sec
1 joule

-------------------------- 1 Kw
1 000 w
--------------------- 1 hr

3 600 sec.
-------------------------- 482.22 Kw-hr=

482.22 0.9 482.22 0.9 434 Kw-hr==

Cost of Energy $0.15
Kw-hr
---------------- 434 Kw-hr $65.10= =

Pave
W
t

----- 1 736 MJ

20 min 60 sec
min

---------------
---------------------------------------- 1.45 Mw 1450 Kw= = = =

1 BTU 1054.8 J=

25 000 watts 1 joule sec.
watt

------------------------------- 1 BTU
1054.8 J
--------------------- 3600 sec.

1 hr
----------------------- 85 234 BTU hr=

1 electron volt– 1.6 10 19–  J=

1 electron volt–
 sec.

------------------------------------------- 1.6 10 19–  J
 sec.

------------------------------- 1.6 10 19–  watt= =

25 000 watts 1 electron volt–  sec.
1.6 10 19–  watt

---------------------------------------------------------- 1.56 10 23  electron volts–
 sec.

------------------------------------------=
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Chapter 2

Analysis of Simple Circuits

his chapter defines constant and instantaneous values, Ohm’s law, and Kirchhoff’s Current
and Voltage laws. Series and parallel circuits are also defined and nodal, mesh, and loop
analyses are introduced. Combinations of voltage and current sources and resistance com-

binations are discussed, and the voltage and current division formulas are derived.

2.1 Conventions

We will use lower case letters such as , , and  to denote instantaneous values of voltage, cur-
rent, and power respectively, and we will use subscripts to denote specific voltages, currents,
resistances, etc. For example,  and  will be used to denote voltage and current sources
respectively. Notations like  and  will be used to denote the voltage across resistance 
and the current through resistance  respectively. Other notations like  or  will represent
the voltage (potential difference) between point  or point  with respect to some arbitrarily cho-
sen reference point taken as “zero” volts or “ground”.

The designations  or  will be used to denote the voltage between point  or point  with

respect to point  or  respectively. We will denote voltages as  and  whenever we wish
to emphasize that these quantities are time dependent. Thus, sinusoidal (AC) voltages and cur-
rents will be denoted as  and  respectively. Phasor quantities, to be introduced in Chapter
6, will be represented with bold capital letters,  for phasor voltage and  for phasor current.

2.2 Ohm’s Law

We recall from Chapter 1 that resistance  is a constant that relates the voltage and the current
as: 

(2.1)

This relation is known as Ohm’s law. 

The unit of resistance is the Ohm and its symbol is the Greek capital letter . One ohm is the
resistance of a conductor such that a constant current of one ampere through it produces a volt-
age of one volt between its ends. Thus,

T

v i p

vS iS

vR1 iR2 R1

R2 vA v1

A 1

vAB v12 A 1

B 2 v t  i t 

v t  i t 
V I

R

vR RiR=
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(2.2)

Physically, a resistor is a device that opposes current flow. Resistors are used as a current limiting
devices and as voltage dividers. 

In the previous chapter we defined conductance  as the constant that relates the current and the
voltage as

(2.3)

This is another form of Ohm’s law since by letting  and , we obtain

(2.4)

The unit of conductance is the siemens or mho (ohm spelled backwards) and its symbol is  or

 Thus,

(2.5)

Resistances (or conductances) are commonly used to define an “open circuit” or a “short circuit”.
An open circuit is an adjective describing the “open space” between a pair of terminals, and can be
thought of as an “infinite resistance” or “zero conductance”. In contrast, a short circuit is an adjec-
tive describing the connection of a pair of terminals by a piece of wire of “infinite conductance” or
a piece of wire of “zero” resistance. 

The current through an “open circuit” is always zero but the voltage across the open circuit termi-
nals may or may not be zero. Likewise, the voltage across a short circuit terminals is always zero
but the current through it may or may not be zero. The open and short circuit concepts and their
equivalent resistances or conductances are shown in Figure 2.1.

Figure 2.1. The concepts of open and short circuits

The fact that current does not flow through an open circuit and that zero voltage exists across the
terminals of a short circuit, can also be observed from the expressions  and .

1  1 V
1 A
---------=

G

iG GvG=

iG iR= vG vR=

G 1
R
----=

S

 1–

1  1– 1 A
1 V
---------=

A +



Open
Circuit

i = 0
B

i = 0

R = 
G = 0

A+

B

A +



Short
Circuit

B

i
R = 0
G = 

A+

B

i
vAB 0= vAB 0=

vR RiR= iG GvG=
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Power Absorbed by a Resistor

That is, since , infinite  means zero  and zero  means infinite . Then, for a finite

voltage, say , and an open circuit,

(2.6)

Likewise, for a finite current, say iR, and a short circuit, 

(2.7)

Reminder:

We must remember that the expressions

and

are true only when the passive sign convention is observed. This is consistent with our classifica-
tion of  and  being passive devices and thus  implies the current direction and
voltage polarity are as shown in Figure 2.2.

Figure 2.2. Voltage polarity and current direction in accordance with the passive sign convention

But if the voltage polarities and current directions are as shown in Figure 2.3, then,

(2.8)

Figure 2.3. Voltage polarity and current direction not in accordance to passive sign convention

Note: “Negative resistance,” as shown in (2.8), can be thought of as being a math model that
supplies energy.

2.3 Power Absorbed by a Resistor
A resistor, being a passive device, absorbs power. This absorbed power can be found from Ohm’s
law, that is,

G 1
R
----= R G R G

vG

iGG 0
lim GvGG 0

lim 0= =

vRR 0
lim RiRR 0

lim 0= =

vR RiR=

iG GvG=

R G vR RiR=

+ 
R

+
R IRIR

vRvR

vR R– iR=

+
R

+ 
R IRIR

vR vR
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and the power relation

Then,

(2.9)

The voltage, current, resistance and power relations are arranged in the pie chart shown in Figure
2.4.

Figure 2.4. Pie chart for showing relations among voltage, current, resistance, and power

Note: 

A resistor, besides its resistance rating (ohms) has a power rating in watts commonly referred to as
the wattage of the resistor. Common resistor wattage values are ¼ watt, ½ watt, 1 watt, 2 watts, 5
watts and so on. This topic will be discussed in Section 2.16.

2.4 Energy Dissipated in a Resistor
A resistor, by its own nature, dissipates energy in the form of heat; it never stores energy. The
energy dissipated in a resistor during a time interval, say from  to , is given by the integral of
the instantaneous power .Thus,

(2.10)

vR RiR=

pR vR iR=

pR vR iR RiR  iR RiR
2 vR

vR
R
------ 

  vR
2

R
------= = = = =

P I

RVPR
P
I IR

VI

I 2 R

 V 2

  R
V
R P

V

P R

P
I 2

V 2

   P

V
I

POW
ER (W

att
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Nodes, Branches, Loops and Meshes

If the power is constant, say , then (2.10) reduces to 

(2.11)

Alternately, if the energy is known, we can find the power by taking the derivative of the energy,
that is,

 (2.12)

Reminder: 

When using all formulas, we must express the quantities involved in their primary units. For
instance in (2.11) above, the energy is in joules when the power is in watts and the time is in sec-
onds.

2.5 Nodes, Branches, Loops and Meshes

Definition 2.1 

A node is the common point at which two or more devices (passive or active) are connected. An
example of a node is shown in Figure 2.5.

Figure 2.5. Definition of node

Definition 2.2 

A branch is a simple path composed of one single device as shown in Figure 2.6.

Figure 2.6. Definition of branch

Definition 2.3 

A loop is a closed path formed by the interconnection of simple devices. For example, the net-
work shown in Figure 2.7 is a loop.

P

WR  diss Pt=

pR td
d WR diss=

+

Node

+ 

Node
Branch

R C vS
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Figure 2.7. Definition of a loop

Definition 2.4 

A mesh is a loop which does not enclose any other loops. For example, in the circuit shown in Fig-
ure 2.8,  is both a loop and a mesh, but  is a loop but not a mesh.

Figure 2.8. Example showing the difference between mesh and loop

2.6 Kirchhoff’s Current Law (KCL)

KCL states that the algebraic sum of all currents leaving (or entering) a node is equal to zero. For
example, in Figure 2.9, if we assign a plus (+) sign to the currents leaving the node, we must assign
a minus ( sign to the currents entering the node. Then by KCL,

(2.13)

Figure 2.9. Node to illustrate KCL

But if we assign a plus (+) sign to the currents entering the node and minus () sign to the cur-
rents leaving the node, then by KCL, 

(2.14)
or

(2.15)

+ L

C

R

vS

ABEF ABCDEF

+


A B C

DEF

vS

R1

R2

L C

iS

i1– i2– i3 i4+ + 0=

i4

i1 i2

i3

i1 i2 i3– i4–+ 0=   

i1– i2– i3 i4+ + 0=
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Kirchhoff’s Voltage Law (KVL)

We observe that (2.13) and (2.15) are the same; therefore, it does not matter which we choose
as plus (+).

Convention: 

In our subsequent discussion we will assign plus (+) signs to the currents leaving the node.

2.7 Kirchhoff’s Voltage Law (KVL)

KVL states that the algebraic sum of the voltage drops (voltages from + to ) or voltage rises
(voltages from  to +) around any closed path (mesh or loop) in a circuit is equal to zero. For
example, in the circuit shown in Figure 2.10, voltages , , , and  represent the voltages
across devices 1, 2, 3, and 4 respectively, and have the polarities shown.

Figure 2.10. Circuit to illustrate KVL

Now, if we assign a (+) sign to the voltage drops, we must assign a () sign to the voltage rises.
Then, by KVL starting at node  and going clockwise we obtain:

(2.16)

or going counterclockwise, we obtain:

(2.17)

Alternately, if we assign a (+) sign to the voltage rises, we must assign a () sign to the voltage
drops. Then, by KVL starting again at node A and going clockwise we obtain: 

(2.18)

or going counterclockwise, we obtain: 

(2.19)

We observe that expressions (2.16) through (2.19) are the same.

Convention: 

In our subsequent discussion we will assign plus (+) signs to voltage drops.

v1 v2 v3 v4

Device 1

Device 2

Device 4

Device 3


 +
+



+

 +
A

v1

v2
v3

v4

A

v1– v2– v3 v4+ + 0=

v4– v3– v2 v1+ + 0=

v1 v2 v3– v4–+ 0=

v4 v3 v2– v1–+ 0=
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Definition 2.5 

Two or more devices are said to be connected in series if and only if the same current flows through
them. For example, in the circuit of Figure 2.11, the same current  flows through the voltage
source, the resistance, the inductance and the capacitance. Accordingly, this is classified as a
series circuit.

Figure 2.11. A simple series circuit

Definition 2.6 

Two or more devices are said to be connected in parallel if and only if the same voltage exists across
each of the devices. For example, in the circuit of Figure 2.12, the same voltage  exists across
the current source, the conductance, the inductance, and the capacitance and therefore it is clas-
sified as a parallel circuit

Figure 2.12. A simple parallel circuit

Convention: 

In our subsequent discussion we will adopt the conventional current flow, i.e., the current that
flows from a higher (+) to a lower () potential. For example, if in Figure 2.13 we are given the
indicated polarity, 

Figure 2.13. Device with established voltage polarity

then, the current arrow will be pointing to the right direction as shown in Figure 2.14.

i

+
 L
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vS

vAB

L CG L CG
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B B B B
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+ 
R

vR

   



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems  Modeling 29
Copyright © Orchard Publications

Kirchhoff’s Voltage Law (KVL)

Figure 2.14. Direction of conventional current flow in device with established voltage polarity

Alternately, if current flows in an assumed specific direction through a device thus producing a
voltage, we will assign a (+) sign at the terminal of the device at which the current enters. For
example, if we are given this designation a device in which the current direction has been estab-
lished as shown in Figure 2.15,

Figure 2.15. Device with established conventional current direction

then we assign (+) and () as shown in Figure 2.16.

Figure 2.16. Voltage polarity in a device with established conventional current flow                                     

Note:

Active devices, such as voltage and current sources, have their voltage polarity and current
direction respectively, established as part of their notation. The current through and the voltage
across these devices can easily be determined if these devices deliver power to the rest of the circuit.
Thus with the voltage polarity as given in the circuit of Figure 2.17 (a), we assign a clockwise
direction to the current as shown in Figure 2.17 (b). This is consistent with the passive sign con-
vention since we have assumed that the voltage source delivers power to the rest of the circuit.

                                                                                                                        
Figure 2.17. Direction of conventional current flow produced by voltage sources

Likewise, in the circuit of Figure 2.18 (a) below, the direction of the current source is clockwise,
and assuming that this source delivers power to the rest of the circuit, we assign the voltage
polarity shown in Figure 2.18 (b) to be consistent with the passive sign convention.

+ 
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vR

iR

RiR
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RiR
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Figure 2.18. Voltage polarity across current sources

The following facts were discussed in the previous chapter but they are repeated here for empha-
sis.

There are two conditions required to setup and maintain the flow of an electric current:

1. There must be some voltage (potential difference) to provide the energy (work) which will force
electric current to flow in a specific direction in accordance with the conventional current flow
(from a higher to a lower potential).

2. There must be a continuous (closed) external path for current to flow around this path (mesh
or loop).

The external path is usually made of two parts: (a) the metallic wires and (b) the load to which the
electric power is to be delivered in order to accomplish some useful purpose or effect. The load
may be a resistive, an inductive, or a capacitive circuit, or a combination of these.

2.8 Single Mesh Circuit Analysis
We will use the following example to develop a stepbystep procedure for analyzing (finding cur-
rent, voltage drops and power) in a circuit with a single mesh.

Example 2.1  
For the series circuit shown in Figure 2.19, we want to find:

a.  The current i which flows through each device

b.  The voltage drop across each resistor

c.  The power absorbed or delivered by each device

Rest of the

Circuit

Rest of the

Circuit

+



v

(a) (b)

iS iS
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Single Mesh Circuit Analysis

Figure 2.19. Circuit for Example 2.1

Solution:

a. Step 1: We do not know which voltage source(s) deliver power to the other sources, so let us
assume that the current  flows in the clockwise direction* as shown in Figure 2.20.

Figure 2.20. Circuit for Example 2.1 with assumed current direction

Step 2: We assign (+) and () polarities at each resistor’s terminal in accordance with the
established passive sign convention.

Step 3: By application of KVL and the adopted conventions, starting at node  and going
clockwise, we obtain:

(2.20)

and by Ohm’s law,

Then, by substitution of given values into (2.20), we obtain

or

or
(2.21)

* Henceforth, the current direction will be assumed to be that of the conventional current flow.

+


+ 

+


200 V 80 V

64 V

10  8 

R1

4  6 

R2

R3R4

vS3vS1 vS2

i

+


+ 
+


200 V 80 V

64 V

10  8 

R1

4  6 

R2

R3R4

vS3vS1 vS2

i

+  + 

++
A

A

vS1– vR1 vS2+ + vR2 vS3 vR3 vR4+ + + + 0=

vR1 R1i      vR2 R2i      vR3 R3i      vR4 R4i====

200– 4i 64+ + 6i 80 8i 10i+ + + + 0=

28i 56=

i 2 A=
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b. Knowing the current  from part (a), we can now compute the voltage drop across each resis-
tor using Ohm’s law .

(2.22)

c. The power absorbed (or delivered) by each device can be found from the power relation
. Then, the power absorbed by each resistor is

(2.23)

and the power delivered (or absorbed) by each voltage source is

(2.24)

From (2.24), we observe that the 200 volt source absorbs 400 watts of power. This means
that this source delivers (supplies) 400 watts to the rest of the circuit. However, the other two
voltage sources receive (absorb) power from the 200 volt source. Table 2.1 shows that the con-
servation of energy principle is satisfied since the total absorbed power is equal to the power
delivered.

Example 2.2  

Repeat Example 2.1 with the assumption that the current  flows counterclockwise.

TABLE 2.1  Power delivered or absorbed by each device on the circuit of Figure 2.19

Device Power Delivered (watts) Power Absorbed (watts)

200 V Source 400 

64 V Source 128

80 V Source 160

4 W Resistor   16

6 W Resistor   24

8 W Resistor   32

10 W Resistor   40

Total 400 400

i
v Ri=

vR1 4 2 8 V=        vR2 6 2 12 V=    ==

vR3 8 2 16 V=       vR4 10 2 20 V= ==

p vi=

pR1 8 2 16 w=         pR2 12 2 24 w=  ==

pR3 16 2 32 w=       pR4 20 2 40 w= ==

pVS1
200– 2 400–  w =    pVS2

64 2 128 w    = pVS3
80 2 160 w==  ==

i
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Single Mesh Circuit Analysis

Solution:

We denote the current as  (i prime) for this example. Then, starting at Node  and going
counterclockwise, the voltage drops across each resistor are as indicated in Figure 2.21.

Figure 2.21. Circuit for Example 2.2

Repeating Steps 2 and 3 of Example 2.1, we obtain:

(2.25)
Next, by Ohm’s law,

By substitution of given values, we obtain

or

or
(2.26)

Comparing (2.21) with (2.26) we observe that  as expected.

Definition 2.7 

A single nodepair circuit is one in which any number of simple elements are connected between
the same pair of nodes. For example, the circuit of Figure 2.22 (a), which is more conveniently
shown as Figure 2.22 (b), is a single nodepair circuit.

i ' A

+
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+


200 V 80 V

64 V

10  8 

R1

4  6 

R2

R3R4

vS3vS1 vS2
i

+  + 

++
A

vR4 vR3 vS3–+ vR2 vS2– vR1 vS1+ + + 0=

vR1 R1i '    vR2 R2i '    vR3 R3i '    vR4 R4i '====

200 4i ' 64–+ 6i ' 80– 8i ' 10i '+ + + 0=

28i ' 56–=

i ' 2– A=

i ' i–=
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Figure 2.22. Circuit with a single nodepair

2.9 Single NodePair Circuit Analysis 
We will use the following example to develop a stepbystep procedure for analyzing (finding cur-
rents, voltage drop and power) in a circuit with a single nodepair.

Example 2.3  
For the parallel circuit shown in Figure 2.23, find:

a.  The voltage drop across each device

b.  The current i which flows through each conductance

c.  The power absorbed or delivered by each device

Figure 2.23. Circuit for Example 2.3

Solution:

a. Step 1: We denote the single nodepair with the letters  and  as shown in Figure 2.24. It is
important to observe that the same voltage (or potential difference) exists across each
device. Node  is chosen as our reference node and it is convenient to assume that

this reference node is at zero potential (ground) as indicated by the symbol 

L CG L CG

A

B

A A A A

B B B B

iSiS

       (a)                                                     (b)

12 A 24 A18 A

iS1 iS2

G2G1 G3

4  1– 6  1– 8  1–

iS3

A B

B



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems  Modeling 215
Copyright © Orchard Publications

Single NodePair Circuit Analysis

Figure 2.24. Circuit for Example 2.3 with assumed current directions

Step 2: We assign currents through each of the conductances , , and  in accordance
with the conventional current flow. These currents are shown as , , and .

Step 3: By application of KCL and in accordance with our established convention, we choose
node  which is the plus (+) reference point and we form the algebraic sum of the
currents leaving (or entering) this node. Then, with plus (+) assigned to the currents
leaving this node and with minus () entering this node we obtain

(2.27)

and since
(2.28)

by substitution into (2.27),

(2.29)

Solving for , we obtain

(2.30)

and by substitution of the given values, we obtain

(2.31)

or 
(2.32)

b. From (2.28),
(2.33)

and we observe that with these values, (2.27) is satisfied.

12 A 24 A18 A

iS1 iS2 iS3

G2G1 G3

4  1– 6  1– 8  1–

A A A A A A

vAB
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i
S1

– iG1 i
S2

iG2 i
S3

– iG3+ + + + 0=

iG1 G1vAB     iG2 G2vAB     iG3 G3vAB===

iS1– G1vAB iS2 G2vAB iS3– G3vAB+ + + + 0=

vAB

vAB
iS1 iS2– iS3+
G1 G2 G3+ +
--------------------------------=

vAB
12 18– 24+

4 6 8+ +
------------------------------=
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c. The power absorbed (or delivered) by each device can be found from the power rela-
tion . Then, the power absorbed by each conductance is

(2.34)

and the power delivered (or absorbed) by each current source is

(2.35)

From (2.35) we observe that the  and  current sources absorb  and 
respectively. This means that these sources deliver (supply) a total of  to the rest of the
circuit. The  source absorbs power.

Table 2.2 shows that the conservation of energy principle is satisfied since the absorbed power
is equal to the power delivered.

TABLE 2.2  Power delivered or absorbed by each device of Figure 2.23

Device Power Delivered (watts) Power Absorbed (watts)

12 A Source 12

18 A Source 18

24 A Source 24

4  Conductance   4

6  Conductance   6

8  Conductance   8

Total 36 36

p vi=  

pG1 1 4 4 w==

pG2 1 6 6 w==

pG3 1 8 8 w==

pI1 1 12–  12–  w==

pI2 1 18 18 w=  =

pI3 1 24–  24–  w==

12 A 24 A 12 w– 24 w–

36 w
18 A

 1–

 1–

 1–
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Voltage and Current Source Combinations

2.10 Voltage and Current Source Combinations

Definition 2.8 

Two or more voltage sources connected in series are said to be series aiding when the plus (+)
terminal of any one voltage source is connected to the minus () terminal of another, or when
the minus () terminal of any one voltage source is connected to the plus () terminal of
another.

Two or more series aiding voltage sources may be replaced by an equivalent voltage source
whose value is the algebraic sum of the individual voltage sources as shown in Figure 2.25.

Figure 2.25. Addition of voltage sources in series when all have same polarity

A good example of combining voltage sources as series aiding is when we connect several AA size
batteries each rated at  to power up a hand calculator, or a small flashlight.

Definition 2.9 

Two or more voltage sources connected in series are said to be series opposing when the plus (+)
terminal of one voltage source is connected to the plus () terminal of the other voltage source
or when the minus () of one voltage source is connected to the minus () terminal of the other
voltage source. Two series opposing voltage sources may be replaced by an equivalent voltage
source whose value is the algebraic difference of the individual voltage sources as shown in Fig-
ure 2.26.

Figure 2.26. Addition of voltage sources in series when they have different polarity

Definition 2.10 

Two or more current sources connected in parallel are said to be parallel aiding when the arrows
indicating the direction of the current flow have the same direction. They can be combined into
a single current source as shown in Figure 2.27.

+  +  + 200 V 80 V64 V

200 + 64 + 80 = 344 V

A

+

B

vAB v1 v2 v3+ +=
v1 v2 v3

1.5 v

+  +200 V 64 V

200  64 = 136 V

A

+

B
v1 v2

vAB v1 v2–=
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Figure 2.27. Addition of current sources in parallel when all have same direction

Definition 2.11 

Two or more current sources connected in parallel are said to be parallel opposing when the arrows
indicating the direction of the current flow have opposite direction. They can be replaced by an
equivalent current source whose value is the algebraic difference of the individual current sources
as shown in Figure 2.28.

Figure 2.28. Addition of current sources in parallel when they have opposite direction

2.11 Resistance and Conductance Combinations
Often, resistors are connected in series or in parallel. With either of these connections, series or
parallel, it is possible to replace these resistors by a single resistor to simplify the computations of
the voltages and currents. Figure 2.29 shows  resistors connected in series.

Figure 2.29. Addition of resistances in series

The combined or equivalent resistance  is

or 

12 A 54 A18 A 24 A

iT i1 i2 i3+ +=i3i1 i2 iT

18 A 6 A24 A

i1 i2

iT i– 1 i2+=
iT

n

A B

Rest of the circuit

i

R1 R2 R3 RN

Req

Req
vAB

i
---------

vR1
i

--------
vR2

i
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vR3
i
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vRn

i
--------+ + + += =
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Resistance and Conductance Combinations

(2.36)

Example 2.4  

For the circuit of Figure 2.30, find the value of the current  after combining the voltage sources
to a single voltage source and the resistances to a single resistor.

Figure 2.30. Circuit for Example 2.4

Solution:

We add the values of the voltage sources as indicated in Definitions 8 and 9, we add the resis-
tances in accordance with (2.36), and we apply Ohm’s law. Then, 

(2.37)

Next, we consider the case where  resistors are connected in parallel as shown in Figure 2.31.

Figure 2.31. Addition of resistances in parallel
By KCL,

(2.38)
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k 1=

n

= =

For Resistors in Series

i

+


+ 

+


200 V 80 V

64 V

10  8 

R1

4  6 

R2

R3R4
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The same voltage exists across each resistor; therefore, dividing each term of (2.38) by , we
obtain 

(2.39)

and since , then  and thus (2.39) can be written as

or 

(2.40)

For the special case of two parallel resistors, (2.40) reduces to

or 

(2.41)

where the designation  indicates that  and  are in parallel.

Also, since , from (2.38),

(2.42)

that is, parallel conductances combine as series resistors do.

Example 2.5  
In the circuit of Figure 2.32,

a. Replace all resistors with a single equivalent resistance 

b. Compute the voltage  across the current source.

VAB

iT
vAB
---------

i1
vAB
---------

i2
vAB
--------- 

in
vAB
---------+ + +=

v i R= i v 1 R=

1
RAB
---------- 1

R1
------ 1

R2
------  1

Rn
------+ + +=

1
Req
-------- 1

R1
------ 1

R2
------  1

Rn
------+ + +=

For Resistors in Parallel

1
Req
-------- 1

R1
------ 1

R2
------+=

Req R1||R2
R1 R2
R1 R2+
-------------------= =

R1||R2 R1 R2

G 1 R=

Geq G1 G2  Gn+ + + Gk
k 1=

n

= =

Req

vAB
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Figure 2.32. Circuit for Example 2.5

Solution:

a. We could use (2.40) to find the equivalent resistance . However, it is easier to form
groups of two parallel resistors as shown in Figure 2.33 and use (2.41) instead. 

Figure 2.33. Groups of parallel combinations for the circuit of Example 2.5.
Then,

Also, 

and the circuit reduces to that shown in Figure 2.34.

Figure 2.34. Partial reduction for the circuit of Example 2.5
Next, 

Finally,

and the circuit reduces to that shown in Figure 2.35
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Figure 2.35. Reduction of the circuit of Example 2.5 to its simplest form

b. The voltage  across the current source is

(2.43)

2.12 Voltage Division Expressions

In the circuit of Figure 2.36, , , and  are known.

Figure 2.36. Circuit for the derivation of the voltage division expressions

For the circuit of Figure 2.36, we will derive the voltage division expressions which state that:

These expressions enable us to obtain the voltage drops across the resistors in a series circuit sim-
ply by observation.

Derivation:

By Ohm’s law in the circuit of Figure 2.36 where  is the current flowing through i, we obtain

(2.44)
Also,

or
(2.45)
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and by substitution of (2.45) into (2.44) we obtain the voltage division expressions below.

 (2.46)

Example 2.6                

In the network of Figure 2.37, the arrows indicate that resistors and  are variable and that
the power supply is set for . 

a. Compute  and  if  and  are adjusted for  and respectively.

b. To what values should  and  be adjusted so that , , and
?

c. Using Simulink and SimPowerSystems*, create a model to simulate the voltage 

Figure 2.37. Network for Example 2.6

Solution:

a. Using the voltage division expressions of (2.46), we obtain

and

* For an introduction to Simulink and SimPowerSystems, please refer to Appendices B and C respectively.

vR1
R1

R1 R2+
-------------------vS    and    vR2

R2

R1 R2+
-------------------vS==

VOLTAGE DIVISION EXPRESSIONS
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vR1
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-------------------vS

7
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-------------------vS

5
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b. Since , , and the voltage drops are proportional to
the resistances, it follows that if we let  and , the voltage drops  and

 will be  and  respectively.
c.

Figure 2.38. Simulink / SimPower Systems model for Example 2.6

2.13 Current Division Expressions

In the circuit shown in Figure 2.39, , , and  are known.

Figure 2.39. Circuit for the derivation of the current division expressions

For the circuit of Figure 2.39, we will derive the current division expressions which state that

and these expressions enable us to obtain the currents through the conductances (or resistances)
in a parallel circuit simply by observation.

Derivation:

By Ohm’s law for conductances, we obtain

(2.47)
Also, 

vR1 vR2+ 3 9+ 12 V= = R1 R2+ 12 =

R1 3 = R2 9 = vR1

vR2 3 V 9 V
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or
(2.48)

and by substitution of (2.48) into (2.47)

(2.49)

Also, since

by substitution into (2.49) we obtain

 (2.50)

Example 2.7  

For the circuit inFigure 2.40, compute the voltage drop . Verify your answer with a Simulink /
SimPowerSystems model.

Figure 2.40. Circuit for Example 2.7

Solution:

The current source  divides into currents  and  as shown in Figure 2.40. We observe that
the voltage  is the voltage across the resistor . Therefore, we are only interested in current

. This is found by the current division expression as
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Figure 2.41. Application of current division expressions for the circuit of Example 2.7

and observing the passive sign convention, the voltage  is

or

Figure 2.42. Simulink / SimPower Systems model for Example 2.7

2.14 Standards for Electrical and Electronic Devices
Standardization of electronic components such as resistors, capacitors and diodes is carried out by
various technical committees. In the United States, the Electronics Industries Association (EIA)
and the American National Standards Institute (ANSI) have established and published several
standards for electrical and electronic devices to provide interchangeability among similar prod-
ucts made by different manufacturers. Also, the U.S. Department of Defense or its agencies issue
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Resistor Color Code

standards known as Military Standards, or simply MILstds. All of the aforementioned standards
are updated periodically. The interested reader may find the latest revisions in the Internet or
the local library.

2.15 Resistor Color Code
The Resistor Color Code is used for marking and identifying pertinent data for standard resistors.
Figures 2.43 and 2.44 show the color coding scheme per EIA Standard RS279 and MILSTD
1285A respectively.

Figure 2.43. Resistor Color Code per EIA Standard RS279

Figure 2.44. Resistor Color Code per MILSTD1285A

In a color coded scheme, each color represents a single digit number, or conversely, a single digit
number can be represented by a particular color band as shown in Table 2.3 that is based on
MILSTD1285A color code.

As shown in Figure 2.44, the first and second bands designate the first and second significant
digits respectively, the third represents the multiplier, that is, the number by which the first two
digits are multiplied, and the fourth and fifth bands, if they exist, indicate the tolerance and fail-
ure rate respectively. The tolerance is the maximum deviation from the specified nominal value
and it is given as a percentage. The failure rate is the percent probability of failure in a 1000hour
time interval.
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  3rd
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Figures
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Wider Space to
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of Reading
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Let A and B represent the first and second significant digits and C represent the multiplier. Then
the resistance value is found from the expression

(2.51)

Example 2.8  
The value of a resistor is coded with the following colored band code, left to right: Brown, Green,
Blue, Gold, Red. What is the value, tolerance, and probability of failure for that resistor?

Solution:

Table 2.3 yields the following data: Brown (1st significant digit) = 1, Green (2nd significant digit)
= 5, and Blue (multiplier) = 1,000,000. Therefore, the nominal value of this resistor is
15,000,000 Ohms or 15 M. Theth band is Gold indicating a ±5% tolerance meaning that the
maximum deviation from the nominal value is 15,000,000 ±5% = 15,000,000 × ±0.05 =
±750,000 Ohms or ±0.75 M. That is, this resistor can have a value anywhere between 14.25
M and 15.75 M. Since the 5th band is Red, there is a 0.1% probability that this resistor will
fail after 1000 hours of operation.

TABLE 2.3  Resistor values per MIL-STD-1285A

Color Code
1st & 2nd 

Digits
Multiplier 
(3rd Digit)

Tolerance 
(Percent)

Fail Rate 
(Percent)

Black 0 1
Brown 1 10 1 1
Red 2 100 2 0.1
Orange 3 1000 0.01
Yellow 4 10000 0.001
Green 5 100000 0.5
Blue 6 1000000 0.25
Violet 7 0.1
Gray 8
White 9
Gold 0.1 5
Silver 0.01 10
No Color 20

R 10 A B+  C10=
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2.16 Power Rating of Resistors
As it was mentioned in Section 2.2, a resistor, besides its resistance rating (ohms) has a power
rating (watts) commonly referred to as the wattage of the resistor, and common resistor wattage
values are ¼ watt, ½ watt, 1 watt, 2 watts, 5 watts and so on. To appreciate the importance of
the wattage of a resistor, let us refer to the voltage divider circuit of Example 2.6, Figure 2.37

where the current is . Using the power relation , we find that the
wattage of the  and  resistors would be 7 watts and 5 watts respectively. We could also
divide the 12 volt source into two voltages of 7 V and 5 V using a  and a  resistor.
Then, with this arrangement the current would be . The wattage of the

 and   re s i s to r s  would  then  be   and

 respectively.

2.17 Temperature Coefficient of Resistance
The resistance of any pure metal, such as copper, changes with temperature. For each degree
that the temperature of a copper wire rises above  Celsius, up to about , the resis-
tance increases 0.393 of 1 percent of what it was at 20 degrees Celsius. Similarly, for each degree
that the temperature drops below , down to about , the resistance decreases 0.393 of
1 percent of what it was at . This percentage of change in resistance is called the Tempera-
ture Coefficient of Resistance. In general, the resistance of any pure metal at temperature T in
degrees Celsius is given by

(2.52)

where  is the resistance at  and  is the temperature coefficient of resistance at

.

Example 2.9  

The resistance of a long piece of copper wire is  at .

a.  What would the resistance be at ?

b.  Construct a curve showing the relation between resistance and temperature.

Solution:

a. The temperature rise is  degrees Celsius and the resistance increases 0.393% for
every degree rise. Therefore the resistance increases by . This represents

12 V 12  1 A= pR i2R=

7  5 
7 k 5 k

12 V 12 k 1 mA=

7 k 5 k 10 3– 
2

7 103 7 10 3–  W 7 mW= =

10 3– 
2

5 103 5 mW=

20 C 200 C

20 C 50– C
20 C

R R20 1 20 T 20– + =

R20 20 C 20

20 C

48  20 C

50C

50 20– 30=

30 0.393 11.79%=
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an increase of  in resistance or 5.66 . Therefore, the resistance at 50 degrees
Celsius is .

b. The relation of (2.52) is an equation of a straight line with . This straight line
is easily constructed with the Microsoft Excel spreadsheet shown in Figure 2.45.

From Figure 2.45, we observe that the resistance reaches zero value at approximately .

Figure 2.45. Spreadsheet for construction of equation (2.52)

2.18 Ampere Capacity of Wires
For public safety, electric power supply (mains) wiring is controlled by local, state and federal
boards, primarily on the National Electric Code (NEC) and the National Electric Safety Code. More-
over, many products such as wire and cable, fuses, circuit breakers, outlet boxes and appliances
are governed by Underwriters Laboratories (UL) Standards which approves consumer products
such as motors, radios, television sets etc.

Table 2.4 shows the NEC allowable currentcarrying capacities for copper conductors based on
the type of insulation.

The ratings in Table 2.4 are for copper wires. The ratings for aluminum wires are typically 84% of
these values. Also, these rating are for not more than three conductors in a cable with tempera-
ture  or . The NEC contains tables with correction factors at higher temperatures.

2.19 Current Ratings for Electronic Equipment
There are also standards for the internal wiring of electronic equipment and chassis. Table 2.5
provides recommended current ratings for copper wire based on  (  for wires smaller

0.1179 48 
48 5.66+ 53.66 =

slope R2020=
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-250 -2.9328
-240 -1.0464
-230 0.84
-220 2.7264
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-160 14.0448
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Current Ratings for Electronic Equipment

than 22 AWG. Listed also, are the circular mils and these denote the area of the cross section of
each wire size. A circular mil is the area of a circle whose diameter is 1 mil (onethousandth of an
inch). Since the area of a circle is proportional to the square of its diameter, and the area of a cir-
cle one mil in diameter is one circular mil, the area of any circle in circular mils is the square of
its diameter in mils.

† Dry Locations Only     ‡ Nickel or nickel-coated copper only

TABLE 2.4  Current Ratings for Electronic Equipment and Chassis Copper Wires

Wire Size Maximum Current (Amperes)

AWG Circular Mils

Nominal 
Resistance 

(Ohms/1000 ft)
at 100 C

Wire in Free 
Air

Wire Confined 
in Insulation

32 63.2 188 0.53 0.32

30 100.5 116 0.86 0.52

28 159.8 72 1.4 0.83

26 254.1 45.2 2.2 1.3

24 404 28.4 3.5 2.1

22 642.4 22 7 5

20 10.22 13.7 11 7.5

18 1624 6.5 16 10

16 2583 5.15 22 13

14 4107 3.2 32 17

12 6530 2.02 41 23

10 10380 1.31 55 33

8 16510 0.734 73 46

6 26250 0.459 101 60

4 41740 0.29 135 80

2 66370 0.185 181 100

1 83690 0.151 211 125

0 105500 0.117 245 150

00 133100 0.092 283 175

000 167800 0.074 328 200

0000 211600 0.059 380 225
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A milfoot wire is a wire whose length is one foot and has a crosssectional area of one circular
mil.

The resistance of a wire of length  can be computed with the relation 

(2.53)

where  = resistance per milfoot,  = length of wire in feet,  = diameter of wire in mils, and
 is the resistance at .

Example 2.10  

Compute the resistance per mile of a copper conductor  inch in diameter given that the resis-
tance per milfoot of copper is  at .

Solution:

and from (2.53)

Column 3 of Table 2.5 shows the copper wire resistance at . Correction factors must be
applied to determine the resistance at other temperatures or for other materials. For copper, the
conversion equation is

 (2.54)

where  is the resistance at the desired temperature,  is the resistance at  for copper,
and  is the desired temperature.

Example 2.11  

Compute the resistance of  of size  copper wire at .

Solution:

From Table 2.5 we find that the resistance of  of size  copper wire at  is
. Then, by (2.54), the resistance of the same wire at  is 

l

R l
d2
-----=

 l d
R 20 C

1 8
10.4  20 C

1 8  in 0.125 in 125 mils= =

R l
d2
----- 10.4 5280

1252
---------------------------- 3.51 = = =

100C

RT R100 1 0.004 T 100– + =

RT R100 100C

T

1000 ft AWG 12 30C

1000 ft AWG 12 100C
2.02  30C

R30C 2.02 1 0.004 30 100– +  1.45 = =
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2.20 Copper Conductor Sizes for Interior Wiring
In the design of an interior electrical installation, the electrical contractor must consider two
important factors:

a. The wiring size in each section must be selected such that the current shall not exceed the
current carrying capacities as defined by the NEC tables. Therefore, the electrical contractor
must accurately determine the current which each wire must carry and make a tentative
selection of the size listed in Table 2.4.

b. The voltage drop throughout the electrical system must then be computed to ensure that it
does not exceed certain specifications. For instance, in the lighting part of the system referred
to as the lighting load, a variation of more than  in the voltage across each lamp causes an
unpleasant variation in the illumination. Also, the voltage variation in the heating and air
conditioning load must not exceed .

Important!

The requirements stated here are for instructional purposes only. They change from time to
time. It is, therefore, imperative that the designer consults the latest publications of the applica-
ble codes for compliance.

Example 2.12  
Figure 2.46 shows a lighting load distribution diagram for an interior electric installation. 

Figure 2.46. Load distribution for an interior electric installation

The panel board is 200 feet from the meter. Each of the three branches has 12 outlets for 75 w,
120 volt lamps. The load center is that point on the branch line at which all lighting loads may be
considered to be concentrated. For this example, assume that the distance from the panel to the
load center is 60 ft. Compute the size of the main lines. Use T (thermoplastic insulation) type
copper conductor and base your calculations on  temperature environment.
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Solution:

It is best to use a spreadsheet for the calculations so that we can compute sizes for more and dif-
ferent branches if need be.

The computations for Parts I and II are shown on the spreadsheet in Figures 2.47 and 2.48 where
from the last line of Part II we see that the percent line drop is  and this is more than twice
the allowable  drop. With the  voltage variation the brightness of the lamps would
vary through wide ranges, depending on how many lamps were in use at one time.

A much higher voltage than the rated  would cause these lamps to glow far above their
rated candle power and would either burn them immediately, or shorten their life considerably. It
is therefore necessary to install larger than  main line. The computations in Parts III
through V of the spreadsheet of Figures 2.47 and 2.48 indicate that we should not use a conduc-
tor less than size .

12.29
5% 12.29%

120 V

12 AWG

6 AWG
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Copper Conductor Sizes for Interior Wiring

Figure 2.47. Spreadsheet for Example 2.12, Parts I and II
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Figure 2.48. Spreadsheet for Example 2.12, Parts III, IV, and V
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Summary

2.21 Summary
 Ohm’s Law states that the voltage across a device is proportional to the current through that

device and the resistance is the constant of proportionality.

 Open circuit refers to an open branch (defined below) in a network. It can be thought of as a
resistor with infinite resistance (or zero conductance). The voltage across the terminals of an
open may have a finite value or may be zero whereas the current is always zero.

 Short circuit refers to a branch (defined below) in a network that contains no device between
its terminals, that is, a piece of wire with zero resistance. The voltage across the terminals of a
short is always zero whereas the current may have a finite value or may be zero. 

 A resistor absorbs power.

 A resistor does not store energy. The energy is dissipated in the form of heat.

 A node is a common point where one end of two or more devices are connected.

 A branch is part of a network that contains a device and its nodes.

 A mesh is a closed path that does not contain other closed paths

 A loop contains two or more closed paths.

 Kirchoff’s Current Law (KCL) states that the algebraic sum of the currents entering (or leav-
ing) a node is zero.

 Kirchoff’s Voltage Law (KVL) states that the algebraic sum of the voltage drops (or voltage
rises) around a closed mesh or loop is zero.

 Two or more devices are said to be connected in series if and only if the same current flows
through them.

 Two or more devices are said to be connected in parallel if and only if the same voltage exists
across their terminals.

 A series circuit with a single mesh can be easily analyzed by KVL.

 A parallel circuit with a single node pair can be easily analyzed by KCL.

 If two or more voltage sources are in series, they can be replaced by a single voltage source
with the proper polarity.

 If two or more current sources are in parallel, they can be replaced by a single current source
with the proper current direction.

 If two or more resistors are connected in series, they can be replaced by an equivalent resis-
tance whose value is 
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 If two or more resistors are connected in parallel, they can be replaced by an equivalent resis-
tance whose value is

 For the special case of two parallel resistors, the equivalent resistance is found from the relation

 Conductances connected in series combine as resistors in parallel do.

 Conductances connected in parallel combine as resistors in series do.

 For the simple series circuit below 

the voltage division expressions state that:

 For the simple parallel circuit below

the current division expressions state that:

Req R1 R2 R3  Rn+ + + + RK
k 1=

n

= =

1
Req
-------- 1

R1
------ 1

R2
------  1

Rn
------+ + +=

Req R1||R2
R1 R2
R1 R2+
-------------------= =

+
vS

R2

R1

+

+





vR2

vR1

vR1
R1

R1 R2+
-------------------vS  and  vR2

R2

R1 R2+
-------------------vS==

v
iS

iG1
iG2

G1 G2

R1  R2 

iR1
R2

R1 R2+
-------------------iS  and  iR2

R1

R1 R2+
-------------------iS==
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Summary

 In the United States, the Electronics Industries Association (EIA) and the American National
Standards Institute (ANSI) have established and published several standards for electrical
and electronic devices to provide interchangeability among similar products made by different
manufacturers.

 The resistor color code is used for marking and identifying pertinent data for standard resis-
tors. Two standards are the EIA Standard RS279 and MILSTD1285A.

 Besides their resistance value, resistors have a power rating.

 The resistance of a wire increases with increased temperature and decreases with decreased
temperature.

 The current ratings for wires and electronic equipment are established by national standards
and codes.
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2.22 Exercises
Multiple Choice

1. Ohm’s Law states that

A. the conductance is the reciprocal of resistance

B. the resistance is the slope of the straight line in a voltage versus current plot

C. the resistance is the sum of the voltages across all the devices in a closed path divided by the
sum of the currents through all the devices in the closed path

D. the sum of the resistances around a closed loop is zero

E. none of the above

2. Kirchoff’s Current Law (KCL) states that

A. the sum of the currents in a closed path is zero

B. the current that flows through a device is inversely proportional to the voltage across that
device

C. the sum of the currents through all the devices in a closed path is equal to the sum of the
voltages across all the devices

D. the sum of the currents entering a node is equal to the sum of the currents leaving that node 
E. none of the above

3. Kirchoff’s Voltage Law (KCL) states that

A. the voltage across a device is directly proportional to the current through that device

B. the voltage across a device is inversely proportional to the current through that device

C. the sum of the voltages across all the devices in a closed path is equal to the sum of the cur-
rents through all the devices

D. the sum of the voltages in a node is equal to the sum of the currents at that node 

E. none of the above

4. For the three resistors connected as shown below, the equivalent resistance  is computed
with the formula

A.

RAB

A B

R1 R2 R3
RAB

RAB R1 R2+ R3+=



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems  Modeling 241
Copyright © Orchard Publications

Exercises

B. 

C. 

D. 

E. none of the above

5. For the three conductances connected as shown below, the equivalent conductance  is
computed with the formula

A. 

B. 

C. 

D. 

E.  none of the above

6. For the three resistances connected as shown below, the equivalent conductance  is 

A.

B. 

C. 

RAB R1
2 R2

2+ R3
2+=

RAB
R1R2R3

R1 R2 R3+ +
--------------------------------=

RAB
R1R2R3

R1 R2 R3+ +
--------------------------------=

GAB

A B

G1 G2 G3
GAB

GAB G1 G2+ G3+=

GAB G1
2 G2

2+ G3
2+=

GAB
G1G2G3

G1 G2+ G3+
---------------------------------=

1
GAB
---------- 1

G1
------ 1

G2
------ 1

G3
------+ +=

GAB

GAB 4  12  3 
R1 R2

R3
A

B

21  1–

1.5  1–

2 3   1–
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D. 

E.  none of the above

7. In the network shown below, when , the voltage . When ,
. When ,  is

A.

B. 

C. 

D. 

E.  none of the above

8. The node voltages shown in the partial network below are relative to some reference node not
shown. The value of the voltage  is

A.

B. 

C. 

D. 

E.  none of the above

144 19   1–

R 4 = vR 6 V= R 0 =

iR 2 A= R = vR





vR
Rest of the

Circuit

iR

R

6 V

24 V

8 V

16 V

vX

+ 8 V
2 A

10 V

2 A
3 

20 V

4 
6 V8 

2 V vX

6–  V

16 V

0 V

10 V
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Exercises

9. For the network below the value of the voltage  is

A.

B. 

C. 

D. 

E.  none of the above

10. For the circuit below the value of the current  is

A.

B. 

C. 

D. 

E.  none of the above

v

+


8 V

4 

v

+



8 V

2 V

2–  V

8–  V

i

+


8 V
12  i

4 

2 A

0 A

 A

1 A
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Problems

1. In the circuit below, the voltage source and both resistors are variable.

a. With , , and , compute the power absorbed by .

Answer: 

b. With  and , to what value should  be adjusted so that the power
absorbed by it will be 200 w? Answer: 

c. With  and , to what value should  be adjusted to so that the

power absorbed by  will be 100 w? Answer: 

2. In the circuit below,  represents the load of that circuit.

Compute:

a.  Answer: 

b.  Answer: 

c.  Answer: 

+



Power
Supply

(Voltage
Source)

+

+


vS

R1

R2

vS 120 V= R1 70 = R2 50 = R2

50 w

vS 120 V= R1 0 = R2

72 

R1 0 = R2 100 = vS

R2 100 V

RLOAD

+


+ 

75 V

24 V5 A

3 A

+



iLOAD

pLOADvLOAD

RLOAD

5 

10 

2 

iLOAD 8 A

vLOAD 20 V

pLOAD 160 w
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Exercises

3. For the circuit below, compute the power supplied or absorbed by each device.

Answers: , , , , 

4. In the circuit below, compute the power delivered or absorbed by the dependent voltage
source.

Answer: 

5. In the network below, each resistor is 10  Compute the equivalent resistance .

Answer: 

6. In the network below,  and . Compute the current i supplied by the 15
V source.

A

B

C

D

E
+



+



+



6 A24 A

12 V 60 V 36 V

pA 288 w= pB 1152 w= pC 1800–  w= pD 144 w= pE 216 w=

+


+


50 V

10 A

5iR2
 V

R4

R3

R2

R1 10 

6 

2 

10 

iR2
 

62.5 w

Req

Req

360 21 

R1 10 = R2 20 =
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Hint: Begin at the right end and by series and parallel combinations of the resistors, reduce the
circuit to a simple series circuit. This method is known as analysis by network reduction.
Answer: 

7. For the circuit below, use the voltage division expression to compute  and .

Answers: , 

8. For the circuit below, use the current division expression to compute  and .

Answers: , 

9. A transformer consists of two separate coils (inductors) wound around an iron core as shown in
below. There are many turns in both the primary and secondary coils but, for simplicity, only
few are shown. It is known that the primary coil has a resistance of 5.48  at 20 degrees Cel-
sius. After two hours of operation, it is found that the primary coil resistance has risen to 6.32
. Compute the temperature rise of this coil.

+


15 V

R1 R1 R1R1R1R1R1

R1R2R2R2R2R2R2

i

0.75 A

vX vY

+
16 V

5  20 

10  40 

+


24 V



+

+

vX

vY



vX 8 3 V= vY 16 3 V=

iX iY

16 A 24 A

5 

20 

10 

40 

iX iY

iX 16– 3 V= iY 8– 3 V=
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Answer: 

10. A new facility is to be constructed at a site which is 1.5 miles away from the nearest electric
utility company substation. The electrical contractor and the utility company have made
load calculations, and decided that the main lines from the substation to the facility will
require several copper conductors in parallel. Each of these conductors must have insulation
type THHN and must carry a maximum current of 220 A in a  temperature environ-
ment.

a. Compute the voltage drop on each of these conductors from the substation to the facility
when they carry the maximum required current of 220 A in a  temperature environ-
ment.
Answer: 

b. The power absorbed by each conductor under the conditions stated above.
Answer: 

c. The power absorbed per square cm of the surface area of each conductor under the condi-
tions stated above.

Answer: 

11. For the network below, each of the 12 resistors along the edges of the cube are  each.
Compute the equivalent resistance . Hint: Use any tricks that may occur to you.

Answer: 

Primary
Coil

Iron Core

Secondary
Coil

36C

20 C

20 C

70 V

15.4 Kw

0.02 w cm2

1 
RAB

RAB

B

A

5 6 
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12. A heating unit is rated at , and to maintain this rating, it is necessary that a voltage of
 is applied to establish an initial temperature of . After the heating unit has

reached a steady state, it is required that the voltage must be raised to  to maintain the
 rating. Find the final temperature of the heating element in  if the temperature

coefficient  is  per .

Answer:  .

5 Kw
220 V 15 C

240 V
5 Kw C

 0.0006  1 C

332 C
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2.23 Answers / Solutions to EndofChapter Exercises
Multiple Choice

1. B

2. D

3. E

4. E

5. D

6. C

7. B When , the voltage . Therefore, . Also, when
, , and thus  (short circuit). When ,  but 

has a finite value and it is denoted as  in the figure below. Now, we observe that the

triangles abc and dbe are similar. Then  or  and thus

8. D   We denote the voltage at the common node as  shown on the figure below. 

R 4 = vR 6 V= iR 6 4 1.5 A= =

R 0 = iR 2 A= vR 0= R = iR 0= vR

vR =

be
bc
------ de

ac
------= 2.0 1.5–

2.0
--------------------- 6

vR =
--------------=

vR = 24 V=

iR A 

vR V 

0.5 2.01.51.0

6.0

a

b
c

d

e

vR =

vA

+ 8 V
2 A

10 V

2 A
3 

20 V

4 
6 V8 

2 V vX vA
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Then, from the branch that contains the  resistor, we observe that  or

 and thus 

9. A  This is an open circuit and therefore no current flows through the resistor. Accordingly,
there is no voltage drop across the resistor and thus .

10. A  The  resistor is shorted out by the short on the right side of the circuit and thus the
only resistance in the circuit is the  resistor.

Problems

1.
a. With , , and , the circuit is as shown below.

Using the voltage division expression, we obtain

Then,

b. With  and , the circuit is as shown below.

We observe that

3 
vA 10–

3
------------------ 2=

vA 16= vX 6– 16+ 10 V= =

v 8 V=

12 
4 

vS 120 V= R1 70 = R2 50 =

+


vS
R2

R1

50 

70 

120 V

vR2

50
70 50+
------------------ 120 50 V= =

pR2

vR2

2

R2
-------- 502

50
-------- 50 w= = =

vS 120 V= R1 0 =

+


vS R2
R1

72 

0 

120 V


+vR2

vR2
vs 120V= =
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and 

or

or

c. With  and ,the circuit is as shown below. 

Then,

or

or

or

2.
a. Application of KCL at node A of the circuit below yields

vR2

2

R2
-------- 200 w=

1202

R2
----------- 200 w=

R2
1202

200
----------- 72 = =

R1 0 = R2 100 =

+


vS R2
R1

100 

0 

100 V


+vR2

vS
2

R2
------ 100 w=

vS
2

100
--------- 100 w=

vS
2 100 100 10 000= =

vS 10 000 100 V= =

+


+ 

75 V

24 V5 A

3 A

+



iLOAD

pLOADvLOAD

RLOAD

5 

10 

2 

A

Mesh 1 Mesh 2

iLOAD

B

iLOAD 3 5+ 8 A= =
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b. Application of KVL around Mesh 1 yields

or

Application of KVL around Mesh 2 yields

or

or

c.

3. Where not shown, we assign plus (+) and minus () polarities and current directions in accor-
dance with the passive sign convention as shown below. 

We observe that  and . Also, by KCL at Node X

Then,

By KVL

or

and thus

Also by KVL

or

75– 3 5  vAB+ + 0=

vAB 60 V=

vAB 24 2iLOAD+ +– vLOAD+ 0=

60– 24 2 8 vLOAD+ + + 0=

vLOAD 20 V=

pLOAD vLOAD iLOAD 20 8 160 w absorbed power = = =

A

B

C

D

E
+



+



+



6 A24 A

12 V 60 V 36 V

+ + 

iA
iC iE

iB iD

vA

vB
vC

vD
vE

X

iA iB= iE iD=

iC iB iD+ 24 6+ 30 A= = =

pA vA iA 12 24 288 w  absorbed = = =

pE vE iE 36 6 216 w  absorbed = = =

pC vC iC–  60 30–  1800–  w  supplied = = =

vA vB+ vC=

vB vC vA– 60 12– 48 V= = =

pB vBiB 48 24 1152 w  absorbed = = =

vD vE+ vC=
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and thus

Check: We must show that 

4. We assign voltages and currents , , , , and  as shown in the circuit below.

By KVL,

and by Ohm’s law,

Therefore, the value of the dependent voltage source is

and

Then,

By KCL at Node X

where

and thus

with the indicated direction through the dependent source. Therefore,

vD vC vE– 60 36– 24 V= = =

pD vDiD 24 6 144 w  absorbed = = =

Power supplied Power absorbed=

pC pA pB pC pD+ + + 288 216 1152 144+ + + 1800 w= = =

vR2
vR4

iR3
iR4

iD

+


+


50 V

10 A

5iR2
 V

R4

R3

R2

R1 10 

6 

2 

10 

iR2
 

+


vR2

iR3

iD

+


vR4

iR4

X

vR2
50 2 10– 30 V= =

iR2

vR2
R2
-------- 30

6
------ 5 A= = =

5iR2
5 5 25 V= =

vR4
5iR2

25 V= =

iR4

vR4

R4
-------- 25

10
------ 2.5 A= = =

iD iR3
iR4

–=

iR3
10 iR2

– 10 5– 5 A= = =

iD iR3
iR4

– 5 2.5– 2.5 A= = =

pD 5iR2
iD 25 2.5 62.5 w  absorbed = = =
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5. The simplification procedure begins with the resistors in parallel as indicated below.

6. We begin with the right side of the circuit where the last two resistors are in series as shown
below. 

5

Req

10 10

1010
10

10

10
10

10
10

10

10

10 10

10 10
10

10
10 10

5

5 5

Req

Req

10
10

10
10

5 15

5 15

10

6

6
10

5

5

Req

16

16

5

5

Req Req

80 21

80 21

160 21

+


15 V

R1 R1 R1R1R1R1R1

R1R2R2R2R2R2R2

i
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Then,

Next,

and so on. Finally, addition of the left most resistor with its series equivalent yields

and thus

7. We first simplify the given circuit by replacing the parallel resistors by their equivalents. Thus,

and

The voltage sources are in series opposing connection and they can be replaced by a single
voltage source with value . The simplified circuit is shown below.

Now, by the voltage division expression,

and

8. We first simplify the given circuit by replacing the series resistors by their equivalents. Thus,

and

The current sources are in parallel opposing connection and they can be replaced by a single
current source with value . The simplified circuit is shown below.

R1 R1+ 10 10+ 20 = =

20 20 10 =

10 10+ 20 =

10 10+ 20 =

i 15 20 0.75 A= =

5 20 5 20
5 20+
--------------- 4 = =

10 40 10 40
10 40+
------------------ 8 = =

24 16– 8 V=

4 

8 

+


8 V



+



+

vX

vY

i

vX
4

4 8+
------------ 8 8

3
--- V= =

vY
8

4 8+
------------ 8 16

3
------ V= =

5 20+ 25 =

10 40+ 50 =

24 16– 8 A=
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By the current division expression,

and

9. We construct the resistance versus temperature plot shown below.

From the similar triangles acd and abe, we obtain

or

10.
a. From Table 2.4 we find that the cable size must be 0000 AWG and this can carry up to

. Also, from Table 2.5 we f ind that the resistance of this conductor is
 at . Then, the resistance of this conductor that is 1.5 miles long is

To find the resistance of this cable at , we use the relation of (2.54). Thus,

8 A

25  50 iX iY

iX
50

25 50+
------------------ 8–  16

3
------–  A= =

iY
25

25 50+
------------------ 8–  8

3
---–  A= =

0234.5

R20R0

RX

T C 

R  

T20 TX

a

b

c

de

R20 5.48 =

RX 6.32 =

TX T=
T20 20C=

RX
R20
--------

234.5 T20 TX+ +

234.5 T20+
-----------------------------------------

234.5 20 TX+ +

234.5 20+
---------------------------------------

254.5 TX+

254.5
--------------------------= = =

T TX=
RX
R20
-------- 254.5 254.5– 6.32

5.48
---------- 254.5 254.5– 36C= = =

235 A
0.059  1000 ft 100C

0.059  
1000ft
---------------- 5280

1 mile
---------------- 1.5 miles 0.4673  at 100C=

20C

R20 R100 1 0.004 20 100– +  0.4673 1 0.32–  0.3178 = = =
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and the voltage drop on each of these conductors is

b. The power absorbed by each conductor is

c. Table 2.5 gives wire sizes in circular mils. We recall that a circular mil is the area of a circle
whose diameter is . To find the diameter in cm, we perform the following conver-
sion:

From Table 2.5 we find that the cross section of a  cable is 211,600 circular

mils. Then, the crosssection of this cable in  is

Therefore, the cable diameter in cm is 

The crosssection circumference of the cable is

and the surface area of the cable is

Then, the power absorbed per  is

11. Let us connect a voltage source of  across the corners A and B of the cube as shown
below, and let the current produced by this voltage source be .

v iR 220 0.3178 70 V= = =

p vi 70 220 15 400 w 15.4 Kw= = = =

0.001 in

1 circular mil 
4
---d2 

4
--- 0.001 2 7.854 10 7–  in2= = =

7.854 10 7–  in2 2.54 cm 2

in2
--------------------------- 5.067 10 6–  cm2==

0000 AWG

cm2

211 600 circular mils 5.067 10 6–  cm2

circular mil
------------------------------------------ 1.072 cm2=

d 1.072= 1.035 cm=

d  1.035 3.253 cm= =

Surface area dl 3.253 cm 1.5 miles 1.609 Km
1 mile

------------------------- 105 cm
1 Km

------------------ 7.851 105 cm2= = =

cm2

p
cm2

Total power
cm2

-------------------------------- 15 400 w
7.851 105 cm2
---------------------------------------- 0.02 w cm2= = =

1 volt
I
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Since all resistors are equal (  each), the current  entering node A will be split into 3
equal currents  each. The voltage drop  will be  regardless of the path from
node A to node B. Arbitrarily, we choose the path through resistors , , and , and the
currents through these resistors are , , and  respectively. Then, by KVL,

and since ,

from which

12. The power  absorbed by the heating unit when the applied voltage is  is  and

the resistance  is found from the relation  or

The power  absorbed by the heating unit when the applied voltage is  is still 
and the resistance  is 

From relation (2.52),

or

RAB

B

A

+
V

1 volt

I

I

R3

R1

R2

R4

I 3

I 3 R5
I 6

1  I
I 3 VAB 1 volt

R1 R1 R1

I 3 I 6 I 3

I
3
---R1

I
6
---R4

I
3
---R5+ + IRAB V 1 volt= = =

R1 R4 R5 1 = = =

I
3
--- I

6
--- I

3
---+ +

5
6
---I IRAB= =

RAB 5 6  =

P1 220 V 5 Kw

R1 P1 V1
2 R1=

R1
V1

2

P1
------ 220 2

5 Kw
---------------- 48400

5000
--------------- 9.68 = = = =

P2 240 V 5 Kw

R2

R2
V1

2

P1
------ 240 2

5 Kw
---------------- 57600

5000
--------------- 11.52 = = = =

R2 R1 R1 T2 T1– +=

R2 R1– R1 T2 T1– =
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or

Therefore, the final temperature  of the heating element is

T2 T1–
R2 R1–

R1
------------------ 11.52 9.68–

9.68 0.0006
--------------------------------- 316.8= = =

T2

T2 316.8 T1+ 316.8 15+ 332 C= =
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Chapter 3

Nodal and Mesh Equations  Circuit Theorems

his chapter begins with nodal, loop and mesh equations and how they are applied to the
solution of circuits containing two or more nodepairs and two or more loops or meshes.
Other topics included in this chapter are the voltagetocurrent source transformations

and vice versa, Thevenin’s and Norton’s theorems, the maximum power transfer theorem, linear-
ity, superposition, efficiency, and regulation.

3.1 Nodal, Mesh, and Loop Equations
Network Topology is a branch of network theory concerned with the equations required to com-
pletely describe an electric circuit. In this text, we will only be concerned with the following two
theorems.

Theorem 3.1

Let ; then  independent nodal equations are required to
completely describe that circuit. These equations are obtained by setting the algebraic sum of the
currents leaving each of the  nodes equal to zero.

Theorem 3.2

Let , , 
in a circuit; then  independent loop or mesh equations are required to com-
pletely describe that circuit. These equations are obtained by setting the algebraic sum of the
voltage drops around each of the  loops or meshes equal to zero.

3.2 Analysis with Nodal Equations
In writing nodal equations, we perform the following steps:

1.For a circuit containing N nodes, we choose one of these as a reference node assumed to be zero
volts or ground.

2. At each nonreference node we assign node voltages  where each of these volt-
ages is measured with respect to the chosen reference node, i.e., ground.

3. If the circuit does not contain any voltage sources between nodes, we apply KCL and write a
nodal equation for each of the node voltages .

T

N number of nodes in a circuit= N 1–

N 1–

L M number of loops or meshes= = B number of branches= N number of nodes=

L M B N– 1+= =

L M B N– 1+= =

v1 v2  vn 1–  

v1 v2  vn 1–  
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4. If the circuit contains a voltage source between two nodes, say nodes j and k denoted as node
variables  and , we replace the voltage source with a short circuit thus forming a com-

bined node and we write a nodal equation for this common node in terms of both  and ;

then we relate the voltage source to the node variables  and .

Example 3.1  
Write nodal equations for the circuit shown in Figure 3.1, and solve for the unknowns of these
equations using matrix theory, Cramer’s rule, or the substitution method. Verify your answers
with Excel® or MATLAB®. Please refer to Appendix A for discussion and examples.

Figure 3.1. Circuit for Example 3.1

Solution:

We observe that there are 4 nodes and we denote these as , , , and  (for ground) as shown
in Figure 3.2.

Figure 3.2. Circuit for Example 3.1

For convenience, we have denoted the currents with a subscript that corresponds to the resistor
value through which it flows through; thus, the current that flows through the  resistor is
denoted as , the current through the  resistor is denoted as , and so on. We will follow
this practice in the subsequent examples.

For the circuit of Figure 3.2, we need  nodal equations. Let us choose node G
(ground) as our reference node, and we assign voltages , and  at nodes , , and 
respectively; these are to be measured with respect to the ground node G. Now, application of
KCL at node  yields

vj vk

vj vk

vj vk

12 A 24 A18 A

4 

8  10 

6 

G

12 A 24 A18 A

G

  

v1 v2 v3

i4

i8 i10
i64  6 

10 8 

4 
i4 8  i8

N 1– 4 1– 3= =

v1 v2 v3
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or
(3.1)

where  is the current flowing from left to right. Expressing (3.1) in terms of the node voltages,
we obtain

or

or
(3.2)

Next, application of KCL at node  yields

or
(3.3)

where  is the current flowing from right to left * and  is the current that flows from left to
right.

Expressing (3.3) in terms of node voltages, we obtain

or

or

*  The direction of the current through the 8 W resistor from left to right in writing the nodal equation at Node 1, and from
right to left in writing the nodal equation at Node 2, should not be confusing. Remember that we wrote independent node
equations at independent nodes and, therefore, any assumptions made in writing the first equation need not be held in
writing the second since the latter is independent of the first. Of course, we could have assumed that the current through
the 8 W resistor flows in the same direction in both nodal equations. It is advantageous, however, to assign a (+) sign to
all currents leaving the node in which we apply KCL. The advantage is that we can check, or even write the node equa-
tions by inspection. With reference to the above circuit and equation (3.1) for example, since G = 1/R, we denote the
coefficients of v1 (1/4 and 1/8 siemens) as self conductances and the coefficient of v2 (1/8) as mutual conductance.
Likewise, in equation (3.3) the coefficients of v2 (1/8 and 1/10 siemens) are the self conductances and the coefficients of
v1 (1/8) and v3 (1/10) are the mutual conductances. Therefore, we can write a nodal equation at a particular node
by inspection, that is, we assign plus (+) values to self conductances and minus () to mutual conductances.

i4 i8 12–+ 0=

i4 i8+ 12=

i8

v1
4
-----

v1 v2–

8
----------------+ 12=

1
4
--- 1

8
---+ 

  v1
1
8
---v2– 12=

3v1 v2– 96=

i8 i10 18+ + 0=

i8 i10+ 18–=

i8 i10

v2 v1–

8
----------------

v2 v3–

10
----------------+ 18–=

1
8
---v1– 1

8
--- 1

10
------+ 

  v2
1

10
------v3–+ 18–=
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(3.4)

Similarly, application of KCL at node  yields

or

where  is the current flowing from right to left. Then, in terms of node voltages,

(3.5)

or

or
(3.6)

Equations (3.2), (3.4), and (3.6) constitute a set of three simultaneous equations with three
unknowns. We write them in matrix form as follows: 

(3.7)

We can use Cramer’s rule or Gauss’s elimination method as discussed in Appendix A, to solve
(3.7) for the unknowns. Simultaneous solution yields , , and

. With these values we can determine the current in each resistor, and the power
absorbed or delivered by each device.

Check with MATLAB®:

G=[3  1  0; 5  9  4; 0  3  8]; I=[96  720  720]'; V=G\I;...
fprintf(' \n'); fprintf('v1 = %5.2f volts \t', V(1)); ...
fprintf('v2 = %5.2f volts \t', V(2)); fprintf('v3 = %5.2f volts', V(3)); fprintf(' \n')

v1 = 20.57 volts v2 = -34.29 volts v3 = 77.14 volts

5v1 9v2– 4v3+ 720=

i10 i6 24–+ 0=

i10 i6+ 24=

i10

v3 v2–

10
----------------

v3
6
-----+ 24=

1
10
------v2– 1

10
------ 1

6
---+ 

  v3+ 24=

3v2– 8v3+ 720=

3 1– 0
5 9– 4
0  3–   8

G

v1

v2

v3

V

96
720
720

I

=

          

v1 20.57 V= v2 34.29–  V=

v3 77.14 V=
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Check with Excel®:

The spreadsheet of Figure 3.3 shows the solution of the equations of (3.7). The procedure is dis-
cussed in Appendix A.

Figure 3.3. Spreadsheet for the solution of (3.7)

Example 3.2  
For the circuit of Figure 3.4, write nodal equations in matrix form and solve for the unknowns
using matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with
Excel or MATLAB. Please refer to Appendix A for procedures and examples. Then construct a
table showing the voltages across, the currents through and the power absorbed or delivered by
each device. Verify your answer with a Simulink / SimPowerSystems model.

Figure 3.4. Circuit for Example 3.2

Solution:

We observe that there are 4 nodes and we denote these as as , , , and  (for ground) as
shown in Figure 3.5. We assign voltages , and  at nodes , , and  respectively; these
are to be measured with respect to the ground node . We observe that  is a known voltage,
that is,  and thus our first equation is

                  (3.8)

12 V 24 A18 A
4  6 

8 

+

+



10 V

G
v1 v2 v3

G v1

v1 12 V=

v1 12=
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Figure 3.5. Circuit for Example 3.2 with assigned nodes and voltages

Next, we move to node  where we observe that there are three currents flowing out of this
node, one to the left, one to the right, and one down. Therefore, our next nodal equation will
contain three terms. We have no difficulty writing the term for the current flowing from node 
to node , and for the 18 A source; however, we encounter a problem with the third term
because we cannot express it as term representing the current flowing from node  to node . To
work around this problem, we temporarily remove the 10 V voltage source and we replace it with
a “short” thereby creating a combined node (or generalized node or supernode as some textbooks call
it), and the circuit now appears as shown in Figure 3.6.

Figure 3.6. Circuit for Example 3.2 with a combined node

Now, application of KCL at this combined node yields the equation

or

or
* (3.9)

* The combined node technique allows us to combine two nodal equations into one but requires that we use the proper node

designations. In this example, to retain the designation of node 2, we express the current  as . Likewise, at node 3,

we express the current  as .
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or

or
(3.10)

To obtain the third equation, we reinsert the 10 V source between nodes  and . Then,

(3.11)

In matrix form, equations (3.8), (3.10), and (3.11) are 

(3.12)

Simultaneous solution yields , , and . From these we can find
the current through each device and the power absorbed or delivered by each device.

Check with MATLAB:

G=[1  0  0; 3  3  4; 0  1  1]; I=[12  144  10]'; V=G\I;...
fprintf(' \n'); fprintf('v1 = %5.2f volts \t', V(1)); ...
fprintf('v2 = %5.2f volts \t', V(2)); fprintf('v3 = %5.2f volts', V(3)); fprintf(' \n')

v1 = 12.00 volts   v2 = 20.00 volts   v3 = 30.00 volts

Check with Excel:

Figure 3.7. Spreadsheet for the solution of (3.12)

Table 3.1 shows that the power delivered is equal to the power absorbed.

1
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Figure 3.8. Simulink / SimPower Systems model for Example 3.2

3.3 Analysis with Mesh or Loop Equations
In writing mesh or loop equations, we follow these steps:

1. For a circuit containing  meshes (or loops), we assign a mesh or loop cur-
rent  for each mesh or loop.

2. If the circuit does not contain any current sources, we apply KVL around each mesh or loop.

3. If the circuit contains a current source between two meshes or loops, say meshes or loops j and
k denoted as mesh variables  and , we replace the current source with an open circuit thus
forming a common mesh or loop, and we write a mesh or loop equation for this common mesh

TABLE 3.1  Table for Example 3.2

Power (watts)
Device Voltage (volts) Current (amps) Delivered Absorbed

12 V Source 12 2 24

10 V Source 10 19 190

18 A Source 20 18 360

24 A Source 30 24 720

4 W Resistor 12 3   36

6 W Resistor 30 5 150

8 W Resistor 8 1    8

Total 744 744 

R2=8
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or loop in terms of both  and . Then, we relate the current source to the mesh or loop vari-

ables  and .

Example 3.3  
For the circuit of Figure 3.9, write mesh equations in matrix form and solve for the unknowns
using matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with
Excel or MATLAB. Please refer to Appendix A for procedures and examples. Then construct a
table showing the voltages across, the currents through, and the power absorbed or delivered by
each device.

Figure 3.9. Circuit for Example 3.3

Solution:

For this circuit we need  mesh or loop equations and we
arbitrarily assign currents , , and  all in a clockwise direction as shown in Figure 3.10.

Figure 3.10. Circuit for Example 3.3

Applying KVL around each mesh we obtain:

Mesh #1: Starting with the left side of the  resistor, going clockwise, and observing the pas-
sive sign convention, we obtain the equation for this mesh as

or

ij ik
ij ik
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+
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+
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4  6  12 

M L B N– 1+ 9 7– 1+ 3= = = =
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i1 i2

i3

2 
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(3.13)

Mesh #2: Starting with the lower end of the  resistor, going clockwise, and observing the
passive sign convention, we obtain the equation

or 
(3.14)

Mesh #3: Starting with the lower end of the  resistor, going clockwise, and observing the
passive sign convention, we obtain:

 
or

(3.15)

Note: For this example, we assigned all three currents with the same direction, i.e., clockwise.
This, of course, was not mandatory; we could have assigned any direction in any mesh. It is
advantageous, however, to assign the same direction to all currents. The advantage here is that
we can check, or even write the mesh equations by inspection. This is best explained with the fol-
lowing observations:

1. With reference to the circuit of Figure 3.10 and equation (3.13), we see that current  flows
through the  and  resistors. We call these the self resistances of the first mesh. Their
sum, i.e.,  is the coefficient of current  in that equation. We observe that current

 also flows through the  resistor. We call this resistance the mutual resistance between the
first and the second mesh. Since  enters the lower end of the  resistor, and in writing
equation (3.13) we have assumed that the upper end of this resistor has the plus (+) polarity,
then in accordance with the passive sign convention, the voltage drop due to current  is 
and this is the second term on the left side of (3.13).

2. In Mesh 2, the self resistances are the , , and  resistors whose sum, 18, is the coef-
ficient of  in equation (3.14). The  and  resistors are also the mutual resistances
between the first and second, and the second and the third meshes respectively. Accordingly,
the voltage drops due to the mutual resistances in the second equation have a minus () sign,
i.e,  and .

3. The signs of the coefficients of  and  in (3.15) are similarly related to the self and mutual
resistances in the third mesh.

6i1 4i2– 12=

4 

4 i2 i1–  36 8i2+ + 6 i2 i3– + 0=

4i1– 18i2 6i3–+ 36–=
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Simplifying and rearranging (3.13), (3.14) and (3.15) we obtain:

(3.16)

(3.17)

(3.18)
and in matrix form

(3.19)

Simultaneous solution yields , , and  where the negative
values for  and  indicate that the actual direction for these currents is counterclockwise.

Check with MATLAB:

R=[3  2  0; 2  9  3; 0  3  14]; V=[6  18  12]'; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', I(1)); ...
fprintf('i2 = %5.2f amps \t', I(2)); fprintf('i3 = %5.2f amps', I(3)); fprintf(' \n')

i1 = 0.43 amps   i2 = -2.36 amps   i3 = -1.36 amps

Excel produces the same answers as shown in Figure 3.11.

 
Figure 3.11. Spreadsheet for the solution of (3.19)

Table 3.2 shows that the power delivered by the voltage sources is equal to the power absorbed
by the resistors.    
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Example 3.4  
For the circuit of Figure 3.12, write loop equations in matrix form, and solve for the unknowns
using matrix theory, Cramer’s rule, or Gauss’s elimination method. Verify your answers with Excel
or MATLAB. Please refer to Appendix A for procedures and examples. Then, construct a table
showing the voltages across, the currents through and the power absorbed or delivered by each
device.

Figure 3.12. Circuit for Example 3.4

Solution:

This is the same circuit as that of the previous example where we found that we need 3 mesh or
loop equations. We choose our loops as shown in Figure 3.13, and we assign currents , , and

, all in a clockwise direction.

TABLE 3.2  Table for Example 3.3

Power (watts)

Device Voltage (volts) Current (amps) Delivered Absorbed

12 V Source 12.000 0.427 5.124

36 V Source 36.000 2.359 84.924

24 V Source 24.000 1.363 32.712

2 W Resistor 0.854 0.427 0.365

4 W Resistor 11.144 2.786 30.964

8 W Resistor 18.874 2.359 44.530

6 W Resistor 5.976 0.996 5.952

10 W Resistor 13.627 1.363 18.570

12 W Resistor 16.352 1.363 22.288

Total 122.760 122.669
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36 V 8 

+


+
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Figure 3.13. Circuit for Example 3.4 with assigned loops

Applying of KVL around each loop, we obtain:

Loop 1 (abgh):Starting with the left side of the  resistor and complying with the passive sign
convention, we obtain:

or

or
(3.20)

Loop 2 (abcfgh):As before, starting with the left side of the  resistor and complying with the
passive sign convention, we obtain:

or

or
(3.21)

Loop 3 (abcdefgh): Likewise, starting with the left side of the  resistor and complying with
the passive sign convention, we obtain:

or
or

(3.22)

and in matrix form
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(3.23)

Solving with MATLAB we obtain:

R=[3  1  1; 1  8  5; 1  5  16]; V=[6  12  24]'; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', I(1)); ...
fprintf('i2 = %5.2f amps \t', I(2)); fprintf('i3 = %5.2f amps', I(3)); fprintf(' \n')

i1 = 2.79 amps   i2 = -1.00 amps   i3 = -1.36 amps

Excel produces the same answers.

Table 3.3 shows that the power delivered by the voltage sources is equal to the power absorbed by
the resistors and the values are approximately the same as those of the previous example.

Example 3.5  
For the circuit of figure 3.14, write mesh equations in matrix form and solve for the unknowns
using matrix theory, Cramer’s rule, or the substitution method. Verify your answers with Excel or
MATLAB. Please refer to Appendix A for procedures and examples.

TABLE 3.3  Table for Example 3.4

Power (watts)

Device Voltage (volts) Current (amps) Delivered Absorbed

12 V Source 12.000 0.427 5.124

36 V Source 36.000 2.359 84.924

24 V Source 24.000 1.363 32.712

2 W Resistor 0.854 0.427 0.365

4 W Resistor 11.146 2.786 31.053

8 W Resistor 18.872 2.359 44.519

6 W Resistor 5.982 0.997 5.964

10 W Resistor 13.627 1.363 18.574

12 W Resistor 16.352 1.363 22.283

Total 122.760 122.758

3 1 1
1 8 5
1 5 16

R
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Figure 3.14. Circuit for Example 3.5

Solution:

This is the same circuit as those of the two previous examples except that the 24 V voltage
source has been replaced by a 5 A current source. As in Examples 3.3 and 3.4, we need

 mesh or loop equations, and we assign currents , , and
 all in a clockwise direction as shown in Figure 3.15.

Figure 3.15. Circuit for Example 3.5 with assigned currents

For Meshes 1 and 2, the equations are the same as in Example 3.3 where we found them to be

or
(3.24)

and

or
(3.25)

For Mesh 3, we observe that the current  is just the current of the 5 A current source and thus
our third equation is simply

(3.26)
and in matrix form,
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(3.27)

Solving with MATLAB we obtain:

R=[3  2  0; 2  9  3; 0  0  1]; V=[6  18  5]'; I=R\V;...
fprintf(' \n'); fprintf('i1 = %5.2f amps \t', I(1)); ...
fprintf('i2 = %5.2f amps \t', I(2)); fprintf('i3 = %5.2f amps', I(3)); fprintf(' \n')

i1 = 2.09 amps   i2 = 0.13 amps   i3 =  5.00 amps

Example 3.6  
Write mesh equations for the circuit of Figure 3.16 and solve for the unknowns using MATLAB
or Excel. Then, compute the voltage drop across the  source. Verify your answer with a Simu-
link / SimPowerSystems model.

Figure 3.16. Circuit for Example 3.6
Solution:

Here, we would be tempted to assign mesh currents as shown in Figure 3.17. However, we will
encounter a problem as explained below.

The currents  and  for Meshes 3 and 4 respectively present no problem; but for Meshes 1 and
2 we cannot write mesh equations for the currents  and  as shown because we cannot write a
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term which represents the voltage across the  current source. To work around this problem
we temporarily remove (open) the  current source and we form a “combined mesh” (or gener-
alized mesh or supermesh as some textbooks call it) and the current that flows around this com-
bined mesh is as shown in Figure 3.18.

Figure 3.17. Circuit for Example 3.6 with erroneous current assignments

Figure 3.18. Circuit for Example 3.6 with correct current assignments

Now, we apply KVL around this combined mesh. We begin at the left end of the  resistor,
and we express the voltage drop across this resistor as  since in Mesh 1 the current is essen-
tially .
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Continuing, we observe that there is no voltage drop across the  resistor since no current
flows through it. The current now enters Mesh 2 where we encounter the 36 V drop due to the
voltage source there, and the voltage drops across the  and  resistors are  and 
respectively since in Mesh 2 the current now is really . The voltage drops across the  and

 resistors are expressed as in the previous examples and thus our first mesh equation is

or

or
(3.28)

Now, we reinsert the 5 A current source between Meshes 1 and 2 and we obtain our second equa-
tion as

(3.29)
For meshes 3 and 4, the equations are

or 
(3.30)

and

or 
(3.31)

and in matrix form

(3.32)

We find the solution of (3.32) with the following MATLAB script:

R=[6  15  5  8; 1 1  0  0; 5  0  20  6; 0  4  3  12];  V=[12  5  6  6]'; I=R\V;...
fprintf(' \n');...
fprintf('i1 = %5.4f amps \t',I(1)); fprintf('i2 = %5.4f amps \t',I(2));...
fprintf('i3 = %5.4f amps \t',I(3)); fprintf('i4 = %5.4f amps',I(4)); fprintf(' \n')

i1=3.3975 amps  i2=-1.6025 amps  i3=1.2315 amps  i4=0.2737 amps 
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Now, we can find the voltage drop across the  current source by application of KVL around
Mesh 1 using the following relation:

This yields

We can verify this value by application of KVL around Mesh 2 where beginning with the lower
end of the  resistor and going counterclockwise we obtain

With these values, we can also compute the power delivered or absorbed by each of the voltage
sources and the current source.

Figure 3.19. Simulink / SimPower Systems model for Example 3.6
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3.4 Transformation between Voltage and Current Sources
In the previous chapter we stated that a voltage source maintains a constant voltage between its
terminals regardless of the current that flows through it. This statement applies to an ideal voltage
source which, of course, does not exist; for instance, no voltage source can supply infinite current
to a short circuit. We also stated that a current source maintains a constant current regardless of
the terminal voltage. This statement applies to an ideal current source which also does not exist;
for instance, no current source can supply infinite voltage when its terminals are opencircuited.

A practical voltage source has an internal resistance which, to be accounted for, it is represented
with an external resistance  in series with the voltage source  as shown in Figure 3.20 (a).
Likewise a practical current source has an internal conductance which is represented as a resistance

 (or conductance ) in parallel with the current source  as shown in Figure 3.20 (b).

Figure 3.20. Practical voltage and current sources

In Figure 3.20 (a), the voltage of the source will always be  but the terminal voltage  will be

 if a load is connected at points  and . Likewise, in Figure 3.20 (b) the current of

the source will always be  but the terminal current  will be  if a load is con-

nected at points  and .

Now, we will show that the networks of Figures 3.20 (a) and 3.20 (b) can be made equivalent to
each other.

In the networks of Figures 3.21 (a) and 3.21 (b), the load resistor  is the same in both.

Figure 3.21. Equivalent sources
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(3.33)

and
(3.34)

From the circuit of Figure 3.21 (b), 

(3.35)

and

(3.36)

Since we want  to be the same in both circuits 3.21 (a) and 3.21 (b), from (3.33) and (3.35)
we must have: 

(3.37)

Likewise, we want  to be the same in both circuits 3.21 (a) and 3.21 (b). Then, from (3.34)
and (3.36) we obtain:

(3.38)

and for any , from (3.37) and (3.38)

(3.39)

and
(3.40)

Therefore, a voltage source  in series with a resistance  can be transformed to a current
source  whose value is equal to , in parallel with a resistance  whose value is the same
as . 

Likewise, a current source  in parallel with a resistance  can be transformed to a voltage
source  whose value is equal to , in series with a resistance whose value is the same as

.

The voltagetocurrent source or currenttovoltage source transformation is not limited to a
single resistance load; it applies to any load no matter how complex.
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Example 3.7  

Find the current  through the  resistor in the circuit of Figure 3.22.

Figure 3.22. Circuit for Example 3.7
Solution:

This problem can be solved either by nodal or by mesh analysis; however, we will transform the
voltage sources to current sources and we will replace the resistances with conductances except
the  resistor. We will treat the  resistor as the load of this circuit so that we can com-
pute the current  through it. Then, the circuit becomes as shown in Figure 3.23.

Figure 3.23. Circuit for Example 3.7 with voltage sources transformed to current sources 

Combination of the two current sources and their conductances yields the circuit shown in Figure
3.24.

Figure 3.24. Circuit for Example 3.7 after combinations of current sources and conductances

Converting the  conductance to a resistance and performing currenttovoltage source
transformation, we obtain the circuit of Figure 3.25.

Figure 3.25. Circuit for Example 3.7 in its simplest form
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Thevenin’s Theorem

Thus, the current through the  resistor is

3.5 Thevenin’s Theorem

This theorem is perhaps the greatest time saver in circuit analysis, especially in electronic* cir-
cuits. It states that we can replace a two terminal network by a voltage source  in series with
a resistance  as shown in Figure 3.26.

Figure 3.26. Replacement of a network by its Thevenin’s equivalent

The network of Figure 3.26 (b) will be equivalent to the network of Figure 3.26 (a) if the load is
removed in which case both networks will have the same open circuit voltages  and conse-
quently,

Therefore,
(3.41)

The Thevenin resistance  represents the equivalent resistance of the network being replaced
by the Thevenin equivalent, and it is found from the relation

(3.42)

where  stands for shortcircuit current.

* For an introduction to electronic circuits, please refer to Electronic Devices and Amplifier Circuits with MAT-
LAB Applications, ISBN 978-1-934404-13-3.
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If the network to be replaced by a Thevenin equivalent contains independent sources only, we
can find the Thevenin resistance  by first shorting all (independent) voltage sources, opening
all (independent) current sources, and calculating the resistance looking into the direction that is
opposite to the load when it has been disconnected from the rest of the circuit at terminals  and

.

Example 3.8  

Use Thevenin’s theorem to find  and  for the circuit of Figure 3.27.

Figure 3.27. Circuit for Example 3.8
Solution:

We will apply Thevenin’s theorem twice; first at terminals x and y and then at  and  as shown
in Figure 3.28.

Figure 3.28. First step in finding the Thevenin equivalent of the circuit of Example 3.8

Breaking the circuit at , we are left with the circuit shown in Figure 3.29.

Figure 3.29. Second step in finding the Thevenin equivalent of the circuit of Example 3.8

Applying Thevenin’s theorem at  and  and using the voltage division expression, we obtain
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Thevenin’s Theorem

(3.43)

and thus the equivalent circuit to the left of points  and  is as shown in Figure 3.30.

Figure 3.30. First Thevenin equivalent for the circuit of Example 3.8

Next, we attach the remaining part of the given circuit to the Thevenin equivalent of Figure
3.30, and the new circuit now is as shown in Figure 3.31.

Figure 3.31. Circuit for Example 3.8 with first Thevenin equivalent

Now, we apply Thevenin’s theorem at points  and  and we obtain the circuit of Figure 3.32.

 
Figure 3.32. Applying Thevenin’s theorem at points  and  for the circuit for Example 3.8
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This Thevenin equivalent with the load resistor attached to it, is shown in Figure 3.33.

Figure 3.33. Entire circuit of Example 3.8 simplified by Thevenin’s theorem

The voltage  is found by application of the voltage division expression, and the current
 by Ohm’s law as shown below.

It is imperative to remember that when we compute the Thevenin equivalent resistance, we must
always look towards the network portion which remains after disconnecting the load at the  and

 terminals. This is illustrated with the two examples that follow.

Let us consider the network of Figure 3.34 (a).

Figure 3.34. Computation of the Thevenin equivalent resistance when the load is to the right

This network contains no dependent sources; therefore, we can find the Thevenin equivalent by
shorting the  voltage source, and computing the equivalent resistance looking to the left of
points  and  as indicated in Figure 3.34 (b). Thus, 
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Thevenin’s Theorem

Now, let us consider the network of Figure 3.35 (a).

Figure 3.35. Computation of the Thevenin equivalent resistance when the load is to the left

This network contains no dependent sources; therefore, we can find the Thevenin equivalent by
shorting the  voltage source, and computing the equivalent resistance looking to the right
of points  and  as indicated in Figure 3.35 (b). Thus, 

We observe that, although the resistors in the networks of Figures 3.34 (b) and 3.35 (b) have the
same values, the Thevenin resistance is different since it depends on the direction in which we
look into (left or right).

Example 3.9  

Use Thevenin’s theorem to find  and  for the circuit of Figure 3.36.

Figure 3.36. Circuit for Example 3.9
Solution:

This is the same circuit as the previous example except that a voltage source of  has been
placed in series with the  resistor. By application of Thevenin’s theorem at points  and  as
before, and connecting the rest of the circuit, we obtain the circuit of Figure 3.37.
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Figure 3.37. Circuit for Example 3.9 with first Thevenin equivalent

Next, disconnecting the load resistor and applying Thevenin’s theorem at points  and  we
obtain the circuit of Figure 3.38.

Figure 3.38. Application of Thevenin’s theorem at points  and  for the circuit for Example 3.9

There is no current flow in the  resistor; thus, the Thevenin voltage across the  and 
points is the algebraic sum of the voltage drop across the  resistor and the  source, i.e.,

and the Thevenin resistance is the same as in the previous example, that is,

 

Finally, connecting the load  as shown in Figure 3.39, we compute  and  as
follows:

Figure 3.39. Final form of Thevenin equivalent with load connected for circuit of Example 3.9
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Thevenin’s Theorem

Example 3.10  

For the circuit of Figure 3.40, use Thevenin’s theorem to find  and .

Figure 3.40. Circuit for Example 3.10
Solution:

This circuit contains a dependent voltage source whose value is twenty times the current
through the  resistor. We will apply Thevenin’s theorem at points a and b as shown in Figure
3.39.

Figure 3.41. Application of Thevenin’s theorem for Example 3.10

In the circuit of Figure 3.41, we cannot short the dependent source; therefore, we will find the
Thevenin resistance from the relation

(3.44)

To find the open circuit voltage , we disconnect the load resistor and our circuit now
is as shown in Figure 3.42. 
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Figure 3.42. Circuit for finding  of Example 3.10

We will use mesh analysis to find  which is the voltage across the  resistor. We chose
mesh analysis since we only need three mesh equations whereas we would need five equations had
we chosen nodal analysis. Please refer to Exercise 16 at the end of this chapter for a solution
requiring nodal analysis.

Observing that , we write the three mesh equations for this network as

(3.45)

and after simplification and combination of like terms, we write them in matrix form as

(3.46)

Using the spreadsheet of Figure 3.43, we find that 

Figure 3.43. Spreadsheet for Example 3.10
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Thevenin’s Theorem

Next, to find the Thevenin resistance , we must first compute the short circuit current .
Accordingly, we place a short across points a and b and the circuit now is as shown in Figure 3.44
and we can find the short circuit current  from the circuit of Figure 3.45 where 

Figure 3.44. Circuit for finding  in Example 3.10

Figure 3.45. Mesh equations for finding  in Example 3.10

The mesh equations for the circuit of Figure 3.45 are

(3.47)

and after simplification and combination of like terms, we write them in matrix form as

(3.48)
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We will solve these using MATLAB as follows:

R=[3  2  0  0; 3  12  5  0; 10  15  7  2; 0  0  4  11]; V=[4  0  0  0]'; I=R\V;
fprintf(' \n');...
fprintf('i1 = %3.4f A \t',I(1,1)); fprintf('i2 = %3.4f A \t',I(2,1));...
fprintf('i3 = %3.4f A \t',I(3,1)); fprintf('i4 = %3.4f A \t',I(4,1));...
fprintf(' \n');...fprintf(' \n')

i1 = 0.0173 A   i2 = -1.9741 A   i3 = -4.7482 A   i4 = -1.7266 A  

Therefore, 

and

The Thevenin equivalent is as shown in Figure 3.46.

 
Figure 3.46. Final form of Thevenin’s equivalent for the circuit of Example 3.10

Finally, with the load  attached to points a and b, the circuit is as shown in Figure 3.47.

Figure 3.47. Circuit for finding  and  in Example 3.10
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Norton’s Theorem

3.6 Norton’s Theorem
This theorem is analogous to Thevenin’s theorem and states that we can replace everything,
except the load, in a circuit by an equivalent circuit containing only an independent current
source which we will denote as  in parallel with a resistance which we will denote as , as
shown in Figure 3.48.

 
Figure 3.48. Replacement of a network by its Norton equivalent

The current source  has the value of the short circuit current which would flow if a short were
connected between the terminals x and y, where the Norton equivalent is inserted, and the resis-
tance  is found from the relation 

(3.49)

where  is the open circuit voltage which appears across the open terminals x and y.

Like Thevenin’s, Norton’s theorem is most useful when a series of computations involves chang-
ing the load of a network while the rest of the circuit remains unchanged. 

Comparing the Thevenin’s and Norton’s equivalent circuits, we see that one can be derived from
the other by replacing the Thevenin voltage and its series resistance with the Norton current
source and its parallel resistance. Therefore, there is no need to perform separate computations
for each of these equivalents; once we know Thevenin’s equivalent we can easily draw the Nor-
ton equivalent and vice versa.

Example 3.11  
Replace the network shown in Figure 3.49 by its Thevenin and Norton equivalents.

Figure 3.49. Network for Example 3.11
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Solution:

We observe that no current flows through the  resistor; Therefore,  and the dependent
current source is zero, i.e., a short circuit. Thus,

 
and also

 

This means that the given network is some mathematical model representing a resistance, but we
cannot find this resistance from the expression

since this results in the indeterminate form . In this type of situations, we connect an external
source (voltage or current) across the terminals x and y. For this example, we arbitrarily choose to
connect a 1 volt source as shown in Figure 3.50.

Figure 3.50. Network for Example 3.11 with an external voltage source connected to it.

In the circuit of Figure 3.50, the  source represents the open circuit voltage  and the cur-
rent i represents the short circuit current . Therefore, the Thevenin (or Norton) resistance
will be found from the expression

(3.50)

Now, we can find i from the circuit of Figure 3.51 by application of KCL at Node .

Figure 3.51. Circuit for finding  in Example 3.11
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Maximum Power Transfer Theorem

(3.51)

where
 (3.52)

Simultaneous solution of (3.51) and (3.52) yields  and . Then, from
(3.50),

and the Thevenin and Norton equivalents are shown in Figure 3.52.

Figure 3.52. Thevenin’s and Norton’s equivalents for Example 3.11

3.7 Maximum Power Transfer Theorem

Consider the circuit shown in Figure 3.53. We want to find the value of  that will absorb
maximum power from the voltage source  whose internal resistance is .

Figure 3.53. Circuit for computation of maximum power delivered to the load 
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To find the value of  which will make  maximum, we differentiate (3.53) with
respect to . Recalling that

and differentiating (3.53), we obtain

(3.54)

and (3.54) will be zero if the numerator is set equal to zero, that is, if

or

or    
(3.55)

Therefore, we conclude that a voltage source with internal series resistance  or a current
source with internal parallel resistance  delivers maximum power to a load  when

 or . For example, in the circuits of Figure 3.54, the voltage source 

and  cur rent  source   de l ive r  max imum power  to  the  ad ju s tab le*  load  when

Figure 3.54. Circuits where  is set to receive maximum power

We can use Excel or MATLAB to see that the load receives maximum power when it is set to the
same value as that of the resistance of the source. Figure 3.55 shows a spreadsheet with various
values of an adjustable resistive load. We observe that the power is maximum when

.

* An adjustable resistor is usually denoted with an arrow as shown in Figure 3.54.
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Linearity

Figure 3.55. Spreadsheet to illustrate maximum power transfer to a resistive load

The condition of maximum power transfer is also referred to as resistance matching or impedance
matching. We will define the term “impedance” in Chapter 6.

The maximum power transfer theorem is of great importance in electronics and communications
applications where it is desirable to receive maximum power from a given circuit and efficiency is
not an important consideration. On the other hand, in power systems, this application is of no
use since the intent is to supply a large amount of power to a given load by making the internal
resistance  as small as possible.

3.8 Linearity
A linear passive element is one in which there is a linear voltagecurrent relationship such as 

(3.56)

Definition 3.1 

A linear dependent source is a dependent voltage or current source whose output voltage or cur-
rent is proportional only to the first power of some voltage or current variable in the circuit or a
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linear combination (the sum or difference of such variables). For example,  is a lin-

ear relationship but  and  are nonlinear.

Definition 3.2 

A linear circuit is a circuit which is composed entirely of independent sources, linear dependent
sources and linear passive elements or a combination of these.

3.9 Superposition Principle
The principle of superposition states that the response (a desired voltage or current) in any branch
of a linear circuit having more than one independent source can be obtained as the sum of the
responses caused by each independent source acting alone with all other independent voltage
sources replaced by short circuits and all other independent current sources replaced by open cir-
cuits.

Note: Dependent sources (voltage or current) must not be superimposed since their values depend on
the voltage across or the current through some other branch of the circuit. Therefore, all
dependent sources must always be left intact in the circuit while superposition is applied.

Example 3.12  

In the circuit of Figure 3.56, compute  by application of the superposition principle.

Figure 3.56. Circuit for Example 3.12

Solution:

Let  represent the current due to the  source acting alone,  the current due to the
 source acting alone, and  the current due to the  source acting alone. Then, by the

principle of superposition,

First, to find  we short the  voltage source and open the  current source. The circuit
then reduces to that shown in Figure 3.57.
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Superposition Principle

Figure 3.57. Circuit for finding  in Example 3.12

Applying Thevenin’s theorem at points x and y of Figure 3.57, we obtain the circuit of Figure
3.58 and from it we obtain

Figure 3.58. Circuit for computing the Thevenin voltage to find  in Example 3.12

Next, we will use the circuit of Figure 3.59 to find the Thevenin resistance.

Figure 3.59. Circuit for computing the Thevenin resistance to find  in Example 3.12
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The current  is found from the circuit of Figure 3.60 below.

Figure 3.60. Circuit for computing  in Example 3.12

(3.57)

Next, the current  due to the  source acting alone is found from the circuit of Figure 3.61.

Figure 3.61. Circuit for finding  in Example 3.12

and after combination of the  and  parallel resistors to a single resistor, the circuit simpli-
fies to that shown in Figure 3.62.

Figure 3.62. Simplification of the circuit of Figure 3.61 to compute  for Example 3.12

From the circuit of Figure 3.62, we obtain

(3.58)
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Superposition Principle

Finally, to find , we short the voltage sources, and with the  current source acting alone
the circuit reduces to that shown in Figure 3.63.

Figure 3.63. Circuit for finding  in Example 3.12

Replacing the , , and  resistors, and  and   by single resistors, we obtain

and the circuit of Figure 3.63 reduces to that shown in Figure 3.64.

Figure 3.64. Simplification of the circuit of Figure 3.63 to compute  for Example 3.12

We will use the current division expression in the circuit of Figure 3.64 to find . Thus, 

(3.59)

Therefore, from (3.57), (3.58), and (3.59) we obtain

or
(3.60)

and this is the same value as that of Example 3.5.
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3.10 Circuits with NonLinear Devices
Most electronic circuits contain nonlinear devices such as diodes and transistors whose i  v
(currentvoltage) relationships are nonlinear. However, for small signals (voltages or currents)
these circuits can be represented by linear equivalent circuit models. A detailed discussion of
these is beyond the scope of this text; however we will see how operational amplifiers can be rep-
resented by equivalent linear circuits in the next chapter.

If a circuit contains only one nonlinear device, such as a diode, and all the other devices are lin-
ear, we can apply Thevenin’s theorem to reduce the circuit to a Thevenin equivalent in series
with the nonlinear element. Then, we can analyze the circuit using a graphical solution. The
procedure is illustrated with the following example.

Example 3.13  

For the circuit of Figure 3.65, the  characteristics of the diode  are shown in figure 3.66.
We wish to find the voltage  across the diode and the current  through this diode using a
graphical solution.

Figure 3.65. Circuit for Example 3.13

Figure 3.66. Diode iv characteristics

i v– D
vD iD

1 V

+
VTH

RTH

Diode; conducts current
only in the indicated direction

vD

iD

1 K 

vR

0.0

0.2

0.4

0.6
0.8

1.0

1.2

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

vD (volts)

i D
 (

m
illi

am
ps

)



Circuit Analysis I with MATLAB Computing and Simulink / SimPowerSystems Modeling 343
Copyright © Orchard Publications

Circuits with NonLinear Devices

Solution:

or

or
(3.61)

We observe that (3.61) is an equation of a straight line and the two points are obtained from it
by first letting , then, . We obtain the straight line shown in Figure 3.67 that is
plotted on the same graph as the given diode  characteristics.
          

Figure 3.67. Curves for determining voltage and current in a diode

The intersection of the nonlinear curve and the straight line yields the voltage and the current
of the diode where we find that  and .

Check:
Since this is a series circuit,  also. Therefore, the voltage drop  across the resis-
tor is . Then, by KVL
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RiD vD– 1+=

iD
1
R
----vD– 1

R
----+=

vD 0= iD 0=

i v–

Diode Voltage Diode Current
(Volts) (milliamps)

0.00 0.000

0.02 0.000

0.04 0.000

0.06 0.000

0.08 0.000

0.10 0.000

0.12 0.000

0.14 0.000

0.16 0.000

0.18 0.000

0.20 0.000

0.22 0.000

0.24 0.000

0.26 0.000

0.28 0.000

I-V Relationship for Circuit of
 Example 3.13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

VD (volts)

I D
 (

m
ill

ia
m

p
s)

ID=(1/R)VD+1/R
Diode

vD 0.665V = iD 0.335 mA=

iR 0.335 mA= vR

vR 1 k 0.335 mA 0.335 V= =

vR vD+ 0.335 0.665+ 1 V= =



Chapter 3  Nodal and Mesh Equations  Circuit Theorems

344 Circuit Analysis I with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

3.11 Efficiency

We have learned that the power absorbed by a resistor can be found from  and this
power is transformed into heat. In a long length of a conductive material, such as copper, this lost

power is known as  loss and thus the energy received by the load is equal to the energy trans-

mitted minus the  loss. Accordingly, we define efficiency  as

The efficiency  is normally expressed as a percentage. Thus,

(3.62)

Obviously, a good efficiency should be close to 

Example 3.14  
In a twostory industrial building, the total load on the first floor draws an average of 60 amperes
during peak activity, while the total load of the second floor draws 40 amperes at the same time.
The building receives its electric power from a  source. Assuming that the total resistance
of the cables (copper conductors) on the first floor is  and on the second floor is , com-
pute the efficiency of transmission.

Solution:

First, we draw a circuit that represents the electrical system of this building. This is shown in Fig-
ure 3.68.

Figure 3.68. Circuit for Example 3.14

pR i 2R=

i 2R

i 2R 

Efficiency  Output
Input

------------------ Output
Output Loss+
-------------------------------------= = =



% Efficiency %  Output
Input

------------------ 100 Output
Output Loss+
------------------------------------- 100= = =

100%

480 V
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+
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Regulation

Power  supplied by the source:

 (3.63)

Power loss between source and 1st floor load: 

(3.64)

Power loss between source and 2nd floor load: 

(3.65)

Total power loss:
(3.66)

Total power  received by 1st and 2nd floor loads:

 (3.67)

(3.68)

3.12 Regulation
The regulation is defined as the ratio of the change in load voltage when the load changes from
no load (NL) to full load (FL) divided by the full load. Thus, denoting the noload voltage as

 and the fullload voltage as , the regulation is defined as In other words,

The regulation is also expressed as a percentage. Thus,

(3.69)

Example 3.15  
Compute the regulation for the 1st floor load of the previous example.

pS

pS vS i1 i2+  480 60 40+  48 kilowatts= = =

ploss1  i1
2 0.5  0.5 +  60 2 1 3.6 kilowatts= = =

ploss2  i2
2 0.8  0.8 +  40 2 1.6 2.56 kilowatts= = =

ploss ploss1  ploss2  + 3.60 2.56+ 6.16 kilowatts= = =

pL

pL pS ploss– 48.00 6.16– 41.84 kilowatts= = =

% Efficiency %  Output
Input

------------------ 100 41.84
48.00
------------- 100 87.17 %= = = =

vNL vFL

Regulation
vNL vFL–

vFL
------------------------=

%Regulation
vNL vFL–

vFL
------------------------ 100=
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Solution:

The current drawn by 1st floor load is given as 60 A and the total resistance from the source to the
load as . Then, the total voltage drop in the conductors is . Therefore, the full
load voltage of the load is  and the percent regulation is

1  60 1 60 V=

vFL 480 60– 420 V= =

% Regulation
vNL vFL–

vFL
------------------------ 100 480 420–

420
------------------------ 100 14.3 %= = =
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Summary

3.13 Summary

 When using nodal analysis, for a circuit that contains  nodes, we must write  indepen-
dent nodal equations in order to completely describe that circuit. When the presence of volt-
age sources in a circuit seem to complicate the nodal analysis because we do not know the cur-
rent through those voltage sources, we create combined nodes as illustrated in Example 3.2.

 When using nodal analysis, for a circuit that contains  meshes or  loops,  branches, and
 nodes, we must write  independent loop or mesh equations in order to

completely describe that circuit. When the presence of current sources in a circuit seem to
complicate the mesh or loop analysis because we do not know the voltage across those current
sources, we create combined meshes as illustrated in Example 3.6.

 A practical voltage source has an internal resistance and it is represented by a voltage source
whose value is the value of the ideal voltage source in series with a resistance whose value is
the value of the internal resistance.

 A practical current source has an internal conductance and it is represented by a current
source whose value is the value of the ideal current source in parallel with a conductance
whose value is the value of the internal conductance.

 A practical voltage source  in series with a resistance  can be replaced by a current
source  whose value is  in parallel with a resistance  whose value is the same as 

 A practical current source  in parallel with a resistance  can be replaced by a voltage
source  whose value is equal to  in series with a resistance  whose value is the
same as 

 Thevenin’s theorem states that in a two terminal network we can be replace everything
except the load, by a voltage source denoted as  in series with a resistance denoted as

. The value of  represents the open circuit voltage where the circuit is isolated from
the load and  is the equivalent resistance of that part of the isolated circuit. If a given cir-
cuit contains independent voltage and independent current sources only, the value of 
can be found by first shorting all independent voltage sources, opening all independent cur-
rent sources, and calculating the resistance looking into the direction which is opposite to the
disconnected load. If the circuit contains dependent sources, the value of  must be com-
puted from the relation 

 Norton’s theorem states that in a two terminal network we can be replace everything except
the load, by a current source denoted as  in parallel with a resistance denoted as . The
value of  represents the short circuit current where the circuit is isolated from the load and

N N 1–

M L B
N L M B N– 1+= =

vS RS

iS vS iS RP RS

iS RP

vS iS RS RS

RP

vTH

RTH vTH

RTH

RTH

RTH

RTH vOC iSC=

iN RN

iN
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 is the equivalent resistance of that part of the isolated circuit. If the circuit contains inde-
pendent voltage and independent current sources only, the value of  can be found by first
shorting all independent voltage sources, opening all independent current sources, and calcu-
lating the resistance looking into the direction which is opposite to the disconnected load. If
the circuit contains dependent sources, the value of  must be computed from the relation

 The maximum power transfer theorem states that a voltage source with a series resistance 
or a current source with parallel resistance  delivers maximum power to a load  when

 or 

 Linearity implies that there is a linear voltagecurrent relationship.

 A linear circuit is composed entirely of independent voltage sources, independent current
sources, linear dependent sources, and linear passive devices such as resistors, inductors, and
capacitors.

 The principle of superposition states that the response (a desired voltage or current) in any
branch of a linear circuit having more than one independent source can be obtained as the
sum of the responses caused by each independent source acting alone with all other indepen-
dent voltage sources replaced by short circuits and all other independent current sources
replaced by open circuits.

 Efficiencyis defined as the ratio of output to input and thus it is never greater than unity. It is
normally expressed as a percentage.

 Regulation is defined as the ratio of  to  and ideally should be close to zero. It is
normally expressed as a percentage.

RN

RN

RN

RN vOC iSC=

RS

RS RLOAD

RLOAD RS= RLOAD RN=

vNL vFL– vFL
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Exercises

3.14 Exercises
Multiple Choice

1. The voltage across the  resistor in the circuit below is

A.

B.

C.

D.

E.

2. The current  in the circuit below is

A.

B.

C.

D.

E.

2 

6 V

16 V

8–  V

32 V

none of the above

8 A

6 V

2 
8 A

+



i

2–  A

5 A

3 A

4 A

none of the above

+


2 

+



2 

2 2 

4 V

10 V i
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3. The node voltages shown in the partial network below are relative to some reference node
which is not shown. The current  is

A.

B.

C.

D.

E.

4. The value of the current  for the circuit below is

A.

B.

C.

D.

E.

5. The value of the voltage  for the circuit below is

A.

B.

C.

i

4–  A

8 3  A

5–  A

6–  A

none of the above

+


3 

+



2 

2 

8 V
4 V

i
+



8 V

8 V

13 V6 V

6 V

12 V

i

3–  A

8–  A

9–  A

6 A

none of the above

+


6 

3 
8 A12 V

6 

3 
i

v

4 V

6 V

8 V
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Exercises

D.

E.

6. For the circuit below, the value of  is dimensionless. For that circuit, no solution is possible if
the value of  is

A.

B.

C.

D.

E.

7. For the network below, the Thevenin equivalent resistance  to the right of terminals a
and b is

A.

B.

C.

D.

E.

12 V

none of the above

2 A
2 

2 

+

+ 



+


v

vX

2vX

k
k

2

1



0

none of the above

2 A
4 

4 

+


+


v

kv

RTH

1

2

5

10

none of the above
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8. For the network below, the Thevenin equivalent voltage  across terminals a and b is

A.

B.

C.

D.

E.

9. For the network below, the Norton equivalent current source  and equivalent parallel resis-
tance  across terminals a and b are

A.

B.

C.

D.

E.

2 

3 

a

b

RTH

2 

2  2 

2 

4 

VTH

3 V–

2 V–

1 V

5 V

none of the above

+ 

2  2 A
2 V

2 

a

b

IN

RN

1 A 2 

1.5 A 25 

4 A 2.5 

0 A 5

none of the above
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Exercises

10. In applying the superposition principle to the circuit below, the current  due to the 
source acting alone is 

A.

B.

C.

D.

E.

Problems

1. Use nodal analysis to compute the voltage across the 18 A current source in the circuit below.
Answer: 

2 A
5 

a

b

5 

2 A

i 4 V

8 A

1–  A

4 A

2–  A

none of the above

8 A
2 

2 

4 V

+


i

2 

1.12 V

12 A 24 A18 A

+



10  1–

4  1– 6  1–

8  1–

4  1– 5  1–

v18 A
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2.  Use nodal analysis to compute the voltage  in the circuit below. Answer: 

3. Use nodal analysis to compute the current through the  resistor and the power supplied (or
absorbed) by the dependent source shown below. Answers: 

4.  Use mesh analysis to compute the voltage  below. Answer: 

v6  21.6 V

12 A 24 A18 A
4  6 

12  15 

+



+ 36 V

v6

6 
3.9 A 499.17 w––

12 A 24 A

4 

6 

12  15 

36 V

+



+


iX

5iX

i6

18 A

v36A 86.34 V

12 A

240 V

36 A
4  6 

8  12 
+



+ +
120 V

24 A

4  3 

v36A
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5. Use mesh analysis to compute the current through the  resistor, and the power supplied
(or absorbed) by the dependent source shown below. Answers: 

6.  Use mesh analysis to compute the voltage  below. Answer: 

7. Compute the power absorbed by the  resistor in the circuit below using any method.
Answer: 

8. Compute the power absorbed by the  resistor in the circuit below using any method.
Answer: 

i6

3.9 A 499.33 w––

12 A 24 A

4 

6 

12  15 

36 V

+



+


iX

5iX

i6

18 A

v10 0.5 V

12 V

4 

6 

12  15 

+

+
 +



24 V

10 
8 

v10iX

10iX

10 
1.32 w

12 V

6 
2 

+



+



24 V

10 
3 

+


36 V

20 
73.73 w
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9. For the circuit below:

a. To what value should the load resistor  should be adjusted to so that it  will absorb
maximum power? Answer: 

b. What would then the power absorbed by  be? Answer: 

10.  Replace the network shown below by its Norton equivalent.
Answers: 

 

11. Use the superposition principle to compute the voltage  in the circuit below.
Answer: 

12 V

2 

+

6 A

3 

20 

8 A

RLOAD

2.4 

RLOAD 135 w

12 A 18 A
4  6 

12  15 
+ 36 V

RLOAD

iN 0 RN 23.75 ==

iX4  5 

15 

5iX

a

b

v18A

1.12 V
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12.  Use the superposition principle to compute voltage  in the circuit below.
Answer: 

13. In the circuit below,  and  are adjustable voltage sources in the range  V,
and  and  represent their internal resistances.

The table below shows the results of several measurements. In Measurement 3 the load resis-
tance is adjusted to the same value as Measurement 1, and in Measurement 4 the load resis-
tance is adjusted to the same value as Measurement 2. For Measurements 5 and 6 the load
resistance is adjusted to . Make the necessary computations to fillin the blank cells of
this table. 

12 A 24 A18 A

+



10  1–

4  1– 6  1–

8  1–

4  1– 5  1–

v18 A

v6 

21.6 V

12 A 24 A18 A
4  6 

12  15 

+



+ 36 V

v6

vS1 vS2 50 V 50 –

RS1 RS2

+



+



1  1 

Resistive
Load

Adjustable

S2S1

vS2vS1

RS2RS1 iLOAD

vLOAD

+
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Answers: , , , 

14.  Compute the efficiency of the electrical system below. Answer: 

15. Compute the regulation for the 2st floor load of the electrical system below.
Answer: 

16. Write a set of nodal equations and then use MATLAB to compute  and  for the
circuit of Example 3.10, Page 329, which is repeated below for convenience.

Answers: 

Measurement Switch Switch 
 (V)  (V)  (A)

1 Closed Open 48 0 16

2 Open Closed 0 36 6

3 Closed Open 0 5

4 Open Closed 0 42

5 Closed Closed 15 18

6 Closed Closed 24 0

S1 S2 vS1 vS2 iLOAD

15 V– 7 A– 11 A 24 V–

76.6%

480 V

0.8 

+


0.5 

0.5 

1st Floor
Load

100 A

2nd Floor
Load

0.8 

80 A

vS
i2i1

36.4%

480 V

0.8 

+


0.5 

0.5 

1st Floor
Load

100 A

2nd Floor
Load

0.8 

80 A

VS i1
i2

iLOAD vLOAD

0.96 A 7.68 V––
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+ 

12 V

+


3  3 

5 

6  10 

7 

8 

RLOAD

+


4  vLOAD

iLOAD

iX

20iX
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3.15 Answers / Solutions to EndofChapter Exercises
Multiple Choice

1. E The current entering Node A is equal to the current leaving that node. Therefore, there is
no current through the  resistor and the voltage across it is zero.

2. C From the figure below, . Also,  and . Then,
 and .  Therefore,

.

3. A From the figure below we observe that the node voltage at A is  relative to the refer-
ence node which is not shown. Therefore, the node voltage at B is  relative
to the same reference node. The voltage across the resistor is  and
the direction of current through the  resistor is opposite to that shown since Node B is
at a higher potential than Node C. Thus 

2 

8 A

6 V

2 
8 A

+



8 A

8 A8 A

VAC 4 V= VAB VBC 2 V= = VAD 10 V=

VBD VAD VAB– 10 2– 8 V= = = VCD VBD VBC– 8 2– 6 V= = =

i 6 2 3 A= =

+


2 

+ 

2 

2 2 

4 V

10 V i

A B C

D

6 V
6 12+ 18 V=

VBC 18 6– 12 V= =

3 
i 12 3– 4 A–= =

+


3 

+ 

2 

2 

8 V
4 V

i

+ 8 V

8 V

13 V6 V

6 V

12 V

A

BC
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Answers / Solutions to EndofChapter Exercises

4. E We assign node voltages at Nodes A and B as shown below.

At Node A

and at Node B

These simplify to 

and

Multiplication of the last equation by 2 and addition with the first yields  and
thus .

5. E Application of KCL at Node A of the circuit below yields

or

Also by KVL

and by substitution

+


6 

3 
8 A12 V

6 

3 
i

A B

VA 12–

6
-------------------

VA
6

-------
VA VB–

3
---------------------+ + 0=

VB VA–

3
---------------------

VB
3

-------+ 8=

2
3
---VA

1
3
---VB– 2=

1
3
---– VA

2
3
---VB+ 8=

VB 18=

i 18 3– 6 A–= =

2 A
2 

2 

+

+ 



+


v

vX

2vX

A

v
2
---

v 2vX–

2
------------------+ 2=

v vX– 2=
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or

and thus

6. A Application of KCL at Node A of the circuit below yields

or

and this relation is meaningless if . Thus, this circuit has solutions only if .

7. B The two  resistors on the right are in series and the two  resistors on the left shown
in the figure below are in parallel.

Beginning on the right side and proceeding to the left we obtain , ,
, .

8. A Replacing the current source and its  parallel resistance with an equivalent voltage
source in series with a  resistance we obtain the network shown below.

vX 2vX vX–+ 2=

vX 1=

v vX 2vX+ 1 2 1+ 3 V= = =

2 A
4 

4 

+


+


v

kv

A

v
4
--- v kv–

4
---------------+ 2=

1
4
--- 2v kv–  2=

k 2= k 2

2  2 

2 

3 

a

b

RTH

2 

2  2 

2 

4 

2 2+ 4= 4 4 2=

2 2+ 4= 4 3 2 2+  4 3 1+  4 4 2 = = =

2 
2 
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By Ohm’s law,

and thus

9. D The Norton equivalent current source  is found by placing a short across the terminals a
and b. This short shorts out the  resistor and thus the circuit reduces to the one shown
below.

By KCL at Node A,

and thus 

The Norton equivalent resistance  is found by opening the current sources and looking
to the right of terminals a and b. When this is done, the circuit reduces to the one shown
below.

Therefore,  and the Norton equivalent circuit consists of just a  resistor.

+ 

2  2 A
2 V

2 

a

b

2 

+


+

2 

4 V

2 V
a

b

i

i 4 2–
2 2+
------------ 0.5 A= =

vTH vab 2 0.5 4– + 3 V–= = =

IN

5 

2 A
5 

a

b

5 

2 A

a

b
ISC IN=

A

2 A

5 

2 A

IN 2+ 2=

IN 0=

RN

5 

a

b

RN 5 = 5 
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10. B With the  source acting alone, the circuit is as shown below. 

We observe that  and thus the voltage drop across each of the  resistors to
the left of the  source is  with the indicated polarities. Therefore,

Problems

1. We first replace the parallel conductances with their equivalents and the circuit simplifies to
that shown below.

Applying nodal analysis at Nodes 1, 2, and 3 we obtain:

Node 1:

Node 2:

Node 3:

Simplifying the above equations, we obtain:

Addition of the first two equations above and grouping with the third yields

4 V

A

B

2 

2 
+



+
i

2 

4 V
+

vAB 4 V= 2 

4 V 2 V

i 2– 2 1 A–= =

12 A 24 A18 A

+


4  1– 6  1–

12  1–

v18 A

v1 v2 v3
1 2 3

15  1–

16v1 12v2– 12=

12– v1 27v2 15v3–+ 18–=

15– v2 21v3+ 24=

4v1 3v2          – 3=

4– v1 9v2 5v3–+ 6–=

5– v2 7v3+ 8=
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For this problem we are only interested in . Therefore, we will use Cramer’s rule to
solve for . Thus,

and

2. Since we cannot write an expression for the current through the  source, we form a com-
bined node as shown on the circuit below.

At Node 1 (combined node):

and at Node 2,

Also,

Simplifying the above equations, we obtain:

Addition of the first two equations above and multiplication of the third by  yields

6v2 5v3– 3–=

5– v2 7v3+ 8=

v2 v18 A=

v2

v2
D2


------= D2
3– 5–
8 7

21– 40+ 19= = =  6 5–
5– 7

42 25– 17= = =

v2 v18 A 19 17 1.12 V= = =

36 V

12 A 24 A18 A
4  6 

12  15 
+



+ 36 V

v6

1
v1

2
v2

3
v3

v1
4
-----

v1 v2–

12
----------------

v3 v2–

15
----------------

v3
6
----- 12 24––+ + + 0=

v2 v1–

12
----------------

v2 v3–

15
----------------+ 18–=

v1 v3– 36=

1
3
---v1

3
20
------v2– 7

30
------v3+ 36=

1
12
------– v1

3
20
------v2

1
15
------v3–+ 18–=

v1                  v3– 36=

1– 4
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and by adding the last two equations we obtain

or

Check with MATLAB:

format rat
R=[1/3  3/20  7/30; 1/12  3/20  1/15; 1  0  1];
I=[36  18  36]';
V=R\I;
fprintf('\n'); disp('v1='); disp(V(1)); disp('v2='); disp(V(2)); disp('v3='); disp(V(3))

v1=
   288/5     
v2=
  -392/5     
v3=
   108/5

3. We assign node voltages , , ,  and current  as shown in the circuit below. 

Then,

and

1
4
---v1

1
6
---v3+ 18=

1
4
---– v1

1
4
---v3+ 9–=

5
12
------v3 9=

v3 v6 
108
5 

--------- 21.6V= = =

v1 v2 v3 v4 iY

12 A 24 A

4 

6 

12  15 

36 V

+



+


iX

5iX

i6

18 A

iY

v1 v2 v3

v4

v1
4
-----

v1 v2–

12
---------------- 18 12–+ + 0=
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Simplifying the last two equations above, we obtain

and

Next, we observe that ,  and . Then  and

by substitution into the last equation above, we obtain

or

Thus, we have two equations with two unknowns, that is,

Multiplication of the first equation above by  and addition with the second yields

or

We find  from

Thus,

or

Now, we find  from

v2 v1–

12
----------------

v2 v3–

12
----------------

v2 v4–

6
----------------+ + 0=

1
3
---v1

1
12
------v2– 6–=

1
12
------v1– 19

60
------v2

1
15
------v3

1
6
---v4––+ 0=

iX
v1 v2–

12
----------------= v3 5iX= v4 36 V= v3

5
12
------ v1 v2– =

1
12
------v1– 19

60
------v2

1
15
------ 5

12
------ v1 v2–  1

6
---36––+ 0=

1
9
---v1– 31

90
------v2+ 6=

1
3
---v1

1
12
------v2– 6–=

1
9
---v1–

31
90
------v2+ 6=

1 3

19
60
------v2 4=

v2 240 19=

v1

1
3
---v1

1
12
------v2– 6–=

1
3
---v1

1
12
------ 240

19
---------– 6–=

v1 282– 19=

v3
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Therefore, the node voltages of interest are:

The current through the  resistor is

To compute the power supplied (or absorbed) by the dependent source, we must first find the
current . It is found by application of KCL at node voltage . Thus,

or

and

that is, the dependent source supplies power to the circuit.

4. Since we cannot write an expression for the  current source, we temporarily remove it
and we form a combined mesh for Meshes 2 and 3 as shown below. 

v3
5
12
------ v1 v2–  5

12
------ 282–

19
------------ 240

19
---------– 

  435
38

---------–= = =

v1 282– 19 V=

v2 240 19 V=

v3 435– 38 V=

v4 36 V=

6 

i6 
v2 v4–

6
---------------- 240 19 36–

6
------------------------------- 74

19
------– 3.9 A–= = = =

iY v3

iY 24– 18–
v3 v2–

15
----------------+ 0=

iY 42 435– 38 240 19–
15

-----------------------------------------------–=

42 915 38
15

-------------------+ 1657
38

------------==

p v3iY
435
38

---------– 1657
38

------------ 72379
145

---------------– 499.17 w–= = = =

36 A
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Mesh 1:

Combined mesh (2 and 3):

or

We now reinsert the  current source and we write the third equation as

Mesh 4:

Mesh 5:

or

Mesh 6:

or

Thus, we have the following system of equations:

and in matrix form

12 A

240 V

4  6 

8  12 

+ +
120 V

24 A

4  3 i6 i5

i1 i2 i3

i4

i1 12=

4i1– 12i2 18i3 6i4– 8i5– 12i6–+ + 0=

2i1– 6i2 9i3 3i4– 4i5– 6i6–+ + 0=

36 A

i2 i3– 36=

i4 24–=

8– i2 12i5+ 120=

2– i2 3i5+ 30=

12– i3 15i6+ 240–=

4– i3 5i6+ 80–=

i1                                             12=

2i1– 6i2 9i3 3i4– 4i5– 6i6–+ + 0=

i2 i3                             – 36=

i4                   24–=

2– i2                  3i5        + 30=

4– i3                   5i6+ 80–=
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We find the currents  through  with the following MATLAB script:

R=[1  0  0  0  0  0;  2  6  9  3  4  6;...
      0  1  1  0  0  0; 0  0  0  1  0  0;...
      0  2  0  0  3  0; 0  0  4  0  0  5];
V=[12  0  36  24  30  80]';
I=R\V;
fprintf('\n');...
   fprintf('i1=%7.2f A \t', I(1));...
   fprintf('i2=%7.2f A \t', I(2));...
   fprintf('i3=%7.2f A \t', I(3));...
   fprintf('\n');...
   fprintf('i4=%7.2f A \t', I(4));...
   fprintf('i5=%7.2f A \t', I(5));...
   fprintf('i6=%7.2f A \t', I(6));...
   fprintf('\n')

i1= 12.00 A   i2=  6.27 A   i3= -29.73 A 
i4= -24.00 A  i5=  14.18 A  i6= -39.79 A 

Now, we can find the voltage  by application of KVL around Mesh 3. 

Thus,

1 0 0 0 0 0
2– 6 9 3– 4– 6–
0 1 1– 0 0 0
0 0 0 1 0 0
0 2– 0 0 3 0
0 0 4– 0 0 5

R

i1

i2

i3

i4

i5

i6

I



12
0

36
24–
30
80–

V

=

          

     

i1 i6

v36 A

12 A

240 V

36 A
4  6 

8  12 
+



+ +
120 V

24 A

4  3 

v36A

i3
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or

To verify that this value is correct, we apply KVL around Mesh 2. Thus, we must show that

By substitution of numerical values, we find that

5. This is the same circuit as that of Problem 3. We will show that we obtain the same answers
using mesh analysis. 

We assign mesh currents as shown below.

Mesh 1:

Mesh 2:

or

Mesh 3:

and since , the above reduces to

or

Mesh 4:

v36 A v12  v6 + 12 29.73–  39.79– –  6 29.73–  24.00 – += =

v36 A 86.34 V=

v4  v8  v36 A+ + 0=

4 6.27 12–  8 6.27 14.18–  86.34+ + 0.14=

12 A 24 A

4 

6 

12  15 

36 V

+



+


iX

5iX
i6

18 A

i5

i1
i2

i3
i4

i1 12=

4i1– 22i2 6i3– 12i5–+ 36–=

2i1– 11i2 3i3– 6i5–+ 18–=

6– i2 21i3 15i5– 5iX+ + 36=

iX i2 i5–=

6– i2 21i3 15i5– 5i2 5i5–+ + 36=

i2– 21i3 20i5–+ 36=

i4 24–=
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Mesh 5:

Grouping these five independent equations we obtain:

and in matrix form,

We find the currents  through  with the following MATLAB script:

R=[1  0  0  0  0 ;  2  11 3  0  6;  0  1  21  0  20; ...
      0  0  0  1  0; 0  0  0  0  1];
V=[12  18  36  24  18]';
I=R\V;
fprintf('\n');...
   fprintf('i1=%7.2f A \t', I(1));...
   fprintf('i2=%7.2f A \t', I(2));...
   fprintf('i3=%7.2f A \t', I(3));...
   fprintf('\n');...
   fprintf('i4=%7.2f A \t', I(4));...
   fprintf('i5=%7.2f A \t', I(5));...
   fprintf('\n')

i1=  12.00 A   i2=  15.71 A   i3=  19.61 A 
i4= -24.00 A   i5=  18.00 A

By inspection,

Next,

i5 18=

i1                                  12=

2i1– 11i2 3i3–         6i5–+ 18–=

i2– 21i3    20i5–+ 36=

i4          24–=

i5 18=

1 0 0 0 0
2– 11 3– 0 6–
0 1– 21 0 20–
0 0 0 1 0
0 0 0 0 1

R

i1

i2

i3

i4

i5

I



12
18–
36
24–
18

V

=

              
i1 i5

i6  i2 i3– 15.71 19.61– 3.9 A–= = =
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These are the same answers as those we found in Problem 3.

6.  We assign mesh currents as shown below and we write mesh equations.

Mesh 1:

or

Mesh 2:

Mesh 3:

or

Mesh 4:

or

Grouping these four independent equations we obtain:

and in matrix form,

p5iX
5iX i3 i4–  5 i2 i5–  i3 i4– = =

5 15.71 18.00–  19.61 24.00+  499.33 w–==

12 V

4 

6 

12  15 

+

+

 +


24 V

10 
8 

v10iX

10iX

i4

i1

i2
i3

24i1 8i2– 12i4– 24 12–– 0=

6i1 2i2– 3i4– 9=

8– i1 29i2 6i3– 15i4–+ 24–=

6– i2 16i3+ 0=

3– i2 8i3+ 0=

i4 10iX 10 i2 i3– ==

10i2 10i3– i4– 0=

6i1 2i2            – 3i4– 9=

8– i1 29i2 6i3– 15i4–+ 24–=

3– i2 8i3           + 0=

10i2 10i3– i4– 0=
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We find the currents  through  with the following MATLAB script:

R=[6  2  0  3;  8  29 6  15;  0  3  8  0 ;  0  10  10  1];
V=[9  24  0  0]'; I=R\V;
fprintf('\n');...
 fprintf('i1=%7.2f A \t', I(1));...
 fprintf('i2=%7.2f A \t', I(2));...
 fprintf('i3=%7.2f A \t', I(3));...
 fprintf('i4=%7.2f A \t', I(4));...

  fprintf('\n')

i1= 1.94 A   i2= 0.13 A   i3= 0.05 A   i4= 0.79 A

Now, we find  by Ohm’s law, that is,

The same value is obtained by computing the voltage across the  resistor, that is,

7. Voltagetocurrent source transformation yields the circuit below.

By combining all current sources and all parallel resistors except the  resistor, we obtain
the simplified circuit below.

6 2– 0 3–
8– 29 6– 15–
0 3– 8 0
0 10 10– 1–

R

i1

i2

i3

i4

I



9
24–
0
0

V

=

              

i1 i4

v10

v10 10i3 10 0.05 0.5 V= = =

6 

v6 6 i2 i3–  6 0.13 0.05–  0.48 V= = =

10 2  3 
6 A 8 A 6 A

6 

10 

10 1 
4 A
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Applying the current division expression, we obtain

and thus

8. Currenttovoltage source transformation yields the circuit below.

From this series circuit,

and thus

9. We remove  from the rest of the rest of the circuit and we assign node voltages , ,
and . We also form the combined node as shown on the circuit below.

Node 1:

or

i10 
1

1 10+
--------------- 4 4

11
------ A= =

p10  i10 
2 10  4

11
------ 

  2
10 16

121
--------- 10 160

121
--------- 1.32 w= = = = =

12 V2 
+

3 20 

+



12 V

+



24 Vi

i v
R
------- 48

25
------ A= =

p20  i2 20  48
25
------ 

  2
20= 2304

625
------------ 20 73.73 w= = =

RLOAD v1 v2

v3

12 A 18 A
4  6 

12  15 

+ 36 V

v1 v2 v3

x

y





1
2

3

v1
4
-----

v1 v2–

12
---------------- 12–

v3 v2–

15
----------------

v3
6
-----+ + + 0=
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Node 2:

or

Also,

For this problem, we are interested only in the value of  which is the Thevenin voltage ,
and we could find it by Gauss’s elimination method. However, for convenience, we will group
these three independent equations, express these in matrix form, and use MATLAB for their
solution.

and in matrix form,

We find the voltages  through  with the following MATLAB script:

G=[1/3  3/20  7/30;  1/12  3/20  1/15;  1  0  1];
I=[12  18  36]'; V=G\I;
fprintf('\n');...
fprintf('v1=%7.2f V \t', V(1)); fprintf('v2=%7.2f V \t', V(2)); fprintf('v3=%7.2f V \t', V(3));
fprintf('\n')

v1= 0.00 V   v2= -136.00 V   v3= -36.00 V

Thus,

1
3
---v1

3
20
------v2–

7
30
------v3+ 12=

v2 v1–

12
----------------

v2 v3–

15
----------------+ 18–=

1
12
------– v1

3
20
------v2

1
15
------– v3+ 18–=

v1 v3– 36=

v3 vTH

1
3
---v1

3
20
------v2– 7

30
------v3+ 12=

1
12
------– v1

3
20
------v2

1
15
------– v3+ 18–=

v1              v3– 36=

1
3
--- 3

20
------– 7

30
------

1
12
------– 3

20
------ 1

15
------–

1 0 1–

G

v1

v2

v3

V



12
18–
36

I

=

      

     

v1 v3

vTH v3 36 V–= =



Circuit Analysis I with MATLAB Computing and Simulink / SimPowerSystems Modeling 377
Copyright © Orchard Publications

Answers / Solutions to EndofChapter Exercises

To find  we short circuit the voltage source and we open the current sources. The circuit
then reduces to the resistive network below.

We observe that the resistors in series are shorted out and thus the Thevenin resistance is the
parallel combination of the  and  resistors, that is,

and the Thevenin equivalent circuit is as shown below.

Now, we connect the load resistor  at the open terminals and we obtain the simple
series circuit shown below.

a. For maximum power transfer, 

b. Power under maximum power transfer condition is

RTH

4  6 

12  15 

x

y





RTH

4  6 

4  6  2.4 =

2.4 

+



36 V

RLOAD

2.4 

+



36 V

RLOAD 2.4 

RLOAD 2.4 =

pMAX i2RLOAD
36

2.4 2.4+
--------------------- 

  2
2.4 7.52 2.4 135 w= == =
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10. We assign a node voltage Node 1 and a mesh current for the mesh on the right as shown
below. 

At Node 1:

Mesh on the right:

and by substitution into the node equation above,

or

but this can only be true if .

Then,

Thus, the Norton current source is open as shown below.

To find the value of  we insert a  current source as shown below.

iX4  5 

15 

5iX

a

b

1

v1 iX

v1
4
----- iX+ 5iX=

15 5+ iX v1=

20iX
4

----------- iX+ 5iX=

6iX 5iX=

iX 0=

iN
vOC
RN
---------

vab
RN
-------

5 iX
RN

-------------- 5 0
RN

------------ 0= = = = =

a

b

RN

RN 1 A
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At Node A:

But

and by substitution into the above relation

or

At Node B:

or

For this problem, we are interested only in the value of  which we could find by Gauss’s
elimination method. However, for convenience, we will use MATLAB for their solution.

and in matrix form,

We find the voltages  and  with the following MATLAB script:

iX4  5 

15 

5iX

a

b

A

vA iX

iX 1 A

vB

B

vA
4

------
vA vB–

15
------------------+ 5iX=

vB 5   iX 5iX= =

vA
4

------
vA vB–

15
------------------+ vB=

19
60
------vA

16
15
------vB– 0=

vB vA–

15
------------------

vB
5

------+ 1=

1
15
------vA– 4

15
------vB+ 1=

vB

19
60
------vA

16
15
------vB– 0=

1
15
------vA–

4
15
------vB+ 1=

19
60
------ 16

15
------–

1
15
------– 4

15
------

G

vA

vB

V


0
1

I

=

    

     

v1 v2
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G=[19/60  16/15;  1/15  4/15];
I=[0  1]'; V=G\I;
fprintf('\n');...
fprintf('vA=%7.2f V \t', V(1)); fprintf('vB=%7.2f V \t', V(2));
fprintf('\n')

vA= 80.00 V   vB= 23.75 V

Now, we can find the Norton equivalent resistance from the relation

 

11. This is the same circuit as that of Problem 1. Let  be the voltage due to the  current
source acting alone. The simplified circuit with assigned node voltages is shown below where
the parallel conductances have been replaced by their equivalents.

The nodal equations at the three nodes are

or

Since , we only need to solve for . Adding the first 2 equations above and group-
ing with the third we obtain

Multiplying the first by  and the second by  we obtain

RN
Vab
ISC
---------

VB
1

------- 23.75 = = =

v'18A 12 A

12 A

+



15  1–

4  1– 6  1–

12  1–

v'18A

v1 v2 v3

16v1 12v2            – 12=

12v1– 27v2 15v3–+ 0=

15– v2 21v3+ 0=

4v1 3v2          – 3=

4v1– 9v2 5v3–+ 0=

5– v2 7v3+ 0=

v2 v'18A= v2

6v2 5v3– 3=

5– v2 7v3+ 0=

7 5
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and by addition of these we obtain

Next, we let  be the voltage due to the  current source acting alone. The simpli-
fied circuit with assigned node voltages is shown below where the parallel conductances
have been replaced by their equivalents.

The nodal equations at the three nodes are

or

Since , we only need to solve for . Adding the first 2 equations above and
grouping with the third we obtain

Multiplying the first by  and the second by  we obtain

and by addition of these we obtain

42v2 35v3– 21=

25– v2 35v3+ 0=

v2 v'18A
21
17
------ V= =

v''18A 18 A

18 A

+



15  1–

4  1– 6  1–

12  1–

v''18A

vA vB vC

16vA 12vB            – 0=

12vA– 27vB 15vC–+ 18–=

15– vB 21vC+ 0=

4vA 3vB          – 0=

4vA– 9vB 5vC–+ 6–=

5– vB 7vC+ 0=

vB v''18A= vB

6vB 5vC– 6–=

5– vB 7vC+ 0=

7 5

42vB 35vC– 42–=

25– vB 35vC+ 0=
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Finally, we let  be the voltage due to the  current source acting alone. The simpli-
fied circuit with assigned node voltages is shown below where the parallel conductances have
been replaced by their equivalents.

The nodal equations at the three nodes are

or

Since , we only need to solve for . Adding the first 2 equations above and
grouping with the third we obtain

Multiplying the first by  and the second by  we obtain

and by addition of these we obtain

and thus

vB v''18A
42–

17
--------- V= =

v'''18A 24 A

24 A

+



15  1–

4  1– 6  1–

12  1–

v'''18A

vX vY vZ

16vX 12vY            – 0=

12vA– 27vY 15vZ–+ 0=

15– vB 21vZ+ 24=

4vX 3vY          – 0=

4vX– 9vY 5vZ–+ 0=

5– vY 7vZ+ 8=

vY v'''18A= vY

6vY 5vZ– 0=

5– vY 7vZ+ 0=

7 5

42vY 35vZ– 0=

25– vY 35vZ+ 40=

vY v'''18A
40
17
------ V= =

v18A v'18A v''18A v'''18A+ + 21
17
------ 42–

17
--------- 40

17
------+ + 19

17
------ 1.12 V= = = =
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This is the same answer as in Problem 1.

12. This is the same circuit as that of Problem 2. Let  be the voltage due to the  cur-
rent source acting alone. The simplified circuit is shown below.

The  and  resistors are shorted out and the circuit is further simplified to the one
shown below. 

The voltage  is computed easily by application of the current division expression and
multiplication by the  resistor. Thus,

Next, we let  be the voltage due to the  current source acting alone. The simpli-
fied circuit is shown below. The letters A, B, and C are shown to visualize the circuit simpli-
fication process.

v'6  12 A

12 A
4  6 

12  15 

+


v'6 

12  15 

12 A
4  6 

+


v'6 

v'6 

6 

v'6 
4

4 6+
------------ 12 
  6 144

5
--------- V= =

v''6  18 A

4  6 

12  15 

+


v''6 

18 A

A B A

C
6 

+


v''6 

A

4 

12 

15 

B

18 A
C 6 

+


v''6 

A

4 

B

18 A
C

12 15 
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The voltage  is computed easily by application of the current division expression and
multiplication by the  resistor. Thus,

Now, we let  be the voltage due to the  current source acting alone. The simplified
circuit is shown below.

The  and  resistors are shorted out and voltage  is computed by application
of the current division expression and multiplication by the  resistor. Thus,

Finally, we let  be the voltage due to the  voltage source acting alone. The simpli-
fied circuit is shown below.

By application of the voltage division expression we find that

Therefore,

v''6 

6 

v''6 
4

4 6+
------------ 18–  6 216–

5
------------ V= =

v'''6  24 A

24 A
4  6 

12  15 

+


v'''6 

12  15  v'''6 

6 

v'''6 
4

4 6+
------------ 24 
  6 288

5
--------- V= =

viv
6  36 V

4  6 

12  15 

+



+ 36 V

viv
6 

+


36 V15 

12 

6 

4 
A

C

B

A

B

C +


viv

6 

viv
6 

6
4 6+
------------ 36–  108

5
---------–= =
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This is the same answer as that of Problem 2.

13. The circuit for Measurement 1 is shown below.

Let . Then,

For Measurement 3 the load resistance is the same as for Measurement 1 and the load cur-
rent is given as . Therefore, for Measurement 3 we find that

and we enter this value in the table below.

The circuit for Measurement 2 is shown below.

Let . Then,

For Measurement 4 the load resistance is the same as for Measurement 2 and  is given as
. Therefore, for Measurement 4 we find that

v6  v'6  v''6  v'''6  viv
6 + + + 144

5
--------- 216

5
---------– 288

5
--------- 108

5
---------–+ 108

5
--------- 21.6 V= = = =

1 

48 V

+


iLOAD1
16 A

RLOAD1

RS1

vS1

Req1 RS1 RLOAD1+=

Req1
vS1

iLOAD1
----------------- 48

16
------ 3 = = =

5 A–

vS1 Req1 5–  3 5–  15 V–= = =

1 

36 V

+


iLOAD2
6 A

RLOAD2

RS2

vS2

Req2 RS1 RLOAD2+=

Req2
vS2

iLOAD2
----------------- 36

6
------ 6 = = =

vS2

42 V–
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and we enter this value in the table below.

The circuit for Measurement 5 is shown below.

Replacing the voltage sources with their series resistances to their equivalent current sources
with their parallel resistances and simplifying, we obtain the circuit below.

Application of the current division expression yields

and we enter this value in the table below.

The circuit for Measurement 6 is shown below.

We observe that  will be zero if  and this will occur when . This can
be shown to be true by writing a nodal equation at Node A. Thus,

iLOAD2
vS2

Req2
----------- 42

6
------– 7 A–= = =

+


+



1  1 

vS2vS1

RS2RS1
iLOAD

vLOAD RLOAD
1 +


18 V15 V

0.5 
iLOAD

RLOAD 1 
33 A

iLOAD
0.5

0.5 1+
---------------- 33 11 A= =

1  1 

vS2vS1

RS2RS1
iLOAD

RLOAD 1 +


24 V

A
vA



+

iLOAD vA 0= vS1 24–=
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or 

14.  

The power supplied by the voltage source is

The power loss on the 1st floor is

The power loss on the 2nd floor is

and thus the total loss is

Then,

Measurement Switch Switch 
 (V)  (V)  (A)

1 Closed Open 48 0 16

2 Open Closed 0 36 6

3 Closed Open -15 0 -5

4 Open Closed 0 -42 -7
5 Closed Closed 15 18 11
6 Closed Closed -24 24 0

vA 24– –

1
--------------------------

vA 24–

1
------------------ 0+ + 0=

vA 0=

S1 S2 vS1 vS2 iL

480 V

0.8 

+


0.5 

0.5 

1st Floor
Load

100 A

2nd Floor
Load

0.8 

80 A

vS
i2i1

pS vS i1 i2+  480 100 80+  86 400 w 86.4 Kw= = = =

pLOSS1 i1
2 0.5 0.5+  100 2 1 10 000 w 10 Kw= = = =

pLOSS2 i2
2 0.8 0.8+  80 2 1.6 10 240 w 10.24 Kw= = = =

Total loss 10 10.24+ 20.24 Kw= =
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and

This is indeed a low efficiency.

15.

The voltage drop on the second floor conductor is

and thus the fullload voltage is

Then,

This is a very poor regulation.

16. We assign node voltages and we write nodal equations as shown below.

Output power Input power power losses– 86.4 20.24– 66.16Kw= = =

% Efficiency  Output
Input

------------------ 100 66.16
86.4

------------- 100 76.6%= = = =

480 V

0.8 

+


0.5 

0.5 

1st Floor
Load

100 A

2nd Floor
Load

0.8 

80 A

vS
i2i1

vcond RT i2 1.6 80 128 V= = =

vFL 480 128– 352 V= =

% Regulation
vNL vFL–

vFL
------------------------ 100 480 352–

352
------------------------ 100 36.4%= = =

+ 

12 V

+


3  3 

5 

6  10 

7 

8 

RLOAD

+


4  vLOAD

iLOAD

iX

20iX

v1 v2 v3 v4

combined node

v5

v1 12=
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where  and thus 

Collecting like terms and rearranging we obtain

and in matrix form

We use MATLAB to solve the above.

v2 v1–

3
----------------

v2
6
-----

v2 v3–

3
----------------+ + 0=

v3 v2–

3
----------------

v3 v5–

10
----------------

v4 v5–

4
----------------

v4 v5–

7 8+
----------------+ + + 0=

v3 v4– 20iX=

iX v2 6=

v5
10
3
------v2=

v5
5
-----

v5 v3–

10
----------------

v5 v4–

4
----------------

v5 v4–

7 8+
----------------+ + + 0=

v1                                          12=

1–
3

------v1
5
6
---v2

1–
3

------v3                        + + 0=

          1–
3

------v2
13
30
------v3

19
60
------v4

19
60
------v5–+ + 0=

10
3

------v2   – v3     v4            –+ 0=

1
10
------v3– 19

60
------v4– 37

60
------v5+ 0=

1 0 0 0 0
1–

3
------ 5

6
--- 1–

3
------ 0 0

0 1–
3

------ 13
30
------ 19

60
------ 19

60
------–

0 10
3

------– 1 1– 0

0 0 1
10
------– 19

60
------– 37

60
------

G

v1

v2

v3

v4

v5

V



12
0
0
0
0

I

=
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G=[1  0  0  0  0;...
            1/3  5/6  1/3  0  0;...
              0  1/3  13/30  19/60  19/60;...
              0  10/3  1  1  0;...
              0  0  1/10  19/60  37/60];

I=[12  0  0  0  0]'; V=G\I;
fprintf('\n');...

   fprintf('v1 = %7.2f V \n',V(1));...
   fprintf('v2 = %7.2f V \n',V(2));...
   fprintf('v3 = %7.2f V \n',V(3));...
   fprintf('v4 = %7.2f V \n',V(4));...
   fprintf('v5 = %7.2f V \n',V(5));...
   fprintf('\n'); fprintf('\n')

v1 =   12.00 V 
v2 =   13.04 V 
v3 =   20.60 V 
v4 =  -22.87 V 
v5 =   -8.40 V

Now,

and

iLOAD
v4 v5–

8 7+
---------------- 22.87– 8.40– –

15
------------------------------------------ 0.96 A–= = =

vLOAD 8iLOAD 8 0.96–  7.68 V–= = =
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Chapter 4

Introduction to Operational Amplifiers

his chapter is an introduction to amplifiers. It discusses amplifier gain in terms of decibels
(dB) and provides an overview of operational amplifiers, their characteristics and applica-
tions. Numerous formulas for the computation of the gain are derived and several practical

examples are provided. 

4.1 Signals 
A signal is any waveform that serves as a means of communication. It represents a fluctuating
electric quantity, such as voltage, current, electric or magnetic field strength, sound, image, or
any message transmitted or received in telegraphy, telephony, radio, television, or radar. A typical
signal which varies with time is shown in figure 4.1 where  can be any physical quantity such
as voltage, current, temperature, pressure, and so on.

Figure 4.1. A signal that changes with time

4.2 Amplifiers
An amplifier is an electronic circuit which increases the magnitude of the input signal. The sym-
bol of a typical amplifier is a triangle as shown in Figure 4.2.

Figure 4.2. Symbol for electronic amplifier

An electronic (or electric) circuit which produces an output that is smaller than the input is
called an attenuator. A resistive voltage divider is a typical attenuator.

T

f t 

t

f t 

vin
vout

        Electronic Amplifier
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An amplifier can be classified as a voltage amplifier, current amplifier, or power amplifier. 
The gain of an amplifier is the ratio of the output to the input. Thus for a voltage amplifier,

or

(4.1)

The current gain  and power gain  are defined similarly.

Note 1: Throughout this text, the common (base 10) logarithm of a number x will be denoted
as  while its natural (base e) logarithm will be denoted as . 

4.3 Decibels
The ratio of any two values of the same quantity (power, voltage or current) can be expressed in

. For instance, we say that an amplifier has  power gain or a transmission
line has a power loss of  (or gain  If the gain (or loss) is , the output is equal to
the input.

We must remember that a negative voltage or current gain  or  indicates that there is a

 phase difference between the input and the output waveforms. For instance, if an amplifier
has a gain of 100 (dimensionless number), it means that the output is 180 degrees outofphase
with the input. Therefore, to avoid misinterpretation of gain or loss, we use absolute values of
power, voltage and current when these are expressed in dB. 

By definition,                        

(4.2)

Therefore,

It is useful to remember that

Also,

Voltage Gain Output Voltage
Input Voltage

-----------------------------------------=

Gv
vout
vin
----------=

Gi Gp

x log x ln

decibels dB  10 dB
7 dB 7–  dB 0 dB

Gv Gi

180

dB 10
pout
pin
----------log=

10 dB represents a power ratio of 10

10n dB represents a power ratio of 10 n

20 dB represents a power ratio of 100
30 dB represents a power ratio of 1000
60 dB represents a power ratio of 1000000
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Decibels

From these, we can estimate other values. For instance,  which is equiva-
lent to a power ratio of approximately .Likewise,  and this
is equivalent to a power ratio of approximately .

Since  and , if we let , the dB values for voltage and
current ratios become:

(4.3)

and

(4.4)

Example 4.1  

Compute the gain in  for the amplifier shown in Figure 4.3.

Figure 4.3. Amplifier for Example 4.1

Solution:

Example 4.2  

Compute the gain in  for the amplifier shown in Figure 4.4, given that .

Figure 4.4. Amplifier for Example 4.2

1 dB represents a power ratio of approximately 1.25
3 dB represents a power ratio of approximately 2
7 dB represents a power ratio of approximately 5

4 dB 3 dB 1 dB+=

2 1.25 2.5= 27 dB 20 dB 7 dB+=

100 5 500=

y x2log 2 xlog= = p v 2 R i2R= = R 1=

dBv 10
vout
vin
----------

2
log 20

vout
vin
----------log= =

dBi 10
iout
iin
--------

2
log 20

iout
iin
--------log= =

dBw

1 w 10 w
pin pout

dBw 10
pout
pin
----------log 10 10

1
------log 10 10log 10 1 10  dBw= = = = =

dBv 2log 0.3=

1 v 2 v
vin vout
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Solution:

4.4 Bandwidth and Frequency Response
Like electric filters, amplifiers exhibit a band of frequencies over which the output remains nearly
constant. Consider, for example, the magnitude of the output voltage  of an electric or elec-

tronic circuit as a function of radian frequency  as shown in Figure 4.5.

Figure 4.5. Typical bandwidth of an amplifier

As shown above, the bandwidth is  where  and  are the lower and upper cutoff

frequencies respectively. At these frequencies,  and these two points are
known as the 3dB down or halfpower points. They derive their name from the fact that power

, and for  and  or , the power is
, that is, the power is “halved”. Alternately, we can define the bandwidth as the frequency

band between halfpower points.

Most amplifiers are used with a feedback path which returns (feeds) some or all its output to the
input as shown in Figure 4.6.

Figure 4.6. Gain amplifiers used with feedback

dBv 20
vout
vin
----------log 20 2

1
---log 20 0.3log 20 0.3 6  dBv= = = = =

vout



1

0.707



Bandwidth

vout

1 2

BW 2 1–= 1 2

vout 2 2 0.707= =

p v 2 R i2R= = R 1= v 2 2 0.707= = i 2 2 0.707= =

1 2

    In Out

+

Partial Output Feedback

In Out

+

Entire Output Feedback

Gain Amplifier Gain Amplifier

Feedback Path
Feedback Circuit
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The Operational Amplifier

In Figure 4.6, the symbol  (Greek capital letter sigma) inside the circle denotes the summing
point where the output signal, or portion of it, is combined with the input signal. This summing
point may be also indicated with a large plus (+) symbol inside the circle. The positive (+) sign
below the summing point implies positive feedback which means that the output, or portion of it,
is added to the input. On the other hand, the negative () sign implies negative feedback which
means that the output, or portion of it, is subtracted from the input. Practically, all amplifiers use
used with negative feedback since positive feedback causes circuit instability.

4.5 The Operational Amplifier 
The operational amplifier or simply op amp is the most versatile electronic amplifier. It derives it
name from the fact that it is capable of performing many mathematical operations such as addi-
tion, multiplication, differentiation, integration, analogtodigital conversion or vice versa. It
can also be used as a comparator and electronic filter. It is also the basic block in analog com-
puter design. Its symbol is shown in Figure 4.7.

Figure 4.7. Symbol for operational amplifier

As shown above the op amp has two inputs but only one output. For this reason it is referred to
as differential input, single ended output amplifier. Figure 4.8 shows the internal construction of a
typical op amp. This figure also shows terminals  and . These are the voltage sources
required to power up the op amp. Typically,  is +15 volts and  is 15 volts. These termi-
nals are not shown in op amp circuits since they just provide power, and do not reveal any other
useful information for the op amp’s circuit analysis.

4.6 An Overview of the Op Amp
The op amp has the following important characteristics:

1.  Very high input impedance (resistance)
2.  Very low output impedance (resistance)

3. Capable of producing a very large gain that can be set to any value by connection of external
resistors of appropriate values

4.  Frequency response from DC to frequencies in the MHz range

5.  Very good stability

6. Operation to be performed, i.e., addition, integration etc. is done externally with proper selec-
tion of passive devices such as resistors, capacitors, diodes, and so on.

1

2
3

+



VCC VEE

VCC VEE
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Figure 4.8. Internal Devices of a Typical Op Amp

An op amp is said to be connected in the inverting mode when an input signal is connected to the
inverting () input through an external resistor  whose value along with the feedback resistor

 determine the op amp’s gain. The noninverting (+) input is grounded through an external
resistor R as shown in Figure 4.9.

For the circuit of Figure 4.9, the voltage gain  is

(4.5)

VCC

VEE

1 2

1 NON-INVERTING INPUT
2  INVERTING INPUT
3  OUTPUT

3

Rin

Rf

Gv

Gv
vout
vin
----------

Rf
Rin
--------–= =
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An Overview of the Op Amp

Figure 4.9. Circuit of Inverting op amp

Note 2: The resistor R connected between the noninverting (+) input and ground serves only
as a current limiting device, and thus it does not influence the op amp’s gain. It will be
omitted in our subsequent discussion.

Note 3: The input voltage  and the output voltage  as indicated in the circuit of Figure
4.9, should not be interpreted as open circuits; these designations imply that an input
voltage of any waveform may be applied at the input terminals and the corresponding
output voltage appears at the output terminals. 

As shown in the formula of (4.5), the gain for this op amp configuration is the ratio 

where  is the feedback resistor which allows portion of the output to be fed back to the input.

The minus () sign in the gain ratio  implies that the output signal has opposite polarity
from that of the input signal; hence the name inverting amplifier. Therefore, when the input sig-
nal is positive (+) the output will be negative () and vice versa. For example, if the input is +1
volt DC and the op amp gain is 100, the output will be 100 volts DC. For AC (sinusoidal) sig-
nals, the output will be 180 degrees outofphase with the input. Thus, if the input is 1 volt AC
and the op amp gain is 5, the output will be 5 volts AC or 5 volts AC with 180 degrees outof
phase with the input.

Example 4.3  

Compute the voltage gain  and then the output voltage  for the inverting op amp circuit

shown in Figure 4.10, given that . Plot  and  as  versus time on the same
set of axes.

Solution:

This is an inverting amplifier and thus the voltage gain  is

+



R

+


 +

vin

Rf

vout

Rin

vin vout

Rf Rin–

Rf

Rf Rin–

Gv vout

vin 1 mV= vin vout mV

Gv

Gv
Rf
Rin
--------– 120 K

20 K
--------------------–= =
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Figure 4.10. Circuit for Example 4.3

or

and since

the output voltage is

or

The voltages  and  are plotted as shown in Figure 4.11.

Figure 4.11. Input and output waveforms for the circuit of Example 4.3

Example 4.4  

Compute the voltage gain  and then the output voltage  for the inverting op amp circuit

shown in Figure 4.12, given that . Plot  and  as  versus time on the
same set of axes.

+

+


 +

Rin

Rf

vin vout

120 K

20 K

Gv 6–=

Gv
vout
vin
---------=

vout Gvvin 6 1–= =

vout 6 mV–=

vin vout

0 t

vin 1 mv=

vout 6–  mv=

v (mv)

Gv vout

vin t sin mV= vin vout mV
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Figure 4.12. Circuit for Example 4.4

Solution:

This is the same circuit as that of the previous example except that the input is a sine wave with
unity amplitude and the voltage gain  is the same as before, that is,

and the output voltage is

The voltages  and  are plotted as shown in Figure 4.13. 

Figure 4.13. Input and output waveforms for the circuit of Example 4.4

An op amp is said to be connected in the noninverting mode when an input signal is connected
to the noninverting () input through an external resistor R which serves as a current limiter,
and the inverting () input is grounded through an external resistor  as shown in Figure 4.14.
In our subsequent discussion, the resistor R will represent the internal resistance of the applied
voltage .

+

+


 +

Rin

Rf

vin vout

120 K

20 K

Gv

Gv
Rf
Rin
--------– 120 K

20 K
-------------------- 6–=–= =

vout Gvvin 6 tsin– 6 t sin mV–= = =

vin vout

0 2 4 6 8 10 12
-6

-4

-2

0

2

4

6

vin tsin=

vout 6 tsin–=
v (mv)

Rin

vin
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Figure 4.14. Circuit of noninverting op amp

For the circuit of Figure 4.14, the voltage gain  is

(4.6)

As indicated by the relation of (4.6), the gain for this op amp configuration is  and
therefore, in the noninverting mode the op amp output signal has the same polarity as the input
signal; hence, the name noninverting amplifier. Thus, when the input signal is positive (+) the
output will be also positive and if the input is negative, the output will be also negative. For
example, if the input is  and the op amp gain is , the output will be . For
AC signals the output will be inphase with the input. For example, if the input is  and
the op amp gain is , the output will be  and inphase with
the input.

Example 4.5  

Compute the voltage gain  and then the output voltage  for the noninverting op amp

circuit shown in Figure 4.15, given that . Plot  and  as  versus time on
the same set of axes.

Figure 4.15. Circuit for Example 4.5
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Solution:

The voltage gain  is

and thus
 

The voltages  and  are plotted as shown in Figure 4.16.

Figure 4.16. Input and output waveforms for the circuit of Example 4.5

Example 4.6  

Compute the voltage gain  and then the output voltage  for the noninverting op amp

circuit shown in Figure 4.17, given that . Plot  and  as  versus time on
the same set of axes.

Figure 4.17. Circuit for Example 4.6

Solution:

This is the same circuit as in the previous example except that the input is a sinusoid. Therefore,
the voltage gain  is the same as before, that is,
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and the output voltage is

The voltages  and  are plotted as shown in Figure 4.18.

Figure 4.18. Input and output waveforms for the circuit of Example 4.6

Quite often an op amp is connected as shown in Figure 4.19.

Figure 4.19. Circuit of unity gain op amp

For the circuit of Figure 4.19, the voltage gain  is
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(4.8)
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For this reason, the op amp circuit of Figure 4.19 it is called unity gain amplifier. For example, if
the input voltage is  the output will also be , and if the input voltage is

, the output will also be . The unity gain op amp is used to provide a very
high resistance between a voltage source and the load connected to it. An example will be given
in Section 4.8.

4.7 Active Filters
An active filter is an electronic circuit consisting of an amplifier and other devices such as resis-
tors and capacitors. In contrast, a passive filter is a circuit which consists of passive devices such
as resistors, capacitors and inductors. Operational amplifiers are used extensively as active filters.

A lowpass filter transmits (passes) all frequencies below a critical (cutoff ) frequency denoted as
, and attenuates (blocks) all frequencies above this cutoff frequency. An op amp lowpass fil-

ter is shown in Figure 4.20 and its frequency response in Figure 4.21.

Figure 4.20. A lowpass active filter

Figure 4.21. Frequency response for amplitude of a lowpass filter

In Figure 4.21, the straight vertical and horizontal lines represent the ideal (unrealizable) and
the smooth curve represents the practical (realizable) lowpass filter characteristics. The vertical
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scale represents the magnitude of the ratio of outputtoinput voltage , that is, the gain

. The cutoff frequency  is the frequency at which the maximum value of  which is

unity, falls to , and as mentioned before, this is the half power or the  point.

A highpass filter transmits (passes) all frequencies above a critical (cutoff) frequency  and
attenuates (blocks) all frequencies below the cutoff frequency. An op amp highpass filter is
shown in Figure 4.22 and its frequency response in Figure 4.23.

Figure 4.22.  A highpass active filter

Figure 4.23. Frequency response for amplitude of a highpass filter

In Figure 4.23, the straight vertical and horizontal lines represent the ideal (unrealizable) and the
smooth curve represents the practical (realizable) highpass filter characteristics. The vertical
scale represents the magnitude of the ratio of outputtoinput voltage , that is, the gain

. The cutoff frequency  is the frequency at which the maximum value of  which is

unity, falls to , i.e., the half power or the  point.

A bandpass filter transmits (passes) the band (range) of frequencies between the critical (cutoff)
frequencies denoted as  and  where the maximum value of  which is unity, falls to
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, while it attenuates (blocks) all frequencies outside this band. An op amp bandpass
filter is shown in Figure 4.24 and its frequency response in Figure 4.25.

Figure 4.24.  An active bandpass filter

Figure 4.25. Frequency response for amplitude of a bandpass filter

A bandelimination or bandstop or bandrejection filter attenuates (rejects) the band (range) of
frequencies between the critical (cutoff) frequencies denoted as  and  where the maxi-
mum value of  which is unity, falls to , while it transmits (passes) all frequencies
outside this band. An op amp bandstop filter is shown in Figure 4.26 and its frequency response
in Figure 4.27.
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Figure 4.26.  An active bandelimination filter

Figure 4.27. Frequency response for amplitude of a bandelimination filter

4.8 Analysis of Op Amp Circuits
The procedure for analyzing an op amp circuit (finding voltages, currents and power) is the same
as for the other circuits which we have studied thus far. That is, we can apply Ohm’s law, KCL
and KVL, superposition, Thevenin’s and Norton’s theorems. When analyzing an op amp circuit,
we must remember that in any op amp:

a. The currents into both input terminals are zero 

b. The voltage difference between the input terminals of an op amp is zero

c. For circuits containing op amps, we will assume that the reference (ground) is the common
terminal of the two power supplies. For simplicity, the power supplies will not be shown.
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We will provide several examples to illustrate the analysis of op amp circuits without being con-
cerned about its internal operation; this is discussed in electronic circuit analysis books.

Example 4.7  
The op amp circuit shown in Figure 4.28 is called inverting op amp. Prove that the voltage gain

 is as given in (4.9) below, and draw its equivalent circuit showing the output as a dependent
source.

Figure 4.28. Circuit for deriving the gain of an inverting op amp

(4.9)

Proof:

No current flows through the () input terminal of the op amp; therefore the current  which
flows through resistor  flows also through resistor . Also, since the (+) input terminal is
grounded and there is no voltage drop between the () and (+) terminals, the () input is said to
be at virtual ground. From the circuit of Figure 4.28,
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The input and output parts of the circuit are shown in Figure 4.29 with the virtual ground being
the same as the circuit ground.

Figure 4.29. Input and output parts of the inverting op amp

These two circuits are normally drawn with the output as a dependent source as shown in Figure
4.30. This is the equivalent circuit of the inverting op amp and, as mentioned in Chapter 1, the
dependent source is a Voltage Controlled Voltage Source (VCVS).

Figure 4.30. Equivalent circuit of the inverting op amp

Example 4.8  
The op amp circuit shown in Figure 4.31 is called noninverting op amp. Prove that the voltage
gain  is as given in (4.10) below, and draw its equivalent circuit showing the output as a
dependent source.

Figure 4.31. Circuit of noninverting op amp
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Proof:

Let the voltages at the () and (+) terminals be denoted as  and  respectively as shown in
Figure 4.32.

Figure 4.32. Noninverting op amp circuit for derivation of (4.10)

By application of KCL at 

or

(4.11)

There is no potential difference between the () and (+) terminals; therefore,  or

. Relation (4.11) then can be written as

or

Rearranging, we obtain

and its equivalent circuit is as shown in Figure 4.33. The dependent source of this equivalent cir-
cuit is also a VCVS.
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Figure 4.33. Equivalent circuit of the noninverting op amp

Example 4.9  

If, in the noninverting op amp circuit of the previous example, we replace  with an open cir-

cuit ( ) and  with a short circuit ( ), prove that the voltage gain  is

(4.12)

and thus

(4.13)

Proof:

With  open and  shorted, the noninverting amplifier of the previous example reduces to
the circuit of Figure 4.34.

Figure 4.34. Circuit of Figure 4.32 with  open and  shorted

The voltage difference between the (+) and () terminals is zero; then .

We will obtain the same result if we consider the noninverting op amp gain .

Then, letting , the gain reduces to  and for this reason this circuit is called unity
gain amplifier or voltage follower. It is also called buffer amplifier because it can be used to “buffer”
(isolate) one circuit from another when one “loads” the other as we will see on the next example.
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Example 4.10  
For the circuit of Figure4.35
a.With the load  disconnected, compute the open circuit voltage 

b.With the load connected, compute the voltage  across the load 
c.Insert a buffer amplifier between a and b and compute the new voltage  across the same
load 

Figure 4.35. Circuit for Example 4.10

Solution:

a. With the load  disconnected the circuit is as shown in Figure 4.36.

Figure 4.36. Circuit for Example 4.10 with the load disconnected

The voltage across terminals a and b is

b.  With the load  reconnected the circuit is as shown in Figure 4.37. Then, 

Here, we observe that the load  “loads down” the load voltage from  to 
and this voltage may not be sufficient for proper operation of the load.

RLOAD vab

vLOAD RLOAD

vLOAD

RLOAD

+


12 V




a

b

vin

RLOAD

7 K

5 K 5 K

RLOAD

+


12 V



 a

b

vin

RLOAD

7 K

5 K 5K

vab
5 K

7 K 5 K+
-----------------------------------= 12 5 V=

RLOAD

vLOAD
5 K || 5 K

7 K 5 K || 5 K+
--------------------------------------------------------= 12 3.16 V=

RLOAD 5 V 3.16 V



Chapter 4  Introduction to Operational Amplifiers

422 Circuit Analysis I with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

Figure 4.37. Circuit for Example 4.10 with the load reconnected

c. With the insertion of the buffer amplifier between points a and b and the load, the circuit now
is as shown in Figure 4.38.

Figure 4.38. Circuit for Example 4.10 with the insertion of a buffer op amp

From the circuit of Figure 4.38, we observe that the voltage across the load is  as desired.

Example 4.11  
The op amp circuit shown in Figure 4.39 is called summing circuit or summer because the output is
the summation of the weighted inputs.

Figure 4.39. Twoinput summing op amp circuit
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Prove that for this circuit, 

(4.14)

Proof:

We recall that the voltage across the () and (+) terminals is zero. We also observe that the (+)
input is grounded, and thus the voltage at the () terminal is at “virtual ground”. Then, by appli-
cation of KCL at the () terminal, we obtain

and solving for  we obtain (4.14). Alternately, we can apply the principle of superposition to
derive this relation.

Example 4.12  

Compute the output voltage  for the amplifier circuit shown in Figure 4.40.

Figure 4.40. Circuit for Example 4.12
Solution:

Let  be the output due to  acting alone,  be the output due to  acting alone,

and  be the output due to  acting alone. Then by superposition,

First, with  acting alone and  and  shorted, the circuit becomes as shown in Figure
4.41.                      
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Figure 4.41. Circuit for Example 4.12 with  acting alone

We recognize this as an inverting amplifier whose voltage gain  is

and thus 
(4.15)

Next, with  acting alone and  and  shorted, the circuit becomes as shown in Figure
4.42.

Figure 4.42. Circuit for Example 4.12 with  acting alone

The circuit of Figure 4.42 as a noninverting op amp whose voltage gain  is

and the voltage at the plus (+) input is computed from the voltage divider circuit shown in Fig-
ure 4.43.
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Figure 4.43. Voltage divider circuit for the computation of  with  acting alone

Then,

and thus
(4.16)

Finally, with  acting alone and  and  shorted, the circuit becomes as shown in Fig-
ure 4.44.

Figure 4.44. Circuit for Example 4.12 with  acting alone

The circuit of Figure 4.44 is also a noninverting op amp whose voltage gain  is

and the voltage at the plus (+) input is computed from the voltage divider circuit shown in Fig-
ure 4.45.
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Figure 4.45. Voltage divider circuit for the computation of  with  acting alone

Then,

and thus
(4.17)

Therefore, from (4.15), (4.16) and (4.17),

Example 4.13  

For the circuit shown in Figure 4.46, derive an expression for the voltage gain  in terms of the

external resistors , , , and .

Figure 4.46. Circuit for Example 4.13

Solution:

We apply KCL at nodes  and  as shown in Figure 4.47.
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Figure 4.47. Application of KCL for the circuit of Example 4.13

At node :
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or

or

(4.18)

At node :

or 

(4.19)

and since , we rewrite (4.19) as

(4.20)

Equating the right sides of (4.18) and (4.20) we obtain
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or

Dividing both sides of the above relation by  and rearranging, we obtain

and after simplification

(4.21)

4.9 Input and Output Resistance
The input and output resistances are very important parameters in amplifier circuits. 

The input resistance  of a circuit is defined as the ratio of the applied voltage  to the current

 drawn by the circuit, that is,

(4.22)

Therefore, in an op amp circuit the input resistance provides a measure of the current  which
the amplifier draws from the voltage source . Of course, we want  to be as small as possible;
accordingly, we must make the input resistance  as high as possible.

Example 4.14  

Compute the input resistance  of the inverting op amp amplifier shown in Figure 4.48 in

terms of  and . 
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Figure 4.48. Circuit for Example 4.14

Solution:

By definition, 

(4.23)

and since no current flows into the minus () terminal of the op amp and this terminal is at vir-
tual ground, it follows that

(4.24)

From (4.23) and (4.24) we observe that

(4.25)

It is therefore, desirable to make  as high as possible. However, if we make  very high such
as , for a large gain, say , the value of the feedback resistor  should be . Obvi-
ously, this is an impractical value. Fortunately, a large gain can be achieved with the circuit of
Problem 8 at the end of this chapter.

Example 4.15  

Compute the input resistance  of the op amp shown in Figure 4.49.

Figure 4.49. Circuit for Example 4.15
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Solution:

In the circuit of Figure 4.49,  is the voltage at the minus () terminal; not the source voltage

. Therefore, there is no current  drawn by the op amp. In this case, we apply a test (hypo-
thetical) current  as shown in Figure 4.49, and we treat  as the source voltage.

Figure 4.50. Circuit for Example 4.15 with a test current source

We observe that  is zero (virtual ground). Therefore,

By definition, the output resistance  is the ratio of the open circuit voltage to the short circuit cur-
rent, that is,

(4.26)

The output resistance  is not the same as the load resistance. The output resistance provides
a measure of the change in output voltage when a load which is connected at the output termi-
nals draws current from the circuit. It is desirable to have an op amp with very low output resis-
tance as illustrated by the following example.

Example 4.16   

The output voltage of an op amp decreases by  when a  load is connected at the out-
put terminals. Compute the output resistance .

Solution:

Consider the output portion of the op amp shown in Figure 4.51.
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Figure 4.51. Partial circuit for Example 4.16

With no load connected at the output terminals,

(4.27)

With a load  connected at the output terminals, the load voltage  is

(4.28)

and from (4.27) and (4.28)

(4.29)

Therefore, 

and solving for  we obtain 

We observe from (4.29) that as , relation (4.29) reduces to  and by

comparison with (4.27), we see that 
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Rout 555 =

Rout 0 vLOAD Gvvin=

vLOAD vOC=
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4.10 Summary
 A signal is any waveform representing a fluctuating electric quantity, such as voltage, current,

electric or magnetic field strength, sound, image, or any message transmitted or received in
telegraphy, telephony, radio, television, or radar. al that changes with time.

 An amplifier is an electronic circuit which increases the magnitude of the input signal.

 The gain of an amplifier is the ratio of the output to the input. It is normally expressed in deci-
bel (dB) units where by definition 

 Frequency response is the band of frequencies over which the output remains fairly constant.

 The lower and upper cutoff frequencies are those where the output is  of its maximum
value. They are also known as halfpower points.

 Most amplifiers are used with feedback where the output, or portion of it, is fed back to the
input.

 The operational amplifier (op amp) is the most versatile amplifier and its main features are:

1.  Very high input impedance (resistance)

2.  Very low output impedance (resistance)

3. Capable of producing a very large gain that can be set to any value by connection of exter-
nal resistors of appropriate values

4. Frequency response from DC to frequencies in the MHz range

5.  Very good stability

6. Operation to be performed, i.e., addition, integration etc. is done externally with proper
selection of passive devices such as resistors, capacitors, diodes, and so on.

 The gain of an inverting op amp is the ratio  where  is the feedback resistor which
allows portion of the output to be fed back to the minus () input. The minus () sign implies
that the output signal has opposite polarity from that of the input signal.

 The gain of an noninverting op amp is  where  is the feedback resistor which
allows portion of the output to be fed back to the minus () input which is grounded through
the  resistor. The output signal has the same polarity from that of the input signal.

 In a unity gain op amp the output is the same as the input. A unity gain op amp is used to pro-
vide a very high resistance between a voltage source and the load connected to it.

 Op amps are also used as active filters.

dB 10 pout pinlog=

0.707

Rf Rin– Rf

1 Rf Rin+ Rf

Rin



Circuit Analysis I with MATLAB Computing and Simulink / SimPowerSystems Modeling 433
Copyright © Orchard Publications

Summary

 A lowpass filter transmits (passes) all frequencies below a critical (cutoff) frequency denoted
as  and attenuates (blocks) all frequencies above this cutoff frequency.

 A highpass filter transmits (passes) all frequencies above a critical (cutoff) frequency  and
attenuates (blocks) all frequencies below the cutoff frequency.

 A bandpass filter transmits (passes) the band (range) of frequencies between the critical (cut-
off) frequencies denoted as  and  where the maximum value of  which is unity, falls

to , while it attenuates (blocks) all frequencies outside this band.

 A bandelimination or bandstop or bandrejection filter attenuates (rejects) the band
(range) of frequencies between the critical (cutoff) frequencies denoted as  and  where
the maximum value of  which is unity, falls to , while it transmits (passes) all fre-
quencies outside this band.

 A summing op amp is a circuit with two or more inputs.

 The input resistance is the ratio of the applied voltage  to the current  drawn by the cir-
cuit, that is, 

 The output resistance (not to be confused with the load resistance) is the ratio of the open cir-
cuit voltage when the load is removed from the circuit, to the short circuit current which is
the current that flows through a short circuit connected at the output terminals, that is,

C

c

1 2 Gv

0.707 Gv

1 2

Gv 0.707 Gv

vS iS

Rin vS iS=

Ro vOC iSC=
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4.11 Exercises
Multiple Choice

1. In the op amp circuit below , , and it is desired to have .
This will be obtained if the feedback resistor  has a value of

A.

B.

C.

D.

E.

2. In the circuit below , , and . Then  will be

A.

B.

C.

D.

E.

vin 2 V= Rin 1 K= vout 8 V=

Rf

1 K

2 K

3 K

4 K

none of the above

+



R+ 


+ voutvin

Rin Rf

vin 6 V= Rin 2 K= Rf 3 K= vout

9–  V

9 V

4–  V

4 V

none of the above

+

+


 +

Rin

Rf

vin vout
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Exercises

3. In the circuit below  and . Then  will be

A.

B.

C.

D.

E.

4. In the circuit below   and . Then  will be

A.

B.

C. indeterminate

D.

E.

iS 2 mA= Rf 5 K= vout

 V

0 V

10 V

10–  V

none of the above

+




+

Rf

iS

vout

iS 4 mA= R 3 K= vout

 V

0 V

12–  V

none of the above

+




+

R
iS

vout
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5. In the circuit below , , , and . Then 
will be

A.

B.

C.

D.

E.

6. In the circuit below  and all resistors have the same value. Then  will be

A.

B.

C.

D.

E.

vin 4 V= Rin 12 K= Rf 18 K= RLOAD 6 K= i

1–  mA

1 mA

4 3–  mA

4 3  mA

none of the above

+

+




+

Rin Rf

vin

voutRLOAD

i

vin 1 V= vout

2 V–

2 V

4 V–

4 V

none of the above

+



+ 



+
vout

Rin1

Rf11

vin

+


Rin22

Rf22
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Exercises

7. In the circuit below , , and . Then  will be

A.

B.

C.

D.

E.

8. In the circuit below . Then  will be

A.

B.

C.

D.

E.

vin1
2 V= vin2

4 V= Rin Rf 1 K= = vout

2 V–

2 V

8 V–

8 V

none of the above

+

+


 +

Rin

Rf

vin11
vout+

vin22

vin 30 mV= vout

5 mV–

10 mV–

15 mV–

90–  mV

none of the above

+

+


+vin

10 K

vout

20 K

10 K

10 K

10 K



Chapter 4  Introduction to Operational Amplifiers

438 Circuit Analysis I with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

9. For the circuit below the input resistance  is

A.

B.

C.

D.

E.

10. For the circuit below the current  is 

A.

B.

C.

D.

E.

Rin

1 K

2 K

4 K

8 K

none of the above

+

+


vin

4 K

+


vout

4 K

2 K
1 K

2 K
Rin

i

40–  A

40 A

400–  A

400 A

none of the above

+


2 A

i

40vX

10 vX

+


5 
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Exercises

Problems

1.  For the circuit below compute . Answer: 

2.  For the circuit below compute . Answer: 

3. For the circuit below , , and  represent the internal resistances of the input volt-

ages , , and  respectively. Derive an expression for  in terms of the input

voltage sources and their internal resistances, and the feedback resistance .

Answer: 

vout2 0.9 V–

+


10 mV

+




+ +



vout2

3 K

27 K
10 K

90 K

vout1

vin1 +


vin2

i5K 4A

+
60 mV

+



3 K

i5K

4 K

6 K 5 K

Rin1 Rin2 Rin3

vin1 vin2 vin3 vout

Rf

+


+



+


+


vout

+


vin1

vin2 vin3

Rin1

Rin2 Rin3

Rf

vout Rf
vin3
Rin3
----------

vin2
Rin2
----------

vin1
Rin1
----------–– 

 =
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4.  For the circuit below compute . Answer: 

5. The op amp circuit (a) below can be represented by its equivalent circuit (b). For the circuit
(c), compute the value of  so that it will receive maximum power. Answer: 

6.  For the circuit below compute  using Thevenin’s theorem. Answer: 

vout 40 mV–

40 mV

+


+



+


vout

10 K

20 K

40 K

50 K

RL 3.75 K

+

+




+ +
+


+

(a) (b)

R1

R2

R1
R2
R1
------vin

vin vinvout

vout

2 K

20 K

vin
+





+

5 K

15 K

(c)

vout
+

RLOAD


v5K 20 mV
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Exercises

7.  For the circuit below compute the gain . Answer: 

8.  For the circuit below, show that the gain is given by

9. Create a Simulink / SimPowerSystems model for the equivalent circuit of the inverting op
amp shown below.

+



+




+

+



vout

72 mV
v5K 20 K

12 K

84 K
100 K

5 K

4 K

Gv vout vin= 2 37  –

+
+



vout
vin

R2
R1

R3

R4

R5

200 K

40 K

50 K
50 K

40 K

Gv
vout
vin
---------- 1

R1
------– R4 R2

R4
R3
------ 1+ 

 += =

+
+


 vout

vin

R1

R2
R3

R4
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+
+


+

vin

Rin vout
Rf
Rin
-------vin

vin 1 v peak= f 0.2 Hz= Phase 0 deg=

Rin 1 K= Rf 10 K=
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Answers / Solutions to EndofChapter Exercises

4.12 Answers / Solutions to EndofChapter Exercises
Multiple Choice

1. C For  and , the gain must be  or  and 

2. A

3. D  All current flows through  and the voltage drop across it is 

4. E   All current flows through  and the voltage drop across it is . Since
this circuit is a unity gain amplifier, it follows that  also.

5. C  . Therefore, .
Applying KCL at the plus (+) terminal of  we obtain

6. D The gain of each of the noninverting op amps is 2. Thus, the output of the first op amp is
 and the output of the second is .

7. E By superposition,  due to  acting alone is  and  due to  acting alone

is . Therefore, 

8. B We assign node voltage  as shown below and we replace the encircled part by its equiv-
alent.

We now attach the remaining resistors and the entire equivalent circuit is shown below.

vin 2= vout 8= Gv 4= 1 Rf Rin+ 4= Rf 3 K=

vout Rf Rin vin– 9 V–= =

Rf 2 mA 5 K – 10 V–=

R 4 mA 3 K 12 V=

vout 12 V=

vout 18 12  4– 6 V–= = iLOAD vout RLOAD 6 V 6 K– 1 mA–= = =

vout

i 6 V–
6 K
-------------- 6 V– 4 V–

18 K 12 K+
-----------------------------------------+ 1– 1

3
---–

4
3
--- mA–= = =

2 V 4 V

vout1
vin1

2 V– vout2
vin2

8 V vout 2– 8+ 6 V= =

vA

+

+


+vin

10 K

vout

20 K

10 K

10 K

10 K
vA


+

+ +

 

voutvA
vin 30 mV

10 K 10 K

5 K

A

2vA
+
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Application of KCL at Node A yields

and thus 

Therefore,

NOTE: For this circuit, the magnitude of the voltage is less than the magnitude of the
input voltage. Therefore, this circuit is an attenuator, not an amplifier. Op amps
are not configured for attenuation. This circuit is presented just for instructional
purposes. A better and simpler attenuator is a voltage divider circuit.

9. C The voltage gain for this circuit is  and thus . The voltage 
at the minus () input of the op amp is zero as proved below.

or

Then,

and

10. A For this circuit,  and thus . Then, 

Problems

1.  

vA 30–

10
------------------

vA
5

------
vA 2vA– –

10
------------------------------+ + 0=

vA 30 6 5 mV= =

vout 2vA– 10 mV–= =

4 K 4 K 1= vout vin–= v

+

+


vin

4 K

+


vout

4 K

2 K
1 K

2 KRin
i v

v vin–

4
---------------

v vin– –

4
------------------------+ 0=

v 0=

i
vin

4 K
--------------=

Rin
vin

vin 4 K
------------------------- 4 K= =

vX 10 V–= 40vX 400 V–= i 400 10– 40 A–= =

vout1 27 3  10– 90 mV–= =
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Answers / Solutions to EndofChapter Exercises

and thus

Then,

2. We assign , , and  as shown below.

and by the voltage division expression

and since this is a unity gain amplifier, we obtain

Then,

3. By superposition

where

We observe that the minus () is a virtual ground and thus there is no current flow in 
and . Also,

and

vin2 vout1 90 mV–= =

vout2 1 90
10
------+ 

  90–  0.9 V–= =

RLOAD v1 vLOAD

+
60 mV

+



3 K

i5K

4 K

6 K 5 K
+


v1

+


vLOAD

3 K 6 K 2 K=

v1
2 K

4 K 2 K+
----------------------------------- 60 mV 20 mV= =

vLOAD v1 20 mV= =

i5K
vLOAD
RLOAD
----------------- 20 mV

5 K
----------------- 20 10 3–

5 103
----------------------- 4 10 6–  A 4 A= = = = =

vout vout1 vout2 vout3+ +=

vout1 vin2 0=

vin3 0=

Rf
Rin1
----------vin1–=

Rin1

Rin2

vout2 vin1 0=

vin3 0=

Rf
Rin2
----------vin2–=
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Then,

4. We assign voltages  and  as shown below.

At the minus () terminal

or

At the plus (+) terminal

or

or

Since  we equate the nodal equations and we obtain

Multiplication by  yields

vout3 vin1 0=

vin2 0=

Rf
Rin3
---------- v– in3 –=

vout Rf
vin3
Rin3
----------

vin2
Rin2
----------

vin1
Rin1
----------–– 

 =

v v+

40 mV

+


+



+


vout

10 K

20 K

40 K

50 K

v+

v

v 40 mV–

10 K
------------------------------

v vout–

50 K
----------------------+ 0=

6
50 103
--------------------v

1
50 103
--------------------vout– 4 10 6–=

v+ 40 mV–

20 K
-----------------------------

v+
40 K
-----------------+ 0=

3
40 10 3
---------------------v+ 2 10 6–=

v+
80 10 3–

3
-----------------------=

v+ v=

6
50 103
-------------------- 80 10 3–

3
----------------------- 

  1
50 103
--------------------vout– 4 10 6–=

50 103
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Answers / Solutions to EndofChapter Exercises

or

Check using MATLAB:

R1=10000; R2=20000; R3=40000; Rf=50000; Vin=40*10^(-3);
Vout=(R1*R3R2*Rf)*Vin/(R1*(R2+R3))

Vout =
   -0.0400

5. We attach the , , and  resistors to the equivalent circuit as shown below.

By Thevenin’s theorem

or

Because the circuit contains a dependent source, we must compute the Thevenin resistance
using the relation  where  is found from the circuit below.

We observe that the short circuit shorts out the  and thus

Then,

2 80 10 3– 50 103
50 103

----------------------------------------------------------- vout– 4 10 6– 50 103=

vout 40 mV–=

5 K 15 K RLOAD

+
vin

2 K

10vin
+


5 K

15 K

a



b

vTH vOC vab
15 K

5 K 15 K+
-------------------------------------- 10vin– = = =

vTH 7.5vin–=

RTH vTH iSC= iSC

+


10vin

5 K

15 K





b

a

iSC

15 K

iSC
10vin–

5 K
---------------- 2 10 3– vin–= =
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and the Thevenin equivalent circuit is shown below.

Therefore, for maximum power transfer we must have 

6. This is a noninverting op amp whose equivalent circuit is shown below.

For this circuit  and the value of the VCVS is

Attaching the external resistors to the equivalent circuit above we obtain the circuit below.

To find the Thevenin equivalent at points a and b we disconnect the  resistor. When
this is done there is no current in the  and the circuit simplifies to the one shown below.

RTH
7.5vin–

2 10 3– vin–
------------------------------ 3.75 K= =

+


vTH

3.75 K

RLOAD

RTH

RLOAD RTH 3.75 K= =

+

++


1

Rf
Rin
-------+ 

  vin vout
vin

vin v5K=

1
Rf
Rin
--------+

 
 
 

v5K 1 100
20

---------+ 
  v5K 6v5K= =

+


+
+
v5K

72 mV

12 K 4 K

84 K

5 K





a

b
6v5K

5 K
4 K
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Answers / Solutions to EndofChapter Exercises

By KVL

or

Also,

or

and thus

The Thevenin resistance is found from  where  is computed with the ter-
minals a and b shorted making  and the circuit is as shown on the left below. We
also perform voltagesource to currentsource transformation and we obtain the circuit on
the right below.

Now,

and by the current division expression

Therefore,

+
+


6v5K

72 mV

12 K 84 K

i

a

b

vab

+



12 K 84 K+ i 6v5K+ 72 mV=

i
72 mV 6v5K–

12 K 84 K+ 
----------------------------------------------=

vTH vab v5K 72 mV 12 K i– 72 mV 12 K
72 mV 6v5K–

96 K
--------------------------------------- 
 –= = = =

72 mV 9 mV–
3
4
---v5K+=

v5K
3
4
---v5K– 63 mV=

vTH vab v5K 252 mV= = =

RTH vOC iSC= iSC

v5K 0=

+


72 mV

12 K

84 K
a
biSC

4 K
6 A

12 K

84 K a
biSC

4 K

12 K 84 K 10.5 K=

iSC iab
10.5 K

10.5 K 4 K+
------------------------------------------ 6 A 126

29
--------- A= = =

RTH
vOC
iSC
--------- 252

126 29
------------------- 58 K= = =
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and the Thevenin equivalent circuit with the  resistor is shown below.

Finally,

7. We assign node voltages  and  as shown below and we write node equations observing
that  (virtual ground).

Node 1:

or

Multiplication of each term by  and simplification yields

Node 2:

or

Equating the right sides we obtain

5 K

+
 5 K

a

b

12 K

252 mV

RTH

vTH

v5K
5

58 5+
--------------- 252 20 mV= =

v1 v2

v2 0=

v1 vin–

200 K
--------------------

v1 vout–

40 K
--------------------

v1 0–

50 K
-----------------

v1
50 K
-----------------+ + + 0=

1
200 K
-------------------- 1

40 K
----------------- 1

50 K
----------------- 1

50 K
-----------------+ + + 

  v1
vin

200 K
--------------------

vout
40 K
-----------------+=

+
+



vout
vin

R2
R1

R3

R4

R5

200 K

40 K

50 K
50 K

40 K
v1 v2

200 K

v1
1

14
------ vin 5vout+ =

0 v1–

50 K
-----------------

0 vout–

40 K
------------------+ 0=

v1
5
4
---vout–=
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Answers / Solutions to EndofChapter Exercises

or

Simplifying and dividing both sides by  we obtain

8. We assign node voltages  and  as shown below and we write node equations observing
that  (virtual ground).

Node 1:

or

Node 2:

or

or

Equating the right sides we obtain

Simplifying and dividing both sides by  we obtain

1
14
------ vin 5vout+  5

4
---vout–=

37
28
------vout

1
14
------vin–=

vin

Gv
vout
vin
--------- 2

37
------–= =

v1 v2

v1 0=

+
+


 vout

vin

R1

R2
R3

R4

v1

v2

0 vin–

R1
---------------

0 v2–

R2
--------------+ 0=

v2
R2
R1
------vin–=

v2 0–

R2
--------------

v2
R3
------

v2 vout–

R4
--------------------+ + 0=

1
R2
------ 1

R3
------ 1

R4
------+ + 

  v2
vout
R4

---------=

v2
1

R4 R2 R4 R3 1+ +
-------------------------------------------------vout=

1
R4 R2 R4 R3 1+ +
-------------------------------------------------vout

R2
R1
------vin–=

vin
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9.

      

Gv
vout
vin
---------- 1

R1
------– R4 R2

R4
R3
------ 1+ 

 += =

+
+


+

vin

Rin vout
Rf
Rin
-------vin

vin 1 v peak= f 0.2 Hz= Phase 0 deg= Rin 1 K= Rf 10 K=

Vin

Vout
Vin = 1 volt peak, frequency 0.2 Hz

Rin=1 K, Rf= 10 K, entered at the MATLAB command prompt

VM = Voltage Measurement

CVS=Controlled Voltage Source

Continuous

powergui
Vin

v+
-

VM 2

v+
-

VM 1

Scope

Rin Product

-Rf/Rin

Constant

s -
+

CVS Bus
Creator
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Chapter 5

Inductance and Capacitance

his chapter is an introduction to inductance and capacitance, their voltagecurrent rela-
tionships, power absorbed, and energy stored in inductors and capacitors. Procedures for
analyzing circuits with inductors and capacitors are presented along with several examples. 

5.1 Energy Storage Devices
In the first four chapters we considered resistive circuits only, that is, circuits with resistors and
constant voltage and current sources. However, resistance is not the only property that an elec-
tric circuit possesses; in every circuit there are two other properties present and these are the
inductance and the capacitance. We will see through some examples that will be presented later
in this chapter, that inductance and capacitance have an effect on an electric circuit as long as
there are changes in the voltages and currents in the circuit.

The effects of the inductance and capacitance properties can best be stated in simple differential
equations since they involve the changes in voltage or current with time. We will study induc-
tance first.

5.2 Inductance
Inductance is associated with the magnetic field which is always present when there is an electric
current. Thus, when current flows in an electric circuit the conductors (wires) connecting the
devices in the circuit are surrounded by a magnetic field. Figure 5.1 shows a simple loop of wire
and its magnetic field represented by the small loops.

Figure 5.1. Magnetic field around a loop of wire

The direction of the magnetic field (not shown) can be determined by the lefthand rule if con-
ventional current flow is assumed, or by the righthand rule if electron current flow is assumed.
The magnetic field loops are circular in form and are referred to as lines of magnetic flux. The unit
of magnetic flux is the weber (Wb).

T
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In a loosely wound coil of wire such as the one shown in Figure 5.2, the current through the
wound coil produces a denser magnetic field and many of the magnetic lines link the coil several
times.

Figure 5.2. Magnetic field around several loops of wire

The magnetic flux is denoted as  and, if there are N turns and we assume that the flux  passes
through each turn, the total flux, denoted as  is called flux linkage. Then,

(5.1)

Now, we define a linear inductor one in which the flux linkage is proportional to the current
through it, that is,

(5.2)

where the constant of proportionality  is called inductance in webers per ampere.

We also recall Faraday’s law of electromagnetic induction which states that

(5.3)

and from (5.2) and (5.3), 

(5.4)

Alternately, the inductance  is defined as the constant which relates the voltage across and the
current through a device called inductor by the relation of (5.4).

The symbol and the voltagecurrent* designations for the inductor are shown in Figure 5.3.

Figure 5.3. Symbol for inductor

* In the first four chapters we have used the subscript LOAD to denote a voltage across a load, a current through a load,
and the resistance of a such load as  to avoid confusion with the subscript L which henceforth will denote induc-
tance. We will continue using the subscript LOAD for any load connected to a circuit.

 


 N=

 Li=

L

v d
dt
------=

v Ldi
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-----=

L

RLOAD

L

 
vL

iL
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Inductance

For an inductor, the voltagecurrent relationship is 

(5.5)

where  and  have the indicated polarity and direction. Obviously,  has a nonzero value

only when  changes with time.

The unit of inductance is the Henry abbreviated as . Since

 (5.6)

we can say that one henry is the inductance in a circuit in which a voltage of one volt is induced
by a current changing at the rate of one ampere per second.

By separation of the variables we rewrite (5.5) as

(5.7)

and integrating both sides we obtain:

or

or

(5.8)

where , more often denoted as , is the current flowing through the inductor at some
reference time usually taken as , and it is referred to as the initial condition.

We can also express (5.8) as

(5.9)

where the first integral on the right side represents the initial condition.

vL L
diL
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------- volts
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ondssec
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----------------------= =
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1
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---vLdt=

id L
i t0 

i t 

 1
L
--- vLdt
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t
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L
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t
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L
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–
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L
--- vLdt
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Example 5.1  

The current  passing through a  inductor is shown in Figure 5.4.

a. Compute the flux linkage  at 

b. Compute and sketch the voltage  for the time interval 

Figure 5.4. Waveform for Example 5.1

Solution:

a. The flux linkage  is directly proportional to the current; then from (5.1) and (5.2)

Therefore, we need to compute the current i at , , , and

For time interval ,  where  is the slope of the straight line segment,
and b is the  intercept which, by inspection, is . The slope  is

and thus
(5.10)

At , (5.10) yields . Then, the flux linkage is

and 
(5.11)

iL t  50 mH

 t 2 5 9 and 11 ms  =

vL t   t 14 ms –

(mA)

0

5
10

15
20

25

5
10
15
20

t (ms)
10 126

3 8

14

iL t 



 N Li= =

t 2 ms= t 5 ms= t 9 ms=

t 11 ms=

0 t 3 ms  i mt b+= m
i axis– 25 mA m

m 20– 25–
3 0–

---------------------- 15–= =

i t 0=
3 ms 15– t 25+=

t 2 ms= i 5 mA–=

 Li 50 10 3– 5–  10 3–= =

 t 2 ms=
250 Wb–=
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For the time interval ,  where

and thus

To find b we use the fact that at ,  as seen in Figure 5.4. Then,

from which .

Thus, the straight line equation for the time interval  is

(5.12)

and therefore at , , and the flux linkage is

or
(5.13)

Using the same procedure we find that

(5.14)

Also,
(5.15)

and with (5.15),
(5.16)

Likewise,
(5.17)

and with (5.17),
(5.18)

b. Since 

to compute and sketch the voltage  for the time interval , we only need
to differentiate, that is, compute the slope of the straight line segments for this interval.
These were found in part (a) as (5.10), (5.12), (5.14), (5.15), and (5.17). Then,

3 t 6 ms  i mt b+=

m 15 20– –
3 0–

-------------------------- 35
3

------= =

i 35
3

------t b+=

t 3 ms= i 20 mA–=

20–
35
3

------ 3 b+=

b 55–=

3 t 6 ms 

i t 3 ms=
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3
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3

--------- Wb=
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i t 8 ms=
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 t 9 ms= Li 125 Wb–= =

i t 10 ms=
12 ms 2.5– t 30+=

 t 11 ms= Li 125 Wb= =

vL L
diL
dt
-------=

vL t   t 14 ms –
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(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

We now have all values given by (5.19) through (5.25) to sketch  as a function of time. We
can do this easily with a spreadsheet such as Excel as shown in Figure 5.5.

Example 5.2  

The voltage across a  inductor is as shown on the waveform of Figure 5.6, and it is given
that the initial condition is . Compute and sketch the current which
flows through this inductor in the interval 

slope – t 0  0=

vL – t 0 
L slope 0= =

slope 0 t 3 ms  15 mA ms– 15 A s–= =

vL 0 t 3 ms 
L slope 50 10 3–  v

A s
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slope 12 t 14 ms  0=
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vL

50 mH
iL t0  iL 0  25 mA= =
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Figure 5.5. Voltage waveform for Example 5.1

Figure 5.6. Waveform for Example 5.2
Solution:

The current  in an inductor is related to the voltage  by (5.8) which is repeated here
for convenience.

where  is the initial condition, that is,
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From the given waveform,

Then,

that is, the current has dropped linearly from  at  to  at  as shown
in Figure 5.7.

Figure 5.7. Inductor current for , Example 5.2

The same result can be obtained by graphical integration. Thus,

and the value of  now becomes our initial condition for the time interval

.

Continuing with graphical integration, we obtain
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and now the current has increased linearly from  at  to  at  as
shown in Figure 5.8.

Figure 5.8. Inductor current for , Example 5.2

For the time interval , we obtain

Therefore, the current has decreased linearly from  at  to  at 
as shown in Figure 5.9.

Figure 5.9. Inductor current for , Example 5.2

For the time interval  we obtain
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that is, the current has increased linearly from  at  to  at  as
shown in Figure 5.10.

Figure 5.10. Inductor current for , Example 5.2

Finally, for the time interval  we obtain

that is, the current has decreased linearly from  at  to  at  and
remains at zero for  as shown in Figure 5.11.

Example 5.2 confirms the well known fact that the current through an inductor cannot change
instantaneously. This can be observed from the voltage and current waveforms for this and the
previous example. We observe that the voltage across the inductor can change instantaneously as
shown by the discontinuities at . However, the current through the
inductor never changes instantaneously, that is, it displays no discontinuities since its value is
explicitly defined at all instances of time.
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Power and Energy in an Inductor

Figure 5.11. Inductor current for , Example 5.2

5.3 Power and Energy in an Inductor

Power in an inductor with inductance  is found from

 (5.26)

and the energy in an inductor, designated as  is the integral of the power, that is,

or

or

and letting  at , we obtain the energy stored in an inductor as

 (5.27)

Unlike the resistor which dissipates energy (in the form of heat), the (ideal) inductor is a physical
device capable of storing energy in analogy to the potential energy of a stretched spring.

Electric circuits which contain inductors can be simplified if the applied voltage and current
sources are constant as shown by the following example. 
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Example 5.3  

For the circuit shown in Figure 5.12, compute , , and , after steadystate*conditions have
been reached. Then, compute the power absorbed and the energy consumed by the  induc-
tor.

Figure 5.12. Circuit for Example 5.3

Solution:

Since both the voltage and the current sources are constant, the voltages and the currents in all
branches of the circuit will be constant after steadystate conditions have been reached.

Since

then, all voltages across the inductors will be zero and therefore we can replace all inductors by
short circuits. The given circuit then reduces to the one shown in Figure 5.13 where the  and

parallel resistors have been combined into a single  resistor.

Figure 5.13. Circuit for Example 5.3 after steadystate conditions have been reached

* By steady state conditions we mean the condition (state) where the voltages and currents, after some transient disturbances,
have subsided. Transients will be in Chapter 10.
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Power and Energy in an Inductor

Now, in Figure 5.13, by inspection,  since the  resistor was shorted out by the
 inductor. To find  and , let us first find and  using nodal analysis.

At Node ,

or 
(5.28)

At Node 

or 
(5.29)

We will use the MATLAB script below to find the solution of (5.28) and (5.29).

format rat % Express answers in rational form
G=[1/4+1/9+1/7  1/7; 1/7  1/7+1/8]; I=[6  15]'; V=G\I;
disp('vA='); disp(V(1)); disp('vB='); disp(V(2))

vA=
   360/11    

vB=
   808/11   

Therefore,

 

and

that is, 
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or
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5.4 Combinations of Inductors in Series and in Parallel 

Consider the circuits of figures 5.14 (a) and 5.14 (b) where the source voltage  is the same for
both circuits. We wish to find an expression for the equivalent inductance which we denote as

 in terms of  in Figure 5.14 (a) so that the current i will be the same for both
circuits.

Figure 5.14. Circuits for derivation of equivalent inductance for inductors in series

From the circuit of Figure 5.14 (a),

or
(5.30)

From the circuit of Figure 5.14 (b),

(5.31)

Equating the left sides of (5.30) and (5.31) we obtain:

(5.32)

Thus, inductors in series combine as resistors in series do.

Next, we will consider the circuits of Figures 5.15 (a) and 5.15 (b) where the source current  is
the same for both circuits. We wish to find an expression for the equivalent inductance which we
denote as  in terms of  in Figure 5.15 (a) so that the voltage v will be the same
for both circuits.

Figure 5.15. Circuits for derivation of equivalent inductance for inductors in parallel
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Combinations of Inductors in Series and in Parallel

From the circuit of Figure 5.15 (a)

or

or 

(5.33)

From the circuit of Figure 5.15 (b)

(5.34)

Equating the left sides of (5.33) and (5.34) we obtain:

(5.35)

and for the special case of two parallel inductors

(5.36)

Thus, inductors in parallel combine as resistors in parallel do.

Example 5.4  
For the network of Figure 5.16, replace all inductors by a single equivalent inductor.

Figure 5.16. Network for Example 5.4
Solution: 
Starting at the right end of the network and moving towards the left end, we find that

, , , and also
. The network then reduces to that shown in Figure 5.17.
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Figure 5.17. First step in combination of inductances

Finally, with reference to Figure 5.17, , and
 as shown in Figure 5.18.

Figure 5.18. Network showing the equivalent inductance of Figure 5.16

5.5 Capacitance

In Section 5.2 we learned that inductance is associated with a magnetic field which is created
whenever there is current flow. Similarly, capacitance is associated with an electric field. In a sim-
ple circuit we can represent the entire capacitance with a device called capacitor, just as we con-
sidered the entire inductance to be concentrated in a single inductor. A capacitor consists of two
parallel metal plates separated by an air space or by a sheet of some type of insulating material
called the dielectric.

Now, let us consider the simple series circuit of Figure 5.19 where the device denoted as , is the
standard symbol for a capacitor. 

Figure 5.19. Simple circuit to illustrate a charged capacitor

When the switch  closes in the circuit of Figure 5.19, the voltage source will force electrons
from its negative terminal through the conductor to the lower plate of the capacitor and it will
accumulate negative charge. At the same time, electrons which were present in the upper plate of
the capacitor will move towards the positive terminal of the voltage source. This action leaves the
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Capacitance

upper plate of the capacitor deficient in electrons and thus it becomes positively charged. There-
fore, an electric field has been established between the plates of the capacitor.

The distribution of the electric field set up in a capacitor is usually represented by lines of force
similar to the lines of force in a magnetic field. However, in an electric field the lines of force
start at the positive plate and terminate at the negative plate, whereas magnetic lines of force are
always complete loops.

Figure 5.20 shows the distribution of the electric field between the two plates of a capacitor.

Figure 5.20. Electric field between the plates of a capacitor

We observe that the electric field has an almost uniform density in the area directly between the
plates, but it decreases in density beyond the edges of the plates. 

The charge  on the plates is directly proportional to the voltage between the plates and the
capacitance  is the constant of proportionality. Thus,

(5.37)

and recalling that the current i is the rate of change of the charge q, we have the relation

or

(5.38)

where  and  in (5.38) obey the passive sign convention.

The unit of capacitance is the Farad abbreviated as F and since

(5.39)
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we can say that one farad is the capacitance in a circuit in which a current of one ampere flows
when the voltage is changing at the rate of a one volt per second.

By separation of the variables we rewrite (5.38) as

 (5.40)

and integrating both sides we obtain: 

or

or

(5.41)

where  is the initial condition, that is, the voltage across a capacitor at some reference time
usually taken as , and denoted as .

We can also write (5.41) as

where the initial condition is represented by the first integral on the right side.

Example 5.5  

The waveform shown in Figure 5.21 represents the current flowing through a  capacitor.
Compute and sketch the voltage across this capacitor for the time interval  given that
the initial condition is .

Solution:

The initial condition , establishes the first point at the coordinates  on the 
versus time plot of Figure 5.22.

Next,
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Capacitance

Figure 5.21. Waveform for Example 5.5

Figure 5.22. Straight line segment for  of the voltage waveform for Example 5.5

or

and this value establishes the second point of the straight line segment passing through the origin
as shown in Figure 5.22.

This value of  at  becomes our initial condition for the time interval .
Continuing, we obtain

Thus, the capacitor voltage then decreases linearly from  at  to  at
 as shown in Figure 5.23.
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Figure 5.23. Voltage waveform for  of Example 5.5

There is no need to calculate the values of the capacitor voltage   at  and at 
because the waveform of the current  starts repeating itself at , and the initial condi-
tions and the areas are the same as before. Accordingly, the capacitor voltage  waveform of fig-
ure (b) starts repeating itself also as shown in Figure 5.24.

 

Figure 5.24. Voltage waveform for  of Example 5.5

Example 5.5 has illustrated the well known fact that the voltage across a capacitor cannot change
instantaneously. Referring to the current and voltage waveforms for this example, we observe
that the current through the capacitor can change instantaneously as shown by the discontinui-
ties at  in Figure 5.21. However, the voltage across the capacitor never
changes instantaneously, that is, it displays no discontinuities since its value is explicitly defined
at all instances of time as shown in Figure 5.24.
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Power and Energy in a Capacitor

5.6 Power and Energy in a Capacitor
Power in a capacitor with capacitance C is found from

and the energy in a capacitor, denoted as  is the integral of the power, that is,

or

and letting  at , we obtain the energy stored in a capacitor as

  (5.42)

Like an inductor, a capacitor is a physical device capable of storing energy.

It was stated earlier that the current through an inductor and the voltage across a capacitor can-
not change instantaneously. These facts can also be seen from the expressions of the energy in an
inductor and in a capacitor, equations (5.27) and (5.42) where we observe that if the current in
an inductor or the voltage across a capacitor could change instantaneously, then the energies

 and  would also change instantaneously but this is, of course, a physical impossibility.

Example 5.6  
In the circuit of figure 5.25, the voltage and current sources are constant. 

a. Compute  and 

b. Compute the power and energy in the  capacitor.

Solution:

a. The voltage and current sources are constant; thus, after steadystate conditions have been
reached, the voltages across the inductors will be zero and the currents through the capacitors
will be zero. Therefore, we can replace the inductors by short circuits and the capacitors by
open circuits and the given circuit reduces to that shown in Figure 5.26.

pC vC iC vC C td

dvC
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1
2
---Cvc

2

i t0 

i t  1
2
---C vc
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Figure 5.25. Circuit for Example 5.6

Figure 5.26. First simplification of the circuit of Example 5.6 

We can simplify the circuit of figure 5.26 by first exchanging the  current source and
resistor  for a voltage source of  in series with  as shown in Figure 5.27.
W e  a l s o  c o m b i n e  th e  s e r i e sp ar a l l e l  r e s i s to r s   t h ro u g h  .  T h u s ,

.But now we observe that the branch in which the current 
flows has disappeared; however, this presents no problem since we can apply the current divi-
sion expression once i, shown in Figure 5.27, is found. The simplified circuit then is as shown
in Figure 5.27.

We can apply superposition here. Instead, we will write two mesh equations and we will solve
using MATLAB. These in matrix form are

+
 +
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Power and Energy in a Capacitor

Figure 5.27. Final simplification of the circuit of Example 5.6 

Solution using MATLAB:

format rat; R=[20  6; 6  14]; V=[24  120]'; I=R\V; disp(‘i1=’); disp(I(1)); disp(‘i2=’);
disp(I(2))

i1=
   -96/61    

i2=
  -564/61

Therefore, with reference to the circuit of Figure 5.28 below, we  obtain

Figure 5.28. Circuit for computation of  and  for Example 5.6

and
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and
 

+


+

24 V

+


120 V

i
Req

4 

R8

8 

6 

R6

R5

10 

i1

vC2

i2

+


+

24 V

15 A

iL1

vC2

10 

4  2 

5 7 

6 

8 

R1

R5

R6

R8

R4

R3

R2

R7

iL1 vC2

iL1
4 2+ 

4 2+  7 5+ +
---------------------------------------- 96

61
------– 

  32
61
------– 0.525 A–= = =

vC2 6 96
61
------– 564

61
---------+ 

  2808
61

------------ 46.03 V= = =

p2 F v2 F i2 F vC2 0 0= = =

W2 F
1
2
---Cv2 F

2 0.5 2 10 6– 2808
61

------------ 
  2

 2 mJ= = =



Chapter 5  Inductance and Capacitance

524 Circuit Analysis I with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

5.7 Combinations of Capacitors in Series and in Parallel

Consider the circuits of figures 5.29 (a) and 5.29 (b) in which the source voltage  is the same
for both circuits. We want to find an expression for the equivalent capacitance which we denote
as  in terms of  in Figure 5.29 (a) so that the current i will be the same in
both circuits.

Figure 5.29. Circuits for derivation of equivalent capacitance for capacitors in series

From the circuit of Figure 5.29 (a),

or

or 

(5.43)

From the circuit of Figure 5.29 (b)

(5.44)

Equating the left sides of (5.43) and (5.44) we obtain:

(5.45)

and for the special case of two capacitors in series

(5.46)

Thus capacitors in series combine as resistors in parallel do.
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Combinations of Capacitors in Series and in Parallel

Next, we will consider the circuits of figures 5.30 (a) and 5.30 (b) where the source current  is
the same for both circuits. We wish to find an expression for the equivalent capacitance which
we denote as  in terms of  in Figure 5.30 (a) so that the voltage  will be the
same in both circuits.

Figure 5.30. Circuits for derivation of equivalent capacitance for capacitors in parallel

From the circuit of Figure 5.30 (a),

or

or

(5.47)

From the circuit of Figure 5.30 (b),

(5.48)

Equating the left sides of (5.47) and (5.48) we obtain:

(5.49)

Thus, capacitors in parallel combine as resistors in series do.

Example 5.7  
For the network of Figure 5.31, replace all capacitors by a single equivalent capacitor.

Solution:
Beginning at the right of the network and moving towards the left, we find that
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Figure 5.31. Network for Example 5.7

The network then reduces to that shown in Figure 5.32.

Figure 5.32. First step in combination of capacitances

N e x t ,  t h e  s e r i e s  c o m b i n a t i o n  o f   y i e l d s   a n d
. Finally, the series combination of  and  yields

 as shown in Figure 5.33.

Figure 5.33. Network showing the equivalent inductance of Figure 5.16

5.8 Nodal and Mesh Equations in General Terms
In Examples 5.3 and 5.6 the voltage and current sources were constant and therefore, the steady
state circuit analysis could be performed by nodal, mesh or any other method of analysis as we
learned in Chapter 3. However, if the voltage and current sources are timevarying quantities we
must apply KCL or KVL in general terms as illustrated by the following example.
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Nodal and Mesh Equations in General Terms

Example 5.8  
Write nodal and mesh equations for the circuit shown in Figure 5.34. 

Figure 5.34. Circuit for Example 5.8

Solution:

a. Nodal Analysis:

We assign nodes as shown in Figure 5.35. Thus, we need  nodal equations.

Figure 5.35. Nodal analysis for the circuit of Example 5.8

At Node 1:

At Node 2:

At Node 3:

At Node 4:

b. Mesh Analysis:

We need  mesh equations. Thus, we assign currents  and  as
shown in Figure 5.36.
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Figure 5.36. Mesh analysis for the circuit of Example 5.8

For Mesh 1:

For Mesh 2:

In both the nodal and mesh equations, the initial conditions are included in the limits of integra-
tion. Alternately, we can add the initial condition terms and  in the integrodifferential equations
above, replace the lower limit of integration  with zero.
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+
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Summary

5.9 Summary
 Inductance is associated with a magnetic field which is created whenever there is current flow.

 The magnetic field loops are circular in form and are called lines of magnetic flux. The unit of
magnetic flux is the weber (Wb).

 The magnetic flux is denoted as  and, if there are N turns and we assume that the flux 
passes through each turn, the total flux, denoted as  is called flux linkage. Then, 

 For an inductor, the voltagecurrent relationship is 

 The unit of inductance is the Henry abbreviated as H.

 Unlike the resistor which dissipates energy (in the form of heat), the (ideal) inductor is a phys-
ical device capable of storing energy in analogy to the potential energy of a stretched spring.

 The energy stored in an inductor is 

 The current through an inductor cannot change instantaneously.

 In circuits where the applied voltage source or current source are constants, after steadystate
conditions have been reached, an inductor behaves like a short circuit.

 Inductors in series combine as resistors in series do.

 Inductors in parallel combine as resistors in parallel do.

 Capacitance is associated with an electric field. 

 A capacitor consists of two parallel metal plates separated by an air space or by a sheet of some
type of insulating material called the dielectric.

 The charge  on the plates of a capacitor is directly proportional to the voltage between the
plates and the capacitance  is the constant of proportionality. Thus, 

 In a capacitor, the voltagecurrent relationship is 

 The unit of capacitance is the Farad abbreviated as F.

 Like an inductor, a capacitor is a physical device capable of storing energy.

 The energy stored in a capacitor is 

 The voltage across a capacitor cannot change instantaneously.

 In circuits where the applied voltage source or current source are constants, after steadystate
conditions have been reached, a capacitor behaves like an open circuit.

 Capacitors in series combine as resistors in parallel do.

 

  N=

vL L diL dt =

WL t  1 2 LiL
2 t =

q
C q Cv=
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 Capacitors in parallel combine as resistors in series do.

 In a circuit that contains inductors and/or capacitors, if the applied voltage and current sources
are timevarying quantities, the nodal and mesh equations are, in general, integrodifferential
equations. 
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Exercises

5.10 Exercises
Multiple Choice

1. The unit of inductance is the

A. Farad
B. Ohm
C. mH
D. Weber
E. None of the above

2. The unit of capacitance is the

A.
B. Ohm
C. Farad
D. Coulomb
E. None of the above

3. Faraday’s law of electromagnetic induction states that

A.
B.
C.
D.
E. None of the above

4. In an electric field of a capacitor, the lines of force

A. are complete loops
B. start at the positive plate and end at the negative plate
C. start at the negative plate and end at the positive plate
D. are unpredictable
E. None of the above

5. The energy in an inductor is

A.

B.
C.
D. dissipated in the form of heat
E. None of the above

F

 N=

 Li=

v L di dt =

v d dt=

1 2  Li2 

1 2  Lv2 
vLiL
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6. The energy in a capacitor is

A.

B.
C.
D. dissipated in the form of heat
E. None of the above

7. In an inductor

A. the voltage cannot change instantaneously
B. the current cannot change instantaneously
C. neither the voltage nor the current can change instantaneously
D. both the voltage and the current can change instantaneously
E. None of the above

8. In a capacitor

A. the voltage cannot change instantaneously
B. the current cannot change instantaneously
C. neither the voltage nor the current can change instantaneously
D. both the voltage and the current can change instantaneously
E. None of the above

9. In the circuit below, after steadystate conditions have been established, the current 
through the inductor will be

A.
B.
C.
D.
E. None of the above

10.In the circuit below, after steadystate conditions have been established, the voltage 
across the capacitor will be

1 2  Ci2 

1 2  Cv2 
vCiC

iL

iS

iL

5 A

5 
5 mH

0 A
 A
2.5 A
5 A

vC
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Exercises

A.
B.
C.
D.
E. None of the above

Problems

1. The current  flowing through a 10 mH inductor is shown by the waveform below. 

a. Compute and sketch the voltage  across this inductor for 
b. Compute the first time after  when the power  absorbed by this inductor is

  Answer: 
c. Compute the first time after  when the power  absorbed by this inductor is

  Answer: 

2. The current  flowing through a  capacitor is given as , and it is
known that 

a. Compute and sketch the voltage  across this capacitor for 

b. Compute the first time after  when the power  absorbed by this capacitor is
.  Answer: 

c. Compute the first time after  when the power  absorbed by this capacitor is
. Answer: 

+


+ 

C

vS

R

10 V

5 
2 F

0 V
 V

10–  V
10 V

iL

60

50

302010

10
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0
40
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iL

vL t 0

t 0= pL

pL 50 w= t 5 ms=

t 0= pL
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iC 1 F iC t  100t mAcos=

vC 0  0=
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pC 5–  mw= 23.56 ms



Chapter 5  Inductance and Capacitance

534 Circuit Analysis I with MATLAB Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

3. For the network below, compute the total energy stored in the series combination of the resis-
tor, capacitor, and inductor at  if:

a.  and it is known that .  Answer:

b.  and it is known that .  Answer:

4. For the circuit below, compute the energy stored in the  inductor at  given that
.  Answer: 

5. For the circuit below, replace all capacitors with an equivalent capacitance  and then com-

pute the energy stored in  at  given that  in all capacitors.

Answer: 

t 10 ms=

i t  0.1e 100t–  mA= vC 0  10 V–= 3.4 mJ

i t  0.5 5t cos mA= vC 0  0= 50 J

R CL

Rest of the Network

5  0.4 mH

100 F

+ 

i t 

vC t 

5 mH t 1 s=

i 0  0= 1 mJ

+


5 mH
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vS t 

i t 

10e t–  mV

Ceq

Ceq t 1 ms= vC 0  0=

10 pJ
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3 F

8 F
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10 AiS t 
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Exercises

6. Write nodal equations for the circuit below.

7. Write mesh equations for the circuit below.

+


R1

C1

L

R2

C2vS t 

+


R1

L2

R2

L1
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5.11 Answers / Solutions to EndofChapter Exercises
Multiple Choice

1.  E  Henry
2.  C  
3.  D
4.  B
5.  A
6.  B
7.  B
8.  A
9.  E  
10. D

Problems

1.
a. In an inductor the voltage and current are related by . Thus,

we need to compute the slope of each segment of the given waveform and multiply it by .

Likewise,

The current, voltage, and power waveforms are shown below.

5 A–

vL L diL dt  L slope= =

L

vL 0

10 ms L slope L
iL
t
-------- 10 10 3– 10 10 3–  A

10 10 3–  s
----------------------------- 10 mV= = = =

vL 10
20 ms L slope L 0 0 mV= = =

vL 20
40 ms L slope 10 10 3– 10– 10 –  10 3–  A

40 20–  10 3–  s
---------------------------------------------------- 10–  mV= = =

vL 40
50 ms L slope L 0 0 mV= = =

vL 0

10 ms L slope 10 10 3– 0 10– –  10 3–  A
60 50–  10 3–  s

--------------------------------------------------- 10 mV= = =
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Answers / Solutions to EndofChapter Exercises

b. From the power waveform above, we observe that  occurs for the first
time at point A where 

c. From the power waveform above, we observe that  occurs for the
first time at point A where 

2.

a. For this problem  and the current  is a sinusoid given as
 as shown below. The voltage  across this capacitor is found

from

60
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302010

10

10

0
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+ 
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pL vLiL=
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B
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pL vLiL 50–  w= =
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and the waveform of  is shown below.

Now,  or . Then,  or  and

 or .

b. Since  is a sine function and  a cosine function, the first time after zero that their
product will be positive is in the interval  where we want 
or

vC t  1
C
---- iC d

0

t

 vC 0 + 106 10 3–  100cos  0+d
0

t

= =

103 100cos d
0

t
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100
--------- 100sin
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t

10 100tsin= ==

0 2 4 6
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mA  100tcos
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10 100tsin

T 2=  2 T= 10 2
T
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Answers / Solutions to EndofChapter Exercises

or

Recalling that

it follows that

or

or

c. The time where  will occur for the first time is  after  or
after . Therefore,  will occur for the first time at

3.
a. There is no energy stored in the resistor; it is dissipated in the form of heat. Thus, the total

energy is stored in the capacitor and the inductor, that is,

where

and

or

Then,

pC 10 100tsin  10 3– 100tcos  5 10 3–  w= =

pC 10 100tsin  100tcos  5 w= =

2xsin 2 x xcossin=

pC 5 200tsin 5 w= =

200tsin 1=

t 11–sin
200

---------------  2
200
---------- 

400
--------- 0.00785 s 7.85 ms= = = = =

pC 5 mw–= 7.85 ms t  200  s=

t 1000 200  ms 5 ms= = pC 5 mw–=

t 7.85 5+ 7.85 15.71+ 23.56 ms= = =

WT WL WC+ 1
2
---LiL

2 1
2
---CvC

2+= =

iL i t  0.1e 100t–= =

vC t  1
C
---- iC d

0

t

 vC 0 + 104 0.1e 100–  10–d
0

t

= =

104 0.1
100–

----------------------e 100–

0

t

10– 10e 100–
t

0
10 10e 100t–– 10–= ==

vC t  10e 100t––=
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 1
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2
+=
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We’ve used MATLAB as a calculator to obtain the answer, that is,

WT=2.5*10^(4)*((0.1*exp(1))^2+((10)*exp(1))^2);
fprintf(' \n'); fprintf('WT=%7.4f J',WT); fprintf(' \n')

WT= 0.0034 J

b. For this part,

and

Then,

We observe that the total power is independent of time.

4.
Beginning with the right side and proceeding to the left, the seriesparallel combination of

, , and  reduces the given circuit to the one shown
below.

The current  is

Then,

5.
Beginning with the right side and proceeding to the left, the seriesparallel combination
reduces the given circuit to the one shown below.

iL i t  0.5 5t mAcos= =

vC t  1
C
---- iC d

0

t

 vC 0 + 104 10 4– 5 5  0+dcos
0

t

 5sin 0
t 5tsin= = = =

WT WL WC+ 1
2
--- 0.4 10 4– 0.5 5tcos 2 1

2
--- 10 4– 5tsin 2+= =

0.5 10 4– 52cos t 52 tsin+

1
 0.05 mJ 50 J= ==       

7 3+ 10= 10 10 5= 5 5+ 10 mH=

+
 10 mH

vS t 

iL t 

10e t–  mV

iL t 

iL t  1
L
--- vS d

0

t

 iL 0 +
1

10 10 3–
----------------------- 10 10 3– e – d

0

t

 e –– 0

t
e –

t

0
1 e t––= = = ==

W5 mH t 1 s=

1
2
--- 5 10 3– 1 e t–– 

2
t 1 s=

2.5 10 3– 1 e 1–– 
2

 1 mJ= =
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Answers / Solutions to EndofChapter Exercises

The current  is

Then,

6.
We assign node voltages , , and  as shown below.

Then,

7.
We assign mesh currents , , and  as shown below.

5 F
10 A

iS t 



+

vC t 

vC t 

vC t  1
C
---- iS d

0

t

 vC 0 +
1

5 10 6–
-------------------- 10 10 6– d

0

t

 2 0
t 2t= = ==

W5 F t 1 ms=

1
2
--- 5 10 6– 2t 2

t 1 ms=
2.5 10 6– 4 10 6– 10 pJ= = =

v1 v2 v3

+


R1

C1

L

R2

C2vS t 

v1

v2 v3

v1 vS=

C1
d
dt
----- v2 v1–  C2

d
dt
----- v2 v3– 

v2
R1
------+ + 0=

v3 v1–

R2
---------------- C2

d
dt
----- v3 v2–  1

L
--- v3 d

–

t

+ + 0=

i1 i2 i3
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Then,

+


R1

L2

R2

L1

C1

C2

vS t  i1

i2

i3

1
C1
------ i1 d

–

t

 R1 i1 i2–  1
C2
------ i1 i3–  d

–

t

+ + vS=

R1 i2 i1–  L1
di2
dt
------- L2

d
dt
----- i2 i3– + + 0=

1
C2
------ i3 i1–  d

–

t

 L2
d
dt
----- i3 i2–  R2i3+ + 0=
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Chapter 6

Sinusoidal Circuit Analysis

his chapter is an introduction to circuits in which the applied voltage or current are sinu-
soidal. The time and frequency domains are defined and phasor relationships are developed
for resistive, inductive and capacitive circuits. Reactance, susceptance, impedance and

admittance are also defined. It is assumed that the reader is familiar with sinusoids and complex
numbers. If not, it is strongly recommended that Appendix B is reviewed thoroughly before read-
ing this chapter.

6.1 Excitation Functions
The applied voltages and currents in electric circuits are generally referred to as excitations or driv-
ing functions, that is, we say that a circuit is “excited” or “driven” by a constant, or a sinusoidal, or
an exponential function of time. Another term used in circuit analysis is the word response; this
may be the voltage or current in the “load” part of the circuit or any other part of it. Thus the
response may be anything we define it as a response. Generally, the response is the voltage or cur-
rent at the output of a circuit, but we need to specify what the output of a circuit is.

In Chapters 1 through 4 we considered circuits that consisted of excitations (active sources) and
resistors only as the passive devices. We used various methods such as nodal and mesh analyses,
superposition, Thevenin’s and Norton’s theorems to find the desired response such as the voltage
and/or current in any particular branch. The circuit analysis procedure for these circuits is the
same for DC and AC circuits. Thus, if the excitation is a constant voltage or current, the
response will also be some constant value; if the excitation is a sinusoidal voltage or current, the
response will also be sinusoidal with the same frequency but different amplitude and phase.

In Chapter 5 we learned that when the excitation is a constant and steadystate conditions are
reached, an inductor behaves like a short circuit and a capacitor behaves like an open circuit.
However, when the excitation is a timevarying function such as a sinusoid, inductors and capac-
itors behave entirely different as we will see in our subsequent discussion.

6.2 Circuit Response to Sinusoidal Inputs
We can apply the circuit analysis methods which we have learned in previous chapters to circuits
where the voltage or current sources are sinusoidal. To find out how easy (or how difficult) the
procedure becomes, we will consider the simple series circuit of Example 6.1.

Example 6.1  

For the circuit shown in Figure 6.1, derive an expression for  in terms of , , , and 

T

vC t  Vp R C 
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where the subscript  is used to denote the peak or maximum value of a time varying function,
and the sine symbol inside the circle denotes that the excitation is a sinusoidal function.

Figure 6.1. Circuit for Example 6.1
Solution:

By KVL, 
(6.1)

where

and

Then,

and by substitution into (6.1) we obtain 

(6.2)

As we know, differentiation (and integration) of a sinusoid of radian frequency  results in
another sinusoid of the same frequency . Accordingly, the solution of (6.2) must have the form

(6.3)

where the amplitude  and phase angle  are constants to be determined from the circuit
parameters of , , , and . Substitution of (6.3) into (6.2) yields

(6.4)

and recalling that

and

we rewrite (6.4) as

p

R

+
C
vC t 

i t 

vS VP tcos=

vS

vR vC+ vS=

vR Ri RiC= =

iC C
dvC

dt
---------=

vR RC
dvC
dt

---------=

RC
dvC
dt

--------- vC+ vS= Vp tcos=




vC t  A t  cos=

A 
Vp R C 

ARC t +  A t + cos+sin– Vp tcos=

x y+ sin x ycossin x ysincos+=

x y+ cos x ycoscos x ysinsin–=

ARC t cossin– ARC t sincos– A t coscos A t sinsin–+ Vp tcos=
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The Complex Excitation Function

Collecting sine and cosine terms, equating like terms and, after some more tedious work, solving
for amplitude  and phase angle  we obtain:

(6.5)

Obviously, analyzing circuits with sinusoidal excitations when they contain capacitors and/or
inductors, using the above procedure is impractical. We will see on the next section that the
complex excitation function greatly simplifies the procedure of analyzing such circuits. Complex
numbers are discussed in Appendix B. 

The complex excitation function does not imply complexity of a circuit; it just entails the use of
complex numbers. We should remember also that when we say that the imaginary part of a com-
plex number is some value, there is nothing “imaginary” about this value. In other words, the
imaginary part is just as “real” as the real part of the complex number but it is defined on a differ-
ent axis. Thus we display the real part of a complex function on the axis of the reals (usually the
xaxis), and the imaginary part on the imaginary axis or the yaxis.

6.3 The Complex Excitation Function
We recall that the derivatives and integrals of sinusoids always produce sinusoids of the same fre-
quency but different amplitude and phase since the cosine and sine functions are 90 degrees out
ofphase. Thus, if

 
then

and if

then

Let us consider the network of Figure 6.2 which consists of resistors, inductors and capacitors,
and it is driven (excited) by a sinusoidal voltage source . 

Figure 6.2. General presentation of a network showing excitation and load

A 

vC t 
Vp

1 RC 2+
--------------------------------- t tan 1– RC – cos=

v t  A t + cos=

td
dv A t + sin–=

t  B t + sin=

td
di B t + cos=

vS t 





L
O

A
D

Linear Network
Consisting of

Resistors,
Inductors and

Capacitors

Excitation

vS t 
vLOAD t 

iLOAD t 
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Let us also define the voltage across the load as  * as the response. As we know from
Chapter 5, the nodal and mesh equations for such circuits are integrodifferential equations, and it
is shown in differential equations textbooks† that the forced response or particular solution of these
circuits have the form

We also know from Euler’s identity that 

(6.6)

and therefore, the real component is the response due to  and the imaginary component is
the response to  We will use Example 6.2 to illustrate the ease by which we can obtain the
response of a circuit, which is excited by a sinusoidal source, using the complex function

approach. In this text, we will represent all sinusoidal variations in terms of the cosine
function. 

Example 6.2  

Repeat Example 6.1, that is, find the capacitor voltage  for the circuit of Figure 6.3 using
the complex excitation method.

Figure 6.3. Circuit for Example 6.2
Solution:

Since

we let the excitation be

* Some textbooks denote the voltage across and the current through the load as  and  respectively. As we stated previ-

ously, in this text, we use the  and  notations to avoid confusion with the voltage  across and the current

 through an inductor.
† This topic is also discussed in Circuit Analysis II with MATLAB Computing and Simulink / SimPowerSystems Mod-

eling, ISBN 9781934404195.

vLOAD t 

vL iL
vLOAD iLOAD vL

iL

vLD t  A t cos B t sin+=

A tcos jA tsin+ Ae jt=

tcos
tsin

Ae jt

vC t 

R

+
C
vC t 

i t 

vS VP tcos=

vS

tcos Re e jt =

vS t  Vpe jt=
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The Complex Excitation Function

and thus the response will have the form

As in Example 6.1,
(6.7)

or

or

The last expression above shows that radian frequency  is the same for the response as it is for
the excitation; therefore we only need to be concerned with the magnitude and the phase angle
of the response. Accordingly, we can eliminate the radian frequency  by dividing both sides of

that expression by  and thus the inputoutput (excitationresponse) relation reduces to

from which

This expression above shows the response as a function of the maximum value of the excitation,
its radian frequency and the circuit constants  and . 

If we wish to express the response in complete form, we simply multiply both sides by  and
we obtain

Finally, since the excitation is the real part of the complex excitation, we use Euler’s identity on
both sides and equating reals parts, we obtain

The first part of the above procedure where the excitationresponse relation is simplified to
amplitude and phase relationship is known as timedomain to frequencydomain transformation;
the second part where the excitationresponse is put back to its sinusoidal form is known as fre-

C t  VC e j t +=

RC
dvC
dt

--------- vC+ Vpe j=

C d
dt
----- VCe j t +   VCe j t + + Vpe j=

jRC 1+ VCe j t +  Vpe jt=





e jt

jRC 1+ VCe j Vp=

VCe j Vp
jRC 1+
-----------------------

Vp

1 2+ R2C2e j RC 1–tan 
-----------------------------------------------------------------

Vp

1 2+ R2C2
---------------------------------e j– RC 1–tan = = =

R C

e jt

VCe j t +  Vp

1 2+ R2C2
--------------------------------e j t RC 1–tan– =

vC t  VC t + cos
Vp

1 2+ R2C2
------------------------------ t RC 1–tan– cos= =
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quencydomain to timedomain transformation. For brevity, we will denote the time domain as the
, and the frequency domain as the .

If a sinusoid is given in terms of the sine function, we must first convert it to a cosine function.
Thus,

(6.8)

and in the  it is expressed as

(6.9)

where  represents a phasor (rotating vector) voltage  or current .

In summary, the , to  transformation procedure is as follows: 

1. Express the given sinusoid as a cosine function

2. Express the cosine function as the real part of the complex excitation using Euler’s identity 

3. Extract the magnitude and phase angle from it.

Example 6.3  

Transform the sinusoid  to its equivalent  expression.

Solution:

For this example, we have

or

Since the  contains only the amplitude and phase, we extract these from the brack-
eted term on the right side of the above expression, and we obtain the phasor  as

The  to  transformation procedure is as follows:

t domain– j domain–

m t  A t + sin A t  90–+ cos= =

j domain–

M Ae j  90–  A  90– = =

M V I

t domain– j domain–

v t  10 100t 60– sin= j domain–

v t  10 100t 60– sin 10 100t 60– 90– cos= =

v t  10 100t 150– cos= Re 10e j 100t 150– 

 
 
 

=

j domain–
V

V 10e j150–


10 150–= =

j domain– t domain–
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The Complex Excitation Function

1. Convert the given phasor from polar to exponential form

2. Add the radian frequency  multiplied by  to the exponential form

3. Extract the real part from it.

Example 6.4  

Transform the phasor  to its equivalent timedomain expression.

Solution:

First, we express the given phasor in exponential form, that is,

Next, adding the radian frequency  multiplied by  to the exponent of the above expression we
obtain

and finally we extract the real part from it. Then,

We can add, subtract, multiply and divide sinusoids of the same frequency using phasors as illus-
trated by the following example.

Example 6.5  

It is given that  and . Compute the sum

.

Solution:

As a first step, we express  as a cosine function, that is,

Next, we perform the  to  transformation and we obtain the phasors

 t

I 120 90–=

I 120 90– 120e j90–


= =

 t

i t  120e j t 90– =

i t  Re 120e j t 90– 

 
 
 

120 t 90– cos 120 tsin= = =

i1 t  10 120t 45+ cos= i2 t  5 120t 45–  sin=

i t  i1 t  i2 t +=

i2 t 

i2 t  5 120t 45–  sin 5 120t 45–  90– cos 5 120t 135–  cos= = =

t domain– j domain–
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and by addition,

or

and finally transforming the phasor I into the , we obtain

Also, for brevity, in our subsequent discussion we will designate resistive, inductive and capaci-
tive circuits as , , and  respectively.

6.4 Phasors in R, L, and C Circuits
The circuit analysis of circuits containing , , and  devices, and which are excited by sinusoi-
dal sources, is considerably simplified with the use of phasor voltages and phasor currents which
we will represent by the boldface capital letters  and  respectively. We will now derive  and

 phasor relationships in the . We must always remember that phasor quantities
exist only in the .

1.   and  phasor relationship in  branches

Consider circuit 6.4 (a) below where the load is purely resistive. 

Figure 6.4. Voltage across a resistive load in  and 

We know from Ohm’s law that  where the resistance  is a constant. We will

show that this relationship also holds for the phasors  and  shown in circuit 6.4 (b), that
is, we will prove that

I1 10 45=   and  I2 5 135– =

I I1 I2+ 10 45 5 135– + 10 2
2

------- j 2
2

-------+ 
  5 2

2
-------– j 2

2
-------– 

 += = =

I 5 2
2

------- j 2
2

-------+ 
  5 45= =

t domain–

i t  5 120t 45+ cos=

R L C

R L C

V I V
I j domain–

j domain–

V I R

+



+



vS t 
vR t 

vR t  RiR t  Vp t + cos= =

iR t 

a   t domain network– b   j domain phasor  network–
VR RIR=

VS
VR

IR 

t domain– j domain–

vR t  RiR t = R

VR IR
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Phasors in R, L, and C Circuits

Proof:

In circuit 6.4 (a) we let  be a complex voltage, that is,

(6.10)

and since  is a constant, it will produce a current of the same frequency  and the same
phase * whose form will be

and by Ohm’s law,
(6.11)

Transforming (6.11) to the , we obtain the phasor relationship

Since the phasor current  is inphase with the voltage  (both  and  have the same phase
), we let

and it follows that

Therefore, the phasor  and  relationship in resistors, obeys Ohm’s law also, and the current
through a resistor is always inphase with the voltage across that resistor.

Example 6.6  

For the network in Figure 6.5, find  when .

Solution:

We first perform the  to  i.e.,  transformation as follows:

*  The phase will be the same since neither differentiation nor integration is performed here.

VR RIR=

vR t 

Vpe j t +  Vp t + cos jVp t + sin+=

R 



Ipe j t +  Ip t + cos jIp t + sin+=

Vpe j t +  RIpe j t + 
=

j domain–

Vpe j RIpe j
=   or  Vp  RIp =

I V I V


Vp  VR=   and  Ip  IR=

VR RIR=

V I

iR t  vR t  40 377t 75– sin=

t domain– j domain– vR t  VR

vR t  40 377t 75– sin 40 377t 165– cos= = VR 40 165–=
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Figure 6.5. Voltage across the resistive load of Example 6.6

Then,
 

Therefore,

Alternately, since the resistance  is a constant, we can compute  directly from the

 expression for , that is,

 

2.   and  phasor relationship in  branches

Consider circuit 6.6 (a) below where the load is purely inductive.

Figure 6.6. Voltage across an inductive load in  and 

We will prove that the relationship between the phasors  and  shown in circuit 6.6 (b) is

(6.12)

Proof:

In circuit 6.6 (a) we let  be a complex voltage, that is,

+



vS t 
vR t 

vR t  40 377t 75– sin=

iR t 

R = 5 

IR
VR
R

------- 40 165–
5

------------------------- 8 165 A–= = =

IR 8 165 A–=

j domain–

iR t  8 377t 165– cos 8 377t 75–  Asin= =

t domain–
                             

R iR t 

t domain– vR t 

iR t 
vR t 

R
------------- 40 377t 75– sin

5
-------------------------------------------- 8 377t 75–  Asin= = =

V I L

+



+



vS t 
vL t iL t 

a   t domain network– b   j domain phasor  network–

VL jLIL=

VS
VL

IL 

vL t  L
diL
dt
-------=



t domain– j domain–

VL IL

VL jLIL=

vL t 
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Phasors in R, L, and C Circuits

(6.13)

and recalling that if , that is, differentiation (or
integration) does not change the radian frequency  or the phase angle , the current
through the inductor will have the form

(6.14)

and since

then,
(6.15)

Next, transforming (6.16) to the , we obtain the phasor relationship

and letting

we obtain
(6.16)

The presence of the  operator in (6.17) indicates that the voltage across an inductor leads the
current through it by . 

Example 6.7  

For the network in Figure 6.7, find  when .

Solution: 

We first perform the  to  i.e.,  transformation as follows:

Figure 6.7. Voltage across the inductive load in Example 6.7

Vpe j t +  Vp t + cos jVp t + sin+=

x t  t + sin=   then  dx dt  t + cos=

 

Ipe j t +  Ip t + cos jIp t + sin+=

vL t  L
diL
dt
-------=

Vpe j t +  L d
dt
----- Ipe j t +   jLIpe j t + 

= =

j domain–

Vpe j jLIpe j
=   or  Vp  jLIp =

Vp  VL=   and  Ip  IL=

VL jLIL=

j
90

iL t  vL t  40 2t 75– sin=

t domain– j domain– vL t  VL

+



vS t 
vL t iL t 

vL t  40 2t 75– sin=


L = 5 mH
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and

Therefore,

3.   and  phasor relationship in  branches

Consider circuit 6.8 (a) below where the load is purely capacitive.

Figure 6.8. Voltage across a capacitive load in  and 

We will prove that the relationship between the phasors  and  shown in the network in
Figure 6.8 (b) is

(6.17)

Proof:

In circuit 6.8 (a) we let  be a complex voltage, that is,

then the current through the capacitor will have the form

and since

It follows that 

(6.18)

vL t  40 2t 75– sin 40 2t 165– cos= = VL 40 165 mV–=

IL
VL
jL
---------- 40 165–  10 3–

j10 10 3–
------------------------------------------------ 40 165–

10 90
------------------------- 4 255– 4 105 A= = = = =

IL 4 105 A=

j domain–

iL t  4 2t 105+ cos 4 2t 165–  Asin= =

t domain–
                         

V I C

+



+



vS t 
vC t iC t 

a   t domain network– b   j domain phasor  network–

IC jCVC=

VS
VCIC 

iC t  C
dvC
dt

----------=

t domain– j domain–

VC IC

IC jCVC=

vC t 

Vpe j t +  Vp t + cos jVp t + sin+=

Ipe j t +  Ip t + cos jIp t + sin+=

iC t 
dvC
dt

---------=

Ipe j t +  C d
dt
----- Vpe j t +   jCVpe j t + 

= =
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Phasors in R, L, and C Circuits

Next, transforming (6.18) to the , we obtain the phasor relationship

and letting

we obtain

(6.19)

The presence of the  operator in (6.19) indicates that the current through a capacitor leads
the voltage across it by .

Example 6.8  

For the circuit shown below, find  when .

Figure 6.9. Voltage across the capacitive load of Example 6.8

Solution:

We first perform the  to  i.e.,  transformation as follows:

Then,

Therefore,

j domain–

Ipe j jCVpe j
=   or  Ip  jCVp =

Ip  IC=   and  Vp  VC=

IC jCVC=

j
90

iC t  vC t  170 60t 45– cos=

+



vS t 
vC t iC t 

vC t  170 60t 45– cos=

C=106 nF

t domain– j domain– vC t  VC

vC t  170 60t 45– cos= VC 170 45–=

IC jCVC j 60 106 10 9– 170 45– 1 90 3.4 10 3– 1 45–= ==

3.4 10 3– 45 3.4 45 mA==

IC 3.4 45 mA=

j domain–

iC t  3.4 60 45+  mAcos=

t domain–
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6.5 Impedance

Consider the  circuit in Figure 6.10 (a) and its equivalent phasor circuit shown in
6.10 (b).

Figure 6.10. The  and  relationships in a series RLC circuit

The last equation on the right side of the phasor circuit may be written as

(6.20)

and dividing both sides of (6.20) by  we obtain the impedance which, by definition, is

(6.21)

Expression (6.21) is referred to as Ohm’s law for AC Circuits.

Like resistance, the unit of impedance is the Ohm (

We can express the impedance  as the sum of a real and an imaginary component as follows:

t domain–
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+ R L

C +

+ 


I
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vR t  RiR t =

vL t  Ldi
dt
-----=

vC t  1
C
---- i td
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t
=

VR IR=
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----------I=

vR t  vL t  vC t + + vS t = VR VL VC+ + VS=

Ri t  Ldi
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----- 1

C
---- i td

–

t
+ + vS t =

Integrodifferential Equation
Very difficult to work with 

            

RI jLI 1
jC
----------I+ + VS=

Algebraic Equation
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vS t 

i t 
vC t 
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a   t domain network– b   j domain phasor  network–

vR t  vL t 

R L
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+ +

+
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----------+ + 
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Impedance

Since

it follows that

and thus
(6.22)

We can also express (6.22) in polar form as

(6.23)

We must remember that the impedance is not a phasor; it is a complex quantity whose real part is
the resistance  and the imaginary part is  that is,

(6.24)

The imaginary part of the impedance  is called reactance and it is denoted with the letter .
The two components of reactance are the inductive reactance  and the capacitive reactance ,
i.e.,

(6.25)

(6.26)

 (6.27)

The unit of the inductive and capacitive reactances is also the Ohm ().

In terms of reactances, the impedance can be expressed as

 (6.28)

By a procedure similar to that of Chapter 2, we can show that impedances combine as resistances
do.

Example 6.9  

For the circuit in Figure 6.11, find the current  given that .

1
j
--- 1

j
--- j

j
- j

j2
---- j–= = =

1
jC
---------- j 1

C
--------–=

Z R j L 1
C
--------– 

 +=

Z R2 L 1
C
--------– 

  2
+ L 1

C
--------– 

  R
1–

tan=

R L 1 C–

Re Z  R=   and  Im Z  L 1
C
--------–=

Z X
XL XC

X XL XC+ L 1 C–= =

XL L=

XC 1 C=

Z R jX+ R j XL XC– + R2 XL XC– 2+ XL XC–  R 1–
tan= = =

i t  vS t  100 100t 30– cos=
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Figure 6.11. Circuit for Example 6.9

Solution:

If we attempt to solve this problem in the timedomain directly, we will need to solve an inte-
grodifferential equation. But as we now know, a much easier solution is with the transformation
of the given circuit to a phasor circuit. Here,  and thus

and

Also,

and the phasor circuit is as shown in Figure 6.12.

Figure 6.12. Phasor circuit for Example 6.9

From the phasor circuit in Figure 6.12,

and

Therefore,

+ R L

C +

+ 



vS t 

i t 

5  100 mH

100 F

vS t  100 100t 30– cos=

 100 rad s=

jL jXL j100 0.1 j10 = ==

1
jC
---------- j 1

C
--------– jXC– j 1

10 2 10 2 10 6–
-----------------------------------------– j100–= = = =

VS 100 30–=

+ 

+

+ 



5 

I j100 

j10 VS

Z 5 j10 j100–+ 5 j90– 52 902
+ 90– 5 1–tan 90.14 86.82–= = = =

I
VS
Z

------- 100 30–
90.14 86.82–
------------------------------------- 1.11 30– 86.82– – = = =

I 1.11 56.82= i t  1.11 100t 56.82+ cos=
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Admittance

6.6 Admittance

Consider the  circuit in Figure 6.13 (a) and its equivalent phasor circuit shown in
Figure 6.13 (b).

Figure 6.13. The  and  relationships in a parallel RLC circuit

The last equation of the phasor circuit may be written as

 (6.29)

Dividing both sides of (6.29) by , we obtain the admittance, that is, by definition 

(6.30)

Here we observe that the admittance  is the reciprocal of the impedance  as conductance 
is the reciprocal of the resistance . 

Like conductance, the unit of admittance is the Siemens or mho .

As with the impedance , we can express the admittance  as the sum of a real component and
an imaginary component as follows:

t domain–

iG t  Gv t =

iC t  Cdv
dt
------=

iL t  1
L
--- v td

–

t
=

IG GV=

IC jCV=

IL
1

jL
----------V=

iG t  iL t  iC t + + iS t = IR IL IC+ + IS=

Gv t  Cdv
dt
------ 1

L
--- v td

–

t
+ + iS t =

Integrodifferential Equation
Very difficult to work with 

              

GV jCV 1
jL
----------V+ + IS=

Algebraic Equation
Much easier to work with 

          

a   t domain network– b   j domain phasor  network–

+



V

+



CLR R LC

iR t  iL t  iC t iS t 
v t 

IS ICIR IL

t domain– j domain–

G 1
jL
---------- jC+ + 

 V IS=

V

Admit cetan Y Phasor Current
Phasor Voltage 
--------------------------------------

IS
V
----- G 1

jL
---------- jC+ + 1

Z
---= = = = =

Y Z G
R

 1– 

Z Y
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(6.31)

and in polar form

(6.32)

Like the impedance , the admittance  it is not a phasor; it is a complex quantity whose real part

is the conductance  and the imaginary part is  that is,

(6.33)

The imaginary part of the admittance  is called susceptance and it is denoted with the letter .
The two components of susceptance are the capacitive susceptance  and the inductive suscep-

tance , that is,

(6.34)

(6.35)

(6.36)

The unit of the susceptances  and  is also the Siemens .

In terms of susceptances, the admittance  can be expressed as

 (6.37)

By a procedure similar to that of Chapter 2, we can show that admittances combine as conduc-
tances do.

Duality is a term meaning that there is a similarity in which some quantities are related to others.
The dual quantities we have encountered thus far are listed in Table 6.1.

Y G j C 1
L
-------– 

 +=

Y G 2 C 1
L
-------– 

  2
+ C 1

L
-------– 

  G
1–

tan=

Z Y

G C 1
L
-------–

Re Y  G=   and  Im Y  C 1
L
--------–=

Y B
BC

BL

B BC BL+ C 1 L–= =

BC C=

BL 1 L=

BC BL  1– 

Y

Y G jB+ G j BC BL– + G 2 BC BL– 2+ BC BL–  G 1–tan= = =
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Example 6.10  
Consider the series and parallel networks shown in Figure 6.14. How should their real and imag-
inary terms be related so that they will be equivalent?

Figure 6.14. Networks for Example 6.10
Solution:

For these circuits to be equivalent, their impedances  or admittances  must be equal. There-
fore,

and equating reals and imaginaries we obtain

(6.38)

Relation (6.38) is worth memorizing.

Example 6.11  

Compute  and  for the network in Figure 6.15.

TABLE 6.1  Dual quantities

Series Parallel
Voltage Current
Resistance Conductance
Thevenin Norton
Inductance Capacitance
Reactance Susceptance
Impedance Admittance

C

LR

G L
C

YZ

Z Y

Y 1
Z
--- 1

R jX+
---------------- G jB+ 1

R jX+
---------------- R jX–

R jX–
---------------- R jX–

R2 X2
+

-------------------- R

R2 X2
+

-------------------- j X

R2 X2
+

--------------------–= = = = = =

G R

R2 X2
+

--------------------= and B X–
R2 X2

+
--------------------=

Z Y
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Figure 6.15. Network for Example 6.11
Solution:
Since this is a parallel network, it is easier to compute the admittance  first. Thus,

Since the impedance is the reciprocal of admittance, it follows that

Example 6.12  

Compute  and  for the circuit shown below. Verify your answers with MATLAB.

Figure 6.16. Network for Example 6.12
Solution:
Let the given network be represented as shown in Figure 6.17 where ,

, and 

Then,

and

CG L
Z, Y

j5  1–4  1–
j2–   1–

Y

Y G 1
jL
---------- jC+ + 4 j2– j5+ 4 j3+ 5 36.9= = = =

Z 1
Y
---- 1

5 36.9
--------------------- 0.2 36.9–  0.16 j0.12–= = = =

Z Y

C1

Z, Y

20 

j16 

j13 

R2R1

L1

L2
C2

10 

j5 

j8 

Z1 j13 j8– j5= =

Z2 10 j5+= Z3 20 j16–=

Z Z1
Z2Z3

Z2 Z3+
------------------+ j5 10 j5+  20 j16– 

10 j5 20 j16–+ +
-----------------------------------------------+ j5 11.18 26.6  25.61 38.7– 

31.95 20.1–
----------------------------------------------------------------------------+= = =

j5 8.96 8+ j5 8.87 j1.25+ + 8.87 j6.25+ 10.85 35.2= ===
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Admittance

Figure 6.17. Simplified network for Example 6.12

Check with MATLAB:

z1=j*5; z2=10+j*5; z3=20j*16; z=z1+(z2*z3/(z2+z3)),  y=1/z   % Impedance z, Admittance y

z =
   8.8737 + 6.2537i

y =
   0.0753 -0.0531i

As we found out in Example 6.1, analyzing circuits with sinusoidal excitations when they contain
capacitors and/or inductors, using the procedure in that example is impractical. However, we
can use a Simulink / SimPowerSystems model to display sinusoidal voltages and currents in
branches of a circuit as illustrated in the Example 6.13 below.

Example 6.13  

Create a Simulink / SimPowerSystems model to display the potential difference  in the
circuit of Figure 6.18.

Figure 6.18. Circuit to be analyzed with a Simulink / SimPowerSystems model

Solution:
The model is shown in Figure 6.19, and the waveforms in Figure 6.20 where

Z, Y

Z1

Z2 Z3

Y 1
Z
--- 1

10.85 35.2
------------------------------- 0.092 35.2– 0.0754 j0.531–= = = =

va vb–

5 A peak AC

vbva

4 

1 F

2 
8 

1 mH

2 F

10 A peak AC
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Figure 6.19. Simulink / SimPowerSystems model for the circuit in Example 6.13

Figure 6.20. Waveforms for 

va 5 t vb 15– t vab 20 t  2f=sin=sin=sin 0.4= =

VA VB

4

1

2 1

8

2

Resistances in Ohms
Capacitors in microfarads
Inductor in millihenries
VM = Voltage Mezasurement

Vs = AC Voltage Source, Is = AC Current Source, f= 0.2 Hz

Continuous

powergui

Vs
v+

-
VM 2

v+
-

VM 1

Subtract

Scope1
VA

Scope 3
VA , VB
VA-VB

Scope 2
VB

Is

Bus
Creator

va vb  and va vb– 
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Summary

6.7 Summary
 Excitations or driving functions refer to the applied voltages and currents in electric circuits. 

 A response is anything we define it as a response. Typically response is the voltage or current
in the “load” part of the circuit or any other part of it.

 If the excitation is a constant voltage or current, the response will also be some constant
value.

 If the excitation is a sinusoidal voltage or current, in general, the response will also be sinusoi-
dal with the same frequency but with different amplitude and phase.

 If the excitation is a timevarying function such as a sinusoid, inductors and capacitors do not
behave like short circuits and open circuits respectively as they do when the excitation is a
constant and steadystate conditions are reached. They behave entirely different.

 Circuit analysis in circuits where the excitation is a timevarying quantity such as a sinusoid is
difficult and time consuming and thus impractical in the .

 The complex excitation function greatly simplifies the procedure of analyzing such circuits
when excitation is a timevarying quantity such as a sinusoid.

 The procedure where the excitationresponse relation is simplified to amplitude and phase
relationship is known as timedomain to frequencydomain transformation.

 The procedure where the excitationresponse is put back to its sinusoidal form is known as
frequencydomain to timedomain transformation.

 For brevity, we denote the time domain as the , and the frequency domain as the
.

 If a sinusoid is given in terms of the sine function, it is convenient to convert it to a cosine
function using the identity  before con-
verting it to the . 

 The  to  transformation procedure is as follows:

1. Express the given sinusoid as a cosine function

2. Express the cosine function as the real part of the complex excitation using Euler’s identity 

3. Extract the magnitude and phase angle from it.

 The  to  transformation procedure is as follows:

1. Convert the given phasor from polar to exponential form

2. Add the radian frequency  multiplied by  to the exponential form

t domain–

t domain–
j domain–

m t  A t + sin A t  90–+ cos= =
j domain–

t domain– j domain–

j domain– t domain–

 t
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3. Extract the real part from it.

 The circuit analysis of circuits containing , , and  devices, and which are excited by
sinusoidal sources, is considerably simplified with the use of phasor voltages and phasor cur-
rents which we represent by the boldface capital letters  and  respectively. 

 Phasor quantities exist only in the 

 In the  the current through a resistor is always inphase with the voltage across
that resistor

 In the  the current through an inductor lags the voltage across that inductor by
90

 In the  the current through a capacitor leads the voltage across that capacitor by
90

 In the  the impedance  is defined as

 

 Like resistance, the unit of impedance is the Ohm (

 Impedance is a complex quantity whose real part is the resistance , and the imaginary part is
 that is,

 In polar form the impedance is expressed as

 The imaginary part of the impedance  is called reactance and it is denoted with the letter .
The two components of reactance are the inductive reactance  and the capacitive reac-
tance , i.e.,

 The unit of the inductive and capacitive reactances is also the Ohm ().

 In the  the admittance  is defined as

R L C

V I

j domain–

j domain–

j domain–

j domain–

j domain– Z

Impedance Z Phasor Voltage
Phasor Current 
-------------------------------------

VS
I

------- R jL 1
jC
----------+ += = = =

R
L 1 C–

Re Z  R=   and  Im Z  L 1
C
--------–=

Z R2 L 1
C
--------– 

  2
+ L 1

C
--------– 

  R
1–

tan=

Z X
XL

XC

X XL XC– L 1
C
--------–= =

j domain– Y
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Summary

 The admittance  is the reciprocal of the impedance  as conductance  is the reciprocal of
the resistance . 

 The unit of admittance is the siemens or mho .

 The admittance  is a complex quantity whose real part is the conductance  and the imag-

inary part is  that is,

 The imaginary part of the admittance  is called susceptance and it is denoted with the letter
. The two components of susceptance are the capacitive susceptance  and the inductive

susceptance , that is,

 In polar form the admittance is expressed as

 The unit of the susceptances  and  is also the siemens .

 Admittances combine as conductances do.

 In phasor circuit analysis, conductance is not necessarily the reciprocal of resistance, and sus-
ceptance is not the negative reciprocal of reactance. Whenever we deal with resistance and
reactance we must think of devices in series, and when we deal with conductance and suscep-
tance we must think of devices in parallel. However, the admittance is always the reciprocal of
the impedance

 The ratio  of the phasor voltage to the phasor current exists only in the  and
it is not the ratio  in the . Although the ratio  could yield some
value, this value is not impedance. Similarly, the ratio  is not admittance.

 Duality is a term meaning that there is a similarity in which some quantities are related to oth-
ers. 

Admit cetan Y Phasor Current
Phasor Voltage 
--------------------------------------

IS
V
----- G 1

jL
---------- jC+ + 1

Z
---= = = = =

Y Z G
R

 1– 

Y G

C 1
L
-------–

Re Y  G=   and  Im Y  C 1
L
--------–=

Y
B BC

BL

B BC BL– C 1
L
------–= =

Y G 2 C 1
L
-------– 

  2
+ C 1

L
-------– 

  G
1–

tan=

BC BL  1– 

V I j domain–
v t  i t  t domain– v t  i t 

i t  v t 
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6.8 Exercises
Multiple Choice

1. Phasor voltages and phasor currents can be used in the  if a circuit contains

A. independent and dependent sources with resistors only

B. independent and dependent sources with resistors and inductors only

C. independent and dependent sources with resistors and capacitors only

D. independent and dependent sources with resistors, inductors, and capacitors

E. none of the above

2. If the excitation in a circuit is a single sinusoidal source with amplitude , radian frequency
, and phase angle , and the circuit contains resistors, inductors, and capacitors, all voltages

and all currents in that circuit will be of the same

A. amplitude  but different radian frequency  and different phase angle 

B. radian frequency  but different amplitude  and different phase angle 

C. phase angle  but different amplitude  and different radian frequency 

D. amplitude  same radian frequency  and same phase angle 

E. none of the above

3. The sinusoid  in the  is expressed as

A.

B.

C.

D.

E. none of the above

4. A series RLC circuit contains two voltage sources with values  and
. We can transform this circuit to a phasor equivalent to find the cur-

rent by first replacing these with a single voltage source  whose value is

A.

t domain–

A

 

A  

 A 

 A 

A  

v t  120 t 90+ sin= j domain–

V 120e j t 90+ =

V 120e jt=

V 120e j90=

V 120e j0=

v1 t  100 10t 45+ cos=

v2 t  200 5t 60–  sin=

v t  v1 t  v2 t +=

v t  300 15t 15–  cos=
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B.

C.

D.

E. none of the above

5.The equivalent impedance  of the network below is

A.

B.

C.

D.

E. none of the above

Figure 6.21. Network for Questions 5 and 6

6. The equivalent admittance  of the network in Figure 6.18 is

A.

B.

C.

D.

E. none of the above

7. The resistance of a coil is  and the inductance of that coil is . If a
current of  flows through that coil and operates at the frequency of

v t  100 5t 105+ cos=

t  150 7.5t 15– cos=

v t  150 7.5t 15+ cos=

Zeq

1 j1+

1 j1–

j1–

2 j0+

j2 

j0.5 

2 

2 

Zeq



Yeq

4 j– 1.5

16
73
------ j 6

73
------+

12
37
------ j 2

37
------+

2 j2–

R 1.5 = L 5.3 mH=
i t  4 t Acos=
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, the phasor voltage  across that coil is
A.

B.

C.

D.

E. none of the above

8. A resistor with value  is in series with a capacitor whose capacitive reactance at
some particular frequency  is . A phasor current with value  is

flowing through this series combination. The  voltage across this series combina-
tion is

A.

B.

C.

D.

E. none of the above

9. A conductance with value  is in parallel with a capacitor whose capacitive sus-

ceptance at some particular frequency  is . A phasor voltage with value

 is applied across this parallel combination. The  total current
through this parallel combination is

A.

B.

C.

D.

E. none of the above

10. If the phasor , then in the   is

A.

f 60Hz= V
10 53.1 V

6 0 V

5.3 10 3– 90 V

6.8 45 V

R 5 =
 jXC– 5–  = I 8 0 A=

t domain–

80 tcos

80 tsin

56.6 t 45– cos

56.6 t 45+ cos

G 0.3  1–=

 jBC j0.3  1–=

V 10 0= t domain–

3 t j3 tsin+cos

3 t j– 3 tsincos

5 t 53.2+ sin

5 t 53.2+ cos

I je j  2 = t domain– i t 

t  2+ cos
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B.

C.

D.

E. none of the above

Problems

1. Express the sinusoidal voltage waveform shown below as , that is, find
, , and . Answer: 

2. The current  through a device decays exponentially as shown by the waveform below, and

two values are known as indicated. Compute , that is, the current at . 

Answers: , 

3. At what frequency  is the network shown below operating if it is known that
 and ?  Answer: 

t  2+ sin

tcos–

tsin–

v t  A t + cos=
A   v t  2 1000t 36.1+ cos=

2.2 ms
0.94 ms

1.62 V

0 t (ms)

v (V)

i t 
i 1  t 1 ms=

i t  50e 750t–  mA= 23.62 mA

0 1 2 3 4 5 6

i = 15.00 mA at 1.605 ms

I = 5.27 mA at 3.000 ms

I

t (ms)

i (mA)

f
vS 120 t  Vcos= i 12 t 36.9–   Acos= f 5.533 KHz=
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4. In the circuit below,  and the symbols V and A inside the circles

denote an AC voltmeter* and ammeter respectively. Assume that the ammeter has negligible
internal resistance. The variable capacitor C is adjusted until the voltmeter reads 25 V and the
ammeter reads 5 A. Find the value of the capacitor.  Answer:  

5. In the circuit shown below, is it possible to adjust the variable resistor  and the variable

capacitor  so that  and  have the same numerical value regardless of the operating

frequency? If so, what are these values? Answer: Yes, if  and 

* Voltmeters and Ammeters are discussed in Chapter 8. For this exercise, it will suffice to say that these instru-
ments indicate the magnitude (absolute) values of voltage and current.

R L

C8 

F

1 mH

vS i

vS V 2000t +   Vcos=

C 89.6 F=

R

L

C

Other Part
of the

Network

vS

A

V 0.5 mH

2 

R1

C ZIN YIN

C 1 F= R1 1 =
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6. Consider the parallel RLC circuit below. As we know, the are the capacitive susceptance 

and the inductive susceptance   are functions of frequency, that is, , and

Find the frequency* at which the capacitive susceptance cancels the inductive susceptance,
that is, the frequency at which the admittance Y, generally computed from the relation

 is reduced to . Answer: 

* This frequency is known as the resonance frequency. It is discussed in detail in Circuit Analysis II with MAT-
LAB Computing and Simulink / SimPowerSystems Modeling, ISBN 9781934404195.

1 

1 H

Other Part
of the

Network

R1 R2
ZIN

YIN L C

vS

BC

BL BC 2fC=

BL 1 2fL =

CR L
     Y

1 F1  1 mH

Y G 2 BC BL– 2
+= Y G2 G= = f 5 KHz
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6.9 Solutions to EndofChapter Exercises
Multiple Choice

1. E  Phasors exist in the  only

2. B

3. D

4. E The voltage sources  and  operate at different frequencies. Therefore, to find the
current we must apply superposition.

5. E  This value is obtained with the MATLAB script z1=2+0.5j; z2=2*(2j)/(22j);
z=z1+z2 

z = 3.00000.5000i

6. C

7. A , 

, 

8.  C

9.  D

10. C

Problems

1. The  crossings define half of the period T. Thus, , and

one period is . The frequency is . Then,

 or 

Next, we find the phase angle  from the figure above observing that 

j domain–

v1 t  v1 t 

3 j0.5–

 2f 2 60 377 r s= = = jXL jL j 377 5.3 10 3– j2 = = =

Z 1.5 j2+ 2.5 53.13= = V ZI 2.5 53.13 4 0 10 53.13= = =

t axis– T 2 2.2 0.94+ 3.14 ms= =

T 6.28 ms= f 1 T 103 6.28 103 2= = =

 2f=  2 103 2 1000 r s==

  2 + 2.2 ms=

2.2 ms
0.94 ms

1.62 V

0 t (ms)

v (V)
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or

Finally, we find the amplitude  by observing that at , , that is,

or

Therefore,

2. The decaying exponential has the form  where the time is in  and thus
for this problem we need to compute the values of  and  using the given values. Then,

and

Division of the first equation by the second yields

or

or

or

or

and thus

 2.2ms 
2
---– 2.2 10 3–  s 2 rad

6.28 10 3–  s
-------------------------------- 180

 rad
------------- 

2
---–= =

2.2 2 180
6.28

---------------------------------- 
2
---– 126.1 90– 36.1= ==

A t 0= v 1.62 V=

v 0  1.62 A 0 36.1+ cos= =

A 1.62
36.1cos

---------------------- 2 V= =

v t  2 1000t 36.1+ cos=

i t  Ae t–  mA= ms
A 

i t 1.605 ms=
15 mA Ae 1.605 10 3– –= =

i t 3.000 ms=
5.27 mA Ae 3.000 10 3– –= =

Ae 1.605 10 3– –

Ae 3.000 10 3– –
--------------------------------------- 15 mA

5.27 mA
----------------------=

e 1.605 10 3– – 3.000 10 3– + 15
5.27
----------=

e1.395 10 3–  15
5.27
----------=

15
5.27
---------- 

 ln 1.395 10 3– =

 15 5.27 ln 103
1.395

--------------------------------------------- 750= =
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To find the value of  we make use of the fact that . Then,

or

or

Therefore,

and
 

3. The equivalent phasor circuit is shown below.

In the  , , , and

 

Then,

and

or

or

or

or

i t  Ae 750t–  mA=

A i t 3 ms=
5.27 mA=

5.27 Ae 750 3 10 3––=

A 5.27 10 3–
e 2.25–

---------------------------=

A 0.050 A 50mA= =

i t  50e 750t–  mA=

i t 1 ms=
50e 750 10 3–– 23.62 mA= =

R L

C8 

F

vS

I

jL
j

C
--------–

j domain– VS 120 0 V= I 12 36.9 A–= jL j10 3– =

j C– j106– =

Z
VS
I

------- 120 0 V
12 36.9 A–
---------------------------------- 10 36.9= = =

Z 10 R 2 L 1 C– 2+= =

R 2 L 1 C– 2+ 100=

8 2 L 1 C– 2+ 100=

L 1 C– 2 36=

L 1 C– 6=
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Solutions to EndofChapter Exercises

or

or

Solving for  and ignoring the negative value, we obtain

and

Check: , 

and

4. Since the instruments read absolute values, we are only need to be concerned the magnitudes
of the phasor voltage, phasor current, and impedance. Thus,

or

and after simplification we obtain

Using MATLAB, we obtain

p=[500  250*10^(4)  625*10^(8)]; r=roots(p)

and this yields 

The second root of this polynomial is negative and thus it is discarded.

5. We group the series devices as shown below.

2 6
L
---– 1

LC
--------– 0=

2 6 10 3 – 10 9– 0=



 6 103 36 106 4 109++
2

------------------------------------------------------------------------- 34 765 r s= =

f 
2
------ 34 765 r s

2
---------------------------- 5 533 Hz 5.533 KHz= = = =

jL j34.765= j– C j28.765–=

Z R j L 1 C – + 8 j 34.765 28.765– + 8 j6+ 10 36.9= = = =

I 120 0
10 36.9
------------------------ 12 36.9–= =

V Z I 25 R 2 L 1 C– 2+ 5= = =

V 2 252 R 2 L 1 C– 2+  25 4 1 5 10 4–
C

--------------------– 
 

2
+ 25= = =

100 25 250 10 4–
C

--------------------------– 625 10 8–
C 2

--------------------------+ + 625==

500C 2 250 10 4– C 625 10 8––+ 0=

C 89.6 F=
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Thus , , and

and at any frequency 

Therefore, if the condition  is to hold for all frequencies, the right sides of 

and  must be equal, that is,

Equating reals and imaginaries we obtain

        

From the first equation above we obtain  and by substitution of this value into the
second equation we obtain .

1 R2ZIN

YIN
C

Z1 Z2

1 H

R1

L

Z1 R1 j+= Z2 1 j C –=

ZIN
Z1 Z2
Z1 Z2+
------------------

R1 j+  1 j C– 
R1 j 1 j C–+ +

----------------------------------------------------= =



YIN
1

ZIN
--------

R1 j 1 j C–+ +

R1 j+  1 j C– 
----------------------------------------------------= =

YIN ZIN= ZIN

YIN

R1 j+  1 j C– 
R1 j 1 j C–+ +

----------------------------------------------------
R1 j 1 j C–+ +

R1 j+  1 j C– 
----------------------------------------------------=

R1 j+  1 j C–   2 R1 j 1 j C–+ +  2=

R1 j+  1 j C–  R1 j 1 j C–+ +=

R1 j
R1
C
--------– j 1

C
----+ + R1 1 j  1

C
--------– 

 + +=

R1
1
C
----+ 

  j 
R1
C
--------– 

  j+ + R1 1+  j  1
C
--------– 

 +=

R1
1
C
----+ R1 1+= 

R1
C
--------–  1

C
--------–=

C 1 F=
R1 1 =
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Solutions to EndofChapter Exercises

6. 

The admittance  is reduced to  when ,

or , or , from which , and with the given val-
ues,

and since the resistive branch is unity, at this frequency  and the phase is zero
degrees. 

The magnitude and phase at other frequencies can be plotted with a spreadsheet or MAT-
LAB, but it is easier with the Simulink / SimPowerSystems model shown in Figure 6.22.

Figure 6.22. SimPowerSystems model for impedance measurement

After the simulation command is executed, we must click the Powergui block, and on the pop
up window we must select the Impedance vs Frequency Measurement option to display the
magnitude and phase of the impedance function shown in Figure 6.23.

CR L
Z, Y

1 F1  1 mH

Y G 2 BC BL– 2
+= Y G2 G= = BC BL– 0=

BC BL= 2fC 1 2fL = f 1 2 LC =

f 1

2 10 3– 10 6–
-------------------------------------------= 5000 Hz

Z Y 1= =

IM = Impedance Measurement

Continuous

powergui

RLC Branch Z

IM
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Figure 6.23. Magnitude and Phase plots for the SimPowerSystems model in Figure 6.22

We observe that the maximum value of the impedance, i.e., , occurs at approximately
, and at this frequency the phase is zero degrees.

1 
5 KHz
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Chapter 7

Phasor Circuit Analysis

his chapter begins with the application of nodal analysis, mesh analysis, superposition, and
Thevenin’s and Norton’s theorems in phasor circuits. Then, phasor diagrams are intro-
duced, and the inputoutput relationships for an RC lowpass filter and an RC highpass

filter are developed. 

7.1 Nodal Analysis

The procedure of analyzing a phasor* circuit is the same as in Chapter 3, except that in this chap-
ter we will be using phasor quantities. The following example illustrates the procedure.

Example 7.1  

Use nodal analysis to compute the phasor voltage  for the circuit of Figure 7.1.

Figure 7.1. Circuit for Example 7.1

Solution:

As in Chapter 3, we choose a reference node as shown in Figure 7.2, and we write nodal equa-
tions at the other two nodes  and . Also, for convenience, we designate the devices in series
as  as shown, and then we write the nodal equations in terms of these impedances.

* A phasor is a rotating vector

T

VAB VA VB–=

10 0 A
5 0 A

VBVA

4 

j– 6 

2 
8 

j3 

j– 3 

A B
Z1 Z2 and Z3 

Z1 4 j6– 7.211 56.3–= =

Z2 2 j3+ 3.606 56.3= =

Z3 8 j3– 8.544 20.6–= =
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Figure 7.2. Nodal analysis for the circuit for Example 7.1

By application of KCL at ,

(7.1)

or

and by substitution for  we obtain

(7.2)

Next, at :

(7.3)

In matrix form (7.1) and (7.3) are written as follows:

10 0 A
5 0 A

VBVA

4 

j– 6 

2 
8 

j3 

j– 3 
Z1

Z3

Z2

VA
VA
Z1
-------

VA VB–

Z2
---------------------+ 5 0=

1
Z1
------ 1

Z2
------+ 

 VA
1

Z2
------VB– 5 0=

Z1 Z2+

Z1Z2
------------------ 
 VA

1
Z2
------VB– 5 0=

Z1 and Z2

4 j6– 2 j3+ +
7.211 56.3–  3.606 56.3 

--------------------------------------------------------------------------VA
1

3.606 56.3
-------------------------------VB– 5 0=

6 j3–
26.0 0
---------------------VA 0.277 56.3– VB– 5 0=

6.708 26.6–
26 0

----------------------------------VA 0.277 56.3– VB– 5 0=

0.258 26.6– VA 0.277 56.3– VB– 5 0=

VB
VB VA–

Z2
---------------------

VB
Z3
-------+ 10– 0=

1
Z2
------VA– 1

Z2
------ 1

Z3
------+ 

 VB+ 10– 0=
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Nodal Analysis

(7.4)

We will follow a stepbystep procedure to solve these equations using Cramer’s rule, and we
will use MATLAB®* to verify the results.

We rewrite (7.3) as 

(7.5)

and thus with (7.2) and (7.5) the system of equations is

(7.6)

We find  and  from

(7.7)

and
(7.8)

The determinant  is

Also,

* If unfamiliar with MATLAB, please refer to Appendix A

1
Z1
------ 1

Z2
------+ 

  1
Z2
------–

1
Z2
------– 1

Z2
------ 1

Z3
------+ 

 

VA

VB

5
10–

=

1
Z2
------VA–

Z2 Z3+

Z2Z3
------------------ 
 VB+ 10 180=

1
3.606 56.3
-------------------------------VA–

2 j3 8 j3–+ +
3.606 56.3  8.544 20.6– 

----------------------------------------------------------------------------VB+ 10 180=

0.277 56.3– VA–
10

30.810 35.7
----------------------------------VB+ 10 180=

0.277 56.3– VA– 0.325 35.7– VB+ 10 180=

0.258 26.6– VA 0.277 56.3– VB– 5 0=

0.277 56.3– VA– 0.325 35.7– VB+ 10 180=

VA VB

VA
D1


------=

VB
D2


------=



 0.258 26.6–  0.277 56.3– –
0.277 56.3– – 0.325 35.7– 

=

0.258 26.6–  0.325 35.7–  0.277 56.3–  0.277– 56.3– –=

0.084 62.3–  0.077 112.6– – 0.039 j0.074–  0.023– j0.071– ––=

0.062 j0.003– 0.062 2.8–= =
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and

Therefore, by substitution into (7.7) and (7.8), we obtain

and

Finally,

Check with MATLAB:

z1=4j*6; z2=2+j*3; z3=8j*3; % Define z1, z2 and z3
Z=[1/z1+1/z2  1/z2; 1/z2  1/z2+1/z3]; % Elements of matrix Z
I=[5  10]'; % Column vector I
V=Z\I; Va=V(1,1); Vb=V(2,1); Vab=VaVb; % Va = V(1), Vb = V(2) are also acceptable
% With fprintf only the real part of each parameter is processed so we will use disp
fprintf(' \n'); disp('Va = '); disp(Va); disp('Vb = '); disp(Vb); disp('Vab = '); disp(Vab);
fprintf(' \n');

Va =  -4.1379 + 19.6552i
Vb = -22.4138 - 1.0345i
Vab = 18.2759 + 20.6897i

These values differ by about 10% from the values we obtained with Cramer’s rule where we
rounded the values to three decimal places. MATLAB performs calculations with accuracy of 15
decimal places, although it only displays four decimal places in the short (default) number display
format. Accordingly, we should accept the MATLAB values as more accurate.

D1
5 0 0.277 56.3– –

10 180 0.325 35.7– 
=

5 0  0.325 35.7–  10 180  0.277 56.3– – –=

1.625 35.7– 2.770 123.7+  1.320 j0.948– 1.537– j2.305+ +==

0.217– j1.357+ 1.374 99.1==

D2
0.258 26.6–  5 0
0.277 56.3– – 10 180

=

0.258 26.6–  10 180  0.277– 56.3–  5 0 –=

2.580 153.4 1.385 56.3–+ 2.307– j1.155 0.769 j1.152–+ + ==

1.358– j0.003+ 1.358 179.9==

VA
D1


------ 1.374 99.1

0.062 2.8–
------------------------------- 22.161 101.9 4.570– j21.685+= = = =

VB
D2


------ 1.358 179.9

0.062 2.8–
---------------------------------- 24.807 177.3– 24.780– j1.169–= = = =

VAB VA VB– 4.570– j21.685 24.780– j1.169– –+= =

20.21 j22.85+ 30.5 48.5==



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling 75
Copyright © Orchard Publications

Mesh Analysis

7.2 Mesh Analysis
Again, the procedure of analyzing a phasor circuit is the same as in Chapter 3 except that in this
chapter we will be using phasor quantities. The following example illustrates the procedure.

Example 7.2  

For the circuit of Figure 7.3, use mesh analysis to find the voltage , that is, the voltage
across the  current source.

Figure 7.3. Circuit for Example 7.2

Solution:

As in the previous example, for convenience, we denote the passive devices in series as
, and we write mesh equations in terms of these impedances. The circuit then is as

shown in Figure 7.4 with the mesh currents assigned in a clockwise direction.

We observe that the voltage across the  current source is the same as the voltage across
the  and  series combination.

By inspection, for Mesh 1,

(7.9)

Figure 7.4. Mesh analysis for the circuit of Example 7.2

By application of KVL around Mesh 2,

V10A

10 0

10 0 A

5 0 A

4 

j– 6 

2 

8 

j3 

j– 3 

V10A

+



Z1 Z2 and Z3 

10 0
8  j– 3 

I1 5 0=

10 0 A

5 0 A

4 

j– 6 

2 

8 

j3 

j– 3 

V10A

+



Z2

Z1 Z3

I2
I1

I3
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(7.10)

Also, by inspection for Mesh 3,
(7.11)

and in matrix form, (7.9), (7.10), and (7.11) are written as

(7.12)

We use MATLAB for the solution of 7.12.*

Z=[1  0  0;  (4j*6)  14j*6   (8j*3);  0  0  1];
V=[5  0  10]';
I=Z\V; i1=I(1); i2=I(2); i3=I(3); fprintf(' \n');
disp('i1 = '); disp(i1); disp('i2 = '); disp(i2); disp('i3 = '); disp(i3); fprintf(' \n');

i1 = 5    i2 = 7.5862 - 1.0345i   i3 = 10

Therefore, the voltage across the  current source is

We observe that this is the same value as that of the voltage  in the previous example.

7.3 Application of Superposition Principle
As we know from Chapter 3, the superposition principle is most useful when a circuit contains
two or more independent voltage or current sources. The following example illustrates the appli-
cation of the superposition principle in phasor circuits.

Example 7.3  

Use the superposition principle to find the phasor voltage across capacitor  in the circuit of
Figure 7.5.

* As we experienced with Example 7.1, the computation of phasor voltages and currents becomes quite tedious. Accordingly,
in our subsequent discussion we will use MATLAB for the solution of simultaneous equations with complex coefficients.

Z1I1 Z1 Z2 Z3+ + I2 Z3I3–+– 0=

4 j6– – I1 14 j6– I2 8 j3– I3–+ 0=

I3 10 0=

1 0 0
4 j6– – 14 j6–  8 j3– ––

0 0 1

I1

I2

I3

5
0

10

=

10 0 A

V10A Z3 I2 I3–  8 j3–  7.586 j1.035– 10–  22.417– j1.038–= = =

VB

C2
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Application of Superposition Principle

Figure 7.5. Circuit for Example 7.3
Solution:

Let the phasor voltage across  due to the  current source acting alone be denoted as
, and that due to the  current source as . Then,

With the  current source acting alone, the circuit reduces to that shown in Figure 7.6.

Figure 7.6. Circuit for Example 7.3 with the  current source acting alone

By application of the current division expression, the current  through  is

The voltage across  with the  current source acting alone is

 (7.13)

Next, with the  current source acting alone, the circuit reduces to that shown in Figure
7.7.

10 0 A
5 0 A

4 

j– 6 

2 
8 

j3 

j– 3 
C2

C2 5 0 A

V 'C2 10 0 A V ''C2

VC2 V 'C2 V ''C2+=

5 0 A

5 0 A

4 

j– 6 

2 
8 

j3 

j– 3 
C2

V 'C2

5 0 A

I 'C2 C2

I 'C2
4 j6–

4 j6– 2 j3 8 j3–+ + +
-------------------------------------------------------5 0 7.211 56.3–

15.232 23.2–
-------------------------------------5 0 2.367 33.1–= = =

C2 5 0

V 'C2 j3–  2.367 33.1–  3 90–  2.367 33.1– = =

7.102 123.1– 3.878– j5.949–==

10 0 A
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Figure 7.7. Circuit for Example 7.3 with the  current source acting alone

and by application of the current division expression, the current  through  is

The voltage across  with the  current source acting alone is 

(7.14)

Addition of (7.13) with (7.14) yields

or
(7.15)

Check with MATLAB:

z1=4-6j; z2=2+3j; z3=8-3j; Is=5; i1=z1*Is/(z1+z2+z3);...
i1, magI1=abs(i1), phaseI1=angle(i1)*180/pi, v1=-3j*i1,...
magV1=abs(v1), phaseV1=angle(v1)*180/pi,...
Is2=-10; i2=(z1+z2)*Is2/(z1+z2+z3); magI2=abs(i2), phaseI2=angle(i2)*180/pi,...
v2=-3j*i2, magV2=abs(v2), phaseV1=angle(v2)*180/pi,...
vC=v1+v2, magvC=abs(vC), phasevC=angle(vC)*180/pi

i1 =
   1.9828 - 1.2931i
magI1 =
    2.3672
phaseI1 =
  -33.1113
v1 =
  -3.8793 - 5.9483i

10 0 A

4 

j– 6 

2 
8 

j3 

j– 3 
C2

V ''C2

10 0 A

I ''C2 C2

I ''C2
4 j6– 2 j3+ +

4 j6– 2 j3 8 j3–+ + +
------------------------------------------------------- 10– 0 =

6.708 26.6–
15.232 23.2–
-------------------------------------10 180 4.404 176.6==

C2 10 0

V ''C2 j3–  4.404 176.6  3 90–  4.404 176.6 = =

13.213 86.6 0.784 j13.189+= =

VC2 V 'C2 V ''C2+ 3.878– j5.949– 0.784 j13.189+ += =

VC2 3.094– j7.240+ 7.873 113.1= =
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Application of Superposition Principle

magV1 =
    7.1015
phaseV1 =
 -123.1113
magI2 =
    4.4042
phaseI2 =
  176.6335
v2 =
   0.7759 +13.1897i
magV2 =
   13.2125
phaseV1 =
   86.6335
vC =
  -3.1034 + 7.2414i
magvC =
    7.8784
phasevC =
  113.1986

The Simulink models for the computation of  and  are shown in Figures 7.8 and
7.9respectively.

Figure 7.8. Model for the computation of , Example 7.3

The final step is to add  with . This addition is performed with the model of Figure
7.10 where the models of Figures 7.8 and 7.9 have been converted to Subsystems 1 and 2 respec-
tively.

V 'C2 V ''C2

V'C2

V 'C2 V ''C2
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Figure 7.9. Model for the computation of , Example 7.3

Figure 7.10. Model for the addition of  with , Example 7.3

The model in Figure 7.10 can now be used with the circuit of Figure 7.5 for any values of the cur-
rent sources and the impedances.

7.4 Thevenin’s and Norton’s Theorems
These two theorems also offer a very convenient method in analyzing phasor circuits as illustrated
by the following example.

Example 7.4  

For the circuit of Figure 7.11, apply Thevenin’s theorem to compute  and then draw Norton’s
equivalent circuit.

V''C2

V'C2 V''C2

IX
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Thevenin’s and Norton’s Theorems

Figure 7.11. Circuit for Example 7.4
Solution:

With the  resistor disconnected, the circuit reduces to that shown in Figure 7.12.

Figure 7.12. Circuit for Example 7.4 with the  resistor disconnected

By application of the voltage division expression,

 (7.16)

and
 (7.17)

Then, from (7.16) and (7.17),

(7.18)

Next, we find the Thevenin equivalent impedance  by shorting the  voltage
source. The circuit then reduces to that shown in Figure 7.13.

170 0 V

j100–  85 

50 
100 

j200 

IX

100 

170 0 V

j100–  85 

50 j200 

V1 V2

100 

V1
j200

85 j200+
-----------------------170 0 200 90

217.31 67
------------------------------170 0 156.46 23 144 j61.13+= = = =

V2
50

50 j100–
-----------------------170 0 50

111.8 63.4– 
---------------------------------------170 0 76 63.4 34 j68+= = = =

VTH VOC V12 V1 V2– 144 j61.13 34 j68+ –+= = = =

VTH 110 j6.87– 110.21 3.6– = =

ZTH 170 0 V
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Figure 7.13. Circuit for Example 7.4 with the voltage source shorted

We observe that the parallel combinations  and  are in series as shown in Fig-
ure 7.14.

Figure 7.14. Network for the computation of  for Example 7.4

From Figure 7.14,

and with MATLAB,

Zth=85*200j/(85+200j) + 50*(100j)/(50100j)

Zth =
 1.1200e+002 + 1.0598e+001i
or

The Thevenin equivalent circuit is shown in Figure 7.15.

j100–  85 

50 j200 

X Y

j100–  85 

50 j200 

X Y ZTH

85 

50 

j200 

X

Y

j100–  

j200 || 85 50 || j100

85j200 

j100 50

Y

X

ZTH

ZTH

ZTH
85 j200
85 j200+
----------------------- 50 j100– 

50 j100–
-------------------------------+=

ZTH 112.0 j10.6+ 112.5 5.4 = =
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Thevenin’s and Norton’s Theorems

Figure 7.15. Thevenin equivalent circuit for Example 7.4

With the  resistor connected at XY, the circuit becomes as shown in Figure 7.16.

Figure 7.16. Simplified circuit for computation of  in Example 7.4

We find  using MATLAB:

Vth=1106.87j;  Zth=112+10.6j; Ix=Vth/(Zth+100);
fprintf(' \n'); disp('Ix = '); disp(Ix); fprintf(' \n');

Ix = 0.5160 - 0.0582i

that is,

(7.19)

The same answer is found in Example C.18 of Appendix  where we applied nodal analysis to
find .

Norton’s equivalent is obtained from Thevenin’s circuit by exchanging  and its series 
with  in parallel with  as shown in Figure 7.14. Thus,

and

VTH 110.213.6

112 j10.6 
X

Y

ZTH

        110j6.87

100 

VTH 110j6.87

100

j10.6 

X

112 
IX

Y

IX

IX

IX
VTH

ZTH 100 +
--------------------------------- 0.516 j0.058– 0.519 6.4 A–= = =

C
IX

VTH ZTH

IN ZN

IN
VTH
ZTH
---------- 110.21 3.6–

112.5 5.4
---------------------------------- 0.98 9 A–= = =

ZN ZTH 112.5 5.4 = =
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Figure 7.17. Norton equivalent circuit for Example 7.4

7.5 Phasor Analysis in Amplifier Circuits
Other circuits such as those who contain op amps and op amp equivalent circuits can be analyzed
using any of the above methods.

Example 7.5  

Compute  for the circuit in Figure 7.18 where .

Figure 7.18. Circuit for Example 7.5

Solution:

As a first step, we perform the , to  transformation. Thus,

and

Also,

and the phasor circuit is shown in Figure 5.19.

IN

ZN

iX t  vin t  2 30000t  Vcos=

+


+


0.2 mH

8 

2 

10 

50 

4 

iX t 

vC t 

vin t 

5vC t 10 3  F

t domain– j domain–

jXL jL j0.2 10 3– 30 103 j6= = =

jXC– j– 1
C
-------- j– 1

30 103 10
3

------ 10 6–
-------------------------------------------------- j10–= = =

VIN 2 0=
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Phasor Analysis in Amplifier Circuits

Figure 7.19. Phasor circuit for Example 7.5

At Node :
(7.20)

and since

the nodal equation of (7.20) simplifies to

(7.21)

At Node :

or 
(7.22)

At Node :

We use MATLAB to solve (7.21) and (7.22).

G=[35/50  j*3/50;  1/5  1/10+j*1/10];  I=[1  0]';  V=G\I;
Ix=5*V(2,1)/4; % Multiply Vc by 5 and divide by 4 to obtain current Ix
magIx=abs(Ix); theta=angle(Ix)*180/pi; % Convert current Ix to polar form
fprintf(' \n'); disp(' Ix = ' ); disp(Ix);...
fprintf('magIx = %4.2f A \t', magIx); fprintf('theta = %4.2f deg \t', theta);...
fprintf(' \n'); fprintf(' \n');

Ix = 2.1176 - 1.7546i    magIx = 2.75 A    theta = -39.64 deg 

Therefore,
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Example 7.6  

Compute the phasor  for the op amp circuit of Figure 7.20.

Figure 7.20. Circuit for Example 7.6

Solution:

We assign phasor voltages  and  as shown in Figure 7.21, and we apply KCL at these nodes,

while observing that 

Figure 7.21. Application of KCL for the circuit of Example 7.6

At Node :

or 
(7.23)

At Node ,

and thus,

or 

Vout

4 

j5 

j10 

5 

10 
Vout

Vin 4 0 V=

V1 V +

Vout V +=

4 

j10 

5 

10 

V1

V +

Vin 4 0 V= Vout



j5 



V1 4 0–

4
--------------------------

V1 Vout–

j5–
------------------------

V1 Vout–

5
------------------------

V1
j10–

-----------+ + + 0=

9
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10
------+ 

 V1
1
5
--- j15

---+ 
 Vout– 1 0=

V2 V + Vout= =

Vout
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-----------
Vout V1–

5
------------------------

Vout V1–

j5–
------------------------+ + 0=
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(7.24)

Solving (7.23) and (7.24) with MATLAB we obtain:

format rat
G=[9/20+j*3/10  1/5j*1/5;  1/5j*1/5  3/10+j*1/5]; I=[1  0]'; V=G\I;
fprintf(' \n');disp(‘V1 = ’); disp(V(1,1)); disp(‘Vout = ’); disp(V(2,1));
format short
magV=abs(V(2,1)); thetaV=angle(V(2,1))*180/pi; 
fprintf('magIx = %5.3f A \t', magIx); fprintf('theta = %4.2f deg \t', theta);...
fprintf(' \n'); fprintf(' \n')

V1 = 68/25 - 24/25i   Vout = 56/25 - 8/25i   

magIx = 2.750 A       theta = -39.64 deg

Therefore,
(7.25)

7.6 Phasor Diagrams
A phasor diagram is a sketch showing the magnitude and phase relationships among the phasor
voltages and currents in phasor circuits. The procedure is best illustrated with the examples
below.

Example 7.7  
Compute and sketch all phasor quantities for the circuit of Figure 7.22. 

Figure 7.22. Circuit for Example 7.7

Solution:

Since this is a series circuit, the phasor current I is common to all circuit devices. Therefore, we
assign to this phasor current the value and use it as our reference as shown in the
phasor diagram of Figure 7.23 where:

1
5
--- j15

---+ 
 – V1

3
10
------ j15

---+ 
 Vout+ 0=

Vout 2.263 8.13–=

VS 
VC +



j3 

j5 

2 

I

VL VR 
++ 

I 1 0=
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Figure 7.23. Phasor diagram for the circuit of Example 7.7

Example 7.8  
Compute and sketch all phasor quantities for the circuit of Figure 7.24.

Figure 7.24. Circuit for Example 7.8

Solution:

Since this is a parallel circuit, the phasor voltage V is common to all circuit devices. Therefore let
us assign this phasor voltage the value  and use it as our reference phasor as shown in
the phasor diagram of Figure 7.25 where:

VR 2   1 0  2 0 V= =

VL j3   1 0  j3 3 90 V= = =

VC j– 5   1 0  j5– 5 90–  V= = =

VS VR VL VC+ + 2 j2– 2 2 45–= = =

I = 10VR

VL

VC

VL+VC
VS=VR+(VL+VC)

IS 

IC 

j20  j10 10 
V

IL IR 
+



V 1 0=

IR 1 0 10 100 0 mA= =

IL 1 0 j20 1 0 20 90 50 90–  m= = =

IC 1 0 j– 10  1 0 10 90–  100 90 mA= = =

IC IL+ 50 90 mA=

IS IR IC IL+ + 100 j50+ 111.8 26.6= = =
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Figure 7.25. Phasor diagram for Example 7.8

We can draw a phasor diagram for other circuits that are neither series nor parallel by assigning
any phasor quantity as a reference.

Example 7.9  
Compute and sketch all phasor voltages for the circuit of Figure 7.26. Then, use MATLAB to
plot these quantities in the .

Figure 7.26. Circuit for Example 7.9

Solution:

We will begin by selecting  as our reference as shown on the phasor diagram of
Figure 7.27. Then, 

and

V = 10

IR

IC

IL

IC+IL
IS=IR+(IC+IL)

t domain–

VS 
VC 

+



j3 

j5 

2 

VL VR1 
++ 

5 
+


VR2 
IR2 

IR2 1 0 A=

VR2 5  IR2 5 1 0= 5 0= =

VL j3  IR2 3 90 1 0= 3 90= =

VC VL VR2+ 5 0 3 90+ 5 j3+= 5.83 31= = =

VR1 2  IR1 2 IC IR2+  2
VC
j5–

-------- IR2+ 
  2 5.83 31

5 90–
------------------------ 5 0 + 
 == = =

2.33 121 10 0 + 1.2– j2+ 10+ 8.8 j2+ 9 12.8= = ==

VS VR1 VC+ 8.8 j2 5 j3+ + + 13.8 j5+ 14.7 20= = = =
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Figure 7.27. Phasor diagram for Example 7.9

Now, we can transform these phasors into timedomain quantities and use MATLAB to plot
them. We will use the voltage source as a reference with the value , and we will apply
nodal analysis with node voltages V1, V2, and V3 assigned as shown in Figure 7.28.

Figure 7.28. Circuit for Example 7.9 with the voltage source taken as reference

The node equations are shown below in matrix form.

 

The MATLAB script is as follows:

% Enter the nonzero values of the G matrix
G(1,1)=1;
G(2,1)=1/2;
G(2,2)=1/21/5j+1/3j;
G(2,3)=1/3j;
G(3,2)=1/3j;
G(3,3)=1/3j+1/5;
%
% Enter all values of the I matrix
I=[1  0  0]';
%
% Compute node voltages
V=G\I;
%

IR2 1 0 A=VR2 5 0=

VL 3 90=

VC 5.83 31=

VR1 9 12.8=

VS 14.7 20=

VS 1 0=

VS 
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+
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+
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V3 V1 V2 

1 0 V

1 0 0
1
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---– 1

2
--- 1

j5–
-------- 1

j3
-----+ + 

  1
j3
-----–
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-----– 1
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---+ 
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VR1=V(1)V(2);
VL=V(2)V(3);
% Compute magnitudes and phase angles of voltages
magV1=abs(V(1)); magV2=abs(V(2)); magV3=abs(V(3));
phaseV1=angle(V(1))*180/pi; phaseV2=angle(V(2))*180/pi; phaseV3=angle(V(3))*180/pi;
magVR1=abs(VR1); phaseVR1=angle(VR1)*180/pi; 
magVL=abs(VL); phaseVL=angle(VL)*180/pi;
%
% Denote radian frequency as w and plot wt for 0 to 2*pi range
wt=linspace(0,2*pi);
V1=magV1*cos(wtphaseV1);
V2=magV2*cos(wtphaseV2);
V3=magV3*cos(wtphaseV3);
VR1t=magVR1*cos(wtphaseVR1);
VLt=magVL*cos(wtphaseVL);
%
% Convert wt to degrees
deg=wt*180/pi;
%
% Print phasor voltages, magnitudes, and phase angles
fprintf(' \n');
% With fprintf only the real part of each parameter is processed so we will use disp
disp('V1 = '); disp(V(1)); disp('V2 = '); disp(V(2)); disp('V3 = '); disp(V(3));
disp('VR1 = '); disp(VR1); disp('VL = '); disp(VL);
fprintf('magV1 = %4.2f V \t', magV1); fprintf('magV2 = %4.2f V \t', magV2);
fprintf('magV3 = %4.2f V', magV3); fprintf(' \n'); fprintf(' \n'); 
fprintf('phaseV1 = %4.2f deg \t', phaseV1);
fprintf('phaseV2 = %4.2f deg \t', phaseV2); fprintf('phaseV3 = %4.2f deg', phaseV3); 
fprintf(' \n'); fprintf(' \n'); 
fprintf('magVR1 = %4.2f V \t', magVR1); fprintf('phaseVR1 = %4.2f deg ', phaseVR1);
fprintf(' \n'); fprintf(' \n'); 
fprintf('magVL = %4.2f V \t', abs(VL)); fprintf('phaseVL = %4.2f deg ', phaseVL);
fprintf(' \n');
%
plot(deg,V1,deg,V2,deg,V3,deg,VR1t,deg,VLt)
fprintf(' \n');

V1 = 1
V2 = 0.7503 - 0.1296i
V3 = 0.4945 - 0.4263i
VR1 = 0.2497 + 0.1296i
VL = 0.2558 + 0.2967i

magV1 = 1.00 V       magV2 = 0.76 V        magV3 = 0.65 V 

phaseV1 = 0.00 deg   phaseV2 = -9.80 deg   phaseV3 = -40.76 deg 

magVR1 = 0.28 V      phaseVR1 = 27.43 deg  

magVL = 0.39 V       phaseVL = 49.24 deg

and with these values we have

     vS t  v1 t  tcos= = v2 t  0.76 t 9.8– cos= v3 t  0.65 t 40.8– cos=
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These are plotted with MATLAB as shown in Figure 7.29.

Figure 7.29. The  plots for Example 7.9

7.7 Electric Filters
The characteristics of electric filters were introduced in Chapter 4 but are repeated below for con-
venience.

Analog filters are defined over a continuous range of frequencies. They are classified as lowpass,
highpass, bandpass and bandelimination (stopband). Another, less frequently mentioned filter,
is the allpass or phase shift filter. It has a constant amplitude response but is phase varies with fre-
quency. This is discussed in Signals and Systems with MATLAB Computing and Simulink Modeling,
ISBN 9781934404119. 

The ideal amplitude characteristics of each are shown in Figure 7.30. The ideal characteristics are
not physically realizable; we will see that practical filters can be designed to approximate these
characteristics. In this section we will derive the passive RC low and highpass filter characteris-
tics and those of an active lowpass filter using phasor analysis.

A digital filter, in general, is a computational process, or algorithm that converts one sequence of
numbers representing the input signal into another sequence representing the output signal.
Accordingly, a digital filter can perform functions as differentiation, integration, estimation, and,
of course, like an analog filter, it can filter out unwanted bands of frequency. Digital filters are dis-
cussed in Signals and Systems with MATLAB Computing and Simulink Modeling, ISBN 9781
934404119.
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Figure 7.30. Amplitude characteristics of the types of filters

7.8 Basic Analog Filters
An analog filter can also be classified as passive or active. Passive filters consist of passive devices
such as resistors, capacitors and inductors. Active filters are, generally, operational amplifiers
with resistors and capacitors connected to them externally. We can find out whether a filter,
passive or active, is a lowpass, highpass, etc., from its the frequency response that can be
obtained from its transfer function. The procedure is illustrated with the examples that follow.

Example 7.10  
Derive expressions for the magnitude and phase responses of the series RC network of Figure
7.31, and sketch their characteristics.

Figure 7.31. Series RC network for Example 7.10

Solution:

By the voltage division expression,
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and denoting the ratio  as , we obtain

(7.26)

The magnitude of (7.26) is

 (7.27)

and the phase angle , also known as the argument, is

(7.28)

We can obtain a quick sketch for the magnitude  versus  by evaluating (7.27) at
, , and . Thus, 

as , 

for , 

and as , 

The magnitude, indicated as  versus radian frequency for several values of  is shown in
Figure 7.32 where, for convenience, we have let . The plot shows that this circuit is an
approximation, although not a good one, to the amplitude characteristics of a lowpass filter.

We can also obtain a quick sketch for the phase angle, i.e.,  versus  by evaluat-
ing of (11.3) at , , ,  and . Thus,

as , 

for , 

for , 

as , 

and as , 

Vout
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Vout Vin G j 

G j 
Vout
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----------= 1
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------------------------ 1
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------------------------------------------------------------------------ 1
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--------------------------------- RC atan–= ==

G j  Vout
Vin
----------= 1

1 2R2C2+
---------------------------------=



 G j  
Vout
Vin
---------- 
 arg=arg RC atan–= =

G j  
 0=  1 RC=  

 0 G j  1

 1 RC= G j  1 2 0.707= =

  G j  0

G j  
RC 1=

 G j  arg= 
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Figure 7.32. Amplitude characteristics of a series RC lowpass filter

Figure 7.33 shows the phase characteristic of an RC lowpass filter where, again for conve-
nience, we have let .

Figure 7.33. Phase characteristics of a series RC lowpass filter

RC 1=
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Example 7.11  
The network of Figure 7.31 is also a series RC circuit, where the positions of the resistor and
capacitor have been interchanged. Derive expressions for the magnitude and phase responses,
and sketch their characteristics.

Figure 7.34. RC network for Example 7.11
Solution:

or

 (7.29)

The magnitude of (7.29) is

(7.30)

and the phase angle or argument, is

(7.31)

We can obtain a quick sketch for the magnitude  versus  by evaluating (7.30) at ,
, and . Thus,

as ,  

for , 

and as , 

Figure 7.35 shows  versus radian frequency for several values of where . The
plot shows that this circuit is an approximation, although not a good one, to the amplitude char-
acteristics of a highpass filter.
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Figure 7.35. Amplitude characteristics of a series RC highpass filter

We can also obtain a quick sketch for the phase angle, i.e.,  versus , by eval-
uating (7.31) at , , , , and . Thus,

as , 

for , 

for , 

as , 

and as , 

Figure 7.36 shows the phase angle  versus radian frequency for several values of , where
.

 G j  arg= 
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Figure 7.36. Phase characteristics of an RC highpass filter

We should remember that the RC lowpass filter in Figure 7.31 and the RC highpass filter in
Figure 7.34 behave as filters only when the excitation (input voltage) is sinusoidal at some fre-
quency. If the excitation is any input, the RC network in Figure 7.28 behaves as an integrator
provided that , while the RC network in Figure 7.31 behaves as a differentiator pro-
vided that . The proofs are left as exercises for the reader at the end of this chapter.

7.9 Active Filter Analysis
We can analyze active filters, such as those we discussed in Chapter 4, using phasor circuit analy-
sis.

Example 7.12  
Compute the approximate cutoff frequency of the circuit of Figure 7.37 which is known as a
Multiple Feed Back (MFB) active lowpass filter.

Solution:

We assign two nodes as shown in Figure 7.38, and we write the phasor circuit nodal equations as
follows:

vOUT vIN«

vOUT vIN«



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling 729
Copyright © Orchard Publications

Active Filter Analysis

Figure 7.37. Lowpass filter for Example 7.12

Figure 7.38. Circuit for nodal analysis, Example 7.12

At Node :

(7.32)

At node :
(7.33)

and since  (virtual ground), relation (7.33) reduces to

(7.34)

and by substitution of (7.34) into (7.32), rearranging, and collecting like terms, we obtain:

(7.35)

or
(7.36)

By substitution of given values of resistors and capacitors, we obtain

25 nF

10 nF

vin vout

50 k

R1

R2
R3

C2

C1

40 k

200 k

25 nF

10 nF



vin vout

v1 v2

50 k

R1

R2
R3

C2

C1

40 k

200 k 

v1 vin–

R1
-------------------

v1
1 jC1 
------------------------

v1 vout–

R2
----------------------

v1 v2–
R3

-----------------+ + + 0=

v2 v1–
R3

-----------------
C2

1 jC2 
------------------------=

v2 0=

v1 jR– 3C2 vout=

1
R1
------ 1

R2
------ 1

R3
------ jC1+ + + 

  jR– 3C2  1
R2
------– vout

1
R1
------vin=

vout
vin
---------- 1

R1
1

R1
------ 1

R2
------ 1

R3
------ jC1+ + + 

  jR– 3C2  1
R2
------–

------------------------------------------------------------------------------------------------------------------=



Chapter 7  Phasor Circuit Analysis

730 Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems  Modeling
Copyright © Orchard Publications

or
        (7.37)

and now we can use MATLAB to find and plot the magnitude of (7.37) with the following script.

w=1:10:10000; Gjw=1./(2.5.*10.^(6).*w.^25.*j.*10.^(3).*w+5);
semilogx(w,abs(Gjw)); grid; hold on
xlabel('Radian Frequency w'); ylabel('|Vout/Vin|');
title('Magnitude Vout/Vin vs. Radian Frequency')

The plot is shown in Figure 7.39 where we see that the cutoff frequency occurs at about
. We observe that the halfpower point for this plot is .

Figure 7.39. Plot for the magnitude of the lowpass filter circuit of Example 7.12
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7.10 Summary
 In Chapter 3 we were concerned with constant voltage and constant current sources, resis-

tances and conductances. In this chapter we were concerned with alternating voltage and
alternating current sources, impedances, and admittances.

 Nodal analysis, mesh analysis, the principle of superposition, Thevenin’s theorem, and Nor-
ton’s theorem can also be applied to phasor circuits.

 The use of complex numbers make the phasor circuit analysis much easier. 

 MATLAB can be used very effectively to perform the computations since it does not require
any special procedures for manipulation of complex numbers.

 Whenever a branch in a circuit contains two or more devices in series or two or more devices
in parallel, it is highly recommended that they are grouped and denoted as , , and so on
before writing nodal or mesh equations.

 Phasor diagrams are sketches that show the magnitude and phase relationships among sev-
eral phasor voltages and currents. When constructing a phasor diagram, the first step is to
select one phasor as a reference, usually with zero phase angle, and all other phasors must be
drawn with the correct relative angles.

 The RC lowpass and RC highpass filters are rudimentary types of filters and are not used in
practice. They serve as a good introduction to electric filters.

z1 z2
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7.11 Exercises
Multiple Choice

1. In the circuit below the phasor voltage  is

A.

B.

C.

D.

E. none of the above

2. In the circuit below the phasor current  is

A.

B.

C.

D.

E. none of the above

3. In the circuit below the voltage across the capacitor  is

A.

B.

C.

V

2 j0 V+

1 j0 V+

1 j– 0 V

1 j V+

IS +



j V

1 0 A

1 
j0.5 

I

0 j2 A+

0 j2 A–

1 j0 A+

2 j2 A+

VS 

j1 2 0 V

1 

j1 

1 1 
I 

C2

8 10 4– 2000t 90+  Vsin

50 2000t 45–  Vcos

50 2000t 45+  Vcos
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D.

E. none of the above

4. In the circuit below the current  through the capacitor is

A.

B.

C.

D.

E. none of the above

5. The Thevenin equivalent voltage  at terminals A and B in the circuit below is

A.

B.

C.

D.

E. none of the above

50 2000t 90+  Vcos

4 

8 2000t 90+ sin

vS t 

L1

C2

C1

L23 mH
2 mH500 F

100 F

R

iC t 
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iS t  4 2000tcos=

0.5 mH500 F

iS t 

VTH
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10 53.13 V–
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j5 

10 0 V

4  j2 
A
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6. The Thevenin equivalent impedance  at terminals A and B in the circuit above is

A.

B.

C.

D.

E. none of the above

7. In the circuit below the phasor voltage  is

A.

B.

C.

D.

E. none of the above

8. In the circuit below the phasor voltage  is

A.

B.

C.

D.

E. none of the above

ZTH

2 j4 +

4 j2 +

4 j– 2 

j– 5 

VC

5 90 – V

5 45 – V

4 53.1 – V

4 53.1  V

VS 

j4 

20 0 V j3 

+ 4 IX 

4IX V

+



VR5 

20 j0 V+

0 j20 V+

20 j20 V+

80 j80–  V

IS 

4 0 A

j4 
+

4 

2VX A

VX 5 

+


VR5 
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9. In the circuit below the phasor voltage  is

A.

B.

C.

D.

E. none of the above

10. In the circuit below the  voltage  is

A.

B.

C.

D.

E. none of the above

VOUT 2

2 j0 V+

4 j0 V+

4 j– 0 V

1 j1 V+

10 



10 

VOUT 1

VIN

1 0
VOUT 2

j5  j– 5 

t domain– vAB t 

1.89 t 45+  Vcos

0.53 t 45–   Vcos

2 t Vcos

0.5 t 53.1+  Vcos

VS j2 j 
2 

2 0 V

2 

A

B

+
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Problems

1. For the circuit below . Compute  and .

2. Write nodal equations and use MATLAB to compute  for the circuit below given that
. 

3. Write mesh equations and use MATLAB to compute  for the circuit below given that
.

4. For the circuit below it is given that

and 
. Use superposition to find 

iS t  2 1000t Acos= vAB t  iC t 

8 

A 

6 

5 
7 

20 mH

2 

B 

iC t 

iS t 

1000 6  F

iC t 

vS t  12 1000t 45+  Vcos=

4 

10  5 
20  5 mH

2 

100 F

+


vS t 

iC t 

iL t 

vS t  100 10000t 60+  Vcos=

4 

10  5 
20  2 mH

2 

10 F

+


vS t 

iL t 

vS1 t  40 5000t 60+  Vcos=

vS2 t  60 5000t 60+  Vsin= vC t 
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5. For the circuit below find  if , , and
. Plot  using MATLAB or Excel.

6. For the circuit below find the value of  which will receive maximum power.

7. For the circuit below, to what value should the load impedance  be adjusted so that it will
receive maximum power from the voltage source?

8. For the circuit below draw a phasor diagram that shows the voltage and current in each
branch.

+


25 10  +



+


20 F

5 mH2 mH

vC t vS1 t  vS2 t 

R2R1 L2L1

vC t  vS1 15 V= vS2 t  20 1000t Vcos=

iS t  4 2000t Acos= vC t 

+


5 

10 

+
500 F

2 mH1 mH

+



vC t 

vS2 t 
iS t 

vS1

ZLD

vS 

+



ZS 

ZLD

ZLD

4 

10  5 

20 

+

 j5 j10170 0

ZLD
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9. For the op amp circuit below . Find .

10. Prove that the RC network below, for any input it behaves as an integrator if , that
is, show that 

11. Prove that the RC network below, for any input it behaves as a differentiator if ,
that is, show that 

4  10  5 

20 
+


j5 j10VS

vin t  3 1000t Vcos= vout t 

vout t vin t 
1 K

R2

R1

C

3 K

vOUT vIN«

vOUT
1

RC
--------- vIN–

R

C
vIN

+



+


vOUT

vOUT vIN«

vOUT R– C d
dt
----- vIN =

R

C
vIN

+




+


vOUT
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7.12 Answers to EndofChapter Exercises
Multiple Choice

1. E

 where  and  is found from the nodal equation

 or  or .

Therefore, 

2. C

Denoting the resistor in series with the voltage source as , the resistor in series with the
capacitor as , and the resistor in series with the capacitor as , the equivalent impedance
is

and

3. B

, , , ,
 and the phasor equivalent circuit is shown below.

IS +



j V

1 0 A

1 
j0.5 

VL 

VC 

V VL VC+= VL 1 0 j1 2 j1 2  V= = VC

VC
1

-------
VC

j–
-------+ 1 j0+= 1 j+ VC 1= VC

1
1 j+
----------- 1 j–

1 j–
---------- 1 j–

2
---------- 1

2
--- j12

--- V–= ==

V j1 2 1 2 j1 2–+ 1 2 j0 V+= =

VS 

j1 2 0 V

1 

j1 

1 1 
I 

z1

z2 z3

Zeq z1
z2 z3
z2 z3+
----------------+ 1 1 j1–  1 j1+ 

1 j1– 1 j1+ +
--------------------------------------+ 1 2

2
---+ 2 j0+= = = =

I
VS
Z

------ 2 j0+
2 j0+
-------------- 1 j0 A+= = =

8 2000t 90+ sin 8 2000t 8 0 Vcos= jL1 j6= jL2 j4= j– C1 j1–=

j– C1 j1–=
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, , and

thus 

4. D

, , , , and the phasor
equivalent circuit is shown below. 

Denoting the parallel combination of the conductance and inductance as  and
using the current division expression for admittances we obtain

and thus

5. B

By the voltage division expression

VS 

j5 8 0 V

4  j6 

L1

C2

C1

L2
j4 j1 

I 

+



R

Z 4 j6 j1– j4 j5–+ + 4 j4+= = I
VS
Z
------ 8 j0+

4 j4+
-------------- 8 j0+

4 j4+
-------------- 4 j4–

4 j4–
-------------- 32 j32–

32
-------------------- 1 j1–= = = = =

VC2
j5– 1 j–  5 j5– 50 45– 50 2000t 45–  Vcos= = =

4 2000t 4 0cos G 1 R 1  1–= = jC j1  1–= j– L j1  1––=

IS 

4 0 A

IC 

1  1– j1  1––j1  1–

Y1 1 j1–=

IC
jC

jC Y1+
----------------------- IS j1

j1 1 j1–+
------------------------- j1 4 0 1 90 4 0 4 90 A= = = = =

iS t  4 2000t 90+  Acos=

VS 

j5 

10 0 V

4  j2 
A

B

VTH VAB
j5–

4 j2 j5–+
------------------------- 10 0 5 90– 10 0

4 j3–
------------------------------------------ 50 90–

5 36.9–
------------------------ 10 53.1 V–= = = = =
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6. C

We short the voltage source and looking to the left of points A and B we observe that the
capacitor is in parallel with the series combination of the resistance and inductance. Thus,

7. D

, 

and

8. E

and 

ZTH
j5–  4 j2+ 

4 j2 j5–+
-------------------------------- 10 j20–

4 j3–
-------------------- 10 j20–

4 j3–
-------------------- 4 j3+

4 j3+
-------------- 100 j50–

25
----------------------- 4 j2–= = = = =

VS 

j4 

20 0 V j3 

+ 4 IX 

4IX V

+



IX
20 0
4 j3+
---------------- 20 0

5 36.9
--------------------- 4 36.9–= = = 4IX 16 36.9–=

IC
4IX

j4–
--------- 16 36.9–

4 90–
--------------------------- 4 53.1= = =

IS 

4 0 A

j4 
+

4 

2VX A

VX 5 

+


VR5 

VX
4

4 j4+
-------------- 4 0 j4 64 90

32 45
----------------------- 64 32

32
---------------------- 45 2 32 45== = =

VR5 
2VX 5 20 32 45 20 32 2

2
------- j 2

2
-------+ 

  80 j80+= = = =
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9. B

and

10. A

We write the nodal equation at Node A for  as

or  and in the  

10 



10 

VOUT 1

VIN

1 0
VOUT 2

j5  j– 5 

VOUT 1
10
j5
------ 1 0– j2 1 0 2 90 1 0 2 90= = = =

VOUT 2
10
j– 5

-------- VOUT 1– j– 2 2 0 2 90–  2 90 4 0 4 j0+= = = = =

VS j2 j 
2 

2 0 V

2 

A

B

+



VAB

VAB 2 0–

j–
------------------------------

VAB
2

----------
VAB

2 j2+
--------------+ + 0=

1
2
--- j 1

2 j2+
--------------+ + 

 VAB 2 90=

VAB
2 90

1 2 j 1 4 j 4–+ +
------------------------------------------------- 2 90

3 4 j3 4+
---------------------------- 2 90

1.06 45
------------------------= = =

VAB 1.89 45= t domain– vAB t  1.89 t 45+ cos=
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Problems

1. We transform the current source and its parallel resistance to a voltage source series resis-
tance, we combine the series resistors, and we draw the phasor circuit below.

For this phasor circuit, ,  and

, , , and 

We observe that  and . At Node A,

and

Then, in the  .

Also,

A 

6 
5 

15  8 

B 

+


VS

j6 –
IC

j20 

10 0 V

C 

z1
z2

z3

VS 2 0 5 10 0 V= = jL j103 20 10 3– j20 = =

j– C j 103 103 6 10 6– – j6–= = z1 5 = z2 15 j20+  = z3 8 j– 6  =

VA VAB VAC VCB+ VAC 10 0 V+= = = VB 0=

VA VB–

z2
---------------------

VA 10 0–

z1
------------------------------

VA VB–

z3
---------------------+ + 0=

1
z1
----- 1

z2
----- 1

z3
-----+ + 

 VA
10 0

z1
----------------=

1
5
--- 1

15 j20+
-------------------- 1

8 j– 6
-----------+ + 

 VA
10 0

5
---------------- 2 0= =

VA
2 0

0.2 1
25 53.1
------------------------ 1

10 36.9–
---------------------------+ +

------------------------------------------------------------------------ 2 0
0.2 0.04 53.1–  0.1 36.9+ +
------------------------------------------------------------------------------= =

2 0
0.2 0.04 53.1 j0.04 53.1 0.1 36.9 j0.1 36.9sin+cos+sin–cos+
-----------------------------------------------------------------------------------------------------------------------------------------------------------------=

2 0
0.2 0.04 0.6 j0.04 0.8– 0.1 0.8 j0.1 0.6+++
------------------------------------------------------------------------------------------------------------------------------ 2 0

0.304 j0.028+
-----------------------------------==

2 0
0.305 5.26
------------------------------- 6.55 5.26–==

t domain– vAB t  6.55 1000 5.26+ cos=
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and

Check with MATLAB:

z1=5; z2=15+20j; z3=86j; VA=(10+0j)/(z1*(1/z1+1/z2+1/z3)); fprintf(' \n');...
fprintf('magVA = %5.2f V \t',abs(VA));...
fprintf('phaseVA = %5.2f deg \t',angle(VA)*180/pi); fprintf(' \n'); fprintf(' \n');

magVA = 6.55 V   phaseVA = -5.26 deg

2. The equivalent phasor circuit is shown below where  and

Node :

or

Node :

or

Node :

or

and in matrix form

IC
VA
z3
------- 6.55 5.26–

10 36.9–
------------------------------- 0.655 31.7= = =

iC t  0.655 1000 31.7+ cos=

jL j103 5 10 3– j5= =

j– C j 103 10 4– – j10–= =

4 

10  5 
20 

2 

+



V2V1 V3VS

12 45

z1

z2

z3

z4

z5

z6

IC

z7

j5  j– 10 

V1
V1 VS–

z1
-------------------

V1 V2–

z3
-------------------

V1
z2
------

V1 V3–

z7
-------------------+ + +

1
z1
----- 1

z2
----- 1

z3
----- 1

z7
-----+ + + 

 V1
1
z3
-----V2–

1
z7
-----V3–

1
z1
-----VS=

V2
V2 V1–

z3
-------------------

V2
z4
------

V2 V3–

z5
-------------------+ + 0=

1
z3
-----V1

1
z3
----- 1

z4
----- 1

z5
-----+ + 

 V2+–
1
z5
-----V3– 0=

V3
V3 V2–

z5
-------------------

V3 V1–

z7
-------------------

V2 V3–

z6
-------------------+ + 0=

1
z7
-----V1

1
z5
-----V2– 1

z5
----- 1

z6
----- 1

z7
-----+ + 

 V3+– 0=
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Shown below is the MATLAB script to solve this system of equations.

Vs=12*(cos(pi/4)+j*sin(pi/4));  % Express Vs in rectangular form
z1=4; z2=20; z3=10; z4=5j; z5=5; z6=10j; z7=2;...
Y=[1/z1+1/z2+1/z3+1/z7  1/z3  1/z7;...
1/z3  1/z3+1/z4+1/z5  1/z5;...
1/z7  1/z5  1/z5+1/z6+1/z7];...
I=[Vs/z1  0  0]'; V=Y\I; Ic=V(3)/z6;...
magIc=abs(Ic); phaseIc=angle(Ic)*180/pi;...
disp('V1='); disp(V(1)); disp('V2='); disp(V(2));...
disp('V3='); disp(V(3)); disp('Ic='); disp(Ic);...
format bank                           % Display magnitude and angle values with two decimal places
disp('magIc='); disp(magIc); disp('phaseIc='); disp(phaseIc);...
fprintf(' \n');

V1 = 5.9950 - 4.8789i

V2 = 5.9658 - 0.5960i

V3 = 5.3552 - 4.4203i

Ic = 0.4420 + 0.5355i

magIc = 0.69

phaseIc = 50.46

Therefore, 

3. The equivalent phasor circuit is shown below where  and

1
z1
----- 1

z2
----- 1

z3
----- 1

z7
-----+ + + 

  1
z3
-----– 1

z7
-----–

1
z3
-----– 1

z3
----- 1

z4
----- 1

z5
-----+ + 

  1
z5
-----–

1
z7
-----– 1

z5
-----– 1

z5
----- 1

z6
----- 1

z7
-----+ + 

 

V1

V2

V3



1
z1
-----VS

0
0

=

IC 0.69 50.46 iC t  0.69 1000t 50.46+  Acos= =

jL j104 2 10 3– j20= =

j– C j 104 10 10 6– – j10–= =
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Mesh :

Mesh :

Mesh :

Mesh :

and in matrix form

Shown below is the MATLAB script to solve this system of equations.

Vs=100*(cos(pi/3)+j*sin(pi/3));  % Express Vs in rectangular form
z1=4; z2=20; z3=10; z4=20j; z5=5; z6=10j; z7=2;...
Z=[z1+z2  0  z2  0;...
0  z3+z5+z7  z3  z5;...
z2  z3  z2+z3+z4  z4;...
0  z5  z4  z4+z5+z6];...
V=[Vs  0  0  0]'; I=Z\V; IL=I(3)I(4);...
magIL=abs(IL); phaseIL=angle(IL)*180/pi;...
disp('I1='); disp(I(1)); disp('I2='); disp(I(2));...
disp('I3='); disp(I(3)); disp('I4='); disp(I(4));...
disp('IL='); disp(IL);...
format bank                              % Display magnitude and angle values with two decimal places
disp('magIL='); disp(magIL); disp('phaseIL='); disp(phaseIL);...
fprintf(' \n');

I1 = 5.4345 - 3.4110i

I2 = 4.5527 + 0.7028i

4 

10  5 

20 

2 

+

 j10 –
j20 VS 100 60=

IL

z7

z2

z1

z3
z4

z6
z5

I1

I2

I3 I4

I1
z1 z2+ I1 z2I3– VS=

I2
z1 z2 z7+ + I2 z3I3 z5I4–– 0=

I3
z2I1 z3I2–– z2 z3 z4+ + I3 z4I4–+ 0=

I4
z5I2 z4I3–– z4 z5 z6+ + I4+ 0=

z1 z2+ 0 z2– 0
0 z1 z2 z7+ + z3– z5–

z2– z3– z2 z3 z4+ + z4–

0 z5– z4– z4 z5 z6+ +

I1

I2

I3

I4



VS

0
0
0

=
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I3 = 4.0214 + 0.2369i

I4 = 7.4364 + 1.9157i

IL= -3.4150 - 1.6787i

magIL = 3.81

phaseIL = -153.82

Therefore, 

4. The equivalent phasor circuit is shown below where

We let  where  is the capacitor voltage due to  acting alone, and  is
the capacitor voltage due to  acting alone. With  acting alone the circuit reduces to
that shown below.

By KCL

IL 3.81 153.82–= iL t  3.81 104t 153.82–– cos=

jL1 j5 103 2 10 3– j10= =

jL2 j5 103 5 10 3– j25= =

j– C j 5 103 20 10 6– – j10–= =

+



25 10 

+



+


VC

j10  j25 

j– 10 VS1 VS2

40 60  V 60 30–   V

VC V'C V''C+= V'C VS1 V''C
VS2 VS1

+


25 10 

+


V'C

j10  j25 

j– 10 VS1

40 60  V

z1

z2

z3

V'C VS1–

z1
----------------------

V'C
z2
------

V'C
z3
------+ + 0=

1
z1
----- 1

z2
----- 1

z3
-----+ + 

 V'C
VS1
z1

---------=
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and with MATLAB,

Vs1=40*(cos(pi/3)+j*sin(pi/3)); z1=10+10j; z2=10j; z3=25+25j; V1c=Vs1/(1+z1/z2+z1/z3)

V1c = 36.7595 - 5.2962i

Therefore,

Next, with  acting alone the circuit reduces to that shown below.

By KCL

and with MATLAB

Vs2=60*(cos(pi/6)j*sin(pi/6));...
z1=10+10j; z2=10j; z3=25+25j; V1c=36.75955.2962j;...
V2c=Vs2/(z3/z1+z3/z2+1); Vc=V1c+V2c; fprintf(' \n');...
disp('V1c = '); disp(V1c); disp('V2c = '); disp(V2c);...
disp('Vc=V1c+V2c'); fprintf(' \n'); disp('Vc = '); disp(Vc);...
fprintf('magVc = %4.2f V \t',abs(Vc));...
fprintf('phaseVc = %4.2f deg \t',angle(Vc)*180/pi);...
fprintf(' \n'); fprintf(' \n');

V1c = 36.7595 - 5.2962i

V'C
VS1

z1
1
z1
----- 1

z2
----- 1

z3
-----+ + 

 
-----------------------------------------------

VS1

1
z1
z2
-----

z1
z3
-----+ + 

 
-----------------------------------= =

V'C 36.76 j5.30 V–=

VS2

+



25 10 

+


V''C

j10  j25 

j– 10  VS2

60 30–   V

z1

z2

z3

V''C
z1
--------

V''C
z2
--------

V''C VS2–

z3
-----------------------+ + 0=

1
z1
----- 1

z2
----- 1

z3
-----+ + 

 V''C
VS2
z3

---------=

V''C
VS2

z3
1
z1
----- 1

z2
----- 1

z3
-----+ + 

 
-----------------------------------------------

VS2
z3
z1
-----

z3
z2
----- 1+ + 

 
-----------------------------------= =
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V2c = -3.1777 - 22.0557i
Vc = V1c+V2c
Vc = 33.5818 - 27.3519i
magVc = 43.31 V   phaseVc = -39.16 deg

Then, 

and

5. This circuit is excited by a DC (constant) voltage source, an AC (sinusoidal) voltage source,
and an AC current source of different frequency. Therefore, we will apply the superposition
principle. 

Let  be the capacitor voltage due to  acting alone,  the capacitor voltage due to
 acting alone, and  the capacitor voltage due to  acting alone. Then, the

capacitor voltage due to all three sources acting simultaneously will be 

With the DC voltage source acting alone, after steadystate conditions have been reached
the inductors behave like short circuits and the capacitor as an open circuit and thus the cir-
cuit is simplified as shown below.

By the voltage division expression

and

Next, with the sinusoidal voltage source  acting alone the reactances are

VC V'C V''C+ 33.58 j27.35– 43.31 27.35= = =

vC t  43.31 5000t 27.35– cos=

V'C vS1 V''C
vS2 t  V'''C iS t 

VC V'C V''C V'''C+ +=

+


5 

10 

+
15 V

+


V'C VR5 

V'C VR5 
5

10 5+
--------------- 15 5 V DC= = =

v'C t  5 V DC=

vS2 t 

j1L1 j103 1 10 3– j1 = =

j1L2 j103 2 10 3– j2 = =
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and the equivalent phasor circuit is as shown below.

By KCL

and with MATLAB

Vs2=20+0j; z1=10+j; z2=2j; z3=5+2j; V2c=Vs2/(1+z1/z2+z1/z3); fprintf(' \n');...
disp('V2c = '); disp(V2c); fprintf('magV2c = %4.2f V \t',abs(V2c));...
fprintf('phaseV2c = %4.2f deg \t',angle(V2c)*180/pi); fprintf(' \n'); fprintf(' \n');

 V2c = 1.8089 - 3.5362i
magV2c = 3.97 V phaseV2c = -62.91 deg

Then, 

and

Finally, with the sinusoidal current source  acting alone the reactances are

j– 1C j– 103 5 10 4–  j– 2 = =

+


25 

10 

+



V''C

j1  j2 

j– 10 VS2

20 0  V

z1 z3

z2

V''C VS2–

z1
-----------------------

V''C
z2
--------

V''C
z3
--------+ + 0=

1
z1
----- 1

z2
----- 1

z3
-----+ + 

 V''C
VS2
z1

---------=

V''C
VS2

z1
1
z1
----- 1

z2
----- 1

z3
-----+ + 

 
-----------------------------------------------

VS2

1
z1
z2
-----

z1
z3
-----+ + 

 
-----------------------------------= =

V''C 1.81 j3.54– 3.97 62.9– = =

v''C t  3.97 1000t 62.9– cos=

iS t 

j2L1 j2 103 1 10 3– j2 = =

j2L2 j2 103 2 10 3– j4 = =

j– 2C j– 2 103 5 10 4–  j– 1 = =



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling 751
Copyright © Orchard Publications

Answers to EndofChapter Exercises

and the equivalent phasor circuit is as shown below where the current source and its parallel
resistance have been replaced with a voltage source with a series resistor.

By KCL

and with MATLAB

Vs3=20+0j; z1=10+2j; z2=j; z3=5+4j; V3c=Vs3/(z3/z1+z3/z2+1); fprintf(' \n');...
disp('V3c = '); disp(V3c); fprintf('magV3c = %4.2f V \t',abs(V3c));...
fprintf('phaseV3c = %4.2f deg \t',angle(V3c)*180/pi); fprintf(' \n'); fprintf(' \n');

V3c = -1.4395 - 3.1170i

magV3c = 3.43 V phaseV3c = -114.79 deg

Then, 

or

and

These waveforms are plotted below using the following MATLAB script:

wt=linspace(0,2*2*pi); deg=wt*180/pi; V1c=5;
V2c=3.97.*cos(wt62.9.*pi./180);
V3c=3.43.*cos(2.*wt114.8.*pi./180); plot(deg,V1c,deg,V2c,deg,V3c, deg,V1c+V2c+V3c)

+


5 10 
+


V'''C

j2  j4 

j– 1  VS3

20 0  V

z1 z3

z2

V'''C
z1

---------
V'''C
z2

---------
V'''C VS3–

z3
------------------------+ + 0=

1
z1
----- 1

z2
----- 1

z3
-----+ + 

 V'''C
VS3
z3

---------=

V'''C
VS3

z3
1
z1
----- 1

z2
----- 1

z3
-----+ + 

 
-----------------------------------------------

VS3
z3
z1
-----

z3
z2
----- 1+ + 

 
-----------------------------------= =

V'''C 1.44– j3.12– 3.43 114.8– = =

v'''C t  3.43 2000t 114.8– cos=

vC t  v'C v''C t  v'''C t + + 5 3.97 1000t 62.9– cos 3.43 2000t 114.8– cos+ += =
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6.

Since  and  are complex quantities, we will express them as 
and  where  and  denote the real and imaginary compo-
nents respectively.

We want to maximize the expression

The only quantities that can vary are  and  and we must consider them
independently from each other. 

From the above expression we observe that  will be maximum when the denominator is
minimum and this occurs when , that is, when the imaginary parts of

 and  cancel each other. Under this condition,  simplifies to

v'C 5 V DC=

vC t 

v'''C t  v''C t 

vS 

+



ZS 

ZLD

ZS ZLD ZS Re ZS  jIm ZS +=

ZLD Re ZLD  jIm ZLD += Re Im

pLD i2
LD ZLD

vS
2

ZS ZLD+ 2
------------------------------ ZLD= =

vS
2 ZLD

Re ZS  jIm ZS  j Re ZLD  jIm ZLD + + + 2
------------------------------------------------------------------------------------------------------------------------------=

Re ZLD  Im ZLD 

pLD

Im ZLD  Im ZS –=

ZLD ZS pLD
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and, as we found in Chapter 3, for maximum power transfer . Therefore, the load
impedance  will receive maximum power when

that is, when  is adjusted to be equal to the complex conjugate of .

7.

For this, and other similar problems involving the maximum power transfer theorem, it is best
to replace the circuit with its Thevenin equivalent. Moreover, we only need to compute .

For this problem, to find  we remove  and we short the voltage source. The remain-
ing circuit then is as shown below.

We observe that  is in parallel with  and this combination is shown as  in the simpli-
fied circuit below.

pLD
vS

2 RLD

RS RLD+ 2
------------------------------=

RLD RS=

ZLD

ZLD ZS=

ZLD ZS

4 

10  5 

20 

+

 j5 j10170 0

ZLD

ZTH

ZTH ZLD

z1

X Y

z2

z3

z4

z5

z6

z1 z2 z12
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But this circuit cannot be simplified further unless we perform Wye to Delta transformation
which we have not discussed. This and the Delta to Wye transformation are very useful in
threephase circuits and are discussed in Circuit Analysis II with MATLAB Applications, ISBN
9781934404195. Therefore, we will compute  using the relation 
where  is the open circuit voltage, that is,  and  is the current that would flow
between the terminals when the load is replaced by a short. Thus, we will begin our computa-
tions with the Thevenin voltage.

We disconnect  from the circuit at points X and Y as shown below.

We will replace the remaining circuit with its Thevenin equivalent. Thus, with  discon-
nected the circuit simplifies to that shown below.

Now, we will find

At Node 1:

X Y

z12

z3

z4

z5

z6

ZTH ZTH VOC ISC=

VOC VTH ISC

ZLD

4 
10  5 

20 

+

 j5 j10

170 0

X Y

ZLD

4  5 

20 
+


170 0

X Y10 

j5  j– 10 

1 2V1 V2 VYz1
z2

z3
z4

z5

VS

VTH VXY VX VY– V1 V2 VR5 
– –= = =

V1 VS–

z1
-------------------

V1
z2
------

V1 V2–

z3
-------------------+ + 0=
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At Node 2:

and with MATLAB,

Vs=170; z1=4; z2=20; z3=10; z4=5j; z5=510j;... 
Y=[1/z1+1/z2+1/z3  1/z3;  1/z3  1/z3+1/z4+1/z5]; I=[Vs/z1 0]'; V=Y\I; V1=V(1); V2=V(2);... 
VX=V1; VY=(5/z5)*V2; VTH=VXVY; fprintf(' \n');...
disp('V1 = '); disp(V1); disp('V2 = '); disp(V2);...
disp('VTH = '); disp(VTH); fprintf('magVTH = %4.2f V ',abs(VTH));...
fprintf('phaseVTH = %4.2f deg ',angle(VTH)*180/pi); fprintf(' \n'); fprintf(' \n');

V1 = 1.1731e+002 + 1.1538e+001i

V2 = 44.2308+46.1538i

VTH = 1.2692e+002 - 1.5385e+001i

magVTH = 127.85 V phaseVTH = -6.91 deg 

Thus, 

Next, we must find  from the circuit shown below.

We will write four mesh equations as shown above but we only are interested in phasor cur-
rent . Observing that a and b are the same point the mesh equations are

1
z1
----- 1

z2
----- 1

z3
-----+ + 

 V1
1
z3
-----V2–

VS
z1
------=

V2 V1–

z3
-------------------

V2
z4
------

V2
z5
------+ + 0=

1
z3
-----V1– 1

z3
----- 1

z4
----- 1

z5
-----+ + 

 V2+

VTH 127.85 6.91–=

ISC

4 

10  5 

20 

+

 j5 j10

170 0

X Y

VS

ISC

z1

z2

z3
z4

z5
z6I1 I2 I3

I4

b

a

I4
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and in matrix form

With MATLAB,

Vs=170; VTH=126.9215.39j; z1=4; z2=20; z3=10; z4=5j; z5=5; z6=10j;... 
Z=[z1+z2  z2  0  0;  z2  z2+z3+z4  z4  z3;  0  z4  z4+z5+z6  z5;  0  z3  z5  z3+z5];...
V=[Vs  0  0  0]'; I=Z\V; I1=I(1); I2=I(2); I3=I(3); I4=I(4);... 
ZTH=VTH/I4; fprintf(' \n'); disp('I1 = '); disp(I1); disp('I2 = '); disp(I2);...
disp('I3 = '); disp(I3); disp('I4 ='); disp(I4); disp('ZTH ='); disp(ZTH); fprintf(' \n');

 
I1 = 15.6745 - 2.6300i

I2 = 10.3094 - 3.1559i

I3 = -1.0520 + 10.7302i

I4 =  6.5223 + 1.4728i

ZTH = 18.0084 - 6.4260i

Thus,  and by Problem 6, for maximum power transfer there must be

 or

8. We assign phasor currents as shown below. 

We choose  as a reference, that is, we let

z1 z2+  I1 z2 I2– VS=

z2 I1– z2 z3 z4+ +  I2 z4 I3– z3 I4–+ 0=

z4 I2– z4 z5 z6+ +  I3 z5 I4–+ 0=

z3 I2– z5 I3– z3 z5+  I4+ 0=

z1 z2+ z2– 0 0
z2– z2 z3 z4+ + z4– z3–

0 z4– z4 z5 z6+ + z5–

0 z3– z5– z3 z5+

I1

I2

I3

I4



VS

0
0
0

=

ZTH 18.09 j6.43 –=

ZLD ZTH=

ZLD 18.09 j6.43 +=

4  10  5 

20 
+


j5 j10VS

I4

I20

I10

IL

I5 IC

I5
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Then,

 
and since 

Next,

and

Now,

and

Continuing we find that

and

Also,

and

Finally,

The magnitudes (not to scale) and the phase angles are shown below.

The phasor diagram above is acceptable. However, it would be more practical if we rotate it by
 to show the voltage source  as reference at  as shown below.

I5 1 0 A=

V5 5 0 V=

IC I5=

VC IC j10–  1 0 10 90– 10 90–  V= = =

VL V5 VC+ 5 0 10 90–+ 5 j10– + 5 j10– 11.18 63.4 V–= = = = =

IL VL j5 11.18 63.4–  5 90  2.24 153.4– 2– j A–= = = =

I10 IL I5+ 2– j– 1+ 1– j– 2 135 A–= = = =

V10 10 2 135– 10 1– j–  10– j10 V–= = =

V20 V10 VL+ 10– j10– 5 j10–+ 5– j20 V–= = =

I20 V20 20 5– j20–  20 0.25– j A–= = =

I4 I20 I10+ 0.25– j– 1– j– 1.25– j2 A–= = =

V4 4I4 4 1.25– j2–  5– j8 V–= = =

VS V4 V20+ 5– j8 5– j20–– 10– j28– 29.73 109.7 V–= = = =

IL

VL

I5 IC=

VC
VS

V10

V20

V4

I10I4
I20

109.7 VS 0
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9. The equivalent phasor circuit is shown below where , , and

Application of KCL at the inverting input yields

and since  the above relation reduces to

or

and with MATLAB,

Vin=3; z1=1000; z2=3000; z3=4000j; Vout=Vin/(z1/z2+z1/z3);...
fprintf(' \n'); disp('Vout = '); disp(Vout); fprintf('magVout = %5.2f V \t',abs(Vout));...
fprintf('phaseVout = %5.2f deg \t',angle(Vout)*180/pi); fprintf(' \n'); fprintf(' \n');

Vout = -5.7600 + 4.3200i

VS

V20

VC

VL
I5 IC=

V4

V10IL

I4
I10

I20

z1 R1 1 K= = z2 R2 3 K= =

z3 j– C j– 10 3 0.25 10 6–  j4 K–= = =

1 K

R2

R1

C

3 K

z3

z2

z1

VIN 3 0 V=

V

VOUT

V VIN–

z1
-------------------

V VOUT–

z2
------------------------

V VOUT–

z3
------------------------+ + 0=

V 0=

1
z2
----- 1

z3
-----+ 

 VOUT
VIN–

z1
------------=

VOUT
VIN–

z1
1
z2
----- 1

z3
-----+ 

 
-----------------------------------

VIN–

z1
z2
-----

z1
z3
-----+ 

 
-------------------------= =
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magVout = 7.20 V   phaseVout = 143.13 deg

Thus,

and

10.

and since , by integrating both sides of the expression above, we obtain

11.

and since , we obtain

VOUT 5.76– j4.32+ 7.2 143.13 V= =

vout t  7.2 1000t 143.13+  Vcos=

R

C
vIN

+



iC
iR

+


vOUT

iC iR=

C
dvC
dt

--------- vOUT vIN–
R

---------------------------=

dvOUT
dt

----------------
vOUT vIN–

RC
---------------------------=

vOUT vIN«

vOUT
1

RC
--------- vIN–

R

C
vIN

+




iC
iR

+


vOUT

iR iC=

vOUT
R

------------ C d
dt
----- vOUT vIN– =

vOUT vIN«

vOUT R– C d
dt
----- vIN =
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Chapter 8

Average and RMS Values, Complex Power, and Instruments

his chapter defines average and effective values of voltages and currents, instantaneous and
average power, power factor, the power triangle, and complex power. It also discusses elec-
trical instruments that are used to measure current, voltage, resistance, power, and energy. 

8.1 Periodic Time Functions
A periodic time function satisfies the expression

(8.1)

where  is a positive integer and  is the period of the periodic time function. The sinusoidal and
sawtooth waveforms of Figure 8.1 are examples of periodic functions of time.

Figure 8.1. Examples of periodic functions of time

Other periodic functions of interest are the square and the triangular waveforms. 

T

f t  f t nT+ =

n T

T T

tcos t + cos



T T

T T T T
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8.2 Average Values

The average value of any continuous function  such as that shown in Figure 8.2 over an inter-
val ,

Figure 8.2. A continuous time function 
is defined as

 (8.2)

The average value of a periodic time function  is defined as the average of the function over one
period.

Example 8.1  

Compute the average value of the sinusoid shown in Figure 8.3, where  denotes the peak
(maximum) value of the sinusoidal voltage.

 
Figure 8.3. Waveform for Example 8.1

Solution:

By definition,
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a t b 

a b
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Average Values

as expected since the net area of the positive and negative half cycles is zero.

Example 8.2  
Compute the average value of the halfwave rectification waveform shown in Figure 8.4.

Figure 8.4. Waveform for Example 8.2

Solution:

This waveform is defined as

(8.3)

Then, its average value is found from

(8.4)

In other words, the average value of the halfwave rectification waveform is equal to its peak
value divided by .
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8.3 Effective Values

The effective current  of a periodic current waveform  is defined as the current which pro-

duces heat in a given resistance  at the same average rate as a direct (constant) current ,
that is,

(8.5)

Also, in a periodic current waveform , the instantaneous power is

(8.6)
and

(8.7)

Equating (8.5) with (8.7) we obtain

or

or

(8.8)

Caution 1:

In general,  since the expression  implies that the function i must first be

squared and the average of the squared value is then to be found. On the other hand, 
implies that the average value of the function must first be found and then the average must be
squared. The waveforms in Figure 8.5 illustrate this point.
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R Idc
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i t 

p t  R i
2 t =

Pave
1
T
--- p t  td

0

T

 1
T
--- Ri2 td

0

T

 R
T
---- i2 td

0

T

= = =

RIeff
2 R

T
---- i2 td

0

T

=

Ieff
2 1

T
--- i 2 td

0

T

=

Ieff
1
T
--- i 2 td

0

T

 IRoot Mean Square IRMS Ave i2 = = = =

ave i2  iave 2 ave i2 

iave 2



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems  Modeling 85
Copyright © Orchard Publications

Effective (RMS) Value of Sinusoids

Figure 8.5. Waveforms to illustrate that 

Caution 2:

In general, . For example, if  and , then

, and also . Thus, . However,

8.4 Effective (RMS) Value of Sinusoids
Now, we will derive an expression for the Root Mean Square (RMS) value of a sinusoid in terms of
its peak (maximum) value. We will denote the peak values of voltages and currents as  and 

respectively. The value from positive to negative peak will be denoted as  and , and

the RMS values as  and . Their notations and relationships are shown in Figure 8.6. 

Figure 8.6. Definitions of , , , and  in terms of  and 
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Let

then,

and using the identity

we obtain

(8.9)

Using the trigonometric identities

and

by substitution into (8.9), we obtain

and therefore,

(8.10)

We observe that the  value of a sinusoid is independent of the frequency and phase angle,
in other words, it is dependent on the amplitude of the sinusoid only.

Example 8.3  

Compute the  and  for the sawtooth waveform shown in Figure 8.7.
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RMS Values of Sinusoids with Different Frequencies

Figure 8.7. Waveform for Example 8.3

Solution:

By inspection, the period  is as shown in Figure 8.8.

 

Figure 8.8. Defining the period for the waveform of Example 8.3

The average value is

To find  we cannot use (8.10); this is for sinusoids only. Accordingly, we must use the defi-
nition of the  value as derived in (8.8). Then,

or

8.5 RMS Values of Sinusoids with Different Frequencies

The  value of a waveform which consists of a sum of sinusoids of different frequencies, is
equal to the square root of the sum of the squares of the  values of each sinusoid. Thus, if

(8.11)

where  represents a constant current, and  represent the amplitudes of the sinu-
soids. Then, the  value of i is found from
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(8.12)

or

(8.13)

Example 8.4  

Find the  value of the square waveform of Figure 8.9 by application of (8.12)

Figure 8.9. Waveform for Example 8.4
Solution:

By inspection, the period  is as shown in Figure8.10.

Figure 8.10. Determination of the period to the waveform of Example 8.4
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Average Power and Power Factor

or

(8.14)

b. Fourier series analysis textbooks* show that the square waveform above can be expressed as 

(8.15)

and as we know, the  value of a sinusoid is a real number independent of the frequency
and the phase angle, and it is equal to  times its peak value, that is, .

Then from (8.12) and (8.15),

(8.16)

The numerical accuracy of (8.16) is good considering that higher harmonics have been
neglected.

8.6 Average Power and Power Factor
Consider the network shown in Figure 8.11.

Figure 8.11. Network where it is assumed that  and  are outofphase

We will assume that the load current  is  degrees outofphase with the voltage ,
i.e., if , then . We want to find an expression for the
average power absorbed by the load.

We know that

that is,

and the instantaneous power  absorbed by the load is

* Refer to Signals and Systems with MATLAB Computing and Simulink Modeling, ISBN 9780974423998.
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 (8.17)

Using the trigonometric identity

we express (8.17) as

(8.18)

and the average power is

(8.19)

We observe that the first integral on the right side of (8.19) is zero, and the second integral, being
a constant, has an average value of that constant. Then,

(8.20)

and using the relations

 and
 

we can express (8.19) as

(8.21)

and it is imperative that we remember that these relations are valid for circuits with sinusoidal
excitations.

The term  in (8.20) and (8.21) is known as the power factor and thus

 (8.22)

pLD t  vLD t  iLD t  VpIp tcos t + cos= =

x ycoscos 1
2
--- x y+  x y– cos+cos =

pLOAD t 
VpIp

2
------------ 2t +  cos+cos =

Pave LD
1
T
--- pLD td

0

T


1
T
---

VpIp
2

------------ 2t +  cos+cos  
  td

0

T

= =

VpIp
2T

------------ 2t + cos   td
0

T


VpIp
2T

------------ cos td
0

T

+=

Pave LD

VpIp
2

----------- cos=

VRMS
Vp

2
-------=

IRMS
Ip

2
-------=

Pave LD
VRMS LD IRMS LD cos=

cos

Power FactorLD PFLD LDcos
Pave LD

VRMS LD IRMS LD
--------------------------------------------= = =
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Average Power in a Resistive Load

8.7 Average Power in a Resistive Load
The voltage and current in a resistive branch of a circuit are always in phase, that is, the phase
angle . Therefore, denoting that resistive branch with the subscript  we have:

(8.23)

or

(8.24)

8.8 Average Power in Inductive and Capacitive Loads

With inductors and capacitors there is a  phase difference between the voltage and current,
that is,  and therefore, denoting that inductive or capacitive branch with the subscript

 we obtain:

 

Of course, the instantaneous power is zero only at specific instants.

Obviously, if the load of a circuit contains resistors, inductors and capacitors, the phase angle 
between  and  will be within ,and the power factor  will

be within .

Example 8.5  
For the circuit of Figure 8.11, find the average power supplied by the voltage source, the average
power absorbed by the resistor, the inductor, and the capacitor.

Figure 8.12. Circuit for Example 8.5
Solution:

Since this is a series circuit, we need to find the current  and its phase relation to the source
voltage . Then, 

 0= R

Pave R VRMS R IRMS R 0 VRMS R IRMS R=cos=

Pave R
VRMS R

2

R
------------------- IRMS R

2  R 1
2
---

Vm R
2

R
------------ 1

2
---Ip R

2  R= = = =

90
 90=

X

Pave X VRMS X IRMS X 90 0=cos=


VRMS LOAD  IRMS LOAD 0  90  cos

0 cos 1 

I

VS 170 0=

j– 10 

10  j20 

I
VS
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(8.25)

Relation (8.25) indicates that , ,and the power factor is

Therefore, using (8.24) we find that the average power absorbed by the resistor is

(8.26)

The average power absorbed by the inductor and the capacitor is zero since the voltages and cur-
rents in these devices are  outofphase with each other.

Check: The average power delivered by the voltage source is

(8.27)

and we observe that (8.26) and (8.27) are in close agreement.

Example 8.6  
For the circuit of Figure 8.13, find the power absorbed by each resistor, and the power supplied
(or absorbed) by the current sources.

Figure 8.13. Circuit for Example 8.6
Solution:

This is the same circuit as in Example 7.1 where we found that

(8.28)

and
(8.29)

Then,

I
VS
Z
------ 170 0

10 j20 j10–+
---------------------------------- 170 0

10 j10+
-------------------- 170 0

10 2 45
--------------------------- 12 45–= = = = =

Ip 12 A=  45–=

cos 45– cos 0.707= =

Pave R
1
2
---Ip R

2  R 1
2
--- 12 210 720 w= = =

90

Pave SOURCE

VpIp
2

------------ cos 170  12 
2

-------------------------0.707 721 w= = =

8 

2 

4 

j3 

j6  j3 5 0 A 10 0 A

VBVA

VA 4.138– j19.655+ 20.086 101.9= =

VB 22.414– j1.035– 22.440 177.4– = =
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and
(8.30)

Also,

and
(8.31)

Likewise,

and
(8.32)

The voltages across the current sources are the same as  and  but they are  and

 outofphase respectively with the current sources as shown by (8.28) and (8.29).
Therefore, we let  and  Then, the power absorbed by the  source
is

(8.33)

and the power absorbed by the  source is

 (8.34)

The negative values in (8.33) and (8.34) indicate that both current sources supply power to the
rest of the circuit.

Check: Total average power absorbed by resistors is

and the total average power supplied by current sources is

I2 
VA VB–

2 j3+
--------------------- 18.276 j20.690+

3.61 56.3
----------------------------------------- 32.430 145.0

3.61 56.3
------------------------------------- 8.983 88.7= = = =

Pave 2  
1
2
---I

p 2  
2

2   1
2
--- 8.9832 2 80.70 w= = =

I4 
VA

4 j6–
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------------------------------------- 2.786 158.2= = =

Pave 4  
1
2
---I

p 4  
2

4   1
2
--- 2.786 2 4 15.52 w= = =

I8 
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8 j3–
-------------- 22.440 177.4– 

8.54 20.6–
---------------------------------------- 2.627 156.7– = = =

Pave 8   
1
2
---I

p 8   

2
8   1

2
--- 2.6272 8 27.61 w= = =

VA VB 101.9

177.4–

1 101.9= 2 177.4– = 5 A

Pave 5 A
VpIp

2
------------ cos 1

VA 5 A
2

----------------------- 101.9 cos= =

20.086 5
2

------------------------- 0.206–  10.35 w–==

10 A

Pave 10 A
VpIp

2
------------ cos 2

VB 10 A
2

-------------------------- 177.4–  cos= =

22.440 10
2

---------------------------- 0.999–  112.08 w–==

80.70 15.52 27.61+ + 123.83 w=

112.08 10.35+ 122.43 w=
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Thus, the total average power supplied by the current sources is equal to the total average power
absorbed by the resistors. The small difference is due to rounding of fractional numbers.

8.9 Average Power in NonSinusoidal Waveforms
If the excitation in a circuit is nonsinusoidal, we can compute the average power absorbed by a
resistor from the relations

(8.35)

Example 8.7  

Compute the average power absorbed by a  resistor when the voltage across it is the half
wave rectification waveform shown in Figure 8.14.

Figure 8.14. Waveform for Example 8.7
Solution:

We first need to find the numerical value of . It is found as follows:

and thus

Then,

or

Pave
1
T
--- p td

0

T


1
T
--- v 2

R
------ td

0

T


1
T
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= = =
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 (v
)
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2



T 2 ms 2 10 3–  s       T 2       2
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T
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5
----------------------------------
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 0
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2 10 3–
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Pave
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2
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Lagging and Leading Power Factors

and since  for , the last term of the expression above reduces to

8.10 Lagging and Leading Power Factors
By definition an inductive load is said to have a lagging power factor. This refers to the phase angle
of the current through the load with respect to the voltage across this load as shown in Figure
8.15. 

Figure 8.15. Lagging power factor

In Figure 8.15, the cosine of the angle , that is,  is referred to as lagging power factor and
it is denoted as pf lag. 

The term “inductive load” means that the load is more “inductive” (with some resistance) than
it is “capacitive”. But in a “purely inductive load”  and thus the power factor is

By definition a capacitive load is said to have a leading power factor. Again, this refers to the
phase angle of the current through the load with respect to the voltage across this load as shown
in Figure 8.16.

Figure 8.16. Leading power factor

In Figure 8.16, the cosine of the angle , that is,  is referred to as leading power factor and
it is denoted as pf lead.

The term “capacitive load” means that the load is more “capacitive” (with some resistance) than
it is “inductive”. But in a “purely capacitive load”  and thus the power factor is

2nsin 0= n integer=

Pave 5 w=

VLOAD

ILOAD

1

1 1cos

1 90=

1cos 90cos 0= =

VLOAD

ILOAD

2

2 2cos

2 90=

2cos 90cos 0= =
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8.11 Complex Power  Power Triangle
We recall that

 (8.36)

This relation can be represented by the socalled power triangle. Figure 8.17 (a) shows the power
triangle of an inductive load, and Figure 8.16 (b) shows the power triangle for both a capacitive
load.

Figure 8.17. Power triangles for inductive and capacitive loads

In a power triangle, the product  is referred to as the apparent power, and it is
denoted as . The apparent power is expressed in  or . The product

 is referred to as the reactive power, and it is denoted as . The reactive
power is expressed in  or . Thus, for either triangle of Figure 8.17,

(8.37)

(8.38)

(8.39)

The apparent power  is the vector sum of the real and reactive power components, that is,

(8.40)

where the (+) sign is used for inductive loads and the () sign for capacitive loads. Because rela-
tion of (8.40) consists of a real part and an imaginary part, it is known as the complex power.

Example 8.8  
For the circuit shown in Figure 8.18, find:

Pave
1
2
---VpIp cos VRMS IRMS cos= =

(a) Power Triangle for Inductive Load (b) Power Triangle for Capacitive Load

Q
Q

P real Pave=

P real Pave=



 Pa

Pa

VRMS IRMS

Pa volt amperes– VA

VRMS IRMS sin Q

volt amperes reactive– VAR

Preal Pave VRMS IRMS cos       (in watts)= = =

Q Reactive Power VRMS IRMS sin       (in VARs)= = =

Pa Apparent Power VRMS IRMS      (in VAs)= =

Pa

Pa P  powerreal jQ Pave jQ= =
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Complex Power  Power Triangle

a.  the average power delivered to the load 

b.  the average power absorbed by the line

c.  the apparent power supplied by the voltage source

d.  the power factor of the load

e.  the power factor of the line plus the load

Figure 8.18. Circuit for Example 8.8

Solution: 

For simplicity, we redraw the circuit as shown in Figure 8.19 where the line resistances have been
combined into a single  resistor.

Figure 8.19. Circuit for Example 8.8 with the line resistances combined

From the circuit of Figure 8.19, we find that

 

and therefore, the current lags the voltage as shown on the phasor diagram of Figure 8.20.

Figure 8.20. Phasor diagram for the circuit of Example 8.8
Then,

a. The average power delivered to the load is

Rline 1 =

Rline 1 =

VS

480 0 V RMS

Load
10 j10+

2 

Rline 2 =

VS

480 0 V RMS

Load
10 j10+IRMS

ZLD

IRMS
VS RMS

Rline ZLD+
---------------------------- 480 0

2 10 j10+ +
----------------------------- 480 0

15.62 39.8
------------------------------- 30.73 39.8–= = = =

I

VS
39.8–
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b. The average power absorbed by the line is

c. The apparent power supplied by the voltage source is

d. The power factor of the load is

e. The power factor of the line plus the load is

8.12 Power Factor Correction
The consumer pays the electric utility company for the average or real power, not the apparent
power and, as we have seen, a low power factor (larger angle ) demands more current. This
additional current must be furnished by the utility company which must provide larger current
carrying capacity if the voltage must remain constant. Moreover, this additional current creates
larger  losses in the utility’s transmission and distribution system. For this reason, electric util-
ity companies impose a penalty on industrial facility customers who operate at a low power factor,
typically lower than . Accordingly, facility engineers must install the appropriate equipment
to raise the power factor.

The power factor correction procedure is illustrated with the following example.

Example 8.9  
In the circuit shown in Figure 8.21, the resistance of the lines between the voltage source and the
load and the internal resistance of the source are considered small, and thus can be neglected.

Pave LD IRMS
2  Re ZLD  30.73 2 10 9443 w 9.443 Kw= = = =

Pave line IRMS
2  Rline 30.73 2 2 1889 w 1.889 Kw= = = =

Pa source VS  RMS IRMS 480 30.73 14750 w 14.750 Kw= = = =

pfLD LDcos
Pave LD
Pa LD

------------------ 9443
VRMS LD IRMS
----------------------------------------= = =

9443
480 0 2 30.73 39.8– –  30.73

------------------------------------------------------------------------------------------------ 9443
434.56  30.73 

---------------------------------------- 9443
13354
--------------- 0.707= = ==

pf line LD+  cos line LD+ 
Pave total
Pa source
----------------------

Pave line Pave LD+

Pa source
---------------------------------------------- 1889 9443+

14750
------------------------------ 0.77= = = = =



i2R

0.85



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems  Modeling 819
Copyright © Orchard Publications

Power Factor Correction

Figure 8.21. Circuit for Example 8.9

It is desired to “raise” the power factor of the load to 0.95 lagging. Compute the size and the rat-
ing of a capacitor which, when added across the load, will accomplish this.

Solution:

The power triangles for the existing and desired power factors are shown in Figure 8.22.

Figure 8.22. Power triangles for existing and desired power factors

Since the voltage across the given load must not change (otherwise it will affect the operation of
it), it is evident that a load, say , in opposite direction of  must be added, and must be con-
nected in parallel with the existing load. Obviously, the  load must be capacitive. Accord-
ingly, the circuit of Figure 8.21 must be modified as shown in Figure 8.23.

Figure 8.23. Circuit for power factor correction

For the existing load,

and for the desired , the VAR value of  must be reduced to

 

Therefore, the added capacitive load must be a vector  such that

1 Kw Load
@ pf =0.8 lag

480 0 V RMS

VS

60 Hz

1 Kw 1 Kw

This is what we have This is what we want

1
2

1 0.81–cos 36.9= = 2 0.951–cos 18.2= =

Q2
Q1

Q3 Q1

Q3

1 Kw Load
@ pf =0.8 lag

Capacitive
Load with
Leading pf

480 0 V RMS 60 Hz

VS
IC

Q1 1 Kw  36.9tan 750 VAR= =

pf 2cos 0.95= = Q2

Q2 1 Kw  18.2tan 329 VAR= =

Q3
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The current  through the capacitive load is found from

Then,

and

Therefore, the capacitive load must consist of a capacitor with the value

However, not any  capacitor will do; the capacitor must be capable of withstanding a
maximum voltage of

and for all practical purposes, we can choose a  capacitor rated at 700 volts or higher.

8.13 Instruments

Ammeters are electrical instruments used to measure current in electric circuits, voltmeters mea-
sure voltage, ohmmeters measure resistance, wattmeters measure power, and watthour meters
measure electric energy. Voltmeters, Ohmmeters, and Milliammeters (ammeters which measure
current in milliamperes) are normally combined into one instrument called VOM. Figure 8.24
shows a typical analog type VOM, and Figure 8.25 shows a typical digital type VOM. We will see
how a digital VOM can be constructed from an analog VOM equivalent at the end of this sec-
tion. An oscilloscope is an electronic instrument that produces an instantaneous trace on the
screen of a cathoderay tube corresponding to oscillations of voltage and current. A typical oscil-
loscope is shown in Figure 8.26. DC ammeters and voltmeters read average values whereas AC
ammeters and voltmeters read RMS values.

The basic meter movement consists of a permanent horse shoe magnet, an electromagnet which
typically is a metal cylinder with very thin wire wound around it which is referred to as the coil,
and a control spring. The coil is free to move on pivots, and when there is current in the coil, a
torque is produced that tends to rotate the coil. Rotation of the coil is restrained by a helical
spring so that the motion of the coil and the pointer which is attached to it, is proportional to the
current in the coil.

Q3 Q1 Q2– 750 329– 421 VAR= = =

IC

Q3 ICVC ICVS= =

IC
Q3

VS RMS
------------------ 421

480
--------- 0.88 A= = =

XC
VC
IC
------- 480

0.88
---------- 547 = = =

C 1
XC
----------- 1

2f XC
----------------- 1

2 60  547 
------------------------------- 4.85 F= = = =

4.85 F

VC max 2 480 679 V= =

5 F
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Instruments

Figure 8.24. The Triplett Analog Multimeter Model 60

Figure 8.25. The Voltcraft Model 3850 Digital Multimeter
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Figure 8.26. The Agilent Technologies Series 5000 Portable Oscilloscope

An ammeter measures current in amperes. For currents less than one ampere, a milliammeter or
microammeter may be used where the former measures current in milliamperes and the latter in
microamperes.
Ammeters, milliammeters, and microammeters must always be connected in series with the cir-
cuits in which they are used.

Often, the electric current to be measured, exceeds the range of the instrument. For example, we
cannot directly measure a current of  to  milliamperes with a milliammeter whose range is 
to  milliampere. In such a case, we can use a low range milliammeter with a shunt (parallel)
resistor as shown in Figure 8.27, where the circle with  represents an ideal milliammeter (a
milliammeter with zero resistance). In Figure 8.27  is the total current to be measured,  is
the current through the meter,  is the current through the shunt resistor,  is the milliamme-
ter internal resistance, and  is the shunt resistance.

5 10 0
1

mA
IT IM

IS RM

RS

mA
IT IM ITRM

RS

IS
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Instruments

Figure 8.27. Milliammeter with shunt resistor 

From the circuit of Figure 8.27, we observe that the sum of the current flowing through the mil-
liammeter  and the current  through the shunt resistor is equal to the total current , that
is,

(8.41)

Also, the shunt resistor  is in parallel with the milliammeter branch; therefore, the voltages
across these parallel branches are equal, that is, 

and since we normally need to calculate the shunt resistor, then

(8.42)

Example 8.10  

In the circuit of Figure 8.28, the total current entering the circuit is  and the milliammeter
range is  to  milliampere, that is, the milliammeter has a fullscale current  of , and

its internal resistance is . Compute the value of the shunt resistor .

Figure 8.28. Circuit for Example 8.10

Solution: 

The maximum current that the milliammeter can allow to flow through it is  and since the
total current is  milliamperes, the remaining  milliamperes must flow through the shunt resis-
tor, that is,

The required value of the shunt resistor is found from (8.42), i.e.,

RS

IM IS IT

IT IM IS+=

RS

RM IM RS IS=

RS
IM
IS
------RM=

5 mA
0 1 Ifs 1 mA

40  RS

40 
mA

IT IM ITRM

RS

=Maximum allowable current IM
 through the milliammeter

Ifs 1 mA=

IS

1 mA
5 4

IS IT IM– 5 1– 4 mA= = =
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Check:The calculated value of the shunt resistor is ; this is onefourth the value of the mil-
liammeter internal resistor of . Therefore, the resistor will allow four times as much
current as the milliammeter to flow through it.

A multirange ammeter/milliammeter is an instrument with two or more scales. Figure 8.29
shows the circuit of a typical multirange ammeter/milliammeter.

Figure 8.29. Circuit for a multirange ammeter/milliammeter

A voltmeter, as stated earlier, measures voltage in volts. Typically, a voltmeter is a modified mil-
liammeter where an external resistor  is connected in series with the milliammeter as shown
in Figure 8.30 where

RS
IM
IS
------RM

1
4
--- 40 10 = = =

10 
40  10 

A

IT IM

IT

RM

RS1

IS

RS2

+

-
RS3

RV

I current through circuit=

RM internal resis cetan  of milliameter=

RV external resistor in series with RM =

VM voltmeter full scale reading=
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Instruments

Figure 8.30. Typical voltmeter circuit

For the circuit of Figure 8.30,

or

(8.43)

Voltmeters must always be connected in parallel with those devices of the circuit whose voltage
is to be measured.

Example 8.11  

Design a voltmeter which will have a  volt fullscale using a milliammeter with  milliampere
fullscale and internal resistance .

Solution: 

The voltmeter circuit consists of the milliammeter circuit and the external resistance  as
shown in Figure 8.31.

Figure 8.31. Circuit for Example 8.11

Here, we only need to compute the value of the external resistor  so that the voltage across
the series combination will be  full scale. Then, from (8.43),

(8.44)

mA
IM RM RV

VM

 = Voltmeter internal resistanceRV

 = Voltmeter rangeVM

+

IM RM RV+  VM=

RV
VM
IM
-------- RM–=

1 1
100 

RV

mA
IM RM RV

VM
+

100 

RV

1 volt

RV
VM
IM
-------- RM– 1

10 3–
---------- 100– 1000 100– 900 = = = =
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Therefore, to convert a 1 milliampere fullscale milliammeter with an internal resistance of
 to a  fullscale voltmeter, we only need to attach a  resistor in series with

that milliammeter.

Figure 8.32 shows a typical multirange voltmeter. 

Figure 8.32. Circuit for a multirange voltmeter

An Ohmmeter measures resistance in Ohms. In the series type Ohmmeter, the resistor  whose
resistance is to be measured, is connected in series with the Ohmmeter circuit shown in Figure
8.33.

Figure 8.33. Circuit for a series type Ohmmeter

We observe from Figure 8.33 that for the series type Ohmmeter, the current  is maximum when
the resistor  is zero (short circuit), and the current is zero when  is infinite (open circuit).
For this reason, the  (zero) point appears on the rightmost point of the Ohmmeter scale, and
the infinity symbol appears on the leftmost point of the scale.

Figure 8.34 shows the circuit of a shunt (parallel) type Ohmmeter where the resistor  whose
value is to be measured, is in parallel with the Ohmmeter circuit. 

100  1 volt 900 

mA
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Instruments

Figure 8.34. Circuit for a parallel type Ohmmeter

From Figure 8.34 we see that, for the shunt type Ohmmeter, the current through the milliamme-
ter circuit is zero when the resistor  is zero (short circuit) since all current flows through that
short. However, when  is infinite (open circuit), the current through the milliammeter
branch is maximum. For this reason, the  (zero) point appears on the leftmost point of the
Ohmmeter scale, and the infinity symbol appears on the rightmost point of the scale.

An instrument which can measure unknown resistance values very accurately is the Wheatstone
Bridge shown in Figure 8.35.

Figure 8.35. Wheatstone Bridge Circuit

One of the resistors, say , is the unknown resistor whose value is to be measured, and another
resistor, say  is adjusted until the bridge is balanced, that is, until there is no current flow
through the meter of this circuit. This balance occurs when

from which the value of the unknown resistor is found from

(8.45)
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Example 8.12  

In the Wheatstone Bridge circuit of Figure 8.36, resistor  is adjusted until the meter reads zero,
and when this occurs, its value is . Compute the value of the unknown resistor .

Figure 8.36. Circuit for Example 8.12

Solution:

When the bridge is balanced, that is, when the current through the meter is zero, relation (8.45)
holds. Then,

When measuring resistance values, the voltage sources in the circuit to which the unknown resis-
tance is connected must be turned off, and one end of the resistor whose value is to be measured
must be disconnected from the circuit.

Because of their great accuracy, Wheatstone Bridges are also used to accept or reject resistors
whose values exceed a given tolerance.

A wattmeter is an instrument which measures power in watts or kilowatts. It is constructed with
two sets of coils, a current coil and a voltage coil where the interacting magnetic fields of these
coils produce a torque which is proportional to the  product.

A watthour meter is an instrument which measures electric energy , where  is the product
of the average power  in watts and time  in hours, that is,  in watthours. Electric util-
ity companies use kilowatthour meters to bill their customers for the use of electricity.

Digital meters include an additional circuit called analogtodigital converter (ADC). There are
different types of analogtodigital converters such as the flash converter, the timewindow con-
verter, slope converter and tracking converter. Shown in Figure 8.37 is a flash converter ADC.

R3

120  R4

600 

200 




0

+

120 

VA VB

R3

R4R2

R1VS A
A

R4
R2
R1
------R3

200
600
--------- 120 40 = = =   

V I

W W
P t W Pt=
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Instruments

Figure 8.37. Typical analogtodigital converter

† Underflow
‡ Overflow

As shown in Figure 8.37, the flash type ADC consists of a resistive network, comparators (denoted
as triangles), and an eighttothree line encoder.

A digitaltoanalog converter (DAC) performs the inverse operation, that is, it converts digital
values to equivalent analog values. 

Figure 8.38 shows a fourbit R2R ladder network and an opamp connected to form a DAC.

Analog Input A8 A7 A6 A5 A4 A3 A2 A1 A0 B2 B1 B0
Less than 0 V 0 0 0 0 0 0 0 0 0 x x x†
0 to less than 1.5 V 0 0 0 0 0 0 0 0 1 0 0 0
1.5 to less than 3.0 V 0 0 0 0 0 0 0 1 1 0 0 1
3.0 to less than 4.5 V 0 0 0 0 0 0 1 1 1 0 1 0
4.5 to less than 6.0 V 0 0 0 0 0 1 1 1 1 0 1 1
6.0 to less than 7.5 V 0 0 0 0 1 1 1 1 1 1 0 0
7.5 to less than 9.0 V 0 0 0 1 1 1 1 1 1 1 0 1
9.0 to less than 10.5 V 0 0 1 1 1 1 1 1 1 1 1 0
10.5 to 12 V 0 1 1 1 1 1 1 1 1 1 1 1
Greater than 12 V 1 1 1 1 1 1 1 1 1 x x x‡

ANALOGTODIGITAL CONVERTER
12 V Supply


+


+

Overflow


+


+


+


+


+


+


+

Analog Input

12 V

10.5 V

9 V

7.5 V

3 V

4.5 V

6 V

1.5 V

0 V

8to3

Encoder

B2

B1

B0

A8

A7

A6

A5

A4

A3

A2

A1

A0


+

VX

VY
Ai

Inputs Output

Comparator

VX  VY

VX  VY Ai = 0
Ai = 1

For Example, if Analog Input = 5.2 V, 
then A0 = A1 = A2 = A3 = 1
and A4 = A5 = A6 = A7 = A8 = 0

VX = VY Previous Value
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Figure 8.38. A typical digitaltoanalog converter

DIGITALTOANALOG CONVERTER

Negative reference voltage is used so that the 

 1 Volt

B3B2B1B0


+

Switch Settings: For Logic “0” (ground) positioned to the right

R R R2R

2R 2R 2R 2R

2R

+


(lsb) (msb)

For Logic “1” (+5 V) positioned to the left

With the switches positioned as shown, B3 B2 B1 B0 = 0100

inverting op amp’s output will be positive.

Vout

lsb = least significant bit
msb = most significant bit
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Summary

8.14 Summary

 A periodic time function is one which satisfies the relation  where n is a posi-
tive integer and T is the period of the periodic time function.

 The average value of any continuous function  over an interval ,is defined as

 

 The average value of a periodic time function  is defined as the average of the function
over one period.

 A halfwave rectification waveform is defined as

 The effective current  of a periodic current waveform  is defined as

 For sinusoids only, 

 For sinusoids of different frequencies, 

 For circuits with sinusoidal excitations the average power delivered to a load is

where  is the phase angle between  and  and it is within the range ,and

 is known as the power factor defined within the range .

 The average power in a resistive load is

 The average power in inductive and capacitive loads is

f t  f t nT+ =

f t  a t b 

f t ave
1

b a–
----------- f t  td

a

b


1

b a–
----------- area a

b = =

f t 

f t 
A t    sin 0 t  

       0  t 2 



=

Ieff i t 

Ieff
1
T
--- i 2 td

0

T

 IRoot Mean Square IRMS Ave i2 = = = =

IRMS Ip 2 0.707Ip= =

IRMS I0 
2 I1 RMS

2 I2 RMS
2  IN RMS

2+ + + +=

Pave LD

VpIp
2

----------- cos VRMS LD IRMS LD cos= =

 VLD  ILD 0  90 

cos 0 cos 1 

Pave R
VRMS R

2

R
------------------- IRMS R

2  R= =

Pave X VRMS X IRMS X 90 0=cos=
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 If the excitation in a circuit is nonsinusoidal, we can compute the average power absorbed by
a resistor from the relations

 An inductive load is said to have a lagging power factor and a capacitive load is said to have a
leading power factor. 

 In a power triangle

 The apparent power , also known as complex power, is the vector sum of the real and reac-
tive power components, that is,

where the (+) sign is used for inductive loads and the () sign for capacitive loads.

 A power factor can be corrected by placing a capacitive load in parallel with the load of the
circuit.

 Ammeters are instruments used to measure current in electric circuits. Ammeters, milliamme-
ters, and microammeters must always be connected in series with the circuits in which they
are used.

 Voltmeters are instruments used to measure voltage. Voltmeters must always be connected in
parallel with those devices of the circuit whose voltage is to be measured.

 Ohmmeters are instruments used to measure resistance. When measuring resistance values,
the voltage sources in the circuit to which the unknown resistance is connected must be
turned off, and one end of the resistor whose value is to be measured must be disconnected
from the circuit.

 A Wheatstone Bridge is an instrument which can measure unknown resistance values very
accurately.

 Voltmeters, Ohmmeters, and Milliammeters (ammeters which measure current in milliam-
peres) are normally combined into one instrument called VOM.

 Wattmeters are instruments used to measure power.

Pave
1
T
--- p td

0

T


1
T
--- v 2

R
------ td

0

T


1
T
--- i2R td

0

T

= = =

Preal Pave VRMS IRMS cos       (in watts)= =

Q Reactive Power VRMS IRMS sin       (in VARs)= =

Pa Apparent Power VRMS IRMS      (in VAs)= =

Pa

Pa P  powerreal jQ Pave jQ= =
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Summary

 WattHour meters are instruments used to measure energy.

 An oscilloscope is an electronic instrument that produces an instantaneous trace on the
screen of a cathoderay tube corresponding to oscillations of voltage and current.

 DC ammeters and DC voltmeters read average values

 AC ammeters and AC voltmeters read RMS values.

 Digital meters include an additional circuit called analogtodigital converter (ADC).
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8.15 Exercises
Multiple Choice

1. The average value of a constant (DC) voltage of 12 V is

A.

B.

C.

D.

E. none of the above

2. The average value of  is

A.

B.

C.

D.

E. none of the above

3. The RMS value of a constant (DC) voltage of  is

A.

B.

C.

D.

E. none of the above

4. The RMS value of  is

A.

B.

C.

D.

6 V

12 V

12 2  V

12 2  V

i 5 100t Acos+=

5 2 2  A+

5 2   A

5 2  A

5 A

12 V

12 2  V

6 2 2  V

12 V

12 2  V

i 5 100t Acos+=

5 2 2  A+

5 2   A

5 2  A

5 A
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Exercises

E. none of the above

5. The voltage across a load whose impedance is  is 115 V RMS. The average
power absorbed by that load is

A.

B.

C.

D.

E. none of the above

6. The average value of the waveform below is

A.

B.

C.

D.

E. none of the above

7. The RMS value of the waveform below is

A.

B.

C.

D.

Z 75 j38 +=

176.33 w

157.44 w

71.3 w

352.67 w

24

4 8 12

v V 

24 V

16 V

12 V

6 V

10

1 3

i A 

t s 

10 2  V

10 2  V

10 3  V

10 3  V
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E. none of the above

8. A current with a value of  is flowing through a load that consists of the
series combination of , , and . The average power absorbed by
this load is

A.

B.

C.

D.

E. none of the above

9. If the average power absorbed by a load is  and the reactive power is , the
apparent power is

A.

B.

C.

D.

E. none of the above

10. A load with a leading power factor of  can be corrected to a lagging power factor of 
by adding 

A. a capacitor in parallel with the load

B. an inductor in parallel with the load

C. an inductor is series with the load

D. a capacitor in series with the load

E. none of the above

Problems

1. The current  through a  inductor is given as . Compute:

a. The average values of the current, voltage and power for this inductor.

b. The  values of the current and voltage.

i 5 10000t Acos=

R 2 = L 1 mH= C 10 F=

25 w

10 w

5 w

0 w

500 watts 500 VAR

0 VA

500 VA

250 VA

500 2  VA

0.60 0.85

iL t  0.5 H iL t  5 10 t Asin+=

RMS
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2. Compute the average and  values of the voltage waveform below.

 

3. Compute the  value of the voltage waveform below.

4. Compute the  value of .

5. A radar transmitter sends out periodic pulses. It transmits for  and then rests. It sends out
one of these pulses every . The average output power of this transmitter is . Com-
pute: 

a. The energy transmitted in each pulse.

b. The power output during the transmission of a pulse.

6. For the circuit below,  Compute the average power delivered (or
absorbed) by each device.

7. For the circuit below, the input impedance of the PCB (Printed Circuit Board) is
 and the board must not absorb more that  of power; otherwise it

RMS

0

5

15

Vv t 

t s 

RMS

0

A

V
v t 

t s 

RMS i t  10 2 100t 5 200tsin+cos+=

5 s
1 ms 750 w

vs t  100 1000t V.cos=

2 

5 
200 F

3 mH

vS t 

ZIN 100 j100 –= 200 mw
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will be damaged. Compute the largest RMS value that the variable voltage source  can be
adjusted to. 

8. For the multirange ammeter/milliammeter shown below, the meter full scale is . Com-
pute the values of  so that the instrument will display the indicated values.

9. The circuit below is known as fullwave rectifier. The input and output voltage waveforms are
shown in Figure 8.47. During the positive input half cycle, current flows from point  to point

, through  to point , through the resistor  to point , through diode  to point ,
and returns to the other terminal point  of the input voltage source. During the negative
input half cycle, current flows from point F to point E, through diode  to point , through
the resistor  to point , through the diode  to point , and returns to the other terminal

point  of the input voltage source. There is a small voltage drop  across each diode* but it
can be neglected if . Compute the value indicated by the DC voltmeter.

* For silicon type diodes, the voltage drop is approximately 0.7 volt.

VS

VS 
PCBZIN

1 mA
R1 R2 R3 and R4  

mA
IT

IM

IT

R1

+



R2

R3

980 

RM =20 
1 A

100 mA

10 mA

A
B D2 C R D D3 E

F
D4 C

R D D1 B

A vD

vin vD»
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Exercises

 

Diode  Allows current to flow in the indicated direction only

A

B

CD

E

F

V

+

DC Voltmeter

vIN
vOUT

R
D4

D3

D2D1

I

Vp

Vin t 

Vp tsin

0 t (r)

Vp

t (r)

Vout t  Vp tsin
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8.16 Answers / Solutions to EndofChapter Exercises
Multiple Choice

1. B

2. D

3. C

4. A

5. E

,  and thus 

6. B

7. C

8. A

9. D

10. B

Problems

1. , 

a.

and since
 

it follows that 

Likewise,

Also,

Z 75 j38+ 84.08 26.87= = IRMS 115 0 84.08 26.87 1.37 26.87–= =

Pave VRMS IRMS cos 115 1.37 26.87– cos 140.54 w= = =

iL 5 10 tsin+= vL L
diL
dt
------- 0.5 d

dt
----- 5 10 tsin+  5 tcos= = =

iL ave
1
T
--- iL td

0

 T


1
T
--- 5 10 tsin+  td

0

 T
= =

1
T
--- 10 tsin td

0

 T
 0=

1
T
--- 5 td

0

 T


1
T
--- 5T 5 A= =

vL ave
1
T
--- 5 t tdcos

0

 T
 0= =

pL ave
1
T
--- pL td

0

 T


1
T
--- vLiL td

0

 T


1
T
--- 5 t 5 10 tsin+ cos td

0

 T


1
T
--- 25 t 50 t tcossin+cos  td

0

 T
= = = =
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Answers / Solutions to EndofChapter Exercises

and using  it follows that  and thus

b.

Using  and observing that  and  we obtain

and 

For sinusoids  and since  it follows that

2. From the waveform below we observe that  and since

 
Also,

2xsin 2 x xcossin= 50 t tcossin 25 2tsin=

pL ave
1
T
--- 25 t 25 2tsin+cos  td

0

 T
 0= =

IL RMS
2 1

T
--- iL

2 td
0

 T


1
T
--- 5 10 tsin+ 2 td

0

 T
= =

1
T
--- 5 1 2 tsin+  2 td

0

 T


25
T
------ 1 4 tsin 4 t2sin+ +  td

0

 T
==

x2sin 1 2xcos–
2

------------------------= 1
T
--- 4 t tdsin

0

 T

 0= 1
T
--- 2tcos td

0

 T

 0=

IL RMS
2 25

T
------ t 0

T 4
2
---t 0

T+ 
  25

T
------ T 2T+  75= = =

IL RMS 75 8.66 A= =

VRMS Vp 2  0.707Vp= = Vp 5=

VRMS 0.707 5 3.54 V= =

Period T= 5=

Vave Area Period 15 20+  5 7 V= = =

0

5

15

Vv t 

t s 

4

T

VRMS
2 1

T
--- v2 td

0

 T


1
5
----- 15 2 td

0

 

 5 2 td


 5

+
1

5
----- 225 125 25–+  65= = = =
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and thus

3. We choose the period  as shown below. 

Using the straight line equation  we find that for , . Then,

and

4. The effective (RMS) value of a sinusoid is a real number that is independent of frequency and
phase angle and for current it is equal to . The RMS value of sinusoids with dif-
ferent frequencies is given by (8.13). For this problem

5. The waveform representing the transmitter output pulses is shown below.

VRMS 65 8.06 V= =

T

0

A

V
v t 

t s 

T

v t  2A
T

-------=

y mx b+= 0 t T 2  v t  2A
T

-------t=

VRMS
2 1

T
--- v2 td

0

 T


1
T
--- 2A

T
-------t 
  2

td
0

 T 2


1
T
--- 0 td

T 2

 T

+
4A2

T 3
---------- t2 td

0

 T 2

= = =

4A2

3T3
----------t3

0

T 2
4A2

24
---------- A2 6= ==

VRMS A2 6 6
6

-------A 0.41A= = =

IRMS Ip 2=

IRMS 102 1
2
---22 1

2
---52+ + 100 2 12.5+ + 10.7 A= = =

5 s

t s 

A

1 2
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Answers / Solutions to EndofChapter Exercises

For this problem we do no know the amplitude  of each  pulse but we know the average
power of one period . Since

it follows that: 

a. Energy transmitted during each pulse is

b. The power during the transmission of a pulse is

6. The phasor equivalent circuit is shown below where  and

By application of KCL

Also,

and with MATLAB

Vs=100; z1=2; z2=5j; z3=5+3j;...
Vc=Vs/(1+z1/z2+z1/z3); I2=(VsVc)/z1; Ic=Vc/z2; IL=Vc/z3; fprintf(' \n');...
disp('Vc = '); disp(Vc); disp('magVc = '); disp(abs(Vc));...
disp('phaseVc = '); disp(angle(Vc)*180/pi);...
disp('I2 = '); disp(I2); disp('magI2 = '); disp(abs(I2));...
disp('phaseI2 = '); disp(angle(I2)*180/pi);...

A 5 s
T 1 s=

Pave 750 w Area
Period
----------------- Area

1 s
------------= = =

Area of each pulse 750 w s=

P W t 750 w s 5 s 750 w s 5 10 6– 150 106 w 150 Mw= = = = =

jL j103 3 10 3– j3 = =

j– C j– 103 2 10 4– j5 –= =

2 

5 
VS

100 0

j3 

j5 –

z1

z3

z2

I2  IC
IL

VC

VC VS–

z1
--------------------

VC
z2
-------

VC
z2
-------+ + 0=

1
z1
----- 1

z2
----- 1

z3
-----+ + 

 VC
VS
z1
------=

VC
VS

1 z1 z2 z1 z3+ + 
--------------------------------------------------=

I2 
VS VC–

z1
--------------------= IC

VC
z1
-------= IL

VC
z3
-------=
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disp('Ic = '); disp(Ic); disp('magIc = '); disp(abs(Ic));...
disp('phaseIc = '); disp(angle(Ic)*180/pi);...
disp('IL = '); disp(IL); disp('magIL = '); disp(abs(IL));...
disp('phaseIL = '); disp(angle(IL)*180/pi);

Vc = 75.0341-12.9604i

magVc = 76.1452

phaseVc = -9.7998

I2 = 12.4829 + 6.4802i

magI2 = 14.0647

phaseI2 = 27.4350

Ic = 2.5921 + 15.0068i

magIc = 15.2290

phaseIc = 80.2002

IL = 9.8909 - 8.5266i

magIL = 13.0588

phaseIL = -40.7636

The average power delivered by the voltage source  is computed from the relation

where  as shown by the phasor diagram below.

Therefore,

Also,

and 

VS

Pave VRMSIRMS cos 1
2
---VpIp cos= =

 27.43=

VS

I2 

 27.43=

PS ave
1
2
--- VS I2  cos 0.5 100 14.07 27.43cos 624.4 w= = =

P2   ave
1
2
---Ip

2R2  0.5 14.07 2 2 197.97 w= = =

P5   ave
1
2
---IL

2R5  0.5 13.06 2 5 426.41 w= = =
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Answers / Solutions to EndofChapter Exercises

Check:

The average power in the capacitor and the inductor is zero since  and .

7. Let us consider the  network below.

Let

and

Then,

and using

we obtain

We require that the power  does not exceed  or , that is, we must satisfy the
condition

and therefore we must find the phase angle . Since  appears also in the , we
can find its value from the given input impedance, that is,  or

and in the 

The maximum power  occurs when , that is,

P2   ave P5   ave+ 197.97 426.41+ PS ave 624.4 w= = =

 90= cos 0=

t domain–

VS 
PCBZIN

i t 

vS t 

vS Vp tcos=

i Ip t + cos=

p vSi VpIp t t + coscos= =

x ycoscos 1
2
--- x y+ cos x y– cos+ =

p
VpIp

2
----------- 2t +  cos+cos =

p 200 mw 0.2 w

p
VpIp

2
----------- 2t +  cos+cos = 0.2 w

  j domain–

ZIN 100 j100 –=

ZIN ZIN  100 2 100 2+ 100– 1–

100
---------------------tan 100 2 45–= = =

t domain–

p
VpIp

2
----------- 2t 45–  45– cos+cos =

p 2t 45– cos 1=

pmax
VpIp

2
----------- 1 2

2
-------+ 

  0.2 w= =
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Then, 

and now we can express  in terms of  using the relation  and
 and by substitution

or

and

8. With the switch at the  position, the circuit is as shown below.

Then,

or
  (1)

With the switch at the  position, the circuit is as shown below.

VpIp 0.4 1.707=

Ip Vp ZIN 100 2=

Ip Vp ZIN=

Vp
2 0.4 100 2

1.707
------------------------------ 33.14= =

Vp 33.14 5.76= =

VRMS
Vp

2
------- 5.76

1.414
------------- 4.07 V= = =

10 mA

mA

R1

+



R2

R3

980 

20 

10 mA

10 mA

9 mA 1 mA

9 10 3– R1 R2 R3+ +  980 20+  10 3–=

R1 R2 R3+ + 1000
9

------------=

100 mA

mA

R1

+



R2

R3

980 

20 

100 mA

100 mA

99 mA

1 mA1 mA
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Answers / Solutions to EndofChapter Exercises

Then,

or
  (2)

With the switch at the  position, the circuit is as shown below.

Then,

or
  (3)

Addition of (1) and (3) yields

or
  (4)

Addition of (1) and (2) yields

or
  (5)

Substitution of (4) into (5) yields
  (6)

and substitution of (4) and (6) into (1) yields

  (7)

99 10 3– R2 R3+  R1 980 20+ +  10 3–=

R1– 99R2 99R3+ + 1000=

1 A

mA

R1

+



R2

R3

980 

20 

1 A

1 A 999 mA

1 mA

1 mA

999 10 3– R3 R1 R2 980 20+ + +  10 3–=

R1– R2– 999R3+ 1000=

1000R3
1000

9
------------ 1000+ 10000

9
---------------= =

R3
10
9

------ =

100R2 100R3+ 1000
9

------------ 1000+ 10000
9

---------------= =

R2 R3+ 100
9

---------=

R2 10 =

R1 100 =
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9. DC instruments indicate average values. Therefore, the DC voltmeter will read the average
value of the voltage  across the resistor. The period of the fullwave rectifier waveform is
taken as .

Then,

As expected, this average is twice the average value of the halfwave rectifier waveform in
Example 8.2.

vOUT



Vp

t (r)

Vout t  Vp tsin

2

vOUT ave
1

--- Vp tsin t d

0




Vp


------ tcos– 
t 0=



= =

Vp


------ tcos


0 Vp


------ 1 1+ 
2Vp


----------= ==
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Chapter 9

Natural Response

his chapter discusses the natural response of electric circuits.The term natural implies that
there is no excitation in the circuit, that is, the circuit is sourcefree, and we seek the cir-
cuit’s natural response. The natural response is also referred to as the transient response.

9.1 Natural Response of a Series RL circuit
Let us find the natural response of the circuit of Figure 9.1 where the desired response is the cur-
rent i, and it is given that at , , that is, the initial condition is .

Figure 9.1. Circuit for determining the natural response of a series RL circuit

Application of KVL yields

or
(9.1)

Here, we seek a value of i which satisfies the differential equation of (9.1), that is, we need to find
the natural response which in differential equations terminology is the complementary function. As
we know, two common methods are the separation of variables method and the assumed solution
method. We will consider both.

1. Separation of Variables Method

Rearranging (9.1), so that the variables i and t are separated, we obtain

Next, integrating both sides and using the initial condition, we obtain

T

t 0= i I0= i 0  I0=

+

+
R L

i 



vL vR+ 0=

Ldi
dt
----- Ri+ 0=

di
i

----- R
L
----dt–=

1
i
--- id

I0

i


R
L
---- d

0

t
–=
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where  is a dummy variable. Integration yields

or

or

Recalling that  implies , we obtain

(9.2)

Substitution of (9.2) into (9.1) yields  and that at , . Thus, both the differ-
ential equation and the initial condition are satisfied.

2. Assumed Solution Method

Relation (9.1) indicates that the solution must be a function which, when added to its first deriv-
ative will become zero. An exponential function will accomplish that and therefore, we assume a
solution of the form

(9.3)

where  and  are constants to be determined. Now, if (9.3) is a solution, it must satisfy the dif-
ferential equation (9.1). Then, by substitution, we obtain:

or

The left side of the last expression above will be zero if , or if , or if . But,
if  or , then every response is zero and this represents a trivial solution. Therefore,

 is the only logical solution, and by substitution into (9.3) we obtain

We must now evaluate the constant . This is done with the use of the initial condition

. Thus,  or  and therefore,



iln I0

i R
L
---- 0

t
–=

iln I0ln–
R
L
----t–=

i
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----ln R

L
----t–=

x yln= y ex=

i t  I0 e R L t–
=

0 0= t 0= i 0  I0=

i t  Aest=

A s
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s R
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----+ 
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A
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Natural Response of a Series RL circuit

as before. Next, we rewrite it as
(9.4)

and sketch it as shown in Figure 9.2.

Figure 9.2. Plot for  in a series RL circuit

From Figure 9.2 we observe that at , , and  as .

The initial rate (slope) of decay is found from the derivative of  evaluated at , that is,

and thus the slope of the initial rate of decay is 

Next, we define the time constant  as the time required for  to drop from unity to zero
assuming that the initial rate of decay remains constant. This constant rate of decay is repre-
sented by the straight line equation

 

and at , . Then,

or

(9.5)
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Evaluating (9.4) at , we obtain

or
(9.6)

Therefore, in one time constant, the response has dropped to approximately 36.8% of its initial
value.

If we express the rate of decay in time constant intervals as shown in Figure 9.2, we find that
 after , that is, it reaches its final value after five time constants.

Example 9.1  

For the circuit shown in Figure 9.3, in how many seconds after  has the

a.  current  has reached ½ of its initial value?

b.  energy stored in  has reached ¼ of its initial value?

c.  power dissipated in  has reached ¾ of its initial value? 

Figure 9.3. Circuit for Example 9.1

Solution:

From (9.2),

where . Then, 

a. The current  will have reached ½ of its initial value when

or

or

t  L R= =

i  
I0

--------- e R L – e R L  L R – e 1– 0.368= = = =

i   0.368I0=

i t  I0 0 t 5=

t 0=

i t 

L

R

+

+
R

i 



10 

L
10 mH

i t  I0 e R L t–
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I0 iL 0 =

i t 

0.5I0 I0e
10 10 10 3– t–

I0e 1000t–
= =

e 1000t– 0.5=

1000t– 0.5 ln 0.693–= =
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Natural Response of a Series RL circuit

and therefore,
 

b. To find the energy stored in  which reaches ¼ of its initial value, we begin with

and at , . Then,

and

Therefore,

or

and

This is the same answer as in part (a) since the energy is proportional to the square of the cur-
rent.

c. To find the power dissipated in  when it reaches ¾ of its initial value, we start with the fact

that the instantaneous power absorbed by the resistor is , and since for the given
circuit

then,

and the energy dissipated (in the form of heat) in the resistor is

Also, from part (b) above,

and thus
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or

and

In some examples and exercises that follow, the initial condition may not be given directly but it
can be found from the fact that the current through an inductor cannot change instantaneously
and therefore,

(9.7)

where  will be used to denote the time just before a switch is opened or closed, and 
will be used to denote the time just after the change has occurred.

Also, in our subsequent discussion, the expression “long time” will mean that sufficient time has
elapsed so that the circuit has reached its steadystate conditions. As we know from Chapter 5,
when the excitations are constant, at steady state conditions the inductor behaves as a short cir-
cuit, and the capacitor behaves as an open circuit.

Example 9.2  

In the circuit of Figure 9.4, the switch  has been in the closed position for a long time and opens

at . Find  for , , and 

Figure 9.4. Circuit for Example 9.2
Solution:

We are not given an initial condition for this example; however, at  the inductor acts as a
short thereby shorting also the resistor. The circuit then is as shown in Figure 9.5.
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Natural Response of a Series RL circuit

Figure 9.5. Circuit for Example 9.2 at 

From the circuit of Figure 9.5, we observe that

and thus the initial condition has now been established as . We also observe that 

At , the  source and the resistor are disconnected from the circuit which now is
as shown in Figure 9.6.

Figure 9.6. Circuit for Example 9.2 at 

For the circuit of Figure 9.6,

or 

and

or 

We observe that 
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Circuit at t 0+=

20  iL t 
vR t 

t 0+=

iL t  I0e R L t– 3.2e
20 10 3– t–

= =

iL t  3.2e 20000t–
=

vR 0+  20 I0–  20 3.2– = =

vR 0+  64 V–=

vR 0+  vR 0 



Chapter 9  Natural Response

98 Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems  Modeling
Copyright © Orchard Publications

Example 9.3  

In the circuit shown in Figure 9.7, the switch  has been closed for a long time and opens at
. Find:

a.   for 

b.   at 

c.   at 

Figure 9.7. Circuit for Example 9.3
Solution:

a. At  the inductor acts as a short thereby shorting also the and  resistors. The
circuit then is as shown in Figure 9.8.

Figure 9.8. Circuit for Example 9.3 at 

Then,

and by the current division expression,

and thus the initial condition has been established as 

At , the  source and the resistor are disconnected from the circuit which now
is as shown in Figure 9.9.
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Natural Response of a Series RC Circuit

Figure 9.9. Circuit for Example 9.3 at 

From (9.2),

where 

and thus

or

Also,

or

and

or

9.2  Natural Response of a Series RC Circuit

In this section, we will find the natural response of the  circuit shown in Figure 9.10 where
the desired response is the capacitor voltage , and it is given that at , , that is,
the initial condition is .
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Figure 9.10. Circuit for determining the natural response of a series RC circuit

By KCL,
(9.8)

and with

and

by substitution into (9.8), we obtain the differential equation

                              (9.9)

As before, we assume a solution of the form

          
and by substitution into (9.9)

or
(9.10)

Following the same reasoning as with the  circuit, (9.10) will be satisfied when 
and therefore,

The constant  is evaluated from the initial condition, i.e.,  or .
Therefore, the natural response of the  circuit is 

(9.11)

We express (9.11) as
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Natural Response of a Series RC Circuit

and we sketch it as shown in Figure 9.11. 

Figure 9.11. Circuit for determining the natural response of a series RC circuit

From Figure 9.11 we observe that at , , and  as 

The initial rate (slope) of decay is found from the derivative of  evaluated at ,
that is,

and thus the slope of the initial rate of decay is 

Next, we define the time constant  as the time required for  to drop from unity to zero
assuming that the initial rate of decay remains constant. This constant rate of decay is repre-
sented by the straight line equation

(9.12)

and at , . Then,

or

(9.13)

Evaluating (9.11) at , we obtain
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or 
(9.14)

Therefore, in one time constant, the response has dropped to approximately 36.8% of its initial
value.

If we express the rate of decay in time constant intervals as shown in Figure 9.11, we find that
 after , that is, it reaches its final value after five time constants.

In the examples that follow, we will make use of the fact that

 (9.15)

Example 9.4  

In the circuit of Figure 9.12, the switch  has been in the closed position for a long time, and

opens at . Find  for , , and .

Figure 9.12. Circuit for Example 9.4
Solution:

At  the capacitor acts as an open. The circuit then is as shown in Figure 9.13.

Figure 9.13. Circuit for Example 9.4 at 

From the circuit of Figure 9.13 we observe that
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Natural Response of a Series RC Circuit

and thus the initial condition has been established as . We also observe that

At  the  source and the resistor are disconnected from the circuit which now
is as shown in Figure 9.14.

From (9.11),

Figure 9.14. Circuit for Example 9.4 at 
where

Then,

and

We observe that . This is true because the voltage across the capacitor cannot

change instantaneously; hence, the voltage across the resistor must be the same at  and at

.

Example 9.5  

In the circuit of Figure 9.15, the switch  has been in the closed position for a long time and
opens at . Find:

a.   for 

b.   at 
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c.   at 

Figure 9.15. Circuit for Example 9.5

Solution:

a. At  the capacitor acts as an open and the circuit then is as shown in Figure 9.16.

Figure 9.16. Circuit for Example 9.5 at 

From the circuit of Figure 9.16,

and using the current division expression, we obtain

Then,

and thus the initial condition has been established as .

At , the  source and the resistor are disconnected from the circuit which
now is as shown in Figure 9.17. 
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Figure 9.17. Circuit for Example 9.5 at 

From (9.11),

where

Then,

and

b.

or 

c.

or

Example 9.6  

For the circuit of Figure 9.18, it is known that .

a. To what value should the resistor  be adjusted so that the initial rate of change would be


b. What would then the energy in the capacitor be after two time constants?
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Figure 9.18. Circuit for Example 9.6
Solution:

a. The capacitor voltage decays exponentially as

and with the given values,

Now, if the initial rate (slope) is to be  then

and solving for  we obtain 

b. After two time constants the capacitor voltage will drop to the value of

Therefore, the energy after two time constants will be
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Summary

9.3 Summary

 The natural response of the inductor current  in a simple  circuit has the form

 where  denotes the value of the current in the inductor at 

 In a simple  circuit the time constant  is the time required for  to drop from unity
to zero assuming that the initial rate of decay remains constant, and its value is 

 In one time constant the natural response of the inductor current in a simple  circuit has
dropped to approximately  of its initial value.

 The natural response of the inductor current in a simple  circuit reaches its final value,
that is, it decays to zero, after approximately  time constants.

 The initial condition  can be established from the fact that the current through an inductor

cannot change instantaneously and thus  

 The natural response of the capacitor voltage  in a simple  circuit has the form

 where  denotes the value of the voltage across the capacitor at 

 In a simple  circuit the time constant  is the time required for  to drop from
unity to zero assuming that the initial rate of decay remains constant, and its value is 

 In one time constant the natural response of the capacitor voltage in a simple  circuit has
dropped to approximately  of its initial value.

 The natural response of capacitor voltage in a simple  circuit reaches its final value, that
is, it decays to zero after approximately  time constants.

 The initial condition  can be established from the fact that the voltage across a capacitor

cannot change instantaneously and thus 
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9.4 Exercises
Multiple Choice

1. In a simple  circuit the unit of the time constant  is

A. dimensionless

B. the millisecond

C. the microsecond

D. the reciprocal of second, i.e., 

E. none of the above

2. In a simple  circuit the unit of the term  is

A. the second

B. the reciprocal of second, i.e., 

C. the millisecond

D. the microsecond

E. none of the above

3. In the circuit below switch  has been closed for a long time while switch  has been open
for a long time. At . switch  opens and switch  closes. The current  for all 
is

A. 

B. 

C. 

D. 

E. none of the above

RL 

s 1–

RC 1 RC

s 1–

S1 S2

t 0= S1 S2 iL t  t 0

2 A

2e 100t–  A

2e 50t–  A

e 50t–  A

t 0=

t 0=

S1

S2 iL t 
5 
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2 A

100 mH
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Exercises

4. In the circuit below switch  has been closed for a long time while switch  has been open
for a long time. At . switch  opens and switch  closes. The voltage  for all

 is

A.

B. 

C. 

D. 

E. none of the above

5. In the circuit below switch  has been closed for a long time while switch  has been open
for a long time. At . switch  opens and switch  closes. The power absorbed by the
inductor at  will be

A.

B. 

C. 

D.

E. none of the above

S1 S2

t 0= S1 S2 vC t 

t 0

10 V

10e 10t–  V

10e t–  V

10e 0.1t–  V

t 0=

t 0=

S1

S2

vC t 

50 K 50 K

10 V
20 F+

+


S1 S2

t 0= S1 S2

t +=

0 w

1 w

2 w

0.2 w

t 0=

t 0=

S1

S2 iL t 
5 

5 

2 A

100 mH
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6. In the circuit below, switch  has been closed for a long time while switch  has been open
for a long time. At . switch  opens and switch  closes. The power absorbed by the
capacitor at  will be

A.

B.

C.

D.

E. none of the above

7. In a simple  circuit where  and  the time constant  is

A.

B.

C.

D.

E. none of the above

8. In a simple  circuit where  and  the time constant  is

A.

B.

C.

D.

E. none of the above

S1 S2

t 0= S1 S2

t +=

0 w

10 w

5 w

10 mw

t 0=

t 0=

S1

S2

vC t 

50 K 50 K

10 V
20 F+

+


RL R 10 M= L 10 H= 

1 s

100 s

1012 s

10 12–  s

RC R 10 M= C 10 F= 

100 s

0.01 s

100 s

0.01 s
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Exercises

9. In a simple  circuit the condition(s) ___ are always true.

A.  and 

B.  and 

C.  and 

D.

E. none of the above.

10. In a simple  circuit the condition(s) ___ are always true.

A.  and 

B.  and 

C.

D.  and 

E. none of the above.

Problems

1. In the circuit below, switch  has been closed for a long time and switch  has been open
for a long time. Then, at  switch  opens while  closes. Compute the current 
through switch  for .

2. In the circuit below, both switches  and  have been closed for a long time and both are
opened at . Compute and sketch the current  for the time interval 

RL

iL 0  iL 0  iL 0+ = = vL 0  vL 0  vL 0+ = =

iL 0  iL 0  iL 0+ = = iR 0  iR 0  iR 0+ = =

iL 0  iL 0  iL 0+ = = vR 0  vR 0  vR 0+ = =

iL 0  iL 0  iL 0+ = =

RC

vC 0  vC 0  vC 0+ = = iC 0  iC 0  iC 0+ = =

vC 0  vC 0  vC 0+ = = vR 0  vR 0  vR 0+ = =

vC 0  vC 0  vC 0+ = =

vC 0  vC 0  vC 0+ = = iR 0  iR 0  iR 0+ = =

S1 S2

t 0= S1 S2 iS2 t 

S2 t 0

15 V

8 

6 +
 2.5 mH

3 

10 

5 

iS2 t 

t 0=

t 0=

S2

S1

S1 S2

t 0= iL t  0 t 1 ms 
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3. In a series  circuit, the voltage  across the inductor is  and the current
 at  is . Compute the values of  and  for that circuit.

4. In the circuit below both switches  and  have been closed for a long time, while switch 
has been open for a long time. At   and  are opened and  is closed. Compute the
current  for .

5. In the circuit below switch  has been closed and  has been open for a long time. At 

switch  is opened and  is closed. Compute the voltage  for .

24 V

8 16 

+ 4 
10 

12 

+ 

12 V

6 

iL t 
t 0=

t 0=
S1

S2

10 3 mH

2 

RL vL vL 0.2e 2000t–  V=

iL t 0= iL 0  10 mA= R L

S1 S2 S3

t 0= S1 S2 S3

iL t  t 0

+

+



+

10 mV

1 K 2 K

20 mV

3 mH

10 K

5 K

iL t 

vin1 vout

t 0=

t 0=
S3

S1 S2

vin2+


t 0=

10 K

S1 S2 t 0=

S1 S2 vC2 t  t 0

12 V

10 K 50 K

+


+


6 F

10 K

3 F

+


t 0=

t 0=
vC2 t vC1 t 

S1 S2
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Exercises

6. In the circuit below switch  has been in the  position for a long time and at  is
thrown in the  position. Compute the voltage  across the capacitor for , and the
energy stored in the capacitor at .

7. In the circuit below switch  has been open for a long time and closes at . Compute
 for .

S A t 0=

B vC t  t 0

t 1 ms=

24 V

16 K4 K

+


+


S

5 F

2 K A

B

8 K
6 K

t 0=
vC t 

S t 0=

iSW t  t 0

36 V S

100 

3 

6 

10 F6 mH
+


iSW t 
t 0=
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8.
a. In the Simulink / SimPowerSystems model shown below, are the values shown in the Dis-

play blocks justified after the simulation command is issued?

b. When the Manual Switch block is double-clicked the model is as shown below. Are the
values shown in the Display blocks justified after the simulation command is issued?

2

4 6

Ground in
SimPower Systems

All resistor values in Ohms

Ground in
Simulink

VM = Voltage Measurement

CM=Current  Measurement

CVS = Controlled Voltage Source

Manual
Switch in
Simulink Continuous

powergui

v+
-

VM 2

v+
-

VM 1
0.01824

Display 4

18

Display 3

36

Display 2

72

Display 1

s

-
+

CVS

i
+

-CM 1

8
72V DC 

31 mH

i
+

-  CM 2

2

4 6

Ground in
SimPower Systems

All resistor values in Ohms

Ground in
Simulink

VM = Voltage Measurement

CM=Current  Measurement

CVS = Controlled Voltage Source

Manual
Switch in
Simulink Continuous

powergui

v+
-

VM 2

v+
-

VM 1
0

Display 4

0

Display 3

0

Display 2

72

Display 1

s

-
+

CVS

i
+

-CM 1

8
72V DC 

31 mH

i
+

-  CM 2
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Answers / Solutions to EndofChapter Exercises

9.5 Answers / Solutions to EndofChapter Exercises
Multiple Choice

1.  E  

2.  B

3.  D

4.  C

5.  A

6.  A

7.  D

8.  B

9.  D

10. C

Problems

1. The circuit at  is as shown below.

Replacing the circuit above with its Thevenin equivalent to the left of points  and  we find

that  and  and attaching the rest of the cir-

cuit to it we obtain the circuit below.

By voltagesource to currentsource transformation we obtain the circuit below.

 L R volt ampere ondsec   volt ampere  ond s sec= = =

t 0=

15 V

8 

6 +

3 

10 

5 




x

y iL 0 

x y

vTH
6

3 6+
------------ 15 10 V= = RTH

3 6
3 6+
------------ 8+ 10 = =

10 V
10 +



10 

vTH

RTH
5 

iL 0 
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and by inspection, , that is, the initial condition has been established as

The circuit at  is as shown below.

We observe that the closed shorts out the  and  resistors and the circuit simplifies to
that shown below.

Thus for , 

2. The circuit at  is as shown below and the mesh equations are

Then, 

10  5 
iL 0 

5 

10 
1 A

iL 0  0.5 A=

iL 0  iL 0  iL 0+  I0 0.5 A= = = =

t 0+=

8 

6 
2.5 mH

5 

iS2 t 

Closed
Switch

iL 0+  0.5 A=

6  8 

2.5 mH

5 
iS2 t 

iL 0+  I0 0.5 A= =

t 0 iS2 t  iL t – I0e R L t–– 0.5e 5 2.5 10 3– t–– 0.5e 2000t–  A–= = = =

t 0=

20i1            4i3         – 24=

16i2 6i3– 8i4– 12–=

4i1– 6i2– 20i3 10i4–+ 0=

8i2 10i3– 30i4+ 0=

iL 0  i3 i4–=
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Answers / Solutions to EndofChapter Exercises

and with MATLAB

R=[20  0  4  0; 0  16  6  8;  4  6  20  10;  0  8  10  30];...
V=[24  12  0  0]'; I=R\V; iL0=I(3)I(4); fprintf(' \n');...
fprintf('i1 = %4.2f A \t', I(1)); fprintf('i2 = %4.2f A \t', I(2));...
fprintf('i3 = %4.2f A \t', I(3)); fprintf('i4 = %4.2f A \t', I(4));...
fprintf('iL0 = %4.2f A \t', I(3)I(4)); fprintf(' \n'); fprintf(' \n');

i1 = 1.15 A i2 = -1.03 A i3 = -0.26 A i4 = -0.36 A iL0 = 0.10 A

Therefore,

Shown below is the circuit at  and the steps of simplification.

Thus for , 

and

To compute and sketch the current  for the time interval  we use MATLAB
as shown below.

t=(0: 0.01: 1)*10^(3);...
iLt=0.1.*10.^(3).*exp(5000.*t);...
plot(t,iLt); grid

24 V

8 

16 

+
 4  10  12 

+ 

12 V

6 
iL 0 

2 

i4i3

i2

i1

iL 0  iL 0  iL 0+  I0 0.1 A= = = =

t 0+=

6 

4 

8 

iL 0+ 
10
3 
------mH

10 
12  10  20 

10 

10
3 
------mHiL 0+ 

20/3 

20/3 

iL 0+ 
10
3 
------mH

t 0

iL t  I0e R L t– 0.1e 5000t–  A= =

iL t 0.4 ms=
0.1e 2– 0.0137 A 13.7 mA= = =

iL t  0 t 1 ms 
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3. From the figure below  for 

and with , by substitution 

or  Also, from , 

4. The circuit at  is as shown below and using the relation

that was developed in Example 4.11 we have

and

vL RiL 0.2e 2000t–= = t 0

iL vL
++

 
R L

iL 0  10 mA= R 10 10 3–  0.2e 0– 0.2= =

R 0.2 10 2– 20 = = R L 2000= L 20 2000 0.01 10 mH= = =

t 0=

vout Rf
vin1
Rin1
----------

vin2
Rin2
----------+

 
 
 

–=

vout 10 K 10 2–

1 K
-------------- 2 10 2–

2 K
--------------------+ 

 – 10 2 10 2–– 0.2 V–= = =

iL 0  I0 i5 K
0.2 V–

5 K
----------------- 40 10 6–  A– 40 A–= = = = =
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The circuit at  is as shown below where  with the direction shown.

Then for 

with the direction shown.

5. The circuit at  is as shown below. As we’ve learned in Chapter 5, when a circuit is
excited by a constant (DC) source, after sufficient time has elapsed the capacitor behaves as
an open and thus the voltage across the capacitor  is  as shown.

The circuit at  is as shown below where the  represents the voltage across capaci-
tor .

+


+



+



1 K 2 K

20 mV
5 K

iL t 

vin1 vout
vin2

+


10 K

t 0+= iL 0+  40 A=

10 K

3 mH

5 K
iL 0+ 

+

+




0.2V
3 mH

15 K
iL 0+ 

++



t 0

iL t  I0e R L t 40 10 6– e 15 103 3 10 3– t 40e 5 106t–  A= = =

t 0=

C1 12 V

12 V

10 K

+


6 F

10 K

+

 vC1 0  12V=
C1

t 0+= 12 V
C1
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Now,  where  and 

Then,  and thus 

6. The circuit at  is as shown below.

Because the capacitor behaves as an open, there is no current in the . Then,

The circuit at  is as shown below where . 

Series and parallel resistances reduction yields

and the circuit for  reduces to the one shown below. 

12 V

50 K

+
 +


6 F

3 F
+


vC2 t 
C1 C2

vC1

vC2 t  vC1e
1 RCeq –

= vC1 12 V= Ceq
C1 C2
C1 C2+
------------------ 6 3

6 3+
------------ 2 F= = =

1 RCeq 1 5 104 2 10 6–  10= = vC2 t  12e 10t–=

t 0=

24 V

16 K4 K

+
+

5 F

2 K

6 K vC 0 

16 K

vC 0  V0 v6K
6 K

6 K 6 K+
----------------------------------- 24 12 V= = = =

t 0+= vC 0+  12 V=

16 K4 K

+

5 F

8 K 6 K vC 0+ 

Req 8 K 4 K+  6 K  16 K+ 12 6
12 6+
--------------- 16+ 4 16+ 20 K= = = =

t 0
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Now, ,  and . Also,

7. The circuit at  is as shown below.

Then, 

and

The circuit at  is as shown below and the current  through the switch is the sum

of the currents due to the  voltage source, due to , and due to

.

+

5 F
20 K vC t 

ReqC 2 104 5 10 6– 0.1= = 1 ReqC 10= vC t  V0e 10t– 12e 10t–= =

WC 1 ms

1
2
---CvC

2 t 
1 ms

0.5 5 10 6– 144e 20t– t 1 ms=
= =

360 10 6– e 20t–
t 1 ms=

0.35 mJ==

t 0=

36 V

100 

3 

6 

+


iL 0  +


vC 0 

iL 0  36 V
6 3+  

------------------------ 4 A= =

vC 0  3 iL 0  3 4 12 V= = =

t 0+= iSW t 

36 V iL 0+  4 A=

vC 0+  12 V=

36 V

100 

3 

6 

10 F

6 mH
+

iSW t  vC 0+  12 V=

+

iL 0+  4 A=
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We will apply superposition three times. Thus for :

I. With the  voltage source acting alone where  (open) and  (shorted), the
circuit is as shown below.

Since the  is shorted out, we have

II. With the  current source acting alone the circuit is as shown below where we
observe that the  and  resistors are shorted out and thus  where

, , , ,  and thus

III. With the  voltage source acting alone the circuit is as shown below
where we observe that the  resistor is shorted out. 

t 0

36 V iL 0= vC 0=

36 V

100 

3 

6 

+ i'SW t 
vC t  0=

iL t  0=

100 

i'SW t  36 6 6 A= =

iL 0+  4 A=

6  100  i''SW t  iL t –=

iL t  I0e R L t–= I0 4 A= R 3 = L 6 mH= R L 3 6 10 3–  500= =

i''SW t  iL t – 4e 500t––= =

100 

3 

6 

6 mH
iSW t  vC t  0 V=iL 0+  4 A=

vC 0+  V0= 12 V=

6 
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and thus
.

Then, 

Therefore, the total current through the closed switch for  is 

8.
a. With the Manual Switch block in the upper position, all resistors are in parallel with the

72 V voltage source and thus the voltages across the 8, 2, and 4 Ohm resistors are 72
volts. Thus, the current through the 2 Ohm resistor is , and the current
through the 4 Ohm resistor is . It is observed that immediately after the
simulation command is issued, the current through the inductor resists any change, and
finally stabilizes at . The 6 and 3 Ohm resistors are shorted by the inductor.

b. With the Manual Switch block in the lower position, all resistors and the inductor to the
right of the switch are grounded and thus all readings are zero. The 8 Ohm resistor is still
in parallel with the 72 V voltage source and thus the voltages across it is 72 volts. 

100 

3 

6 

i'''SW t  vC 0+  12 V=
iL t  0=

vC t  V0e 1 RC t– 12e 1 100 10 5–  t– 12e 1000t–= = =

i'''SW t  vC t  100  0.12e 1000t–= =

t 0

iSW t  i'SW t  i''SW t  i'''SW t + + 6 4e 500t–– 0.12e 1000t–  A+= =

72 2 36 amps=

72 4 18 amps=

18 amps
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Chapter 10

Forced and Total Response in RL and RC Circuits

his chapter discusses the forced response of electric circuits.The term “forced” here implies
that the circuit is excited by a voltage or current source, and its response to that excitation
is analyzed. Then, the forced response is added to the natural response to form the total

response.

10.1 Unit Step Function 

A function is said to be discontinuous if it exhibits points of discontinuity, that is, if the function
jumps from one value to another without taking on any intermediate values.

A wellknown discontinuous function is the unit step function * which is defined as

(10.1)

It is also represented by the waveform in Figure 10.1.

Figure 10.1. Waveform for 

In the waveform of Figure 10.1, the unit step function  changes abruptly from 0 to 1 at

. But if it changes at  instead, its waveform and definition are as shown in Figure
10.2.

Figure 10.2. Waveform and definition of 

* In some books, the unit step function is denoted as , that is, without the subscript 0. In this text we will reserve this des-
ignation for any input.

T
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0 t t0

1 t t0



=
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Likewise, if the unit step function changes from  to  at  as shown in Figure 10.3, it is

denoted as 

Figure 10.3. Waveform and definition of 

Other forms of the unit step function are shown in Figure 10.4.

Figure 10.4. Other forms of the unit step function

Unit step functions can be used to represent other timevarying functions such as the rectangular
pulse shown in Figure 10.5. This pulse is represented as .

Figure 10.5. A rectangular pulse expressed as the sum of two unit step functions

0 1 t t0–=

u0 t t0+ 

u0 t t0+ 
0 t t0–

1 t t0–
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1 u0 t t0+ 
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0
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t

t t
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0 0t t





(a) (b) (c)

(d) (e) (f)
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A A A
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A– u0 t  A– u0 t T–  A– u0 t T+ 

Au0 t– T+  Au0 t– T– 

A– u0 t–  A– u0 t– T+  A– u0 t– T– 
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0 0 0
t t t

1

1

1
u0 t 
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Unit Step Function

The unit step function offers a convenient method of describing the sudden application of a volt-
age or current source. For example, a constant voltage source of  applied at , can be
denoted as . Likewise, a sinusoidal voltage source  that is applied to

a circuit at , can be described as . Also, if the excitation in a
circuit is a rectangular, or triangular, or sawtooth, or any other recurring pulse, it can be repre-
sented as a sum (difference) of unit step functions.

Example 10.1  
Express the square waveform of Figure 10.6 as a sum of unit step functions. The vertical dotted
lines indicate the discontinuities at , and so on.

Figure 10.6. Square waveform for Example 10.1

Solution:

The line segment  has height , starts at , and terminates at  on the time axis.
Then, as in Figure 10.5, this segment can be expressed as

(10.2)

The line segment  has height , starts at , on the time axis, and terminates at .
This segment can be expressed as 

(10.3)

Line segment  has height , starts at , and terminates at . This segment can be
expressed as 

(10.4)

Line segment  has height , starts at , and terminates at . This segment can
be expressed as 

(10.5)

Thus, the square waveform of Figure 10.6 can be expressed as the summation of (10.2) through
(10.5), that is,

24 V t 0=

24u0 t  V v t  Vm t Vcos=

t t0= v t  Vm tcos u0 t t0–  V=

T 2T 3T

A

A

tT 3T2T
0









v t 

A t 0= t T=

v1 t  A u0 t  u0 t T– – =

A– t T= t 2T=

v2 t  A– u0 t T–  u0 t 2T– – =

A t 2T= t 3T=

v3 t  A u0 t 2T–  u0 t 3T– – =

A– t 3T= t 4T=

v4 t  A– u0 t 3T–  u0 t 4T– – =
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(10.6)

Combining like terms, we obtain

(10.7)

Example 10.2  
Express the symmetric rectangular pulse of Figure 10.7 as a sum of unit step functions.

Figure 10.7. Symmetric rectangular pulse for Example 10.2

Solution:

This pulse has height , it starts at , and terminates at . Therefore, with refer-
ence to Figures 10.3 and 10.4 (b), we obtain

(10.8)

Example 10.3  
Express the symmetric triangular waveform shown in Figure 10.8 as a sum of unit step functions.

Figure 10.8. Symmetric triangular waveform for Example 10.3

v t  v1 t  v2 t  v3 t  v4 t + + +=

A u0 t  u0 t T– –  A– u0 t T–  u0 t 2T– – =

+A u0 t 2T–  u0 t 3T– –  A– u0 t 3T–  u0 t 4T– – 

v t  A u0 t  2u0 t T– – 2u0 t 2T–  2u0 t 3T– – + + =

A

T/2
t

0 T/2

i t 

A t T 2–= t T 2=

i t  Au0 t T
2
---+ 

  Au0 t T
2
---– 

 – A u0 t T
2
---+ 

  u0 t T
2
---– 

 –= =

1

T/2
t

0 T/2

v t 



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling 105
Copyright © Orchard Publications

Unit Step Function

Solution:

As a first step, we derive the equations of the linear segments  and  shown in Figure 10.9.

Figure 10.9. Equations for the linear segments of Figure 10.8

For line segment ,

(10.9)

and for line segment ,

(10.10)

Combining (10.9) and (10.10), we obtain

(10.11)

Example 10.4  
Express the waveform shown in Figure 10.10 as a sum of unit step functions.

Figure 10.10. Waveform for Example 10.4
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Solution:

As in the previous example, we first find the equations of the linear segments  and  shown in
Figure 10.11.

Figure 10.11. Equations for the linear segments of Figure 10.10

Following the same procedure as in the previous examples, we obtain

Multiplying the values in parentheses by the values in the brackets, we obtain

or

and combining terms inside the brackets, we obtain

(10.12)

Two other functions of interest are the unit ramp function and the unit impulse or delta function. We
will discuss the unit ramp function first.

10.2 Unit Ramp Function 

The unit ramp function, denoted as , is defined as

(10.13)

where  is a dummy variable.

t

1

2

3

1 2 30





v t 

2t 1+ t– 3+
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We can evaluate the integral of (10.13) by considering the area under the unit step function
 from  to  as shown in Figure 10.12.

Figure 10.12. Area under the unit step function from  to  

Therefore,

(10.14)

and since  is the integral of , then  must be the derivative of , i.e.,

(10.15)

Higher order functions of  can be generated by repeated integration of the unit step function.
For example, integrating  twice and multiplying by , we define  as

(10.16)

Similarly,

(10.17)

and in general,

(10.18)

Also,
(10.19)

10.3 Delta Function 

The unit impulse or delta function, denoted as , is the derivative of the unit step . It is
generally defined as
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(10.20)

where
(10.21)

To better understand the delta function , let us represent the unit step  as shown in Fig-
ure 10.13 (a). 

Figure 10.13. Representation of the unit step as a limit.

The function of Figure 10.13 (a) becomes the unit step as . Figure 10.13 (b) is the deriva-
tive of Figure 10.13 (a), where we see that as ,  becomes unbounded, but the area of
the rectangle remains . Therefore, in the limit, we can think of  as approaching a very large
spike or impulse at the origin, with unbounded amplitude, zero width, and area equal to .

Two useful properties of the delta function are the sampling property and the sifting property. 

The Sampling Property of the Delta Function states that 

(10.22)

or
(10.23)

that is, multiplication of any function  by the delta function  results in sampling the func-
tion at the time instants where the delta function is not zero. The study of discretetime systems
is based on this property.

The Sifting Property of the Delta Function states that

(10.24)

that is, if we multiply any function  by  and integrate from to , we will obtain
the value of  evaluated at .
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The proofs of (10.22) through (10.24) and additional properties of the delta function are beyond
the scope of this book. They are provided in Signals and Systems with MATLAB Computing and
Simulink Modeling, ISBN 9781934404119.

MATLAB has two builtin functions for the unit step and the delta functions. These are desig-
nated by the names of the mathematicians who used them in their work. The unit step  is
called Heavyside(t) and the delta function  is called Dirac(t). Shown below are examples of
how they are being used.

syms k a t
u=k*sym('Heaviside(ta)')  % Create unit step function at t=a

u =
k*Heaviside(t-a)

d=diff(u)  % Compute the derivative of the unit step function

d =
k*Dirac(t-a)

int(d)  % Integrate the delta function

ans =
Heaviside(t-a)*k

Example 10.5  
For the circuit shown in Figure 10.14, the inputs are applied at different times as indicated.  

Figure 10.14. Circuit for Example 10.5

u0 t 

 t 
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+


+
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R f
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Compute  at:

a.  

b.  

c.  

Solution:

Let us first sketch the step functions for each of the inputs.

a. At  only the signal due to  is active; therefore, exchanging the current source and
its parallel resistance with an equivalent voltage source with a series resistance, the input cir-
cuit becomes as shown in Figure 10.15.

Figure 10.15. Input to the circuit of Example 10.5 when  is acting alone

Replacing the circuit of Figure 10.15 with its Thevenin equivalent, we obtain the network of
Figure 10.16.

vout
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t 0.5 s–= iin
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To op amp’s inverting input
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iin
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Figure 10.16. Simplified input to the circuit of Example 10.5 when  is acting alone

Now, we can compute  with the circuit of Figure 10.17.

Figure 10.17. Circuit for computation of 

 (10.25)

b. At  the active inputs are

and

Since we already know the output due to  acting alone, we will find the output due to 
acting alone and then apply superposition to find the output when both of these inputs are
present. Thus, with the input  acting alone, the input circuit is as shown in Figure 10.18.
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Figure 10.18. Input to the circuit of Example 10.5 when  is acting alone

Replacing this circuit of Figure 10.18 with its Thevenin equivalent, we obtain the network of
Figure 10.19.

Figure 10.19. Simplified input to the circuit of Example 10.5 when  is acting alone

Now, we can compute  with the circuit of Figure 10.20.

Figure 10.20. Circuit for computation of 

(10.26)

Therefore, from (10.25) and (10.26) the op amp’s output voltage at  is

(10.27)
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c. At  the active inputs are

and

Since we already know the output due to  acting alone, we will find the output due to 
acting alone and then apply superposition to find the output when both of these inputs are
present. Thus, with the input  acting alone, the input circuit is as shown in Figure 10.21.

Figure 10.21. Input to the circuit of Example 10.5 when  is acting alone

Replacing this circuit of Figure 10.21 with its Thevenin equivalent, we obtain the network of
Figure 10.22.

Figure 10.22. Simplified input to the circuit of Example 10.5 when  is acting alone

Now, we can compute  with the circuit of Figure 10.23.

(10.28)

Therefore, from (10.26) and (10.28) the op amp’s output voltage at  is

(10.29)
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Figure 10.23. Circuit for computation of 

10.4 Forced and Total Response in an RL Circuit

For the circuit shown in Figure 10.24(a),  is constant. We will derive an expression for the

inductor current  for  given that the initial condition is . Here, the
inductor current  will be referred to as the total response.

The switch in Figure 10.24 (a) can be omitted if we multiply the excitation  by the unit step
function  as shown in Figure 10.24 (b).

Figure 10.24. Circuits for derivation of the total response 

We begin by applying KVL, that is,

(10.30)

The initial condition states that ; thus for , 

For , we must solve the differential equation 

(10.31)
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It is shown in differential equations textbooks that a differential equation such as the above, can
be solved by the method of separation of the variables. Thus, rearranging (10.31), separating the
variables, and integrating we obtain:

or

or

and referring to a table of integrals, we obtain

 (10.32)

The constant  in (10.32) represents the constant of integration of both sides and it can be eval-
uated from the initial condition, and as we stated in the previous chapter

(10.33)

Therefore, at  

and by substitution into (10.32), we obtain
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------------------- dt=
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  L
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The general expression for all t is

(10.34)

We observe that the right side of (10.34) consists of two terms,  which is constant called

the forced response, and the exponential term  that has the same form as that of the

previous chapter which we call the natural response.

The forced response  is a result of the application of the excitation (forcing) function
 applied to the  circuit. This value represents the steadystate condition reached as

 since the inductor  at this state behaves as a short circuit.

The amplitude of the natural response is  and depends on the values of  and .

The summation of the forced response and the natural response constitutes the total response or
complete response, that is,

 

or 

(10.35)

Now, let us return to the  circuit of Figure 10.24 to find the complete (total) response  by
the summation of the forced and the natural responses as indicated in (10.35).

The forced response  is found from the circuit of Figure 10.25 where we let 

Figure 10.25. Circuit for derivation of the forced response 

Then, from the circuit of Figure 10.25,
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(10.36)

Next, we need to find the natural response. This is found by letting the excitation (forcing func-
tion)  go to zero as shown in the circuit of Figure 10.26. 

Figure 10.26. Circuit for derivation of the natural response 

We found in Chapter 9 that the natural response  has the exponential form

 (10.37)

Therefore, the total response is

(10.38)

where the constant  is evaluated from the initial condition 

Substitution of the initial condition into (10.38) yields

or

and with this substitution (10.38) is rewritten as

 (10.39)

and this is the same as (10.34).

We can sketch  easily if we sketch  and  separately and then add these. This

is done with MATLAB and the plots are shown in Figure 10.27.
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Figure 10.27. Curves for forced, natural, and total responses in a series RL circuit

The curves in Figure 10.27 were created with the following MATLAB script:

x=0:0.01:5; Vs=1; R=1; L=1; y=(Vs./R).*exp(R.*x./L); z=Vs./R+y; plot(x,y,x,z)

The time constant  is defined as before, and its numerical value can be found from the circuit
constants  and  as follows:

The equation of the straight line with  is found from

Assuming constant rate of change as shown in Figure 10.27, at 

and thus

or

as before. Also, from (10.39)

or

(10.40)
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Therefore, the current in a series  circuit which has been excited by a constant source, in one
time constant has reached  of its final value.

Example 10.6  

For the circuit of Figure 10.28, compute the energy stored in the  inductor at
.

Figure 10.28. Circuit for Example 10.6

Solution: 

For , the circuit is as shown in Figure 10.29 where the  resistor is shorted out by the
inductor.

Figure 10.29.  Circuit of Example 10.6 for 

From the circuit of Figure 10.29,

and this value establishes our initial condition as

(10.41)

For , the circuit is as shown in Figure 10.30.

Figure 10.30. Circuit of Example 10.6 for 
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We will compute  from the relation

The forced component  is found from the circuit at steady state conditions. It is shown in Figure
10.31 where the voltage source and its series resistance have been exchanged for an equivalent
current source with a parallel resistor. The resistors have been shorted out by the inductor.

Figure 10.31. Circuit of Example 10.6 under steadystate conditions

By inspection,  or
(10.42)

To find  we short the voltage source and open the current source. The circuit then reduces to
that shown in Figure 10.32.

Figure 10.32. Circuit of Example 10.6 for determining the natural response

The natural response of  circuit of Figure 10.32 is

or
(10.43)

The total response is the summation of (10.42) and (10.43), that is,

(10.44)

Using the initial condition of (10.42), we obtain

or

Finally, by substitution into (10.44) we obtain
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(10.45)

and the energy stored in the inductor at  is

 (10.46)

10.5  Forced and Total Response in an RC Circuit

For the circuit shown in Figure 10.33 (a),  is constant. We will derive an expression for the

capacitor voltage  for  given that the initial condition is . Here, the capac-
itor voltage  will be referred to as the total response.

Figure 10.33. Circuits for derivation of the total response  

The switch in Figure 10.33 (a) can be omitted if we multiply the excitation  by the unit step
function  as shown in Figure 10.33 (b).

We begin by applying KVL, that is,

(10.47)

and since

we can express  as

By substitution into (10.47), we obtain

(10.48)
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The initial condition states that ; thus for , 

For , we must solve the differential equation 

(10.49)

Rearranging, separating variables and integrating, we obtain:

(10.50)

or

where k represents the constant of integration of both sides of (10.51). Then,

or
(10.51)

The constant  can be evaluated from the initial condition  where by sub-
stitution into (10.51) we obtain

or

Therefore, the solution of (10.49) is 

(10.52)

As with the  circuit of the previous section, we observe that the solution consists of a forced
response and a natural response. The constant term  is the voltage attained across the capaci-
tor as  and represents the steadystate condition since the capacitor  at this state behaves
as an open circuit.

The amplitude of the exponential term natural response is 
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The summation of the forced response and the natural response constitutes the total response,
i.e.,

or
(10.53)

Now, let us return to the  circuit of Figure 10.33(b) to find the complete (total) response by
summing the forced and the natural responses indicated in (10.53).

The forced response  is found from the circuit of Figure 10.34 where we let .

Figure 10.34. Circuit for derivation of the forced response 

Then, from the circuit of Figure 10.34,

(10.54)

Next, we need to find the natural response and this is found by letting the excitation (forcing
function)  go to zero as shown in Figure 10.35.

Figure 10.35. Circuit for derivation of the natural response 

We found in Chapter 9 that the natural response  has the exponential form

and thus the total response is

(10.55)

where the constant  is evaluated from the initial condition 
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vC t  vCf vCn+ VS Ae 1 RC t–+= =

A vC 0  vC 0  vC 0+  0= = =
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Substitution of the initial condition into (10.55) yields

or

With this substitution (10.55) is rewritten as

(10.56)

and this is the same as (10.52).

We can sketch  easily if we sketch  and  separately and then add these.

This is done with MATLAB and the plots are shown in Figure 10.36.

Figure 10.36. Curves for forced, natural, and total responses in a series RC circuit

The time constant  is defined as before, and its numerical value can be found from the circuit
constants  and  as follows:

The equation of the straight line with  is found from

Assuming constant rate of change as shown in Figure 10.36, at 

and thus

vC 0+  0 VS Ae0–= =

A VS–=

vC t  VS VSe 1 RC t–– u0 t =

vCtotal VS VSe 1 RC t–
–

Time Constants

Pe
rc

en
t V

C
/V

S

VSe 1 RC––

vC t  VS VSe 1 RC––=

0.632VC VS

vC t  VS RC t=




R C

slope VS RC=

d
dt
-----vC t 

t 0=

1
RC
-------- VS e 1 RC t–

t 0=

VS
RC
--------= =

t =

vC t  VS=
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or

as before. Also, from (10.56)

or

(10.57)

Therefore, the voltage across a capacitor in a series RC circuit which has been excited by a con-
stant source, in one time constant has reached  of its final value.

Example 10.7  
For the circuit shown in Figure 10.37 find:

a.   and 

b.   and 

c.   and 

d.   for 

Figure 10.37. Circuit for Example 10.7

Solution:

a. No initial condition is given so we must assume that sufficient time has elapsed for steady
state conditions to exist for all  We assume time is in seconds since we are not told
otherwise. Then, since there is no voltage or current source present to cause current to flow,
we obtain

VS
VS
RC
--------=

 RC=

vC   VS VS– e 1 RC RC– VS 1 e 1–
–  VS 1 0.368– = = =

vC   0.632VS=

63.2%

vC 1  iC 1 

vC 1+  iC 1+ 

vC t 10 min.=  iC t 10 min.= 

iC t  t 1

C
+

60 K
10 F

20 K

10 K

9u0 t 1–  mA

vC t 
iC t 

t 1 s.

vC 1  0=
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and

b. Exchanging the current source and the  resistor with a voltage source with a 

series resistor, the circuit at  is as shown in Figure 10. 38.

Figure 10.38. Circuit for Example 10.7 at 

Now, since , no current flows through the   resistor at ; if it did,
the voltage across the capacitor would change instantaneously, and as we know, this is a physi-

cal impossibility. Instead, the current path is through the capacitor which at exactly 

acts as a short circuit since . Therefore,

(10.58)

c. The time  is the essentially the same as , and at this time the capacitor volt-
age  is constant and equal to the voltage across the  resistor, i.e.,

Also,

d. For 

where from part (c)

and

With the voltage source shorted in the circuit of Figure 10.38, the equivalent resistance is

or

iC 1  0=

10 K 10 K

t 1+=


+

60 K 20 K
10 K

+
iC t 

C 10 F
vC t 

9u0 t 1–  V

t 1+=

vC 1+  vC 1 = 60 k t 1+=

t 1+=

vC 1+  vC 1  0= =

iC 1+  90 V
20 10+  K

---------------------------------- 3 mA= =

t 10 min= t =

vC t 10 min=  60 K

vC t 10 min=  vC  = v60 K
90 V

20 10 60+ +  K
----------------------------------------------- 60 K 60 V= = =

iC t  t =
C

dvC

dt
--------- 0= =

t 1
iC t 

t 1
iC f iCn+=

i
Cf   0=

iCn Ae
1 ReqC  t–

=

Req 10 K 20 K+  || 60 K 20 K= =
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Therefore,

(10.59)

We can evaluate the constant  using (10.59) where

or

and by substitution into (10.59),

 (10.60)

Example 10.8  
In the circuit shown in Figure 10.39, the switch is actually an electronic switch and it is open for

 and closed for . Initially, the capacitor is discharged, i.e., . Compute and
sketch the voltage across the capacitor for two repetitive cycles.

Figure 10.39. Circuit for Example 10.8
Solution:

With the switch in the open position the circuit is as shown in Figure 10.40.

Figure 10.40. Circuit for Example 10.8 with the switch in the open position

ReqC 20 10 3 10 10 6– 0.2 s= =

iCn Ae 1 0.2  t– Ae 5t–= =

A

iC 1+  3 mA Ae 5–= =

A 3 10 3–
e 5–

-------------------- 0.445= =

iC t 
t 1

iCf iCn+ iCn 0.445e 5t– u0 t 1–  mA= = =

15 s 15 s vC 0  0=

+


C


+

6 V

1 K

350 

250  

0.02 F vC t 
VS t 

+


C



+

6 V

1 K 250  

0.02 F
Switch

vC t 
VS

open
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For the time period  the time constant for the circuit of Figure 10.40 is

Thus, at the end of the first period when the switch is open, the voltage across the capacitor is

(10.61)

Next, with the switch closed for  the circuit is as shown in Figure 10.41.

Figure 10.41. Circuit for Example 10.8 with the switch in the closed position

Replacing the circuit to the left of points x and y by its Thevenin equivalent, we obtain the circuit
shown in Figure 10.42.

Figure 10.42. Thevenin equivalent circuit for the circuit of Figure 10.41

The time constant for the circuit of Figure 10.42 where the switch is closed, is

The capacitor voltage  for the circuit of Figure 10.42 is

(10.62)

and the constant  is evaluated from initial condition at  which by (10.62) is

Then,

0 topen 15 s 

open ReqC 1 K 0.25 K+  0.02 10 6– 25 s= = =

vC t 
t 15 s=

vCf vCn+ VS VS e t RC–
– 6 6e 4 104 t–– 6 6e 0.6–– 2.71 V= = = = =

15 tclosed 30 s 

+


C



+

6 V

1 K

350 

250  

0.02 F

x

ySwitch





vC t 

closed
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+


C


+

1.56 V

259  250  

0.02 F

VTH
350
1350
------------ 6 1.56 V= =

RTH
350 1000

1350
--------------------------- 259 = =

vC t 

VTH

RTH

closed ReqC 259  250 +  0.02 10 6– 10.2 s= = =

vC t 

vC t  vCf vCn+ VTH A1e 1 RC  t 15s– –
+ 1.56 A1e 1 10.2s  t 15s– –

+= = =

A1 t 15 s=

vC t 
t 15 s=

2.71 V=

vC t 
15 t 30   s

2.71 1.56 A1e 1 10.2s  15 15– s–
+= =
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or

and by substitution into (10.62)

(10.63)

At the end of the first period when the switch is closed, the voltage across the capacitor is

(10.64)

For the next cycle, that is, for  when the switch is open, the time constant

 is the same as before, i.e.,  and the capacitor voltage is

(10.65)

The constant  is computed with (10.65) as

or

and by substitution into (10.65)

(10.66)

At the end of the second period when the switch is open, the voltage across the capacitor is

(10.67)

The second period when the switch is closed is . Then,

(10.68)

and with (10.67) we obtain

Therefore,

 (10.69)

and
(10.70)

A1 1.15=

vC t 
15 t 30   s

1.56 1.15e 1 10.2s  t 15s– –
+=

vC t 
t 30 s=
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+ 1.82 V= =

30 topen 45 s 

open open 25 s=

vC t  vCf vCn+ 6 A2e 1 25s  t 30s– –
+= =

A2

vC t 
t 30 s=

1.82 6 A2e 1 25s  30 30– s–
+= =

A2 4.18–=

vC t 
30 t 45   s

6 4.18e 1 25s  t 30s– –
–=

vC t 
t 45 s=

6 4.18– e 1 25s  45 30– s– 3.71 V= =

45 tclosed 60 s 

vC t 
45 t 60   s

vCf vCn+ VTH A3e 1 RC  t 45– –+ 1.56 A3e 1 10.2s  t 45s– –+= = =

A3 2.15=

vC t 
45 t 60   s

1.56 2.15e 1 10.2s  t 45s– –+=

vC t 
t 60 s=

1.56 2.15e 1 10.2s  60 45– s–+ 2.05 V= =
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Repeating the above steps for the third open and closed switch periods, we obtain

(10.71)

and 
(10.72)

Likewise,
(10.73)

and
(10.74)

and using the MATLAB script below we obtain the waveform shown in Figure 10.43.

t0=(0:0.01:15)*10^(6);
v0=66.*exp(4.*10.^4.*t0);
t1=(15:0.01:30)*10^(6);
v1=1.56+1.15.*exp((1./(10.2.*10.^(6))*(t115.*10.^(6))));
t2=(30:0.01:45)*10^(6);
v2=64.18.*exp((1./(25.*10.^(6))*(t230.*10.^(6))));
t3=(45:0.01:60)*10^(6);
v3=1.56+2.15.*exp((1./(10.2.*10.^(6))*(t345.*10.^(6))));
t4=(60:0.01:75)*10^(6);
v4=63.95.*exp((1./(25.*10.^(6))*(t460.*10.^(6))));
t5=(75:0.01:90)*10^(6);
v5=1.56+2.27.*exp((1./(10.2.*10.^(6))*(t575.*10.^(6))));
plot(t0,v0,t1,v1,t2,v2,t3,v3,t4,v4,t5,v5)

Figure 10.43. Voltage across the capacitor for the circuit of Example 10.8

vC t 
60 t 75   s

6 3.95e 1 25s  t 60s– ––=

vC t 
t 75 s=

3.83 V=

vC t 
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1.56 2.27e 1 10.2s  t 75s– –+=

vC t 
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2.08 V=
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Summary

10.6 Summary

 The unit step function  is defined as

and it is represented by the waveform below.

 Unit step functions can be used to represent other timevarying functions.

 The unit step function offers a convenient method of describing the sudden application of a
voltage or current source.

 The unit ramp function , is defined as the integral of the unit step function, that is,

where  is a dummy variable. It is also expressed as

 The unit impulse or delta function, denoted as , is the derivative of the unit step . It
is defined as

or

and

 In a simple  circuit that is excited by a voltage source  the current is

u0 t 

u0 t 
0 t 0
1 t 0




=

1

0

u0 t 

u1 t 

u1 t  u0   d
–

t

=

u1 t 
0 t 0
t t 0




=

 t  u0 t 

   d
dt
-----u0 t =

   d
–

t

 u0 t =

 t  0  for all  t 0=

RL VS u0 t 

i t  if in+
VS
R
------
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R

------e R L  t–
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  u0 t = =
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where the forced response  represents the steadystate condition reached as . Since the
inductor  at this state behaves as a short circuit, . The natural response  is the

second term in the parenthesis of the above expression, that is, 

 In a simple  circuit that is excited by a voltage source  the voltage across the capac-
itor is

where the forced response  represents the steadystate condition reached as . Since

the capacitor  at this state behaves as an open circuit, . The natural response 

is the second term in the parenthesis of the above expression, that is, . The

constant  must be evaluated from the total response.

if t 

L if VS R= in

in VS R– e R L  t–
=

RC VS u0 t 

vC t  vCf  vCn+ VS Ae 1 RC t–+ u0 t = =

vCf  t 

C vCf  VS= vCn

vCn Ae 1 RC t–=

A
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Exercises

10.7 Exercises
Multiple Choice

1. For the circuit below the time constant is

A.

B.

C.

D.

E. none of the above

2. For the circuit below the time constant is

A.

B.

C.

D.

E. none of the above

3. The forced response component  of the inductor current for the circuit below is
A.

B.

C.

D.

E. none of the above

0.5 ms

71.43 s

2 000 s

0.2 ms

+


12u0 t  V

4 

12 

2 

1 mH

50 ms

100 ms

190 ms

78.6 ms

5u0 t  A
10 F6 K

4 K

10 K

5 K

iLf

16 A

10 A

6 A

2 A
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4. The forced response component  of the capacitor voltage for the circuit below is

A.

B.

C.

D.

E. none of the above

5. For the circuit below . For  the total response of  is

A.

B.

C.

D.

E. none of the above

6. For the circuit below . For  the total response of  is

16u0 t  A
4  12 

5 

1 mH

vCf

10 V

2 V

32 3  V

8 V

16u0 t  V

4 K

12 K

2 K

1 F

iL 0  2 A= t 0 iL t 

6 A

6e 5000t–  A

6 6e 5000t–  A+

6 4– e 5000t–  A

16u0 t  A
4  12 

5 

1 mH
iL t 

vC 0  5 V= t 0 vC t 



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling 1035
Copyright © Orchard Publications

Exercises

A.

B.

C.

D.

E. none of the above

7. For the circuit below . For  the total response of  is

A.

B.

C.

D.

E. none of the above

8. For the circuit below . For  the total response  is

A.

B.

C.

D.

E. none of the above

12 V

10 5e 500t–  V–

12 7e 200t–  V–

12 7e 200t–  V+

+
16u0 t  V

4 K
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+
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iL 0  2 A= t 0 vL t 

20e 5000t–  V
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32e 8000t–  V–

32e 8000t–  V

16u0 t  A
4  12 

5 

1 mH vL t 
+



vC 0  5 V= t 0 iC t 

1400e 200t–  A

1.4e 200t–  A

3500e 500t–  A

3.5e 500t–  A
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9. The waveform below can be expressed as

A.

B.

C.

D.

E. none of the above

10. The waveform below can be expressed as

A.

B.

C.

D.

E. none of the above

+
16u0 t  V

4 K

12 K

2 K

1 F iC t 

3tu0 t  A

3 u0 t   3 u0 t 3–   A–

3t u0 t  u0 t 1– –  1.5t– 4.5+  u0 t 1–  u0 t 3– –  A+

3t u0 t  u0 t 3– –  1.5t– 4.5+  u0 t  u0 t 3– –  A+

iL t  A

t s 

1

1 2

2

3

3

2 1 e t–– e t–– u0 t  V

2 2e t––  u0 t  u0 t 2– –  2e t–  u0 t 2–  u0 t 3– –  V+

2 2e t––  u0 t  u0 t 2– –  2e t– – u0 t 2–  u0 t 3– –  V

2 2e t––  u0 t   2e t– – u0 t 3–   V
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Problems

1. In the circuit below, the voltage source  varies with time as shown by the waveform
below it. Compute, sketch, and express  as a sum of unit step functions for 

2. In the circuit below . Compute  for .

vC t  V

t s 

1

1 2

2

3

2 2e t––
2e t–

vS t 

vLD t  0 t 5 s. 

+


12

6 6
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+
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1 2 3 4 5 6

(V)
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vS t 

vS t  15u0 t  30u0 t 2–  V–= iL t  t 0

+


R

L
3 K

1 mH
iL t 

vS t 
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3. In the circuit below the excitation  is a pulse shown next to it.
a. Compute for 
b. Compute and sketch  for all 

4. In the circuit below switch  has been open for a very long time and closes at . Compute
and sketch  and  for .

5. For the circuit below compute  for .

6. For the op amp circuit below compute  for  in terms of , , and  given

that 

vS t 

iL t  0 t 0.3 ms 

iL t  t 0

+
 6

3 

1 mH
24

t (ms)0.3

6

(a) (b)

iL t 

vS t 

vS t  V

S t 0=

iL t  iSW t  t 0

+


6

4 

1 H
820 V

St 0=

vS

iSW t 

iL t 

vC t  t 0


+38 

50 F

2 

+


24 V

vS

vC t 

10u0 t  A

vout t  t 0 R C vinu0 t 

vC 0  0=
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7. In the circuit of Figure 10.61, switch S has been open for a very long time and closes at .
Compute and sketch  and  for .

8. For the circuit below it is given that . Compute  for . Hint: Be careful
in deriving the time constant for this circuit.

9. A , a , and a  are connected in series. Create a Simulink / SimPower Sys-
tems modedisplay the waveform of the voltage across the capacitor as a function of time.

R C

vinu0 t 
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t 0=
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25K50 K
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100K

+


+
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vR3 t 

vS1

vS2

100u0 t–  V
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+
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10.8 Answers / Solutions to EndofChapter Exercises
Multiple Choice

1. D

2. B

3. C

4. E  

5. E  

6. C

7. D

8. A

9. C

10. B

Problems

1. We replace the given circuit shown below with its Thevenin equivalent.

For the Thevenin equivalent voltage at different time intervals is as shown below.

12 V

6 4e 8000t–  A–

+
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6 6
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and

The waveform of the voltage across the load is as shown below.

The waveform above can now be expressed as a sum of unit step functions as follows:

2. The circuit at  is as shown below and since we are not told otherwise, we will assume

that 

vTH t 
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------vs t  2

3
--- 60 40 V     0 t 1 s = =

12
18
------vs t  2
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For  we let  be the inductor current when the  voltage source acts alone and
 when the  voltage source acts alone. Then, 

For  the circuit is as shown below.

Then,  where  and 

Thus,  and using the initial condition , we

obtain  or . Therefore,

  (1)

Next, with the  voltage source acts alone the circuit is as shown below.

Then,

and

Thus,

and the initial condition at  is found from (1) above as

t 0 iL1 t  15u0 t 

iL2 t  30u0 t 2–  iL TOTAL t  iL1 t  iL2 t +=

0 t 2 s 

+

3 K

1 mH iL1 t 
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Therefore,

or

and
  (2)

Thus, the total current when both voltage sources are present is the summation of (1) and (2),
that is,

3.
a. For this circuit  and since we are not told otherwise, we will

assume that . For  the circuit and its Thevenin equivalent are as
shown below.

Then,

and at 

or 

and thus for 

  (1)

b. For  the circuit is as shown below. For this circuit
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5 5e 3 106t––– 15e 3 106 t 2– –  mA+=

vS t  24 u0 t  u0 t 0.3– – =

iL 0  0= 0 t 0.3 ms 

+

63 

1 mH6 iL t 

vS t  24 u0 t  u0 t 0.3– – =




8 

1 mH iL t 
vTH t 

vTH t  16 u0 t  u0 t 0.3– – =

vS t 
+

iL t  iLf iLn+ 16 8 A1e R L t–+ 2 Ae 8000t–+= = =

t 0=

iL 0  iL 0  0 2 A1e0+= = =

A1 2–=

0 t 0.3 ms 

iL t  2 2– e 8000t–=

t 0.3 ms
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  (2)

and  is found from the initial condition at , that is, with (1) above we obtain

and by substitution into (2) above

or

Therefore for 

The waveform for the inductor current  for all  is shown below.

4. At  the circuit is as shown below where  and thus the initial
condition has been established.

iL t  A2e R L  t 0.3– – A2e 8000 t 0.3– –= =

A2 t 0.3 ms=

63 

1 mH6 iL t 





8  1 mH iL t 

vS t  0=

iL t 0.3 ms=
2 2e 8 103 0.3 10 3––– 2 2e2.4– 1.82 A= = =

iL t 0.3 ms=
1.82 A2e 8000 0.3 0.3– –= =

A2 1.82=

t 0.3 ms

iL t  1.82e t 0.3 ms– –=

iL t  t 0

t ms 

iL A 
1.82

0.3

t 0= iL 0  20 4 6+  2 A= =
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Answers / Solutions to EndofChapter Exercises

For  the circuit and its Thevenin equivalent are as shown below where

and

Then,

and  is evaluated from the initial condition, i.e., 

from which  and thus for 

  (1)

Next, to find  we observe that this current flows also through the  resistor and this
can be found from  shown on the circuit below.

+

6
4 

20 V

vS

iL 0 

t 0

vTH
8

4 8+
------------ 20 40 3  V= =

RTH
8 4
8 4+
------------ 6+ 26 3  = =

+


6

4 

1 H
820 V

vS

iL t 

Closed
Switch

+
 1 H

vTH
iL t 

40 3  V

26 3  

RTH

iL t  iLf iLn+ 40 3
26 3
------------- Ae R L t–+ 20 13 Ae 26 3 t–+= = =

A

iL 0  iL 0+  2 20 13 Ae0+= = =

A 6 13= t 0

iL t  20
13
------ 6

13
------e 26 3 t–+ 1.54 0.46e 8.67t–  A+= =

iSW t  8 

v8 
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Now,

and

  (2)

Therefore, from the initial condition, (1) and (2) above we have

and with these values we sketch  and  as shown below.

+

6
4 

1 H
820 V

vS

iL t 
+



iSW t 

v8 

v8  v6  vL t + 6iL t  L
diL
dt
-------+= =

6 1.54 0.46e 8.67t–+  1 d
dt
----- 1.54 0.46e 8.67t–+ +=

9.24 2.76e 8.67t– 8.67 0.46e 8.67t––+=

9.24 1.23e 8.67t––=

iSW t  i8 
v8 

8
---------- 9.24 1.23e 8.67t––

8
----------------------------------------- 1.16 0.15e 8.67t–  A–= = = =

iL 0+  2= iL   1.54= iSW 0+  1.16 0.15– 1.01= = iSW   1.16=

iL t  iSW t 

iL t  1.54 0.46e 8.67t–  A+=

iSW t  1.16 0.15e 8.67t–  A–=
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Answers / Solutions to EndofChapter Exercises

5. At  the circuit is as shown below where  and thus the initial condition
has been established.

The circuit for  is shown below where the current source has been replaced with a voltage
source.

Now,

and with the initial condition  from which  we
obtain

6. For  the op amp circuit is as shown below.

Application of KCL at the minus () input yields

and since 

t 0= vC 0  24 V=



+

38 

50 F

2 

+


24 V

vS

vC t 

t 0


+

38 

50 F

2 

+


24 V

vS

vC t 

+ 

20 V


+

40 

50 F
+


4 V

vC t 

vC t  vCf vCn+ 4 Ae 1 RC  t–+ 4 Ae 500t–+= = =

vC 0  vC 0+  24 V 4 Ae0+= = = A 20=

vC t  4 20e 500t–+=

t 0

R C

vin t  vout t 
+

+
 

v

+ 

v vin–

R
------------------- C

dvC
dt

---------+ 0=

v 0=
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or

Integrating both sides and observing that  we obtain

where  is the constant of integration of both sides and it is evaluated from the given initial
condition. Then,

or . Therefore,

and  is the slope as shown below.

7. At  the circuit is as shown below where  and thus the initial condition
has been established.

The circuit for  is shown below where the voltage source  is absent for all positive time
and the  is shorted out by the closed switch.

C
dvC
dt

---------
vin
R

-------=

dvC
dt

---------
vin
RC
--------=

vout t  vC t –=

vout t 
vin
RC
--------t– k+=

k

vC 0  vC 0+  0 0 k+= = =

k 0=

vout t 
vin
RC
-------- t 

 – u0 t =

vin RC

slope vin RC–=

t 0= vC 0  150 V=

+


175 K

1 F

150 V

+

vC 0 


t 0 vS1

50 K
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Answers / Solutions to EndofChapter Exercises

For the circuit above

and with the initial condition

from which  and thus for 

To find  we will first find  from the circuit below where

Then,

The sketches below show  and  as they approach their final values.

+

125 K

1 F

50 V

+

vC t 


vC t  vCf vCn+ 50 Ae t RC –+ 50 Ae 8t–+= = =

vC 0  vC 0+  150 50 Ae0+= = =

A 100= t 0

vC t  50 100e 8t–  V+=

vR3 t  iC t 

iC t  C
dvC
dt

--------- 10 6– 8 10 4– e 8t–– = =

+


25 K

1 F

100K50 V 

+
+

 vC t 

vR3 t 

vR3 t  100 K iC 105 8 10 4– e 8t––  80e 8t–  V–= = =

vC t  vR3 t 
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8. For this circuit we cannot short the dependent source and therefore we cannot find  by
combining the resistances  and  in parallel combination in order to find the time con-
stant . Instead, we will derive the time constant from the differential equation of (9.9)
of the previous chapter, that is,

From the given circuit shown below,

or

or

or

vC t  50 100e 8t–+=

vR3 t  80– e 8t–=

Req

R1 R2

 RC=

dvC
dt

---------
vC
RC
--------+ 0=

C
18 

1 F
 



+

+


12 vC t 

iC t 

10iC t 

vC

R1

R2

iC
vC 10iC–

R1
-----------------------

vC
R2
------+ +

C
dvC
dt

--------- 1
R1
------ 1

R2
------+ 

  vC
10
R1
------C

dvC
dt

---------–+ 0=

1 10
R1
------– 

  C
dvC
dt

--------- 
  R1 R2+

R1 R2
------------------- 
  vC+ 0=
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Answers / Solutions to EndofChapter Exercises

and from this differential equation we see that the coefficient of  is

and thus

and with the given initial condition  we obtain

Then, using the relation

we find that for 

and the minus () sign indicates that the  direction is opposite to that shown.

9.

dvC
dt

---------

R1 R2+

R1 R2
------------------- 
 

1 10
R1
------– 

  C
------------------------------vC+ 0=

vC

1
ReqC
------------- 1


--- 30 216

1 10
18
------– 

  1
----------------------------- 30 216

8 18
------------------- 15 9

4 108
------------------ 135

432
--------- 5

16
------ 0.3125= = = = = = =

vC t  Ae 0.3125t–=

vC 0  V0 A 5 V= = =

vC t  5e 0.3125t–=

iC C
dvC
dt

---------=

t 0

iC t  1  0.3125 5e 0.3125t––  1.5625e 0.3125t––= =

iC t 

CVS=Controlled Voltage Source
VM=Voltage Measurement

Continuous

powerguiv
+

-

VM

Step
Step time: 0

Initial value:0
Final value: 12

Scope

s

-
+

CVS 10^(6)

10^(-6)
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Appendix A

Introduction to MATLAB®

his appendix serves as an introduction to the basic MATLAB commands and functions,
procedures for naming and saving the user generated files, comment lines, access to MAT-
LAB’s Editor / Debugger, finding the roots of a polynomial, and making plots. Several exam-

ples are provided with detailed explanations.

A.1 MATLAB® and Simulink®
MATLAB and Simulink are products of The MathWorks,™ Inc. These are two outstanding soft-
ware packages for scientific and engineering computations and are used in educational institu-
tions and in industries including automotive, aerospace, electronics, telecommunications, and
environmental applications. MATLAB enables us to solve many advanced numerical problems
rapidly and efficiently. 

A.2 Command Window
To distinguish the screen displays from the user commands, important terms, and MATLAB
functions, we will use the following conventions:

Click: Click the left button of the mouse
Courier Font: Screen displays
Helvetica Font: User inputs at MATLAB’s command window prompt >> or EDU>>* 

Helvetica Bold: MATLAB functions

Times Bold Italic: Important terms and facts, notes and file names
When we first start MATLAB, we see various help topics and other information. Initially, we are
interested in the command screen which can be selected from the Window drop menu. When the
command screen, we see the prompt >> or EDU>>. This prompt is displayed also after execution
of a command; MATLAB now waits for a new command from the user. It is highly recommended
that we use the Editor/Debugger to write our program, save it, and return to the command screen
to execute the program as explained below.

To use the Editor/Debugger:

1. From the File menu on the toolbar, we choose New and click on MFile. This takes us to the
Editor Window where we can type our script (list of statements) for a new file, or open a previ-
ously saved file. We must save our program with a file name which starts with a letter. 

* EDU>> is the MATLAB prompt in the Student Version

T
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Important! MATLAB is case sensitive, that is, it distinguishes between upper and lowercase let-
ters. Thus, t and T are two different letters in MATLAB language. The files that we create are
saved with the file name we use and the extension .m; for example, myfile01.m. It is a good prac-
tice to save the script in a file name that is descriptive of our script content. For instance, if the
script performs some matrix operations, we ought to name and save that file as matrices01.m or
any other similar name. We should also use a floppy disk or an external drive to backup our files.

2. Once the script is written and saved as an mfile, we may exit the Editor/Debugger window by
clicking on Exit Editor/Debugger of the File menu. MATLAB then returns to the command
window.

3. To execute a program, we type the file name without the .m extension at the >> prompt;
then, we press <enter> and observe the execution and the values obtained from it. If we have
saved our file in drive a or any other drive, we must make sure that it is added it to the desired
directory in MATLAB’s search path. The MATLAB User’s Guide provides more information
on this topic.

Henceforth, it will be understood that each input command is typed after the >> prompt and fol-
lowed by the <enter> key.

The command help matlab\iofun will display input/output information. To get help with other
MATLAB topics, we can type help followed by any topic from the displayed menu. For example,
to get information on graphics, we type help matlab\graphics. The MATLAB User’s Guide con-
tains numerous help topics.

To appreciate MATLAB’s capabilities, we type demo and we see the MATLAB Demos menu.
We can do this periodically to become familiar with them. Whenever we want to return to the
command window, we click on the Close button.

When we are done and want to leave MATLAB, we type quit or exit. But if we want to clear all
previous values, variables, and equations without exiting, we should use the command clear. This
command erases everything; it is like exiting MATLAB and starting it again. The command clc
clears the screen but MATLAB still remembers all values, variables and equations that we have
already used. In other words, if we want to clear all previously entered commands, leaving only
the >> prompt on the upper left of the screen, we use the clc command.

All text after the % (percent) symbol is interpreted as a comment line by MATLAB, and thus it is
ignored during the execution of a program. A comment can be typed on the same line as the func-
tion or command or as a separate line. For instance,

conv(p,q)    % performs multiplication of polynomials p and q

% The next statement performs partial fraction expansion of p(x) / q(x)

are both correct.
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One of the most powerful features of MATLAB is the ability to do computations involving com-
plex numbers. We can use either , or  to denote the imaginary part of a complex number, such as
3-4i or 3-4j. For example, the statement

z=34j

displays

z = 3.00004.0000i

In the above example, a multiplication (*) sign between 4 and  was not necessary because the
complex number consists of numerical constants. However, if the imaginary part is a function, or
variable such as , we must use the multiplication sign, that is, we must type cos(x)*j or
j*cos(x) for the imaginary part of the complex number. 

A.3 Roots of Polynomials

In MATLAB, a polynomial is expressed as a row vector of the form . These
are the coefficients of the polynomial in descending order. We must include terms whose coeffi-
cients are zero.

We find the roots of any polynomial with the roots(p) function; p is a row vector containing the
polynomial coefficients in descending order.

Example A.1  
Find the roots of the polynomial

Solution:
The roots are found with the following two statements where we have denoted the polynomial as
p1, and the roots as roots_ p1.

p1=[1  10  35  50  24] %  Specify and display the coefficients of p1(x)

p1 =
     1   -10    35   -50    24

roots_ p1=roots(p1) %  Find the roots of p1(x)

roots_p1 =
   4.0000
   3.0000
   2.0000
   1.0000

i j

j

x cos

an  an 1–    a2  a1  a0 

p1 x  x4 10x3– 35x2 50x– 24+ +=
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We observe that MATLAB displays the polynomial coefficients as a row vector, and the roots as a
column vector.

Example A.2  
Find the roots of the polynomial

Solution:
There is no cube term; therefore, we must enter zero as its coefficient. The roots are found with
the statements below, where we have defined the polynomial as p2, and the roots of this polyno-
mial as roots_ p2. The result indicates that this polynomial has three real roots, and two complex
roots. Of course, complex roots always occur in complex conjugate*  pairs. 

p2=[1  7   0  16  25  52]

p2 =
     1    -7     0    16    25    52

roots_ p2=roots(p2)

roots_p2 =
   6.5014         
   2.7428         
  -1.5711         
  -0.3366 + 1.3202i
  -0.3366 - 1.3202i

A.4 Polynomial Construction from Known Roots
We can compute the coefficients of a polynomial, from a given set of roots, with the poly(r) func-
tion where r is a row vector containing the roots.

 

Example A.3  

It is known that the roots of a polynomial are . Compute the coefficients of this
polynomial.

*  By definition, the conjugate of a complex number  is 

p2 x  x5 7x4– 16x2 25x+ + 52+=

A a jb+= A a jb–=

1 2 3  and 4  
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Solution: 

We first define a row vector, say , with the given roots as elements of this vector; then, we find
the coefficients with the poly(r) function as shown below.

r3=[1  2  3  4] %  Specify the roots of the polynomial

r3 =
     1     2     3     4

poly_r3=poly(r3) %  Find the polynomial coefficients

poly_r3 =
     1   -10    35   -50    24

We observe that these are the coefficients of the polynomial  of Example A.1.

Example A.4  

It is known that the roots of a polynomial are  Find the coeffi-
cients of this polynomial.

Solution:

We form a row vector, say , with the given roots, and we find the polynomial coefficients with
the poly(r) function as shown below.

r4=[ 1   2   3   4+5j   45j ]

r4 =
  Columns 1 through 4 
  -1.0000   -2.0000   -3.0000   -4.0000+ 5.0000i
  Column 5 
  -4.0000- 5.0000i

poly_r4=poly(r4)

poly_r4 =
     1    14   100   340   499   246

Therefore, the polynomial is

r3

p1 x 

1  2  3  4 j5  and  4 j5–+–––

r4

p4 x  x5 14x4 100x3 340x2 499x 246+ + + + +=
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A.5 Evaluation of a Polynomial at Specified Values

The polyval(p,x) function evaluates a polynomial  at some specified value of the indepen-
dent variable .

Example A.5  
Evaluate the polynomial

(A.1)

at .

Solution:
p5=[1  3   0   5  4   3   2]; % These are the coefficients of the given polynomial

% The semicolon (;) after the right bracket suppresses the 
%  display of the row vector that contains the coefficients of p5.

%
val_minus3=polyval(p5, 3) % Evaluate p5 at x=3; no semicolon is used here

% because we want the answer to be displayed

val_minus3 =
        1280

Other MATLAB functions used with polynomials are the following:

conv(a,b)  multiplies two polynomials a and b 

[q,r]=deconv(c,d) divides polynomial c by polynomial d and displays the quotient q and
remainder r.

polyder(p)  produces the coefficients of the derivative of a polynomial p.

 

Example A.6  
Let 

and

Compute the product  using the conv(a,b) function.

p x 
x

p5 x  x6 3x5– 5x3 4x2– 3x 2+ + +=
x 3–=

p1 x5 3x4– 5x2 7x 9+ + +=

p2 2x6 8x4– 4x2 10x 12+ + +=

p1 p2
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Solution:
p1=[1  3   0  5  7  9]; % The coefficients of p1
p2=[2   0  8  0  4  10  12]; % The coefficients of p2
p1p2=conv(p1,p2) % Multiply p1 by p2 to compute coefficients of the product p1p2

p1p2 =
2  -6  -8  34  18  -24  -74  -88  78  166  174  108

Therefore, 

Example A.7  
Let

and

Compute the quotient  using the [q,r]=deconv(c,d) function.

Solution:
% It is permissible to write two or more statements in one line separated by semicolons
p3=[1   0  3    0   5   7    9];  p4=[2  8   0    0   4  10  12];  [q,r]=deconv(p3,p4)

q =
    0.5000
r =
     0     4    -3     0     3     2     3

Therefore,

Example A.8  
Let

Compute the derivative  using the polyder(p) function.

p1 p2 2x11 6x10 8x9–– 34x8 18x7 24x6–+ +=

74x5 88x4 78x3 166x2 174x 108+ + + +––

p3 x7 3x5– 5x3 7x 9+ + +=

p4 2x6 8x5– 4x2 10x 12+ + +=

p3 p4

q 0.5= r 4x5 3x4– 3x2 2x 3+ + +=

p5 2x6 8x4– 4x2 10x 12+ + +=

d
dx
------p5
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Solution:
p5=[2   0   8   0   4   10   12]; % The coefficients of p5
der_p5=polyder(p5) % Compute the coefficients of the derivative of p5

der_p5 =
    12     0   -32     0     8    10

Therefore,

A.6  Rational Polynomials
Rational Polynomials are those which can be expressed in ratio form, that is, as

(A.2)

where some of the terms in the numerator and/or denominator may be zero. We can find the roots
of the numerator and denominator with the roots(p) function as before.

As noted in the comment line of Example A.7, we can write MATLAB statements in one line, if
we separate them by commas or semicolons. Commas will display the results whereas semicolons
will suppress the display.

Example A.9  
Let

Express the numerator and denominator in factored form, using the roots(p) function. 

Solution:
num=[1  3  0  5  7  9]; den=[1  0  4  0  2  5  6]; % Do not display num and den coefficients
roots_num=roots(num), roots_den=roots(den) % Display num and den roots

roots_num =
   2.4186 + 1.0712i    2.4186 - 1.0712i   -1.1633         
  -0.3370 + 0.9961i   -0.3370 - 0.9961i

d
dx
------p5 12x5 32x3– 4x2 8x 10+ + +=

R x  Num x 
Den x 
--------------------

bnxn bn 1– xn 1– bn 2– xn 2–  b1x b0+ + + + +

amxm am 1– xm 1– am 2– xm 2–  a1x a0+ + + + +
------------------------------------------------------------------------------------------------------------------------= =

R x 
pnum
pden
------------ x5 3x4– 5x2 7x 9+ + +

x6 4x4– 2x2 5x 6+ + +
---------------------------------------------------------= =
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roots_den =
   1.6760 + 0.4922i     1.6760 - 0.4922i  -1.9304         
  -0.2108 + 0.9870i    -0.2108 - 0.9870i  -1.0000

As expected, the complex roots occur in complex conjugate pairs.

For the numerator, we have the factored form

and for the denominator, we have

We can also express the numerator and denominator of this rational function as a combination of
linear and quadratic factors. We recall that, in a quadratic equation of the form 
whose roots are  and , the negative sum of the roots is equal to the coefficient  of the 
term, that is, , while the product of the roots is equal to the constant term , that
is, . Accordingly, we form the coefficient  by addition of the complex conjugate roots
and this is done by inspection; then we multiply the complex conjugate roots to obtain the con-
stant term  using MATLAB as follows:

(2.4186 + 1.0712i)*(2.4186 1.0712i)

ans = 6.9971

(0.3370+ 0.9961i)*(0.33700.9961i)

ans = 1.1058

(1.6760+ 0.4922i)*(1.67600.4922i)

ans = 3.0512

(0.2108+ 0.9870i)*(0.21080.9870i)

ans = 1.0186

Thus,

pnum x 2.4186– j1.0712–  x 2.4186– j1.0712+  x 1.1633+ =

x 0.3370 j0.9961–+  x 0.3370 j0.9961+ + 

pden x 1.6760– j0.4922–  x 1.6760– j0.4922+  x 1.9304+ =

x 0.2108 j– 0.9870+  x 0.2108 j0.9870+ +  x 1.0000+ 

x2 bx c+ + 0=

x1 x2 b x

x1 x2+ – b= c

x1 x2 c= b

c

R x 
pnum
pden
------------ x2 4.8372x– 6.9971+  x2 0.6740x 1.1058+ +  x 1.1633+ 

x2 3.3520x– 3.0512+  x2 0.4216x 1.0186+ +  x 1.0000+  x 1.9304+ 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------= =
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We can check this result of Example A.9 above with MATLAB’s Symbolic Math Toolbox which is
a collection of tools (functions) used in solving symbolic expressions. They are discussed in detail
in MATLAB’s Users Manual. For the present, our interest is in using the collect(s) function that
is used to multiply two or more symbolic expressions to obtain the result in polynomial form. We
must remember that the conv(p,q) function is used with numeric expressions only, that is, poly-
nomial coefficients.

Before using a symbolic expression, we must create one or more symbolic variables such as x, y, t,
and so on. For our example, we use the following script:

syms x % Define a symbolic variable and use collect(s) to express numerator in polynomial form
collect((x^24.8372*x+6.9971)*(x^2+0.6740*x+1.1058)*(x+1.1633))

ans =
x^5-29999/10000*x^4-1323/3125000*x^3+7813277909/
1562500000*x^2+1750276323053/250000000000*x+4500454743147/
500000000000

and if we simplify this, we find that is the same as the numerator of the given rational expression
in polynomial form. We can use the same procedure to verify the denominator.

A.7 Using MATLAB to Make Plots
Quite often, we want to plot a set of ordered pairs. This is a very easy task with the MATLAB
plot(x,y) command that plots y versus x, where x is the horizontal axis (abscissa) and y is the ver-
tical axis (ordinate).

Example A.10  
Consider the electric circuit of Figure A.1, where the radian frequency  (radians/second) of the
applied voltage was varied from 300 to 3000 in steps of 100 radians/second, while the amplitude
was held constant. 

Figure A.1. Electric circuit for Example A.10
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The ammeter readings were then recorded for each frequency. The magnitude of the impedance
|Z| was computed as  and the data were tabulated on Table A.1.

Plot the magnitude of the impedance, that is, |Z| versus radian frequency .

Solution:

We cannot type  (omega) in the MATLAB Command prompt, so we will use the English letter
w instead.

If a statement, or a row vector is too long to fit in one line, it can be continued to the next line by
typing three or more periods, then pressing <enter> to start a new line, and continue to enter
data. This is illustrated below for the data of w and z. Also, as mentioned before, we use the semi-
colon (;) to suppress the display of numbers that we do not care to see on the screen.

The data are entered as follows:

w=[300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900....
2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000];
%
z=[39.339  52.789  71.104  97.665  140.437  222.182  436.056.... 
1014.938  469.830  266.032 187.052 145.751 120.353  103.111.... 
90.603  81.088  73.588  67.513  62.481  58.240  54.611  51.468.... 
48.717  46.286  44.122  42.182  40.432  38.845];

Of course, if we want to see the values of w or z or both, we simply type w or z, and we press

TABLE A.1  Table for Example A.10

 (rads/s) |Z| Ohms  (rads/s) |Z| Ohms

300 39.339 1700 90.603

400 52.589 1800 81.088

500 71.184 1900 73.588

600 97.665 2000 67.513

700 140.437 2100 62.481

800 222.182 2200 58.240

900 436.056 2300 54.611

1000 1014.938 2400 51.428

1100 469.83 2500 48.717

1200 266.032 2600 46.286

1300 187.052 2700 44.122

1400 145.751 2800 42.182

1500 120.353 2900 40.432

1600 103.111 3000 38.845

Z V A=
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<enter>. To plot  (yaxis) versus  (xaxis), we use the plot(x,y) command. For this example,
we use plot(w,z). When this command is executed, MATLAB displays the plot on MATLAB’s
graph screen and MATLAB denotes this plot as Figure 1. This plot is shown in Figure A.2.

Figure A.2. Plot of impedance  versus frequency  for Example A.10

This plot is referred to as the magnitude frequency response of the circuit.

To return to the command window, we press any key, or from the Window pulldown menu, we
select MATLAB Command Window. To see the graph again, we click on the Window pulldown
menu, and we choose Figure 1.

We can make the above, or any plot, more presentable with the following commands:

grid on: This command adds grid lines to the plot. The grid off command removes the grid. The
command grid toggles them, that is, changes from off to on or vice versa. The default* is off.

box off: This command removes the box (the solid lines which enclose the plot), and box on
restores the box. The command box toggles them. The default is on.

title(‘string’): This command adds a line of the text string (label) at the top of the plot.

xlabel(‘string’) and ylabel(‘string’) are used to label the x and yaxis respectively.

The magnitude frequency response is usually represented with the xaxis in a logarithmic scale.
We can use the semilogx(x,y) command which is similar to the plot(x,y) command, except that
the xaxis is represented as a log scale, and the yaxis as a linear scale. Likewise, the semil-
ogy(x,y) command is similar to the plot(x,y) command, except that the yaxis is represented as a

* A default is a particular value for a variable that is assigned automatically by an operating system and remains
in effect unless canceled or overridden by the operator.
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log scale, and the xaxis as a linear scale. The loglog(x,y) command uses logarithmic scales for
both axes.

Throughout this text it will be understood that log is the common (base 10) logarithm, and ln is
the natural (base e) logarithm. We must remember, however, the function log(x) in MATLAB is
the natural logarithm, whereas the common logarithm is expressed as log10(x), and the logarithm
to the base 2 as log2(x). 

Let us now redraw the plot with the above options by adding the following statements:

semilogx(w,z); grid;   % Replaces the plot(w,z) command
title('Magnitude of Impedance vs. Radian Frequency');
xlabel('w in rads/sec'); ylabel('|Z| in Ohms')

After execution of these commands, the plot is as shown in Figure A.3.

If the yaxis represents power, voltage or current, the xaxis of the frequency response is more
often shown in a logarithmic scale, and the yaxis in dB (decibels).

Figure A.3. Modified frequency response plot of Figure A.2.

To display the voltage  in a dB scale on the yaxis, we add the relation dB=20*log10(v), and we
replace the semilogx(w,z) command with semilogx(w,dB).

The command gtext(‘string’)*  switches to the current Figure Window, and displays a crosshair
that can be moved around with the mouse. For instance, we can use the command gtext(‘Imped-
ance |Z| versus Frequency’), and this will place a crosshair in the Figure window. Then, using

* With the latest MATLAB Versions 6 and 7 (Student Editions 13 and 14), we can add text, lines and arrows directly into
the graph using the tools provided on the Figure Window. For advanced MATLAB graphics, please refer to The Math-
Works Using MATLAB Graphics documentation.
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the mouse, we can move the crosshair to the position where we want our label to begin, and we
press <enter>.

The command text(x,y,’string’) is similar to gtext(‘string’). It places a label on a plot in some
specific location specified by x and y, and string is the label which we want to place at that loca-
tion. We will illustrate its use with the following example which plots a 3phase sinusoidal wave-
form.

The first line of the script below has the form

linspace(first_value, last_value, number_of_values) 

This function specifies the number of data points but not the increments between data points. An
alternate function is

x=first: increment: last

and this specifies the increments between points but not the number of data points.

The script for the 3phase plot is as follows:

x=linspace(0, 2*pi, 60); %  pi is a builtin function in MATLAB;
%  we could have used x=0:0.02*pi:2*pi or x = (0: 0.02: 2)*pi instead;
y=sin(x); u=sin(x+2*pi/3); v=sin(x+4*pi/3); 
plot(x,y,x,u,x,v); %  The xaxis must be specified for each function
grid on, box on, %  turn grid and axes box on
text(0.75, 0.65, 'sin(x)');  text(2.85, 0.65, 'sin(x+2*pi/3)'); text(4.95, 0.65, 'sin(x+4*pi/3)')

These three waveforms are shown on the same plot of Figure A.4.

Figure A.4. Threephase waveforms 
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In our previous examples, we did not specify line styles, markers, and colors for our plots. How-
ever, MATLAB allows us to specify various line types, plot symbols, and colors. These, or a com-
bination of these, can be added with the plot(x,y,s) command, where s is a character string con-
taining one or more characters shown on the three columns of Table A.2. MATLAB has no
default color; it starts with blue and cycles through the first seven colors listed in Table A.2 for
each additional line in the plot. Also, there is no default marker; no markers are drawn unless
they are selected. The default line is the solid line. But with the latest MATLAB versions, we can
select the line color, line width, and other options directly from the Figure Window.

For example, plot(x,y,'m*:') plots a magenta dotted line with a star at each data point, and
plot(x,y,'rs') plots a red square at each data point, but does not draw any line because no line was
selected. If we want to connect the data points with a solid line, we must type plot(x,y,'rs'). For
additional information we can type help plot in MATLAB’s command screen.

The plots we have discussed thus far are twodimensional, that is, they are drawn on two axes.
MATLAB has also a threedimensional (threeaxes) capability and this is discussed next.

The plot3(x,y,z) command plots a line in 3space through the points whose coordinates are the
elements of x, y and z, where x, y and z are three vectors of the same length.

The general format is plot3(x1,y1,z1,s1,x2,y2,z2,s2,x3,y3,z3,s3,...) where xn, yn and zn are vectors
or matrices, and sn are strings specifying color, marker symbol, or line style. These strings are the
same as those of the twodimensional plots.

TABLE A.2 Styles, colors, and markets used in MATLAB

Symbol Color Symbol Marker Symbol Line Style

b blue  point  solid line

g green o circle  dotted line

r red x xmark  dashdot line

c cyan + plus  dashed line

m magenta * star

y yellow s square

k black d diamond

w white  triangle down

 triangle up

 triangle left

 triangle right

p pentagram

h hexagram
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Example A.11  
Plot the function

(A.3)
Solution:
We arbitrarily choose the interval (length) shown on the script below.

x= 10: 0.5: 10; %  Length of vector x 
y= x; % Length of vector y must be same as x
z= 2.*x.^3+x+3.*y.^21; %  Vector z is function of both x and y* 

plot3(x,y,z); grid

The threedimensional plot is shown in Figure A.5.

Figure A.5. Three dimensional plot for Example A.11

In a twodimensional plot, we can set the limits of the x and yaxes with the axis([xmin xmax
ymin ymax]) command. Likewise, in a threedimensional plot we can set the limits of all three
axes with the axis([xmin xmax ymin ymax zmin zmax]) command. It must be placed after the
plot(x,y) or plot3(x,y,z) commands, or on the same line without first executing the plot com-
mand. This must be done for each plot. The threedimensional text(x,y,z,’string’) command will
place string beginning at the coordinate (x,y,z) on the plot.

For threedimensional plots, grid on and box off are the default states.

* This statement uses the so called dot multiplication, dot division, and dot exponentiation where the multiplication, division,
and exponential operators are preceded by a dot. These important operations will be explained in Section A.9.
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We can also use the mesh(x,y,z) command with two vector arguments. These must be defined as
 and  where . In this case, the vertices of the mesh

lines are the triples . We observe that x corresponds to the columns of Z, and y
corresponds to the rows.

To produce a mesh plot of a function of two variables, say , we must first generate the
X and Y matrices that consist of repeated rows and columns over the range of the variables x and
y. We can generate the matrices X and Y with the [X,Y]=meshgrid(x,y) function that creates the
matrix X whose rows are copies of the vector x, and the matrix Y whose columns are copies of the
vector y.

Example A.12  

The volume  of a right circular cone of radius  and height  is given by

(A.4)

Plot the volume of the cone as  and  vary on the intervals  and  meters.

Solution:
The volume of the cone is a function of both the radius r and the height h, that is,

The threedimensional plot is created with the following MATLAB script where, as in the previ-
ous example, in the second line we have used the dot multiplication, dot division, and dot expo-
nentiation. This will be explained in Section A.9.

[R,H]=meshgrid(0: 4, 0: 6); % Creates R and H matrices from vectors r and h;...
V=(pi .* R .^ 2 .* H) ./ 3;  mesh(R, H, V);...
xlabel('xaxis, radius r (meters)'); ylabel('yaxis, altitude h (meters)');...
zlabel('zaxis, volume (cubic meters)'); title('Volume of Right Circular Cone'); box on

The threedimensional plot of Figure A.6 shows how the volume of the cone increases as the
radius and height are increased.

The plots of Figure A.5 and A.6 are rudimentary; MATLAB can generate very sophisticated
threedimensional plots. The MATLAB User’s Manual and the Using MATLAB Graphics Man-
ual contain numerous examples. 

length x  n= length y  m= m n  size Z =

x j  y i  Z i j  

z f x y =

V r h

V 1
3
---r2h=

r h 0 r 4  0 h 6 

V f r h =
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Figure A.6. Volume of a right circular cone.

A.8 Subplots
MATLAB can display up to four windows of different plots on the Figure window using the com-
mand subplot(m,n,p). This command divides the window into an m  n matrix of plotting areas
and chooses the pth area to be active. No spaces or commas are required between the three inte-
gers m, n and p. The possible combinations are shown in Figure A.7.

We will illustrate the use of the subplot(m,n,p) command following the discussion on multiplica-
tion, division and exponentiation that follows.

Figure A.7. Possible subplot arrangements in MATLAB

A.9  Multiplication, Division, and Exponentiation
MATLAB recognizes two types of multiplication, division, and exponentiation. These are the
matrix multiplication, division, and exponentiation, and the elementbyelement multiplication,
division, and exponentiation. They are explained in the following paragraphs.
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In Section A.2, the arrays , such a those that contained the coefficients of polynomi-
als, consisted of one row and multiple columns, and thus are called row vectors. If an array has
one column and multiple rows, it is called a column vector. We recall that the elements of a row
vector are separated by spaces. To distinguish between row and column vectors, the elements of a
column vector must be separated by semicolons. An easier way to construct a column vector, is to
write it first as a row vector, and then transpose it into a column vector. MATLAB uses the single
quotation character () to transpose a vector. Thus, a column vector can be written either as

b=[1; 3; 6; 11]

or as 

b=[1  3  6  11]'

As shown below, MATLAB produces the same display with either format.

b=[1; 3; 6; 11] 

b =
    -1
     3
     6
    11

b=[1  3  6  11]' % Observe the single quotation character (‘)

b =
    -1
     3
     6
    11

We will now define Matrix Multiplication and ElementbyElement multiplication.

1. Matrix Multiplication (multiplication of row by column vectors)

Let

and
 

be two vectors. We observe that  is defined as a row vector whereas  is defined as a col-
umn vector, as indicated by the transpose operator (). Here, multiplication of the row vector

 by the column vector , is performed with the matrix multiplication operator (*). Then,

(A.5)

a  b  c   

A a1   a2   a3      an =

B b1   b2   b3      bn '=

A B

A B

A*B a1b1 a2b2 a3b3  anbn+ + + +  gle valuesin= =
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For example, if

and

the matrix multiplication  produces the single value 68, that is,

and this is verified with the MATLAB script

A=[1   2    3   4   5]; B=[ 2   6  3   8   7]'; A*B % Observe transpose operator (‘) in B

ans =

   68

Now, let us suppose that both  and  are row vectors, and we attempt to perform a rowby
row multiplication with the following MATLAB statements.

A=[1  2   3  4  5]; B=[2  6  3  8  7]; A*B % No transpose operator (‘) here

When these statements are executed, MATLAB displays the following message:

??? Error using ==> *

Inner matrix dimensions must agree.

Here, because we have used the matrix multiplication operator (*) in A*B, MATLAB expects
vector  to be a column vector, not a row vector. It recognizes that  is a row vector, and
warns us that we cannot perform this multiplication using the matrix multiplication operator
(*). Accordingly, we must perform this type of multiplication with a different operator. This
operator is defined below.

2. ElementbyElement Multiplication (multiplication of a row vector by another row vector)

Let

and
 

be two row vectors. Here, multiplication of the row vector  by the row vector  is per-
formed with the dot multiplication operator (.*). There is no space between the dot and the
multiplication symbol. Thus,

(A.6)

A 1   2   3   4   5 =

B 2–    6   3–    8   7 '=

A*B

AB 1 2–  2 6 3 3–  4 8 5 7++++ 68= =

A B

B B

C c1   c2   c3      cn =

D d1   d2   d3      dn =

C D

C.D c1d1    c2d2    c3d3        cndn =
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This product is another row vector with the same number of elements, as the elements of 
and . 

As an example, let

and

Dot multiplication of these two row vectors produce the following result.

Check with MATLAB:

C=[1  2   3   4  5]; %  Vectors C and D must have
D=[2  6 3   8  7]; %  same number of elements
C.*D % We observe that this is a dot multiplication

ans =
   -2    12    -9    32    35

Similarly, the division (/) and exponentiation (^) operators, are used for matrix division and
exponentiation, whereas dot division (./) and dot exponentiation (.^) are used for element
byelement division and exponentiation, as illustrated in Examples A.11 and A.12 above.

We must remember that no space is allowed between the dot (.) and the multiplication, divi-
sion, and exponentiation operators. 

Note: A dot (.) is never required with the plus (+) and minus () operators.

Example A.13  
Write the MATLAB script that produces a simple plot for the waveform defined as 

(A.7)

in the  seconds interval.

Solution:
The MATLAB script for this example is as follows:

t=0: 0.01: 5;  %  Define taxis in 0.01 increments
y=3 .* exp(4 .* t) .* cos(5 .* t)2 .* exp(3 .* t) .* sin(2 .* t) + t .^2 ./ (t+1);
plot(t,y); grid; xlabel('t'); ylabel('y=f(t)'); title('Plot for Example A.13')

The plot for this example is shown in Figure A.8.

C
D

C 1   2   3   4   5 =

D 2–    6   3–    8   7 =

C.D 1 2–     2 6    3 3–     4 8   5 7 2–    12   9–    32   35= =

y f t  3e 4t– 5tcos 2e 3t– 2tsin– t2

t 1+
-----------+= =

0 t 5 
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Figure A.8. Plot for Example A.13

Had we, in this example, defined the time interval starting with a negative value equal to or less
than , say as  MATLAB would have displayed the following message:

Warning: Divide by zero.

This is because the last term (the rational fraction) of the given expression, is divided by zero
when . To avoid division by zero, we use the special MATLAB function eps, which is a

number approximately equal to . It will be used with the next example.

The command axis([xmin xmax ymin ymax]) scales the current plot to the values specified by
the arguments xmin, xmax, ymin and ymax. There are no commas between these four argu-
ments. This command must be placed after the plot command and must be repeated for each plot.
The following example illustrates the use of the dot multiplication, division, and exponentiation,
the eps number, the axis([xmin xmax ymin ymax]) command, and also MATLAB’s capability
of displaying up to four windows of different plots.

Example A.14  
Plot the functions

in the interval  using 100 data points. Use the subplot command to display these func-
tions on four windows on the same graph.
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Plot for Example A.13
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Solution:
The MATLAB script to produce the four subplots is as follows:

x=linspace(0,2*pi,100); % Interval with 100 data points
y=(sin(x).^ 2);  z=(cos(x).^ 2);  
w=y.* z;
v=y./ (z+eps);%  add eps to avoid division by zero
subplot(221);% upper left of four subplots
plot(x,y);  axis([0 2*pi 0 1]);
title('y=(sinx)^2');
subplot(222); % upper right of four subplots
plot(x,z);  axis([0 2*pi 0 1]);  
title('z=(cosx)^2');
subplot(223); % lower left of four subplots
plot(x,w);  axis([0 2*pi 0 0.3]);
title('w=(sinx)^2*(cosx)^2');
subplot(224); % lower right of four subplots
plot(x,v);  axis([0 2*pi 0 400]);
title('v=(sinx)^2/(cosx)^2');

These subplots are shown in Figure A.9. 

Figure A.9. Subplots for the functions of Example A.14

The next example illustrates MATLAB’s capabilities with imaginary numbers. We will introduce
the real(z) and imag(z) functions that display the real and imaginary parts of the complex quan-
tity z =  x + iy, the abs(z), and the angle(z) functions that compute the absolute value (magni-
tude) and phase angle of the complex quantity z = x + iy = rWe will also usethe
polar(theta,r) function that produces a plot in polar coordinates, where r is the magnitude, theta
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is the angle in radians, and the round(n) function that rounds a number to its nearest integer.

Example A.15   
Consider the electric circuit of Figure A.10.

Figure A.10. Electric circuit for Example A.15

With the given values of resistance, inductance, and capacitance, the impedance  as a func-
tion of the radian frequency  can be computed from the following expression:

(A.8)

a. Plot  (the real part of the impedance Z) versus frequency .

b. Plot  (the imaginary part of the impedance Z) versus frequency .

c. Plot the impedance Z versus frequency  in polar coordinates.

Solution:

The MATLAB script below computes the real and imaginary parts of  which, for simplicity,

are denoted as , and plots these as two separate graphs (parts a & b). It also produces a polar
plot (part c).

w=0: 1: 2000; %  Define interval with one radian interval;...
z=(10+(10 .^ 4 j .* 10 .^ 6 ./ (w+eps)) ./ (10 + j .* (0.1 .* w 10.^5./ (w+eps))));...
%
%  The first five statements (next two lines) compute and plot Re{z}
real_part=real(z);  plot(w,real_part);...
xlabel('radian frequency w');  ylabel('Real part of Z'); grid

a

b

10 

10 

0.1 H

10 FZab

Zab

Zab Z 10 104 j 106  –

10 j 0.1 105   – +
--------------------------------------------------------+= =

Re Z 

Im Z 

Zab
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Figure A.11. Plot for the real part of the impedance in Example A.15

%  The next five statements (next two lines) compute and plot Im{z}
imag_part=imag(z);  plot(w,imag_part);...
xlabel('radian frequency w');  ylabel('Imaginary part of Z'); grid

Figure A.12. Plot for the imaginary part of the impedance in Example A.15

%  The last six statements (next five lines) below produce the polar plot of z
mag=abs(z); %  Computes |Z|;...
rndz=round(abs(z)); %  Rounds |Z| to read polar plot easier;...
theta=angle(z); %  Computes the phase angle of impedance Z;...
polar(theta,rndz); %  Angle is the first argument
ylabel('Polar Plot of Z'); grid
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Figure A.13. Polar plot of the impedance in Example A.15

Example A.15 clearly illustrates how powerful, fast, accurate, and flexible MATLAB is.

A.10  Script and Function Files
MATLAB recognizes two types of files: script files and function files. Both types are referred to as
mfiles since both require the .m extension.

A script file consists of two or more builtin functions such as those we have discussed thus far.
Thus, the script for each of the examples we discussed earlier, make up a script file. Generally, a
script file is one which was generated and saved as an mfile with an editor such as the MAT-
LAB’s Editor/Debugger.

A function file is a userdefined function using MATLAB. We use function files for repetitive
tasks. The first line of a function file must contain the word function, followed by the output argu-
ment, the equal sign ( = ), and the input argument enclosed in parentheses. The function name
and file name must be the same, but the file name must have the extension .m. For example, the
function file consisting of the two lines below

function y = myfunction(x)
y=x.^ 3 + cos(3.* x)

is a function file and must be saved as myfunction.m

For the next example, we will use the following MATLAB functions:

fzero(f,x)  attempts to find a zero of a function of one variable, where f is a string containing the
name of a realvalued function of a single real variable. MATLAB searches for a value near a
point where the function f changes sign, and returns that value, or returns NaN if the search fails. 
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Important: We must remember that we use roots(p) to find the roots of polynomials only, such as
those in Examples A.1 and A.2.

fplot(fcn,lims) plots the function specified by the string fcn between the xaxis limits specified
by lims = [xmin xmax]. Using lims = [xmin xmax ymin ymax] also controls the yaxis limits.
The string fcn must be the name of an mfile function or a string with variable .

NaN (NotaNumber) is not a function; it is MATLAB’s response to an undefined expression
such as , or inability to produce a result as described on the next paragraph.We can
avoid division by zero using the eps number, which we mentioned earlier.

Example A.16  
Find the zeros, the minimum, and the maximum values of the function 

(A.9)

in the interval 

Solution:
We first plot this function to observe the approximate zeros, maxima, and minima using the fol-
lowing script.

x=1.5: 0.01: 1.5;
y=1./ ((x0.1).^ 2 + 0.01) 1./ ((x1.2).^ 2 + 0.04) 10;
plot(x,y); grid

The plot is shown in Figure A.14.

Figure A.14. Plot for Example A.16 using the plot command
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The roots (zeros) of this function appear to be in the neighborhood of  and . The
maximum occurs at approximately  where, approximately, , and the minimum

occurs at approximately  where, approximately, .

Next, we define and save f(x) as the funczero01.m function mfile with the following script:

function y=funczero01(x)
% Finding the zeros of the function shown below
y=1/((x0.1)^2+0.01)1/((x1.2)^2+0.04)10;

To save this file, from the File drop menu on the Command Window, we choose New, and when
the Editor Window appears, we type the script above and we save it as funczero01. MATLAB
appends the extension .m to it.

Now, we can use the fplot(fcn,lims) command to plot  as follows:

fplot('funczero01', [1.5  1.5]); grid

This plot is shown in Figure A.15. As expected, this plot is identical to the plot of Figure A.14
which was obtained with the plot(x,y) command as shown in Figure A.14.

Figure A.15. Plot for Example A.16 using the fplot command

We will use the fzero(f,x) function to compute the roots of  in Equation (A.9) more precisely.
The MATLAB script below will accomplish this.

x1= fzero('funczero01', 0.2);
x2= fzero('funczero01', 0.3);
fprintf('The roots (zeros) of this function are r1= %3.4f', x1);
fprintf(' and r2= %3.4f \n', x2)
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MATLAB displays the following:

The roots (zeros) of this function are r1= -0.1919 and r2= 0.3788

The earlier MATLAB versions included the function fmin(f,x1,x2) and with this function we
could compute both a minimum of some function  or a maximum of  since a maximum of

 is equal to a minimum of . This can be visualized by flipping the plot of a function 
upsidedown. This function is no longer used in MATLAB and thus we will compute the maxima
and minima from the derivative of the given function.

From elementary calculus, we recall that the maxima or minima of a function  can be
found by setting the first derivative of a function equal to zero and solving for the independent
variable . For this example we use the diff(x) function which produces the approximate deriva-
tive of a function. Thus, we use the following MATLAB script:

syms x ymin zmin; ymin=1/((x0.1)^2+0.01)1/((x1.2)^2+0.04)10;...
zmin=diff(ymin)

zmin =
-1/((x-1/10)^2+1/100)^2*(2*x-1/5)+1/((x-6/5)^2+1/25)^2*(2*x-12/5)

When the command

solve(zmin)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
   0.6585 + 0.3437i
ans =
   0.6585 - 0.3437i
ans =
    1.2012

The real value  above is the value of  at which the function  has its minimum value as
we observe also in the plot of Figure A.15.

To find the value of y corresponding to this value of x, we substitute it into , that is,

x=1.2012; ymin=1 / ((x0.1) ^ 2 + 0.01) 1 / ((x1.2) ^ 2 + 0.04) 10

ymin = -34.1812

We can find the maximum value from  whose plot is produced with the script

x=1.5:0.01:1.5; ymax=1./((x0.1).^2+0.01)1./((x1.2).^2+0.04)10; plot(x,ymax); grid

and the plot is shown in Figure A.16.
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Figure A.16. Plot of  for Example A.16

Next we compute the first derivative of  and we solve for  to find the value where the max-
imum of  occurs. This is accomplished with the MATLAB script below.

syms x ymax zmax; ymax=(1/((x0.1)^2+0.01)1/((x1.2)^2+0.04)10); zmax=diff(ymax)

zmax =
 1/((x-1/10)^2+1/100)^2*(2*x-1/5)-1/((x-6/5)^2+1/25)^2*(2*x-12/5)

solve(zmax)

When the command

solve(zmax)

is executed, MATLAB displays a very long expression which when copied at the command
prompt and executed, produces the following:

ans =
   0.6585 + 0.3437i

ans =
   0.6585 - 0.3437i

ans =
    1.2012
ans =
    0.0999

From the values above we choose  which is consistent with the plots of Figures A.15
and A.16. Accordingly, we execute the following script to obtain the value of .
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x=0.0999; % Using this value find the corresponding value of ymax
ymax=1 / ((x0.1) ^ 2 + 0.01) 1 / ((x1.2) ^ 2 + 0.04) 10

ymax = 89.2000

A.11 Display Formats
MATLAB displays the results on the screen in integer format without decimals if the result is an
integer number, or in short floating point format with four decimals if it a fractional number. The
format displayed has nothing to do with the accuracy in the computations. MATLAB performs all
computations with accuracy up to 16 decimal places.

The output format can changed with the format command. The available MATLAB formats can
be displayed with the help format command as follows:

help format 

FORMAT Set output format.
All computations in MATLAB are done in double precision.
FORMAT may be used to switch between different output display formats
as follows:

FORMAT  Default. Same as SHORT.
FORMAT SHORT Scaled fixed point format with 5 digits.
FORMAT LONG Scaled fixed point format with 15 digits.
FORMAT SHORT E Floating point format with 5 digits.
FORMAT LONG E  Floating point format with 15 digits.
FORMAT SHORT G Best of fixed or floating point format with 5 digits.
FORMAT LONG G Best of fixed or floating point format with 15 digits.
FORMAT HEX Hexadecimal format.
FORMAT + The symbols +, - and blank are printed for positive, negative, 

and zero elements.Imaginary parts are ignored.
FORMAT BANK Fixed format for dollars and cents.
FORMAT RAT Approximation by ratio of small integers.

Spacing:

FORMAT COMPACT Suppress extra line-feeds.
FORMAT LOOSE  Puts the extra line-feeds back in.

Some examples with different format displays age given below.

format short  33.3335  Four decimal digits (default)
format long  33.33333333333334 16 digits
format short e  3.3333e+01  Four decimal digits plus exponent
format short g  33.333  Better of format short or format short e
format bank  33.33 two decimal digits
format +  only + or - or zero are printed
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format rat 100/3 rational approximation

The disp(X) command displays the array X without printing the array name. If X is a string, the
text is displayed.

The fprintf(format,array) command displays and prints both text and arrays. It uses specifiers to
indicate where and in which format the values would be displayed and printed. Thus, if %f is
used, the values will be displayed and printed in fixed decimal format, and if %e is used, the val-
ues will be displayed and printed in scientific notation format. With this command only the real
part of each parameter is processed.
This appendix is just an introduction to MATLAB.*  This outstanding software package consists
of many applications known as Toolboxes. The MATLAB Student Version contains just a few of
these Toolboxes. Others can be bought directly from The MathWorks, Inc., as addons.

* For more MATLAB applications, please refer to Numerical Analysis Using MATLAB and Excel, ISBN 978
1934404034.
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Appendix B

Introduction to Simulink

his appendix is a brief introduction to Simulink. This author feels that we can best intro-
duce Simulink with a few examples. Some familiarity with MATLAB is essential in under-
standing Simulink, and for this purpose, Appendix A is included as an introduction to

MATLAB.

B.1 Simulink and its Relation to MATLAB

The MATLAB and Simulink environments are integrated into one entity, and thus we can
analyze, simulate, and revise our models in either environment at any point. We invoke Simulink
from within MATLAB. We will introduce Simulink with a few illustrated examples. 

Example B.1  

For the circuit of Figure B.1, the initial conditions are , and . We will
compute .

Figure B.1. Circuit for Example B.1

For this example,
(B.1)

and by Kirchoff’s voltage law (KVL),

(B.2)

Substitution of (B.1) into (B.2) yields
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(B.3)

Substituting the values of the circuit constants and rearranging we obtain:

(B.4)

(B.5)

To appreciate Simulink’s capabilities, for comparison, three different methods of obtaining the
solution are presented, and the solution using Simulink follows.

First Method  Assumed Solution

Equation (B.5) is a secondorder, nonhomogeneous differential equation with constant coeffi-
cients, and thus the complete solution will consist of the sum of the forced response and the natu-
ral response. It is obvious that the solution of this equation cannot be a constant since the deriva-
tives of a constant are zero and thus the equation is not satisfied. Also, the solution cannot
contain sinusoidal functions (sine and cosine) since the derivatives of these are also sinusoids.

However, decaying exponentials of the form  where k and a are constants, are possible candi-
dates since their derivatives have the same form but alternate in sign.

It can be shown* that if  and  where  and  are constants and  and  are the
roots of the characteristic equation of the homogeneous part of the given differential equation,

the natural response is the sum of the terms  and . Therefore, the total solution will
be

(B.6)

The values of  and  are the roots of the characteristic equation 

* Please refer to Circuit Analysis II with MATLAB Applications, ISBN 0970951159, Appendix B for a
thorough discussion.
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(B.7)

Solution of (B.7) yields of  and  and with these values (B.6) is written as

(B.8)

The forced component  is found from (B.5), i.e., 

(B.9)

Since the right side of (B.9) is a constant, the forced response will also be a constant and we
denote it as . By substitution into (B.9) we obtain

or
 (B.10)

Substitution of this value into (B.8), yields the total solution as 

 (B.11)

The constants  and  will be evaluated from the initial conditions. First, using 
and evaluating (B.11) at , we obtain

 (B.12)

Also,

and

(B.13)

Next, we differentiate (B.11), we evaluate it at , and equate it with (B.13). Thus,

(B.14)

By equating the right sides of (B.13) and (B.14) we obtain
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(B.15)

Simultaneous solution of (B.12) and (B.15), gives  and . By substitution into
(B.8), we obtain the total solution as

(B.16)

Check with MATLAB:

syms t %  Define symbolic variable t
y0=0.75*exp(t)+0.25*exp(3*t)+1; %  The total solution y(t), for our example, vc(t)
y1=diff(y0) %  The first derivative of y(t)

y1 =
3/4*exp(-t)-3/4*exp(-3*t)

y2=diff(y0,2) %  The second derivative of y(t)

y2 =
-3/4*exp(-t)+9/4*exp(-3*t)

y=y2+4*y1+3*y0 %  Summation of y and its derivatives

y =
3

Thus, the solution has been verified by MATLAB. Using the expression for  in (B.16), we
find the expression for the current as

  (B.17)

Second Method  Using the Laplace Transformation

The transformed circuit is shown in Figure B.2.

Figure B.2. Transformed Circuit for Example B.1
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By the voltage division* expression,

Using partial fraction expansion,† we let

(B.18)

and by substitution into (B.18)

Taking the Inverse Laplace transform‡ we find that 

Third Method  Using State Variables

**

* For derivation of the voltage division and current division expressions, please refer to Circuit Analysis I with
MATLAB Applications, ISBN 0970951124.

† Partial fraction expansion is discussed in Chapter 3, this text.
‡ For an introduction to Laplace Transform and Inverse Laplace Transform, please refer Chapters 2 and 3, this

text.
** Usually, in StateSpace and State Variables Analysis,  denotes any input. For distinction, we will denote

the Unit Step Function as . For a detailed discussion on StateSpace and State Variables Analysis, please
refer to Chapter 5, this text.
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By substitution of given values and rearranging, we obtain

or

(B.19)

Next, we define the state variables  and . Then,

* (B.20)

and

(B.21)

Also,

and thus,

or

(B.22)

Therefore, from (B.19), (B.20), and (B.22), we obtain the state equations

and in matrix form,

(B.23)

Solution† of (B.23) yields

* The notation  (x dot) is often used to denote the first derivative of the function , that is, .

† The detailed solution of (B.23) is given in Chapter 5, Example 5.10, Page 523, this text.
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Then,

(B.24)

and

(B.25)

Modeling the Differential Equation of Example B.1 with Simulink

To run Simulink, we must first invoke MATLAB. Make sure that Simulink is installed in your sys-
tem. In the MATLAB Command prompt, we type:

simulink

Alternately, we can click on the Simulink icon shown in Figure B.3. It appears on the top bar on
MATLAB’s Command prompt. 

Figure B.3. The Simulink icon

Upon execution of the Simulink command, the Commonly Used Blocks appear as shown in Fig-
ure B.4.

In Figure B.4, the left side is referred to as the Tree Pane and displays all Simulink libraries
installed. The right side is referred to as the Contents Pane and displays the blocks that reside in
the library currently selected in the Tree Pane.

Let us express the differential equation of Example B.1 as

(B.26)

A block diagram representing relation (B.26) above is shown in Figure B.5. We will use Simulink
to draw a similar block diagram.*

* Henceforth, all Simulink block diagrams will be referred to as models.
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Figure B.4. The Simulink Library Browser

Figure B.5. Block diagram for equation (B.26)

To model the differential equation (B.26) using Simulink, we perform the following steps:

1. On the Simulink Library Browser, we click on the leftmost icon shown as a blank page on the
top title bar. A new model window named untitled will appear as shown in Figure B.6. 

3u0 t   dt dt

4

3

d2vC

dt2
----------- dvC

dt
--------- vC
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Figure B.6. The Untitled model window in Simulink.

The window of Figure B.6 is the model window where we enter our blocks to form a block dia-
gram. We save this as model file name Equation_1_26. This is done from the File drop menu of
Figure B.6 where we choose Save as and name the file as Equation_1_26. Simulink will add
the extension .mdl. The new model window will now be shown as Equation_1_26, and all
saved files will have this appearance. See Figure B.7.

Figure B.7. Model window for Equation_1_26.mdl file

2. With the Equation_1_26 model window and the Simulink Library Browser both visible, we
click on the Sources appearing on the left side list, and on the right side we scroll down until
we see the unit step function shown as Step. See Figure B.8. We select it, and we drag it into
the Equation_1_26 model window which now appears as shown in Figure B.8. We save file
Equation_1_26 using the File drop menu on the Equation_1_26 model window (right side of
Figure B.8).

3. With reference to block diagram of Figure B.5, we observe that we need to connect an ampli-
fier with Gain 3 to the unit step function block. The gain block in Simulink is under Com-
monly Used Blocks (first item under Simulink on the Simulink Library Browser). See Figure
B.8. If the Equation_1_26 model window is no longer visible, it can be recalled by clicking on
the white page icon on the top bar of the Simulink Library Browser.

4. We choose the gain block and we drag it to the right of the unit step function. The triangle on
the right side of the unit step function block and the > symbols on the left and right sides of
the gain block are connection points. We point the mouse close to the connection point of the
unit step function until is shows as a cross hair, and draw a straight line to connect the two
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blocks.* We doubleclick on the gain block and on the Function Block Parameters, we
change the gain from 1 to 3. See Figure B.9.

Figure B.8. Dragging the unit step function into File Equation_1_26

Figure B.9. File Equation_1_26 with added Step and Gain blocks

* An easy method to interconnect two Simulink blocks by clicking on the source block to select it, then hold down
the Ctrl key and leftclick on the destination block.



Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling B11
Copyright © Orchard Publications

Simulink and its Relation to MATLAB

5. Next, we need to add a theeinput adder. The adder block appears on the right side of the
Simulink Library Browser under Math Operations. We select it, and we drag it into the
Equation_1_26 model window. We double click it, and on the Function Block Parameters
window which appears, we specify 3 inputs. We then connect the output of the of the gain
block to the first input of the adder block as shown in Figure B.10.

Figure B.10. File Equation_1_26 with added gain block

6. From the Commonly Used Blocks of the Simulink Library Browser, we choose the Integra-
tor block, we drag it into the Equation_1_26 model window, and we connect it to the output
of the Add block. We repeat this step and to add a second Integrator block. We click on the
text “Integrator” under the first integrator block, and we change it to Integrator 1. Then, we
change the text “Integrator 1” under the second Integrator to “Integrator 2” as shown in Fig-
ure B.11.

Figure B.11. File Equation_1_26 with the addition of two integrators

7. To complete the block diagram, we add the Scope block which is found in the Commonly
Used Blocks on the Simulink Library Browser, we click on the Gain block, and we copy and
paste it twice. We flip the pasted Gain blocks by using the Flip Block command from the For-
mat drop menu, and we label these as Gain 2 and Gain 3. Finally, we doubleclick on these
gain blocks and on the Function Block Parameters window, we change the gains from to 4
and 3 as shown in Figure B.12.

Figure B.12. File Equation_1_26 complete block diagram
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8. The initial conditions , and  are entered by double

clicking the Integrator blocks and entering the values  for the first integrator, and  for the
second integrator. We also need to specify the simulation time. This is done by specifying the
simulation time to be  seconds on the Configuration Parameters from the Simulation drop
menu. We can start the simulation on Start from the Simulation drop menu or by clicking on

the  icon.

9. To see the output waveform, we double click on the Scope block, and then clicking on the

Autoscale  icon, we obtain the waveform shown in Figure B.13. 

Figure B.13. The waveform for the function  for Example B.1

Another easier method to obtain and display the output  for Example B.1, is to use State
Space block from Continuous in the Simulink Library Browser, as shown in Figure B.14.

Figure B.14. Obtaining the function  for Example B.1 with the StateSpace block.

iL 0  C
dvC
dt

---------
t 0=

0= = vc 0  0.5 V=

0 0.5
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The simout To Workspace block shown in Figure B.14 writes its input to the workspace. The
data and variables created in the MATLAB Command window, reside in the MATLAB Work-
space. This block writes its output to an array or structure that has the name specified by the
block's Variable name parameter. This gives us the ability to delete or modify selected variables.
We issue the command who to see those variables. From Equation B.23, Page B6,

The output equation is

or

We doubleclick on the StateSpace block, and in the Functions Block Parameters window we
enter the constants shown in Figure B.15.

Figure B.15. The Function block parameters for the StateSpace block.

x·1

x·2

4– 4–
3 4 0

x1

x2

4
0

u0 t +=

y Cx du+=

y 0  1  x1

x2
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The initials conditions  are specified in MATLAB’s Command prompt as

x1=0; x2=0.5;

As before, to start the simulation we click clicking on the  icon, and to see the output wave-

form, we double click on the Scope block, and then clicking on the Autoscale  icon, we
obtain the waveform shown in Figure B.16.

Figure B.16. The waveform for the function  for Example B.1 with the StateSpace block.

The statespace block is the best choice when we need to display the output waveform of three or
more variables as illustrated by the following example.

Example B.2  
A fourthorder network is described by the differential equation

(B.27)

where  is the output representing the voltage or current of the network, and  is any input,
and the initial conditions are .

a. We will express (B.27) as a set of state equations

x1  x2 '

vC t 

d 4y
dt4
--------- a3

d 3y
dt3
--------- a2

d2y
dt2
-------- a1

dy
dt
------ a0 y t + + + + u t =

y t  u t 
y 0  y' 0  y'' 0  y''' 0  0= = = =
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b. It is known that the solution of the differential equation

(B.28)

subject to the initial conditions , has the solution

(B.29)

In our set of state equations, we will select appropriate values for the coefficients
 so that the new set of the state equations will represent the differential equa-

tion of (B.28), and using Simulink, we will display the waveform of the output .

1. The differential equation of (B.28) is of fourthorder; therefore, we must define four state vari-
ables that will be used with the four firstorder state equations. 

We denote the state variables as , and , and we relate them to the terms of the
given differential equation as

(B.30)

We observe that

(B.31)

and in matrix form 

(B.32)

In compact form, (B.32) is written as

(B.33)
Also, the output is

(B.34)
where

d4y
dt4
-------- 2d2y

dt2
-------- y t + + tsin=

y 0  y' 0  y'' 0  y''' 0  0= = = =

y t  0.125 3 t2–  3t tcos– =

a3 a2 a1  and a0  
y t 

x1 x2 x3   x4

x1 y t = x2
dy
dt
------= x3

d 2y
dt2
---------= x4

d 3y
dt3
---------=

x·1 x2=

x·2 x3=

x·3 x4=

d 4y
dt4
--------- x·4 a0x1– a1x2 a2x3–– a3x4– u t += =

x·1

x·2

x·3

x·4

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

x1

x2

x3

x4

0
0
0
1

u t +=

x· Ax bu+=

y Cx du+=
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(B.35)

and since the output is defined as 

relation (B.34) is expressed as

(B.36)

2. By inspection, the differential equation of (B.27) will be reduced to the differential equation of
(B.28) if we let

and thus the differential equation of (B.28) can be expressed in statespace form as

(B.37)

where

(B.38)

Since the output is defined as 

in matrix form it is expressed as

x·

x·1

x·2

x·3

x·4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– a1– a2– a3–

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u=   u t =

y t  x1=

y 1  0  0  0 

x1

x2

x3

x4

 0 u t +=

a3 0= a2 2= a1 0= a0 1= u t  tsin=

x·1

x·2

x·3

x·4

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0

x1

x2

x3

x4

0
0
0
1

tsin+=

x·

x·1

x·2

x·3

x·4

=      A

0 1 0 0
0 0 1 0
0 0 0 1
a0– 0 2– 0

=      x

x1

x2

x3

x4

=      b

0
0
0
1

     and u=   tsin=

y t  x1=
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(B.39)

We invoke MATLAB, we start Simulink by clicking on the Simulink icon, on the Simulink
Library Browser we click on the Create a new model (blank page icon on the left of the top
bar), and we save this model as Example_1_2. On the Simulink Library Browser we select
Sources, we drag the Signal Generator block on the Example_1_2 model window, we click
and drag the StateSpace block from the Continuous on Simulink Library Browser, and we
click and drag the Scope block from the Commonly Used Blocks on the Simulink Library
Browser. We also add the Display block found under Sinks on the Simulink Library
Browser. We connect these four blocks and the complete block diagram is as shown in Figure
B.17.

Figure B.17. Block diagram for Example B.2

We now doubleclick on the Signal Generator block and we enter the following in the Func-
tion Block Parameters:

Wave form: sine

Time (t): Use simulation time

Amplitude: 1

Frequency: 2

Units: Hertz

Next, we doubleclick on the statespace block and we enter the following parameter values
in the Function Block Parameters: 

A: [0  1  0  0; 0  0  1  0; 0  0  0  1; a0  a1 a2  a3]

B: [0  0  0  1]’

C: [1  0  0  0]

D: [0]

Initial conditions: x0

y 1  0  0  0 

x1

x2

x3

x4

 0  tsin+=
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Absolute tolerance: auto

Now, we switch to the MATLAB Command prompt and we type the following:

>> a0=1; a1=0; a2=2; a3=0; x0=[0  0  0  0]’;

We change the Simulation Stop time to , and we start the simulation by clicking on the 
icon. To see the output waveform, we double click on the Scope block, then clicking on the

Autoscale  icon, we obtain the waveform shown in Figure B.18.

Figure B.18. Waveform for Example B.2

The Display block in Figure B.17 shows the value at the end of the simulation stop time.

Examples B.1 and B.2 have clearly illustrated that the StateSpace is indeed a powerful block. We
could have obtained the solution of Example B.2 using four Integrator blocks by this approach
would have been more time consuming.
 

Example B.3  
Using Algebraic Constraint blocks found in the Math Operations library, Display blocks found
in the Sinks library, and Gain blocks found in the Commonly Used Blocks library, we will create
a model that will produce the simultaneous solution of three equations with three unknowns.

The model will display the values for the unknowns , , and  in the system of the equations

(B.40)

25

z1 z2 z3

a1z1 a2z2 a3z3 k1+ + + 0=

a4z1 a5z2 a6z3 k2+ + + 0=

a7z1 a8z2 a9z3 k3+ + + 0=
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The model is shown in Figure B.19.

Figure B.19. Model for Example B.3

Next, we go to MATLAB’s Command prompt and we enter the following values:

a1=2; a2=3; a3=1; a4=1; a5=5; a6=4; a7=6; a8=1; a9=2;...
k1=8; k2=7; k3=5;

After clicking on the simulation icon, we observe the values of the unknowns as ,
, and .These values are shown in the Display blocks of Figure B.19.

The Algebraic Constraint block constrains the input signal  to zero and outputs an algebraic
state . The block outputs the value necessary to produce a zero at the input. The output must
affect the input through some feedback path. This enables us to specify algebraic equations for
index 1 differential/algebraic systems (DAEs). By default, the Initial guess parameter is zero. We
can improve the efficiency of the algebraic loop solver by providing an Initial guess for the alge-
braic state z that is close to the solution value.

z1 2=

z2 3–= z3 5=

f z 
z



  Introduction to Simulink

B20 Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

An outstanding feature in Simulink is the representation of a large model consisting of many
blocks and lines, to be shown as a single Subsystem block.* For instance, we can group all blocks
and lines in the model of Figure B.19 except the display blocks, we choose Create Subsystem
from the Edit menu, and this model will be shown as in Figure B.20† where in MATLAB’s Com-
mand prompt we have entered:

a1=5; a2=1; a3=4; a4=11; a5=6; a6=9; a7=8; a8=4; a9=15;...
k1=14; k2=6; k3=9;

Figure B.20. The model of Figure B.19 represented as a subsystem

The Display blocks in Figure B.20 show the values of , , and  for the values specified in
MATLAB’s Command prompt. 

B.2 Simulink Demos
At this time, the reader with no prior knowledge of Simulink, should be ready to learn Simulink’s
additional capabilities. It is highly recommended that the reader becomes familiar with the block
libraries found in the Simulink Library Browser. Then, the reader can follow the steps delineated
in The MathWorks Simulink User’s Manual to run the Demo Models beginning with the thermo
model. This model can be seen by typing

thermo

at the MATLAB Command prompt.

* The Subsystem block is described in detail in Chapter 2, Section 2.1, Page 22, Introduction to Simulink with
Engineering Applications, 9781934404096.

† The contents of the Subsystem block are not lost. We can doubleclick on the Subsystem block to see its con-
tents. The Subsystem block replaces the inputs and outputs of the model with Inport and Outport blocks. These
blocks are described in Section 2.1, Chapter 2, Page 22, Introduction to Simulink with Engineering Applica-
tions, ISBN 9781934404096.

z1 z2 z3
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Appendix C

Introduction to SimPowerSystems

his appendix is a brief introduction to SimPowerSystems blockset that operates in the
Simulink environment. An introduction to Simulink is presented in Appendix B. For
additional help with Simulink, please refer to the Simulink documentation.

C.1 Simulation of Electric Circuits with SimPowerSystems

As stated in Appendix B, the MATLAB and Simulink environments are integrated into one
entity, and thus we can analyze, simulate, and revise our models in either environment at any
point. We can invoke Simulink from within MATLAB or by typing simulink at the MATLAB
command prompt, and we can invoke SimPowerSystems from within Simulink or by typing pow-
erlib at the MATLAB command prompt. We will introduce SimPowerSystems with two illus-
trated examples, a DC electric circuit, and an AC electric circuit

Example C.1  

For the simple resistive circuit in Figure C.1, , , and . From the volt-

age division expression,  and from Ohm’s law,
.

Figure C.1. Circuit for Example C.1

To model the circuit in Figure C.1, we enter the following command at the MATLAB prompt.

powerlib

and upon execution of this command, the powerlib window shown in Figure C.2 is displayed.

From the File menu in Figure C.2, we open a new window and we name it Sim_Fig_C3 as shown
in Figure C.3.

T

vS 12v= R1 7= R2 5=

vR2 R2 vS R1 R2+  5 12 12 5v= = =

i vS R1 R2+  1A= =

+
vS

R2

R1

i
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Figure C.2. Library blocks for SimPowerSystems

Figure C.3. New window for modeling the circuit shown in Figure C.1

The powergui block in Figure C.2 is referred to as the Environmental block for SimPowerSys-
tems models and it must be included in every model containing SimPowerSystems blocks.
Accordingly, we begin our model by adding this block as shown in Figure C.4.

We observe that in Figure C.4, the powergui block is named Continuous. This is the default
method of solving an electric circuit and uses a variable step Simulink solver. Other methods are
the Discrete method used when the discretization of the system at fixed time steps is desired, and
the Phasors method which performs phasor simulation at the frequency specified by the Phasor
frequency parameter. These methods are described in detail in the SimPowerSystems documen-
tation.
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Figure C.4. Window with the addition of the powergui block

Next, we need to the components of the electric circuit shown in Figure C.1. From the Electrical
Sources library in Figure C.2 we select the DC Voltage Source block and drag it into the model,
from the Elements library we select and drag the Series RLC Branch block and the Ground
block, from the Measurements library we select the Current Measurement and the Voltage
Measurement blocks, and from the Simulink Sinks library we select and drag the Display block.
The model now appears as shown in Figure C.5.

Figure C.5. The circuit components for our model

From the Series RLC Branch block we only need the resistor, and to eliminate the inductor and
the capacitor, we double click it and from the Block Parameters window we select the R compo-
nent with value set at  as shown in Figure C.6.7 
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Figure C.6. The Block Parameters window for the Series RLC Branch

We need two resistors for our model and thus we copy and paste the resistor into the model, using
the Block Parameters window we change its value to , and from the Format drop window we
click the Rotate block option and we rotate it clockwise. We also need two Display blocks, one
for the current measurement and the second for the voltage measurement and thus we copy and
paste the Display block into the model. We also copy and paste twice the Ground block and the
model is now as shown in Figure C.7 where we also have renamed the blocks to shorter names.

Figure C.7. Model with blocks renamed

From Figure C.7 above, we observe that both terminals of the voltage source and the resistors are
shown with small square ( ) ports, the left ports of the CM (Current Measurement), and VM
(Voltage Measurement) are also shown with ports, but the terminals on the right are shown with
the Simulink output ports as >. The rules for the SimPowerSystems electrical terminal ports
and connection lines are as follows:

5 
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1. We can connect Simulink ports (>) only to other Simulink ports.

2. We can connect SimPowerSystems ports ( ) only to other SimPowerSystems ports.*

3. If it is necessary to connect Simulink ports (>) to SimPowerSystems ports ( ), we can use
SimPowerSystems blocks that contain both Simulink and SimPowerSystems ports such as the
Current Measurement (CM) block and the Voltage Measurement (VM) block shown in Fig-
ure C.7.

The model for the electric circuit in Figure C.1 is shown in Figure C.8.

Figure C.8. The final form of the SimPowerSystems model for the electric circuit in Figure C.1

For the model in Figure C.8 we used the DC Voltage Source block. The SimPowerSystems doc-
umentation states that we can also use the AC Voltage Source block as a DC Voltage Source
block provided that we set the frequency at  and the phase at  in the Block
Parameters window as shown in Figure C.9.

* As in Simulink, we can autoconnect two SimPowerSystems blocks by selecting the source block, then holding
down the Ctrl key, and left-clicking the destination block.

0 Hz 90 degrees
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Figure C.9. Block parameter settings when using an AC Voltage Source block as a DC Voltage Source

Figure C.10. Model with AC Voltage Source used as DC Voltage Source

A third option is to use a Controlled Voltage Source block with a Constant block set to the
numerical value of the DC voltage Source as shown in the model of Figure C.11.
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Figure C.11. Model with Controlled Voltage Source block

Example C.2  
Consider the AC electric circuit in Figure C.12

Figure C.12. Electric circuit for Example C.2

The current I and the voltage Vc across the capacitor are computed with MATLAB as follows:

Vs=120; f=60; R=1; L=0.2; C=10^(3); XL=2*pi*f*L; XC=1/(2*pi*f*C);...
Z=sqrt(R^2+(XLXC)^2); I=Vs/Z, Vc=XC*I

I =
    1.6494
Vc =
    4.3752

The SimPowerSystems model and the waveforms for the current I and the voltage Vc are shown
in Figures C.13 and C.14 respectively.

VS

I

0.2H

C

120 0 V

1 

LR

10 3–  F

60 Hz
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Figure C.13. SimPowerSystems model for the electric circuit in Figure C.12

Figure C.14. Waveforms for the current I and voltage Vc across the capacitor in Figure C.12

The same results are obtained if we replace the applied AC voltage source block in the model of
Figure C.13 with a Controlled Voltage Source (CVS) block as shown in Figure C.15.

Figure C.15. The model in Figure C.13 with the AC Voltage Source block replaced with a CVS block
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Appendix D

A Review of Complex Numbers

his appendix is a review of the algebra of complex numbers. The basic operations are
defined and illustrated by several examples. Applications using Euler’s identities are pre-
sented, and the exponential and polar forms are discussed and illustrated with examples. 

D.1 Definition of a Complex Number

In the language of mathematics, the square root of minus one is denoted as , that is, .
In the electrical engineering field, we denote  as  to avoid confusion with current . Essentially,

 is an operator that produces a 90degree counterclockwise rotation to any vector to which it is
applied as a multiplying factor. Thus, if it is given that a vector  has the direction along the
right side of the xaxis as shown in Figure D.1, multiplication of this vector by the operator  will
result in a new vector  whose magnitude remains the same, but it has been rotated counter-
clockwise by . 

Figure D.1. The j operator

Also, another multiplication of the new vector  by  will produce another counterclock-
wise direction. In this case, the vector  has rotated  and its new value now is . When
this vector is rotated by another  for a total of , its value becomes . A
fourth  rotation returns the vector to its original position, and thus its value is again .

Therefore, we conclude that , , and .
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90 270 j A–  jA–=
90 A

j 2 1–= j 3 j–= j 4 1=

  

    

   



  A Review of Complex Numbers

D2 Circuit Analysis I with MATLAB  Computing and Simulink / SimPower Systems Modeling
Copyright © Orchard Publications

Note: In our subsequent discussion, we will denote the xaxis (abscissa) as the real axis, and the
yaxis (ordinate) as the imaginary axis with the understanding that the “imaginary” axis is just as
“real” as the real axis. In other words, the imaginary axis is just as important as the real axis.*

An imaginary number is the product of a real number, say , by the operator . Thus,  is a real
number and  is an imaginary number.

A complex number is the sum (or difference) of a real number and an imaginary number. For
example, the number  where  and  are both real numbers, is a complex number.
Then,  and  where  denotes real part of A, and 
the imaginary part of .

By definition, two complex numbers  and  where  and , are equal if
and only if their real parts are equal, and also their imaginary parts are equal. Thus,  if and
only if  and .

D.2 Addition and Subtraction of Complex Numbers
The sum of two complex numbers has a real component equal to the sum of the real components,
and an imaginary component equal to the sum of the imaginary components. For subtraction, we
change the signs of the components of the subtrahend and we perform addition. Thus, if

 and 
then

and

Example D.1  

It is given that , and . Find  and 

Solution:

and

* We may think the real axis as the cosine axis and the imaginary axis as the sine axis.

r j r
jr

A a jb+= a b
a Re A = b Im A = Re A  b Im A =

A

A B A a jb+= B c jd+=
A B=

a c= b d=

A a jb+= B c jd+=

A B+ a c+  j b d+ +=

A B– a c–  j b d– +=

A 3 j4+= B 4 j2–= A B+ A B–

A B+ 3 j4+ = 4 j2– + 3 4+  j 4 2– + 7 j2+= =

A B– 3 j4+ = 4 j2– – 3 4–  j 4 2+ + 1– j6+= =
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D.3 Multiplication of Complex Numbers
Complex numbers are multiplied using the rules of elementary algebra, and making use of the
fact that . Thus, if

 and 
then

and since , it follows that

(D.1)

Example D.2  

It is given that  and . Find 

Solution:

The conjugate of a complex number, denoted as , is another complex number with the same
real component, and with an imaginary component of opposite sign. Thus, if , then

.

Example D.3  

It is given that . Find 

Solution:

The conjugate of the complex number  has the same real component, but the imaginary com-
ponent has opposite sign. Then, 

If a complex number  is multiplied by its conjugate, the result is a real number. Thus, if
, then

j 2 1–=

A a jb+= B c jd+=

A B a jb+  c jd+  ac jad jbc j2bd+ + += =

j 2 1–=

A B ac jad jbc b– d+ +=

ac bd–  j ad bc+ +=

A 3 j4+= B 4 j2–= A B

A B 3 j4+  4 j2–  12 j6– j16 j 28–+ 20 j10+= = =

A
A a jb+=

A a j– b=

A 3 j5+= A

A
A 3 j– 5=

A
A a jb+=

A A a jb+  a jb–  a2 jab– jab j 2b2–+ a2 b2+= = =
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Example D.4  

It is given that . Find 

Solution:

D.4 Division of Complex Numbers
When performing division of complex numbers, it is desirable to obtain the quotient separated
into a real part and an imaginary part. This procedure is called rationalization of the quotient, and it
is done by multiplying the denominator by its conjugate. Thus, if  and ,
then,

(D.2)

In (D.2), we multiplied both the numerator and denominator by the conjugate of the denomina-
tor to eliminate the j operator from the denominator of the quotient. Using this procedure, we see
that the quotient is easily separated into a real and an imaginary part.

Example D.5  

It is given that , and . Find 

Solution:

Using the procedure of (D.2), we obtain

D.5 Exponential and Polar Forms of Complex Numbers
The relations

(D.3)

A 3 j5+= A A

A A 3 j5+  3 j5–  32 52+ 9 25 34=+= = =

A a jb+= B c jd+=

A
B
---- a jb+

c jd+
-------------- a jb+  c jd– 

c jd+  c jd– 
------------------------------------- A

B
---- B

B
------- ac bd+  j bc ad– +

c2 d 2+
------------------------------------------------------= = = =

ac bd+ 
c2 d 2+

----------------------- j bc ad– 
c2 d 2+

----------------------+=

A 3 j4+= B 4 j3+= A B

A
B
---- 3 j4+

4 j3+
-------------- 3 j4+  4 j3– 

4 j3+  4 j3– 
-------------------------------------- 12 j9– j16 12+ +

42 32+
-------------------------------------------- 24 j7+

25
----------------- 24

25
------ j 7

25
------+ 0.96 j0.28+= = = = ==

e j  j sin+cos=
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Exponential and Polar Forms of Complex Numbers

and

(D.4)

are known as the Euler’s identities.

Multiplying (D.3) by the real positive constant C we obtain:

(D.5)

This expression represents a complex number, say , and thus

(D.6)

where the left side of (D.6) is the exponential form, and the right side is the rectangular form.

Equating real and imaginary parts in (D.5) and (D.6), we obtain

(D.7)

Squaring and adding the expressions in (D.7), we obtain

Then,

or

(D.8)

Also, from (D.7)

or

(D.9)

To convert a complex number from rectangular to exponential form, we use the expression

(D.10)

To convert a complex number from exponential to rectangular form, we use the expressions

(D.11)

    e j–  j– sincos=

Ce j C  jC sin+cos=

a jb+

Ce j a jb+=

a C cos=   and  b C sin=

a2 b2+ C cos 2 C sin 2+ C2 2cos 2sin+  C2= = =

C2 a2 b2+=

C a2 b2+=

b
a
--- C sin

C cos
--------------- tan= =

   b
a
--- 
 1–tan=

a jb+ a2 b2+ e
j tan 1–  b

a
--- 

 
=

Ce j C  jC sin+cos=

Ce j– C  j– C sincos=
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The polar form is essentially the same as the exponential form but the notation is different, that
is,

(D.12)

where the left side of (D.12) is the exponential form, and the right side is the polar form.

We must remember that the phase angle  is always measured with respect to the positive real
axis, and rotates in the counterclockwise direction.

Example D.6  
Convert the following complex numbers to exponential and polar forms:

a. 

b. 

c. 

d. 

Solution:

a. The real and imaginary components of this complex number are shown in Figure D.2.

Figure D.2. The components of 
Then,

Check with MATLAB:

x=3+j*4; magx=abs(x); thetax=angle(x)*180/pi;  disp(magx); disp(thetax)

    5
    53.1301

Ce j C =



3 j4+

1– j2+

2– j–

4 j3–

Re

Im
4

3

5

53.1

3 j4+

3 j4+ 32 42+ e
j 4

3
---

1–
tan 

 
5e j53.1 5 53.1= = =
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Exponential and Polar Forms of Complex Numbers

Check with the Simulink Complex to MagnitudeAngle block* shown in the Simulink
model of Figure D.3.

Figure D.3. Simulink model for Example D.6a

b. The real and imaginary components of this complex number are shown in Figure D.4.

Figure D.4. The components of 
Then, 

Check with MATLAB:

y=1+j*2; magy=abs(y); thetay=angle(y)*180/pi;  disp(magy); disp(thetay)

    2.2361
  116.5651

c. The real and imaginary components of this complex number are shown in Figure D.5. 

Figure D.5. The components of 

* For a detailed description and examples with this and other related transformation blocks, please refer to Intro-
duction to Simulink with Engineering Applications, ISBN 9781934404096.

Re

Im
2

1

116.6
63.4

5

1– j2+

1– j2+ 12 22+ e
j 2

1–
------

1–
tan 
 

5e j116.6 5 116.6= = =

Re

Im

2

1

206.6

153.4Measured26.6
Clockwise)5

2– j–
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Then,

Check with MATLAB:

v=2j*1; magv=abs(v); thetav=angle(v)*180/pi;  disp(magv); disp(thetav)

    2.2361
 -153.4349

d. The real and imaginary components of this complex number are shown in Figure D.6.

Figure D.6. The components of 

Then,

Check with MATLAB:

w=4j*3; magw=abs(w); thetaw=angle(w)*180/pi;  disp(magw); disp(thetaw)

     5
  -36.8699

Example D.7  

Express the complex number in exponential and in rectangular forms.

Solution:

We recall that . Since each  rotates a vector by  counterclockwise, then is
the same as rotated counterclockwise by .Therefore,

The components of this complex number are shown in Figure D.7.

2– j– 1 22 12+ e
j 1–

2–
------

1–
tan 
 

5e j206.6
= = 5 206.6 5ej 153.4–  5 153.4– = = =

Re

Im
4

3
5

323.1×

36.9×

4 j3–

4 j– 3 42 32+ e
j 3–

4
------

1–
tan 
 

5e j323.1
= = 5 323.1 5e j36.9–  5 36.9– = = =

2 30–

1– j2= j 90 2 30–

2 30 180

2 30– 2 30 180+  2 210 2 150–= = =
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Exponential and Polar Forms of Complex Numbers

Figure D.7. The components of 
Then,

Note: The rectangular form is most useful when we add or subtract complex numbers; however,
the exponential and polar forms are most convenient when we multiply or divide complex
numbers.

To multiply two complex numbers in exponential (or polar) form, we multiply the magnitudes
and we add the phase angles, that is, if

then,

(D.13)

Example D.8  

Multiply  by 

Solution:

Multiplication in polar form yields

and multiplication in exponential form yields

To divide one complex number by another when both are expressed in exponential or polar
form, we divide the magnitude of the dividend by the magnitude of the divisor, and we subtract
the phase angle of the divisor from the phase angle of the dividend, that is, if

Re

Im

1.73

1

210

2
150Measured

30
Clockwise)

2 150–

2 150–  2e j– 150
= 2 150 j 150sin–cos  2 0.866– j0.5–  1.73– j–= = =

A M =   and  B N =

AB MN  +  Me jNe j MNe j  + 
= = =

A 10 53.1= B 5 36.9–=

AB 10 5  53.1 36.9– +  50 16.2= =

AB 10e j53.1  5e j– 36.9  50e j 53.1 36.9–  50e j16.2= = =

A M =   and  B N =
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then,

(D.14)

Example D.9  

Divide  by 

Solution:

Division in polar form yields

Division in exponential form yields

A
B
---- M

N
-----  –  Me j

Ne j
------------- M

N
----e j  – 

= = =

A 10 53.1= B 5 36.9–=

A
B
---- 10 53.1

5 36.9–
------------------------ 2 53.1 36.9– –  2 90= = =

A
B
---- 10e j53.1

5e j36.9–
--------------------- 2e j53.1e j36.9 2e j90= ==
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Appendix E

Matrices and Determinants

his appendix is an introduction to matrices and matrix operations. Determinants, Cramer’s
rule, and Gauss’s elimination method are reviewed. Some definitions and examples are not
applicable to the material presented in this text, but are included for subject continuity,

and academic interest. They are discussed in detail in matrix theory textbooks. These are
denoted with a dagger (†) and may be skipped. 

E.1 Matrix Definition

A matrix is a rectangular array of numbers such as those shown below.

In general form, a matrix A is denoted as

(E.1)

The numbers  are the elements of the matrix where the index  indicates the row, and  indi-

cates the column in which each element is positioned. For instance,  indicates the element
positioned in the fourth row and third column.

A matrix of  rows and  columns is said to be of  order matrix.

If , the matrix is said to be a square matrix of order  (or ). Thus, if a matrix has five
rows and five columns, it is said to be a square matrix of order 5.

T

2 3 7
1 1– 5

or
1 3 1
2– 1 5–
4 7– 6

A

a11 a12 a13  a1n

a21 a22 a23  a2n

a31 a32 a33  a3n

    
am1 am2 am3  amn

=

aij i j

a43

m n m n

m n= m n
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In a square matrix, the elements  are called the main diagonal elements.
Alternately, we say that the matrix elements , are located on the main
diagonal.

† The sum of the diagonal elements of a square matrix  is called the trace* of .

† A matrix in which every element is zero, is called a zero matrix.

E.2 Matrix Operations

Two matrices  and  are equal, that is, , if and only if 

(E.2)

Two matrices are said to be conformable for addition (subtraction), if they are of the same order
.

If  and  are conformable for addition (subtraction), their sum (difference) will

be another matrix  with the same order as  and , where each element of  is the sum (dif-
ference) of the corresponding elements of  and , that is,

(E.3)

Example E.1  

Compute  and  given that

 and 

Solution:

and

* Henceforth, all paragraphs and topics preceded by a dagger ( † ) may be skipped. These are discussed in matrix
theory textbooks.

a11  a22  a33    ann   

a11  a22  a33    ann   

A A

A aij= B bij= A B=

aij bij= i 1 2 3  m   = j 1 2 3  n   =

m n

A aij= B bij=

C A B C
A B

C A B aij bij = =

A B+ A B–

A 1 2 3
0 1 4

= B 2 3 0
1– 2 5

=

A B+ 1 2+ 2 3+ 3 0+
0 1– 1 2+ 4 5+

3 5 3
1– 3 9

= =

A B– 1 2– 2 3– 3 0–
0 1+ 1 2– 4 5–

1– 1– 3
1 1– 1–

= =
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Matrix Operations

Check with MATLAB:

A=[1  2  3;   0  1  4];  B=[2  3  0; 1  2  5]; % Define matrices A and B
A+B, AB % Add A and B, then Subtract B from A

ans =
     3     5     3
    -1     3     9

ans =
    -1    -1     3
     1    -1    -1

Check with Simulink:

If  is any scalar (a positive or negative number), and not  which is a  matrix, then mul-
tiplication of a matrix  by the scalar  is the multiplication of every element of  by .

Example E.2  
Multiply the matrix

by 

a.  

b. 

Note: The elements of matrices
         A and B are specified in

                MATLAB's Command prompt

Sum 2

Sum 1

-1

1

-1

-1

3

-1

Display 2 (A-B)

3

-1

5

3

3

9

Display 1 (A+B)
B

Constant 2

A

Constant 1

k k  1 1
A k A k

A 1 2–
2 3

=

k1 5=

k2 3– j2+=
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Solution:
a.

b.

Check with MATLAB:

k1=5; k2=(3 + 2*j); %  Define scalars k1 and k2
A=[1 2; 2  3]; % Define matrix A
k1*A, k2*A % Multiply matrix A by scalars k1 and k2  

ans =
     5   -10
    10    15

ans =
  -3.0000+ 2.0000i   6.0000- 4.0000i
  -6.0000+ 4.0000i  -9.0000+ 6.0000i

Two matrices  and  are said to be conformable for multiplication  in that order, only
when the number of columns of matrix  is equal to the number of rows of matrix . That is, the
product  (but not ) is conformable for multiplication only if  is an  matrix and
matrix  is an  matrix. The product  will then be an  matrix. A convenient way
to determine if two matrices are conformable for multiplication is to write the dimensions of the
two matrices sidebyside as shown below.

 

For the product  we have:

k1 A 5 1 2–
2 3

 5 1 5 2– 
5 2 5 3

5 10–
10 15

= = =

k2 A 3– j2+  1 2–
2 3

 3– j2+  1 3– j2+  2– 
3– j2+  2 3– j2+  3

3– j2+ 6 j4–
6– j4+ 9– j6+

= = =

A B A B
A B

A B B A A m p
B p n A B m n

m  p     p  n
A           B

Shows that A and B are conformable for multiplication

Indicates the dimension of the product A  B 

B A
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Matrix Operations

For matrix multiplication, the operation is row by column. Thus, to obtain the product , we
multiply each element of a row of  by the corresponding element of a column of ; then, we
add these products.

Example E.3  

Matrices  and  are defined as

 and 

Compute the products  and 

Solution:

The dimensions of matrices  and  are respectively ; therefore the product  is
feasible, and will result in a , that is,

The dimensions for  and  are respectively  and therefore, the product  is
also feasible. Multiplication of these will produce a  matrix as follows:

Check with MATLAB:

C=[2  3  4];  D=[1  1  2]’; % Define matrices C and D. Observe that D is a column vector
C*D, D*C % Multiply C by D, then multiply D by C

ans =
     7

 Here, B and A are not conformable for multiplication

                     B           A 
      p  n    m  p

A B
A B

C D

C 2 3 4= D
1
1–
2

=

C D D C

C D 1 3  3 1 C D
1 1

C D 2 3 4
1
1–
2

2  1  3  1–  4  2 + + 7= = =

D C 3 1  1 3 D C
3 3

D C
1
1–
2

2 3 4
1  2  1  3  1  4 
1–  2  1–  3  1–  4 

2  2  2  3  2  4 

2 3 4
2– 3– 4–
4 6 8

= = =



Appendix E  Matrices and Determinants

E6 Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

ans =
     2     3     4
    -2    -3    -4
     4     6     8

Division of one matrix by another, is not defined. However, an analogous operation exists, and it
will become apparent later in this chapter when we discuss the inverse of a matrix.

E.3 Special Forms of Matrices

† A square matrix is said to be upper triangular when all the elements below the diagonal are
zero. The matrix  of (E.4) is an upper triangular matrix. In an upper triangular matrix, not
all elements above the diagonal need to be nonzero.

(E.4)

† A square matrix is said to be lower triangular, when all the elements above the diagonal are
zero. The matrix  of (E.5) is a lower triangular matrix. In a lower triangular matrix, not all
elements below the diagonal need to be nonzero.

(E.5)

† A square matrix is said to be diagonal, if all elements are zero, except those in the diagonal. The
matrix  of (E.6) is a diagonal matrix.

A

A

a11 a12 a13  a1n

0 a22 a23  a2n

0 0   
  0  
0 0 0  amn

=

B

B

a11 0 0  0
a21 a22 0  0
   0 0
    0

am1 am2 am3  amn

=

C
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Special Forms of Matrices

(E.6)

† A diagonal matrix is called a scalar matrix, if  where  is a

scalar. The matrix  of (E.7) is a scalar matrix with .

(E.7)

A scalar matrix with , is called an identity matrix . Shown below are , , and
 identity matrices. 

(E.8)

The MATLAB eye(n) function displays an  identity matrix. For example,

eye(4) % Display a 4 by 4 identity matrix

ans =
     1     0     0     0
     0     1     0     0
     0     0     1     0
     0     0     0     1

Likewise, the eye(size(A)) function, produces an identity matrix whose size is the same as matrix
. For example, let matrix  be defined as

A=[1  3  1; 2  1 5; 4 7  6] % Define matrix A

A =
    1     3     1

    -2     1    -5
     4    -7     6

C

a11 0 0  0
0 a22 0  0
0 0  0 0
0 0 0  0
0 0 0  amn

=

a11 a22 a33  ann k= = = = = k

D k 4=

D

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

=

k 1= I 2 2 3 3
4 4

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

n n

A A
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Then,
eye(size(A))

displays

ans =
     1     0     0
     0     1     0
     0     0     1

† The transpose of a matrix , denoted as , is the matrix that is obtained when the rows and
columns of matrix  are interchangeE. For example, if

(E.9)

In MATLAB, we use the apostrophe () symbol to denote and obtain the transpose of a matrix.
Thus, for the above example, 

A=[1  2  3;  4  5  6] % Define matrix A

A =
     1     2     3
     4     5     6

A' % Display the transpose of A

ans =
     1     4
     2     5
     3     6

† A symmetric matrix  is a matrix such that , that is, the transpose of a matrix  is the
same as . An example of a symmetric matrix is shown below.

(E.10)

† If a matrix  has complex numbers as elements, the matrix obtained from  by replacing each
element by its conjugate, is called the conjugate of , and it is denoted as , for example,

A AT

A

A 1 2 3
4 5 6

=   then  AT
1 4
2 5
3 6

=

A AT A= A
A

A
1 2 3
2 4 5–
3 5– 6

= AT
1 2 3
2 4 5–
3 5– 6

A= =

A A
A A
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Special Forms of Matrices

MATLAB has two builtin functions which compute the complex conjugate of a number. The
first, conj(x), computes the complex conjugate of any complex number, and the second,
conj(A), computes the conjugate of a matrix . Using MATLAB with the matrix  defined
as above, we obtain

A = [1+2j   j;  3   23j] % Define and display matrix A

A =
  1.0000 + 2.0000i        0 + 1.0000i
  3.0000             2.0000 - 3.0000i

conj_A=conj(A) % Compute and display the conjugate of A

conj_A =
  1.0000 - 2.0000i        0 - 1.0000i
  3.0000             2.0000 + 3.0000i

† A square matrix  such that  is called skew-symmetric. For example,

Therefore, matrix  above is skew symmetric.

† A square matrix  such that  is called Hermitian. For example,

Therefore, matrix  above is Hermitian.

† A square matrix  such that  is called skewHermitian. For example,

Therefore, matrix  above is skewHermitian.

A 1 j2+ j
3 2 j3–

= A 1 j2– j–
3 2 j3+

=

A A

A AT A–=

A
0 2 3–
2– 0 4–
3 4 0

=     AT
0 2– 3
2 0 4
3– 4– 0

A–= =

A

A AT A=

A
1 1 j– 2

1 j+ 3 j
2 j– 0

  AT
1 1 j+ 2

1 j– 3 j–
2 j 0

  AT*
1 1 j+ 2

1 j– 3 j–
2 j 0

A====

A

A AT A–=

A
j 1 j– 2

1– j– 3j j
2– j 0

  AT
j 1– j– 2–

1 j– 3j j
2 j 0

  AT*
j– 1– j+ 2–

1 j+ 3j– j–
2 j– 0

A–====

A
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E.4 Determinants

Let matrix  be defined as the square matrix

(E.11)

then, the determinant of , denoted as , is defined as

(E.12)

The determinant of a square matrix of order n is referred to as determinant of order n.

Let  be a determinant of order , that is,

(E.13)

Then,

(E.14)

Example E.4  

Matrices  and  are defined as

 and 

Compute  and .

Solution:

Check with MATLAB:

A=[1  2; 3  4]; B=[2  1; 2  0]; % Define matrices A and B
det(A), det(B) % Compute the determinants of A and B

A

A

a11 a12 a13  a1n

a21 a22 a23  a2n

a31 a32 a33  a3n

    
an1 an2 an3  ann

=

A detA

detA a11a22a33ann a12a23a34an1 a13a24a35an2 
             an1a22a13 an2– a23a14 an3a24a15 –––

+ + +=

A 2

A
a11 a12

a21 a22

=

detA a11a22 a21a12–=

A B

A 1 2
3 4

= B 2 1–
2 0

=

detA detB

detA 1 4 3 2– 4 6– 2–= = =

detB 2 0 2 1– – 0 2– – 2= = =
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Determinants

ans =
    -2

ans =
    2

Let  be a matrix of order , that is,

(E.15)

then,  is found from 

(E.16)

A convenient method to evaluate the determinant of order , is to write the first two columns to
the right of the  matrix, and add the products formed by the diagonals from upper left to
lower right; then subtract the products formed by the diagonals from lower left to upper right as
shown on the diagram of the next page. When this is done properly, we obtain (E.16) above.

This method works only with second and third order determinants. To evaluate higher order
determinants, we must first compute the cofactors; these will be defined shortly.

Example E.5  

Compute  and  if matrices  and  are defined as

 and 

A 3

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

detA

detA a11a22a33 a12a23a31 a11a22a33+ +=

a11a22a33 a11a22a33 a11a22a33–––

3
3 3

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12

a21 a22

a31 a32 +



detA detB A B

A
2 3 5
1 0 1
2 1 0

= B
2 3– 4–
1 0 2–
0 5– 6–

=
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Solution:

or

Likewise,

or

Check with MATLAB:

A=[2   3   5;  1   0   1;  2   1   0]; det(A) % Define matrix A and compute detA

ans =
     9

B=[2   3   4;  1   0   2;  0   5   6];det(B) % Define matrix B and compute detB

ans =
   -18

E.5  Minors and Cofactors

Let matrix  be defined as the square matrix of order  as shown below.

(E.17)

If we remove the elements of its  row, and  column, the remaining  square matrix is

called the minor of , and it is denoted as .

detA
2 3 5 2 3
1 0 1 1 0
2 1 0 2 1

=

detA 2 0 0  3 1 1  5 1 1 
2 0 5 – 1 1 2  0 1 3 ––

+ +
11 2– 9= =

=

detB
2 3– 4– 2 3–
1 0 2– 1 2–
0 5– 6– 2 6–

=

detB 2 0 6–   3–  2–  0  4–  1 5–  
0 0 4–  – 5–  2–  2  6–  1 3–  ––

+ +
20 38– 18–= =

=

A n

A

a11 a12 a13  a1n

a21 a22 a23  a2n

a31 a32 a33  a3n

    
an1 an2 an3  ann

=

ith jth n 1–

A Mij
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Minors and Cofactors

The signed minor  is called the cofactor of  and it is denoted as .

Example E.6  

Matrix  is defined as

(E.18)

Compute the minors ,     ,      and the cofactors ,  and .

Solution:

and

The remaining minors

and cofactors

are defined similarly.

Example E.7  

Compute the cofactors of matrix  defined as

(E.19)

Solution:

(E.20)

1– i j+
Mij aij ij

A

A
a11 a12 a13

a21 a22 a23

a31 a32 a33

=

M11 M12 M13 11 12 13

M11
a22 a23

a32 a33

=     M12
a21 a23

a31 a33

=     M11
a21 a22

a31 a32

=

11 1– 1 1+
M11 M11         12 1– 1 2+

M12 M12         13 M13 1– 1 3+
M13= =–= == =

M21    M22    M23    M31    M32    M33    

21 22 23 31 32 and 33    

A

A
1 2 3–
2 4– 2
1– 2 6–

=

11 1– 1 1+ 4– 2
2 6–

20= =           12 1– 1 2+ 2 2
1– 6–

10= =
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                                                   (E.21)

                        (E.22)

(E.23)

                         (E.24)

It is useful to remember that the signs of the cofactors follow the pattern below

that is, the cofactors on the diagonals have the same sign as their minors.

Let  be a square matrix of any size; the value of the determinant of  is the sum of the products
obtained by multiplying each element of any row or any column by its cofactor.

Example E.8  

Matrix  is defined as

(E.25)

Compute the determinant of  using the elements of the first row.

Solution:

13 1– 1 3+ 2 4–
1– 2

0         21 1– 2 1+ 2 3–
2 6–

6= == =

22 1– 2 2+ 1 3–
1– 6–

9–= =           23 1– 2 3+ 1 2
1– 2

4–= =

31 1– 3 1+ 2 3–
4– 2

8–= =         32 1– 3 2+ 1 3–
2 2

8–= =

33 1– 3 3+ 1 2
2 4–

8–= =

+  +  +
 +  + 
+  +  +
 +  + 
+  +  +

A A

A

A
1 2 3–
2 4– 2
1– 2 6–

=

A

detA 1 4– 2
2 6–

= 2 2 2
1– 6–

3 2 4–
1– 2

–– 1 20 2 10–  3 0–– 40= =
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Minors and Cofactors

Check with MATLAB:

A=[1  2  3; 2  4  2; 1  2  6]; det(A) % Define matrix A and compute detA

ans =
    40

We must use the above procedure to find the determinant of a matrix  of order  or higher.
Thus, a fourth-order determinant can first be expressed as the sum of the products of the ele-
ments of its first row by its cofactor as shown below.

(E.26)

Determinants of order five or higher can be evaluated similarly.

Example E.9  

Compute the value of the determinant of the matrix  defined as

(E.27)

Solution:

Using the above procedure, we will multiply each element of the first column by its cofactor.
Then,

A 4

A

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

a11

a22 a23 a24

a32 a33 a34

a42 a43 a44

a21

a12 a13 a14

a32 a33 a34

a42 a43 a44

–

                                            +a31

a12 a13 a14

a22 a23 a24

a42 a43 a44

a41

a12 a13 a14

a22 a23 a24

a32 a33 a34

–

= =

A

A

2 1– 0 3–
1– 1 0 1–
4 0 3 2–
3– 0 0 1

=

A=2
1 0 1–
0 3 2–
0 0 1

a 

1– 
1– 0 3–

0 3 2–
0 0 1

–

b 

 
+4

1– 0 3–
1 0 1–
0 0 1

c 

3– 
1– 0 3–

1 0 1–
0 3 2–

–

d 
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Next, using the procedure of Example E.5 or Example E.8, we find

, , , 
and thus

We can verify our answer with MATLAB as follows:

A=[ 2  1  0  3; 1  1  0  1; 4  0  3  2;  3  0  0  1]; delta = det(A)

delta =
   -33

Some useful properties of determinants are given below.

Property 1: If all elements of one row or one column are zero, the determinant is zero. An exam-
ple of this is the determinant of the cofactor  above.

Property 2: If all the elements of one row or column are m times the corresponding elements of
another row or column, the determinant is zero. For example, if

(E.28)

then,

(E.29)

Here,  is zero because the second column in  is  times the first column.

Check with MATLAB:

A=[2  4  1; 3  6  1; 1  2  1]; det(A)

ans =
     0

Property 3: If two rows or two columns of a matrix are identical, the determinant is zero. This
follows from Property 2 with .

E.6  Cramer’s Rule
Let us consider the systems of the three equations below:

a  6= b  3–= c  0= d  36–=

detA a  b  c  d + + + 6 3– 0 36–+ 33–= = =

c 

A
2 4 1
3 6 1
1 2 1

=

detA
2 4 1
3 6 1
1 2 1

2 4
3 6
1 2

12 4 6 6 4–– 12–+ + 0= = =

detA A 2

m 1=
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Cramer’s Rule

(E.30)

and let

Cramer’s rule states that the unknowns x, y, and z can be found from the relations

(E.31)

provided that the determinant  (delta) is not zero.

We observe that the numerators of (E.31) are determinants that are formed from  by the substi-
tution of the known values , , and , for the coefficients of the desired unknown.

Cramer’s rule applies to systems of two or more equations.

If (E.30) is a homogeneous set of equations, that is, if , then, 
are all zero as we found in Property 1 above. Then,  also.

Example E.10  

Use Cramer’s rule to find , , and  if

(E.32)

and verify your answers with MATLAB.

Solution:

Rearranging the unknowns , and transferring known values to the right side, we obtain

(E.33)

By Cramer’s rule,

a11x a12y a13z+ + A=

a21x a22y a23z+ + B=

a31x a32y a33z+ + C=


a11 a12 a13

a21 a22 a23

a31 a32 a33

     D1

A a11 a13

B a21 a23

C a31 a33

     D2

a11 A a13

a21 B a23

a31 C a33

     D3

a11 a12 A
a21 a22 B
a31 a32 C

====

x
D1


------= y

D2


------= z

D3


------=

A B C

A B C 0= = = D1  D2  and D3 
x y z 0= = =

v1 v2  v3

2v1 5– v2– 3v3+ 0=

2v3 3v2 4v1––– 8=

v2 3v1 4– v3–+ 0=

v

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=



Appendix E  Matrices and Determinants

E18 Circuit Analysis I with MATLAB  Computing and Simulink / SimPowerSystems Modeling
Copyright © Orchard Publications

Using relation (E.31) we obtain

(E.34)

We will verify with MATLAB as follows:

% The following script will compute and display the values of v1, v2 and v3.
format rat % Express answers in ratio form
B=[2  1  3;  4  3  2;  3  1 1]; % The elements of the determinant D of matrix B
delta=det(B); % Compute the determinant D of matrix B
d1=[5  1  3;  8  3  2;  4  1  1]; % The elements of D1
detd1=det(d1); % Compute the determinant of D1
d2=[2  5  3;  4  8  2;  3  4  1]; % The elements of D2
detd2=det(d2); % Compute the determinant of D2
d3=[2  1  5; 4  3  8;  3  1  4]; % The elements of D3
detd3=det(d3); % Compute he determinant of D3
v1=detd1/delta; % Compute the value of v1
v2=detd2/delta; % Compute the value of v2
v3=detd3/delta; % Compute the value of v3

%
disp('v1=');disp(v1); % Display the value of v1
disp('v2=');disp(v2); % Display the value of v2
disp('v3=');disp(v3); % Display the value of v3


2 1– 3
4– 3– 2–
3 1 1–

2 1–
4– 3–
3 1

6 6 12– 27 4 4+ + + + 35= = =

D1

5 1– 3
8 3– 2–
4 1 1–

5 1–
8 3–
4 1

15 8 24 36 10 8–+ + + + 85= = =

D2

2 5 3
4– 8 2–
3 4 1–

2 5
4– 8
3 4

16– 30– 48– 72– 16 20–+ 170–= = =

D3

2 1– 5
4– 3– 8
3 1 4

2 1–
4– 3–
3 1

24– 24– 20– 45 16– 16–+ 55–= = =

x1
D1


------ 85

35
------ 17

7
------= = = x2

D2


------ 170

35
---------– 34

7
------–= = = x3

D3


------ 55

35
------– 11

7
------–= = =
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Gaussian Elimination Method

v1=
    17/7
v2=
   -34/7     
v3=
   -11/7 

These are the same values as in (E.34)

E.7  Gaussian Elimination Method

We can find the unknowns in a system of two or more equations also by the Gaussian elimina-
tion method. With this method, the objective is to eliminate one unknown at a time. This can be
done by multiplying the terms of any of the equations of the system by a number such that we
can add (or subtract) this equation to another equation in the system so that one of the
unknowns will be eliminated. Then, by substitution to another equation with two unknowns, we
can find the second unknown. Subsequently, substitution of the two values found can be made
into an equation with three unknowns from which we can find the value of the third unknown.
This procedure is repeated until all unknowns are found. This method is best illustrated with the
following example which consists of the same equations as the previous example.

Example E.11  

Use the Gaussian elimination method to find , , and  of the system of equations

(E.35)

Solution:

As a first step, we add the first equation of (E.35) with the third to eliminate the unknown v2 and
we obtain the equation

(E.36)

Next, we multiply the third equation of (E.35) by 3, and we add it with the second to eliminate
, and we obtain the equation

(E.37)

Subtraction of (E.37) from (E.36) yields

v1 v2  v3

2v1 v2– 3v3+ 5=

4v1 3v2 2v3––– 8=

3v1 v2 v3–+ 4=

5v1 2v3+ 9=

v2

5v1 5v3– 20=
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(E.38)

Now, we can find the unknown  from either (E.36) or (E.37). By substitution of (D.38) into
(E.36) we obtain

(E.39)

Finally, we can find the last unknown  from any of the three equations of (E.35). By substitu-
tion into the first equation we obtain

(E.40)

These are the same values as those we found in Example E.10.

The Gaussian elimination method works well if the coefficients of the unknowns are small inte-
gers, as in Example E.11. However, it becomes impractical if the coefficients are large or fractional
numbers.

E.8 The Adjoint of a Matrix

Let us assume that  is an n square matrix and  is the cofactor of . Then the adjoint of ,

denoted as , is defined as the n square matrix below.

(E.41)

We observe that the cofactors of the elements of the ith row (column) of  are the elements of
the ith column (row) of .

Example E.12  

Compute  if Matrix  is defined as

7v3 11  or  v3
11
7
------–=–=

v1

5v1 2 11
7

------– 
 + 9  or  v1

17
7

------==

v2

v2 2v1 3v3 5–+ 34
7

------ 33
7
------– 35

7
------– 34

7
------–= = =

A ij aij A

adjA

adjA

11 21 31  n1

12 22 32  n2

13 23 33  n3

    
1n 2n 3n  nn

=

A
adjA

adjA A
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Singular and NonSingular Matrices

(E.42)

Solution: 

E.9 Singular and NonSingular Matrices

An  square matrix  is called singular if ; if ,  is called nonsingular.

Example E.13  

Matrix  is defined as

(E.43)

Determine whether this matrix is singular or nonsingular.

Solution:

Therefore, matrix  is singular.

A
1 2 3
1 3 4
1 4 3

=

adjA

  3 4
4 3

2 3
4 3

–   2 3
3 4

1 4
1 3

–       1 3
1 3

2 3
3 4

–

1 3
1 4

    1 2
1 4

–   1 2
1 3

7– 6 1–
1 0 1–
1 2– 1

= =

n A detA 0= detA 0 A

A

A
1 2 3
2 3 4
3 5 7

=

detA
1 2 3
2 3 4
3 5 7

1 2
2 3
3 5

21 24 30 27– 20– 28–+ + 0= = =

A
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E.10   The Inverse of a Matrix

If  and  are  square matrices such that , where  is the identity matrix,  is

called the inverse of , denoted as , and likewise,  is called the inverse of , that is,

If a matrix  is non-singular, we can compute its inverse  from the relation

(E.44)

Example E.14  

Matrix  is defined as

(E.45)

Compute its inverse, that is, find 

Solution:

Here, , and since this is a non-zero value, it is possible to com-
pute the inverse of  using (E.44).

From Example E.12,

Then,

(E.46)

Check with MATLAB:

A=[1  2  3;  1  3  4;  1  4  3],  invA=inv(A)      % Define matrix A and compute its inverse

A =
     1     2     3
     1     3     4
     1     4     3

A B n AB BA I= = I B

A B A 1–= A B

A B 1–=

A A 1–

A 1– 1
detA
------------adjA=

A

A
1 2 3
1 3 4
1 4 3

=

A 1–

detA 9 8 12 9– 16– 6–+ + 2–= =

A

adjA
7– 6 1–

1 0 1–
1 2– 1

=

A 1– 1
detA
------------adjA 1

2–
------

7– 6 1–
1 0 1–
1 2– 1

3.5 3– 0.5
0.5– 0 0.5
0.5– 1 0.5–

= = =
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Solution of Simultaneous Equations with Matrices

invA =
    3.5000   -3.0000    0.5000
   -0.5000         0    0.5000
   -0.5000    1.0000   -0.5000

Multiplication of a matrix  by its inverse produces the identity matrix , that is,

(E.47)

Example E.15  

Prove the validity of (E.47) for the Matrix  defined as

Proof:

Then,

and

E.11  Solution of Simultaneous Equations with Matrices
Consider the relation

(E.48)

where  and  are matrices whose elements are known, and  is a matrix (a column vector)
whose elements are the unknowns. We assume that  and  are conformable for multiplica-
tion.

Multiplication of both sides of (E.48) by  yields:

(E.49)
or

A A 1– I

AA 1– I   or   A 1– A I ==

A

A 4 3
2 2

=

detA 8 6– 2   and   adjA 2 3–
2– 4

== =

A 1– 1
detA
------------adjA 1

2
--- 2 3–

2– 4
1 3– 2
1– 2

= = =

AA 1– 4 3
2 2

1 3– 2
1– 2

4 3– 6– 6+
2 2– 3– 4+

1 0
0 1

I= = = =

AX B=

A B X
A X

A 1–

A 1– AX A 1– B IX A 1– B   = = =
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(E.50)

Therefore, we can use (E.50) to solve any set of simultaneous equations that have solutions. We
will refer to this method as the inverse matrix method of solution of simultaneous equations.

Example E.16  
For the system of the equations

(E.51)

compute the unknowns  using the inverse matrix method.

Solution:

In matrix form, the given set of equations is  where

(E.52)

Then,
(E.53)

or

(E.54)

Next, we find the determinant , and the adjoint .

Therefore,

X=A 1– B

2x1 3x2 x3+ + 9=

x1 2x2 3x3+ + 6=

3x1 x2 2x3+ + 8= 
 
 
 
 

x1 x2  and x3 

AX B=

A
2 3 1
1 2 3
3 1 2

=   X
x1

x2

x3

=   B
9
6
8

= 

X A 1– B=

x1

x2

x3

2 3 1
1 2 3
3 1 2

1–
9
6
8

=

detA adjA

detA 18=    and   adjA
1 5– 7
7 1 5–
5– 7 1

=
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Solution of Simultaneous Equations with Matrices

and with relation (E.53) we obtain the solution as follows:

(E.55)

To verify our results, we could use the MATLAB’s inv(A) function, and then multiply  by .

However, it is easier to use the matrix left division operation ; this is MATLAB’s solu-

tion of  for the matrix equation , where matrix  is the same size as matrix .

For this example,

A=[2  3  1; 1  2  3; 3  1  2]; B=[9  6  8]'; X=A \ B

X =
    1.9444
    1.6111
    0.2778

Example E.17  
For the electric circuit of Figure E.1,

 
Figure E.1. Electric circuit for Example E.17

the loop equations are

(E.56)

A 1– 1
detA
------------ adjA 1

18
------

1 5– 7
7 1 5–
5– 7 1

= =

X
x1

x2

x3

1
18
------

1 5– 7
7 1 5–
5– 7 1

9
6
8

1
18
------

35
29
5

35 18
29 18
5 18

1.94
1.61
0.28

= = = = =

A 1– B

X A \ B=

A 1– B A X B= X B

+


V = 100 v
9  9  4 

2 2 1 

I1 I3I2

10I1 9I2– 100=

9I1 20I2 9I3–+– 0=

9I2 15I3+– 0=
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Use the inverse matrix method to compute the values of the currents , , and 

Solution:

For this example, the matrix equation is or , where

The next step is to find . It is found from the relation

(E.57)

Therefore, we must find the determinant and the adjoint of . For this example, we find that

(E.58)

Then,

and

Check with MATLAB:

R=[10  9   0;  9   20  9;  0  9  15]; V=[100  0  0]'; I=R\V; fprintf(' \n');...
fprintf('I1 = %4.2f \t', I(1)); fprintf('I2 = %4.2f \t', I(2)); fprintf('I3 = %4.2f \t', I(3)); fprintf(' \n')

I1 = 22.46   I2 = 13.85   I3 = 8.31

We can also use subscripts to address the individual elements of the matrix. Accordingly, the
MATLAB script above could also have been written as:

R(1,1)=10; R(1,2)=9; % No need to make entry for A(1,3) since it is zero.
R(2,1)=9; R(2,2)=20; R(2,3)=9; R(3,2)=9; R(3,3)=15; V=[100 0 0]'; I=R\V; fprintf(' \n');...
fprintf('I1 = %4.2f \t', I(1)); fprintf('I2 = %4.2f \t', I(2)); fprintf('I3 = %4.2f \t', I(3)); fprintf(' \n')

I1 I2 I3

RI V = I R 1– V=

R
10 9– 0

9– 20 9–
0 9– 15

=   V
100

0
0

   and   I
I1

I2

I3

==

R 1–

R 1– 1
detR
------------ adjR=

R

detR 975=   adjR
219 135 81
135 150 90
81 90 119

  =

R 1– 1
detR
------------adjR 1

975
---------

219 135 81
135 150 90
81 90 119

= =

I
I1

I2

I3

1
975
---------

219 135 81
135 150 90
81 90 119

100
0
0

100
975
---------

219
135
81

22.46
13.85
8.31

= = = =
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Solution of Simultaneous Equations with Matrices

I1 = 22.46   I2 = 13.85   I3 = 8.31

Spreadsheets also have the capability of solving simultaneous equations with real coefficients
using the inverse matrix method. For instance, we can use Microsoft Excel’s MINVERSE (Matrix
Inversion) and MMULT (Matrix Multiplication) functions, to obtain the values of the three cur-
rents in Example E.17.

The procedure is as follows:

1. We begin with a blank spreadsheet and in a block of cells, say B3:D5, we enter the elements of
matrix R as shown in Figure D.2. Then, we enter the elements of matrix  in G3:G5.

2. Next, we compute and display the inverse of , that is, . We choose B7:D9 for the ele-
ments of this inverted matrix. We format this block for number display with three decimal
places. With this range highlighted and making sure that the cell marker is in B7, we type the
formula

=MININVERSE(B3:D5)

and we press the Crtl-Shift-Enter keys simultaneously. We observe that  appears in these
cells.

3. Now, we choose the block of cells G7:G9 for the values of the current . As before, we high-
light them, and with the cell marker positioned in G7, we type the formula

=MMULT(B7:D9,G3:G5)

and we press the Crtl-Shift-Enter keys simultaneously. The values of  then appear in G7:G9.

Figure E.2. Solution of Example E.17 with a spreadsheet

Example E.18  
For the phasor circuit of Figure E.18

V

R R 1–

R 1–

I

I

1
2
3
4
5
6
7

8
9
10

A B C D E F G H
Spreadsheet for Matrix Inversion and Matrix Multiplication

10 -9 0 100
R= -9 20 -9 V= 0

0 -9 15 0

0.225 0.138 0.083 22.462

R-1= 0.138 0.154 0.092 I= 13.846
0.083 0.092 0.122 8.3077
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Figure E.3. Circuit for Example E.18

the current  can be found from the relation

(E.59)

and the voltages  and  can be computed from the nodal equations

(E.60)

and
(E.61)

Compute, and express the current  in both rectangular and polar forms by first simplifying like

terms, collecting, and then writing the above relations in matrix form as , where
, , and 

Solution:

The  matrix elements are the coefficients of  and . Simplifying and rearranging the nodal
equations of (E.60) and (E.61), we obtain

(E.62)

Next, we write (E.62) in matrix form as

(E.63)

+



R185 

50 R2

C

L

R3 = 100 

IX

VS

j100 

j200 

170

V1 V2

IX

IX
V1 V2–

R3
-------------------=

V1 V2

V1 170 0–

85
--------------------------------

V1 V2–

100
-------------------

V1 0–

j200
---------------+ + 0=

V2 170 0–

j100–
--------------------------------

V2 V1–

100
-------------------

V2 0–

50
---------------+ + 0=

Ix

YV I=

Y Admit cetan= V Voltage= I Current=

Y V1 V2

0.0218 j0.005– V1 0.01V2– 2=

0.01– V1 0.03 j0.01+ V2+ j1.7=

0.0218 j0.005– 0.01–
0.01– 0.03 j0.01+

Y

V1

V2

V

2
j1.7

I

=
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Solution of Simultaneous Equations with Matrices

where the matrices , , and  are as indicated.

We will use MATLAB to compute the voltages  and , and to do all other computations.
The script is shown below.

Y=[0.02180.005j  0.01;  0.01  0.03+0.01j]; I=[2; 1.7j]; V=Y\I; % Define Y, I, and find V
fprintf('\n'); % Insert a line 
disp('V1 = '); disp(V(1)); disp('V2 = '); disp(V(2)); % Display values of V1 and V2

V1 = 
 1.0490e+002 + 4.9448e+001i
V2 = 
  53.4162 + 55.3439i

Next, we find  from

R3=100; IX=(V(1)V(2))/R3 % Compute the value of IX

IX =
   0.5149 - 0.0590i

This is the rectangular form of . For the polar form we use the MATLAB script

magIX=abs(IX), thetaIX=angle(IX)*180/pi  % Compute the magnitude and the angle in

degrees

magIX =
    0.5183

thetaIX =
   -6.5326

Therefore, in polar form,

Spreadsheets have limited capabilities with complex numbers, and thus we cannot use them to
compute matrices that include complex numbers in their elements as in Example E.18.

Y V I

V1 V2

IX

IX

IX 0.518 6.53–=
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E.12  Exercises

For Exercises 1, 2, and 3 below, the matrices , , , and  are defined as:

1. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d.

e. f. g. h.

2. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d. 

e. f. g. h. 

3. Perform the following computations, if possible. Verify your answers with MATLAB.

a. b. c. d.  e. f. 

4. Solve the following systems of equations using Cramer’s rule. Verify your answers with MAT-
LAB.

a.    b.    

5. Repeat Exercise 4 using the Gaussian elimination method.

6. Solve the following systems of equations using the inverse matrix method. Verify your answers
with MATLAB.

a. b. 

A B C D

A
1 1– 4–
5 7 2–
3 5– 6

=     B
5 9 3–
2– 8 2
7 4– 6

=     C=
4 6
3– 8
5 2–

    D 1 2– 3
3– 6 4–

=

A B+ A C+ B D+ C D+

A B– A C– B D– C D–

A B A C B D C D

B A C A D A D· C

detA detB detC detD det A B  det A C 

x1 2x2 x3+– 4–=

2x– 1 3x2 x3+ + 9=

3x1 4x2 5x3–+ 0=

x1– 2x2 3x3– 5x4+ + 14=

x1 3x2 2x3 x4–+ + 9=

3x1 3– x2 2x3 4x4+ + 19=

4x1 2x2 5x3 x4+ + + 27=

1 3 4
3 1 2–
2 3 5

x1

x2

x3


3–
2–

0

=

2 4 3 2–
2 4– 1 3
1– 3 4– 2
2 2– 2 1

x1

x2

x3

x4



1
10
14–
7

=
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combined node 3-6 exponentiation in MATLAB A-18
command screen in MATLAB A-1 data points in MATLAB A-14 eye(n) in MATLAB C-7
command window in MATLAB A-1 DC (Direct Current) 1-4 eye(size(A)) in MATLAB C-7
commas in MATLAB A-8 decibel 4-2, A-13
comment line in MATLAB A-2 deconv(c,d) MATLAB function A-6, A-7 F
comparators 8-29 default color in MATLAB A-15
complementary function 9-1 default in MATLAB A-12 Farad 5-17, 5-29
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complex conjugate A-4, B-3 default marker in MATLAB A-15      electromagnetic induction 5-2
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feedback 4-4 imaginary M
     negative 4-5      axis B-2
     positive 4-5      number B-2 magnetic field 5-1, 5-16, 5-29
figure window in MATLAB A-13 impedance 6-14 magnetic flux 5-2, 5-29
filter inductance 5-2 matrix, matrices
     active 4-13 inductive      adjoint C-20
     all-pass 7-22      reactance 6-15, 6-23      cofactor of C-12
     analog 7-23      susceptance 6-18, 6-23      conformable for addition C-2
     band-elimination 4-15, 4-33, 7-22 inductor(s)      conformable for multiplication C-4
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     low-pass 4-13, 4-33, 7-22 initial rate of decay 9-3, 9-11      identity C-6
     passive 4-13, 7-23 instantaneous values 2-1      inverse of C-21
     phase shift 7-22 int(f,a,b) MATLAB function 1-7      left division in MATLAB C-24
     RC high-pass 7-25 International System of Units 1-14      lower triangular C-6
     RC low-pass 7-23      minor of C-12
     stop-band 4-15, 4-33, 7-22 J      multiplication using MATLAB A-20
flash converter 8-28      non-singular C-21
flux linkage 5-2, 5-29 j operator B-1      singular C-21
fmax(f,x1,x2) MATLAB function A-29      scalar C-6
fmin(f,x1,x2) MATLAB function A-29 K      skew-Hermitian C-9
forced response 6-4, 10-16, 10-22      skew-symmetric C-9
format command in MATLAB A-31 KCL 2-6      square C-1
format in MATLAB A-31 Kirchhoff’s Current Law 2-6      symmetric C-8
fplot MATLAB command A-27 Kirchhoff’s Voltage Law 2-7      theory 3-2
fplot(fcn,lims) KVL 2-7      trace of C-2
     MATLAB command A-27      transpose C-7
fprintf(format,array) L      upper triangular C-5
     MATLAB command 7-19, A-32      zero C-2
frequency response A-12 left-hand rule 5-1 maximum power
frequency-domain to time-domain lims = MATLAB function A-27      transfer theorem 3-35, 7-35
     transformation 6-6, 6-23 linear mechanical forms of energy 1-17, 1-20
full-wave rectification      circuit 3-38 mesh
function file in MATLAB A-26      devices 1-11      combined 3-18
fzero(f,x) MATLAB function A-26      factor A-9      defined 2-6

     inductor 5-2      equations 2-10, 3-1, 5-25, 7-5 
G      passive element 3-37      generalized 3-17

linearity 3-37 mesh(x,y,z) MATLAB function A-18
Gaussian elimination method C-19 lines of magnetic flux 5-1, 5-29 meshgrid(x,y) MATLAB function A-18
grid  MATLAB command A-12 linspace(values) MATLAB command A-14 metric system 1-14, 1-20
ground ln (natural log) A-13 m-file in MATLAB A-1, A-26
     defined 2-1, 2-14 load mho 2-2
     virtual 4-17      capacitive 8-15, 8-32 Military Standards 2-27
gtext(‘string’) MATLAB function A-13      inductive 8-15, 8-32 MINVERSE in Excel C-26

     lighting 2-33 MMULT in Excel C-26, C-27
H      resistive 8-11 multiplication of complex numbers B-3

log (common log) A-13 multiplication in MATLAB A-18
half-power points 4-4 log(x) MATLAB function A-13 multirange ammeter/milliammeter 8-24
half-wave rectification 8-3 log10(x) MATLAB function A-13
Heavyside function 10-9 log2(x) MATLAB function A-13 N
Henry 5-3, 5-29 loglog(x,y) MATLAB function A-13

loop NaN in MATLAB A-26
I      defined 2-5 National Electric Code (NEC) 2-30

     equations 3-1, 3-13 natural response
imag(z) MATLAB function A-23      circuits with single 2-10      9-1, 9-9, 10-16, 10-22
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NEC 2-30      complex 8-16, 8-17 series connection 2-8, 2-16, 2-17
negative charge 5-16      gain 4-2 short circuit 2-2
network      in a capacitor 5-22 SI Derived Units 1-17
     active 1-13, 1-20      in an inductor 5-11 siemens 2-2
     passive 1-13, 1-20      in a resistor 2-3, 2-4, 2-28 signal 4-1, 4-32
     topology 3-1      instantaneous 8-4 single ended output amplifier 4-5
newton 1-1, 1-19 power factor 8-10 single node-pair parallel circuit 2-14
nodal analysis 2-14, 3-1, 7-1      defined 8-10 slope converter 8-28
node      lagging 8-15 solar energy 1-17, 1-20
     combined 3-6      leading 8-15 sources of energy 1-17, 1-20
     defined 2-5 power factor correction 8-18 standard prefixes 1-15
     generalized 3-6 power triangle 8-16 Standards for Electrical and
     equations 2-14, 3-2, 5-25, 7-1 prefixes 1-15, 1-16      Electronic Devices 2-26
     non-reference 3-1 principle of superposition 3-41 steady-state conditions 5-12
     reference 3-1 string in MATLAB A-18
non-linear devices 1-11 Q subplot(m,n,p) MATLAB command A-18
Norton’s theorem 3-33, 7-10 substitution method  of solving a system
nuclear energy 1-17, 1-20 quad MATLAB function 1-8      of simultaneous equations 3-2

quad(‘f’,a,b,tol) MATLAB function 1-8 supermesh 3-17
O quad8 MATLAB function 1-8 supernode 3-6

quadratic factors A-9 superposition principle 3-38, 7-6
Ohm 2-1 quit MATLAB command A-2 susceptance
Ohm’s law 2-1      capacitive 6-18, 6-25
Ohm’s law for AC circuits 6-14 R      inductive 6-18, 6-25
Ohmmeter 8-26
     parallel type 8-26 rational polynomials A-8 T
     series type 8-26 reactance
     shunt type  8-26      capacitive 6-15, 6-24 temperature scales equivalents 1-16
op amp 4-5      inductive 6-15, 6-24 text(x,y,’string’) MATLAB function A-14
     inverting mode 4-6 real text(x,y,z,’string’) MATLAB function A-16
     non-inverting mode 4-9      axis B-2 Thevenin’s theorem 3-23, 7-10
open circuit 2-2      number B-2 time constant 9-3, 9-11, 10-18, 10-24
operational amplifier - see op amp real(z) MATLAB function A-23 time-domain to frequency-domain

regulation 3-45      transformation 6-5, 6-23
P resistance 2-1 time-window converter 8-28

     input 4-28 title(‘string’) MATLAB command A-12
parallel connection 2-8, 2-17, 2-18      negative 2-3 total response 10-1, 10-14
particular solution 6-4      output 4-28 tracking converter 8-28
passive sign convention 1-9, 1-19 resistive network 8-29 transient response 9-1
periodic functions of time 8-1 resistors 1-11, 2-2 transistors 1-11
phasor analysis in amplifier circuits 7-14      color code 2-27 trivial solution 9-2
phasor diagram 7-17      failure rate 2-27 two-terminal device 1-4, 1-19
plot(x,y) MATLAB command A-10, A-12      shunt (parallel) 8-22
plot3(x,y,z) MATLAB command A-15      tolerance 2-27 U
polar plot in MATLAB A-24 response 6-1, 6-23
polar(theta,r) MATLAB function A-23 right-hand rule 5-1 unit impulse function 10-7
poly(r) MATLAB function A-4 RMS value of sinusoids 8-5 unit ramp function 10-6
polyder(p) MATLAB function A-6 RMS values of sinusoids with unit step function 10-1
polynomial construction from      different frequencies 8-7
     known roots in MATLAB A-4 roots(p) MATLAB function A-3, A-8 V
polyval(p,x) MATLAB function A-6 round(n) MATLAB function A-24
potential difference 1-4 virtual ground 4-17
power S volt 1-5, 1-19
     absorbed 1-8, 1-19 voltage
     average 8-9, 8-14 script file in MATLAB A-26      defined 1-4
          in capacitive loads 8-11 semicolons in MATLAB A-8      dividers 2-2
          in inductive loads 8-11 semilogx(x,y) MATLAB command A-12      division expressions 2-22
          in a resistive loads 8-11 semilogy(x,y) MATLAB command A-12      drop 1-5
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     follower 4-20
     gain 4-2
     instantaneous 1-6
     rise 1-5
voltage source
     combinations 2-14
     ideal 1-11
     independent 1-11
     practical 3-20
voltmeter 8-24

W

watt 1-8
watt-hour meter 8-28
wattage 2-4, 2-29
wattmeter 8-28
weber 5-1, 5-29
Wheatstone bridge 8-27, 8-32

X

xlabel(‘string’) MATLAB command A-12

Y

ylabel(‘string’) MATLAB command A-12

Z

zero potential 2-14

IN-4



Students and working professionals will find Circuit
Analysis I with MATLAB® Computing and
Simulink®/SimPowerSystems Modeling to be a con-
cise and easy-to-learn text. It provides complete,
clear, and detailed explanations of the principal elec-
trical engineering concepts, and these are illustrated
with numerous practical examples.

This text includes the following chapters and appendices:
• Basic Concepts and Definitions • Analysis of Simple Circuits • Nodal and Mesh Equations -
Circuit Theorems • Introduction to Operational Amplifiers • Inductance and Capacitance 
• Sinusoidal Circuit Analysis • Phasor Circuit Analysis • Average and RMS Values, Complex Power,
and Instruments • Natural Response • Forced and Total Response in RL and RC Circuits •
Introduction to MATLAB® • Introduction to Simulink® • Introduction to SimPowerSystems® 
• Review of Complex Numbers • Matrices and Determinants

Each chapter and appendix contains numerous practical applications supplemented with detailed
instructions for using MATLAB, Simulink, and SimPowerSystems to obtain quick and accurate
results.

Steven T. Karris is the founder and president of Orchard Publications, has undergraduate and
graduate degrees in electrical engineering, and is a registered professional engineer in California
and Florida. He has more than 35 years of professional engineering experience and more than 30
years of teaching experience as an adjunct professor, most recently at UC Berkeley, California. His
area of interest is in The MathWorks, Inc.™ products and the publication of MATLAB® and
Simulink® based texts.

Orchard Publications
Visit us on the Internet

www.orchardpublications.com
or email us: info@orchardpublications.com

ISBN-10: 1-934404-18-7

ISBN-13: 978-1-934404-18-8

$70.00 U.S.A.

Circuit Analysis I
with MATLAB® Computing and

Simulink®/SimPowerSystems Modeling


	Title page
	Copyright page
	Preface
	Table of Contents
	Chapter 1 - Basic Concepts and Definitions
	Chapter 2 - Analysis of Simple Circuits
	Chapter 3 - Nodal and Mesh Equations - Circuit Theorems
	Chapter 4 - Introduction to Operational Amplifiers
	Chapter 5 - Inductance and Capacitance
	Chapter 6 - Sinusoidal Circuit Analysis
	Chapter 7 - Phasor Circuit Analysis
	Chapter 8 - Average and RMS Values, Complex Power, and Instruments
	Chapter 9 - Natural Response
	Chapter 10 - Forced and Total Response in RL and RC Circuits
	Appendix A - Introduction to MATLAB
	Appendix B - Introduction to Simulink
	Appendix C - Introduction to SimPowerSystems
	Appendix D - A Review of Complex Numbers
	Appendix E - Matrices and Determinants
	References and Suggestions for Further Study
	Index



