

Circuit Playground Sound and Music

Created by Anne Barela

https://learn.adafruit.com/circuit-playground-music

Last updated on 2021-11-15 06:45:12 PM EST

©Adafruit Industries Page 1 of 23

3

3

4

5

6

7

10

12

13

14

16

17

17

Table of Contents

Overview

• What is Sound?

Using the Circuit Playground Speaker

• Our First Sounds!

The Circuit Playground Library

The Sound of Music

• Chiptunes

Light to Sound

• Applications

Temperature to Sound

Motion to Sound

• Applications

Simon Says Game

©Adafruit Industries Page 2 of 23

Overview

I love projects involving our senses! Sight, sound, touch, smell, taste. Adafruit's

inclusion of a microphone and speaker on the Circuit Playground board provides a

gazillion ways to explore our sound sense.

Let's review what sound is and build our skills from there.

What is Sound?

You can think of most phenomena around us as existing in the form of waves. From

the lowest frequency waves of an earthquake to high frequency cosmic rays, the term

you will hear is that waves go "from DC to Daylight". That refers to the broad spectrum

of wave action in the energy around us. Below are some waves of differing

frequencies (the top one is at a lower frequency, the bottom the highest frequency).

via Public Domain, Wikipedia (https://adafru.it/pFL)

There are so many frequencies! What we call sound is air vibrating at frequencies our

ears can perceive. For a child, that would be 20 Hertz (cycles per second) to 20,000

Hertz (20 kiloHertz). For grandparents, they might not hear that upper limit, maybe 15

to 17 kiloHertz. Frequencies above 20 kilohertz may be audible by animals (that is

where dog whistles fall, in the range 23 to 54 kiloHertz).

Sound can be soft and low like a thud or high and loud like an opera singer on a high

note. How do we produce so many sounds? We can define how we characterize the

sounds we hear:

Frequency: how fast the sound wave vibrates back and forth. One frequency would

be monophonic, playing several sounds of different frequencies together gives

polyphonic sound.

Duration: How long and short a sound is made.

©Adafruit Industries Page 3 of 23

https://commons.wikimedia.org/w/index.php?curid=1536518

Loudness: How strong the sound is (in the waves above, how tall the wave is shows

the loudness or intensity).

Timbre: how a sound sounds, say dull like a plucked string vs. a "pure" musical note.

Spacial location: where your ear perceives a sound coming from. Think of a train

passing you, the location changes from your perspective. If you note a sound change

to your ear, this is due to more science in the form of the Doppler Effect.

Ok, enough talk, let's make some sounds!

Using the Circuit Playground Speaker

You will want to review Adafruit tutorials on how to use Circuit Playground and

program in the Arduino integrated development environment. If you are new to using

your computer to program Arduino style projects, please review the tutorial Circuit

Playground Lesson #0 (https://adafru.it/pFM). That will familiarize you with the Circuit

Playground board and ensure your programming environment is set up and ready to

go.

Below are the components on the Circuit Playground board we will be looking at

using in this tutorial:

If you prefer to go to the Circuit Playground library for using the speaker rather

than peeking under the hood, you can skip to the next page without worries.

©Adafruit Industries Page 4 of 23

file:///home/circuit-playground-lesson-number-0/intro
file:///home/circuit-playground-lesson-number-0/intro

Our First Sounds!

The speaker on the Circuit Playground is connected to the microcontroller digital pin

#5. The left button is on digital pin #4 and the right button is on digital pin #19 (it is

handy that these pin numbers are printed in white on the circuit board!).

What we will do first is play one tone (a sound at one frequency) when the left button

is pressed, and another if the right button is pressed. Let's pick two frequencies in

Hertz (vibrations per second). I'll pick 440 Hertz (abbreviated Hz) and 1760 Hz (not

quite random values, we'll go into that very soon!). Our code will make one of the

sounds when the corresponding pushbutton is pressed on Circuit Playground:

// Adafruit Circuit Playground - Two tone sounds Support Open Source, buy at
Adafruit
// 2016-08-05 Version 1 by Mike Barela for Adafruit Industries

const int speaker = 5; // The CP microcontroller pin for the speaker
const int leftButton = 4; // The CP microcontroller pin for the left button
const int rightButton = 19; // The CP microcontroller pin for the right button

void setup() {
 pinMode(speaker, OUTPUT); // We will write out to the speaker
 pinMode(leftButton, INPUT); // We'll read in from the buttons
 pinMode(rightButton,INPUT);
}

void loop() {
 if(digitalRead(leftButton)) { // if reading the left button returns true
 makeTone(speaker,440,100); // output a 440 Hz sound for a tenth of a second
 }
 else if(digitalRead(rightButton)) { // if reading the right button returns true
 makeTone(speaker,1760,100); // output a 1760 Hz sound for a tenth of a
second
 }
}

// the sound producing function (a brute force way to do it)
void makeTone (unsigned char speakerPin, int frequencyInHertz, long
timeInMilliseconds) {
 int x;
 long delayAmount = (long)(1000000/frequencyInHertz);
 long loopTime = (long)((timeInMilliseconds*1000)/(delayAmount*2));
 for (x=0; x<loopTime; x++) { // the wave will be symetrical (same time
high & low)
 digitalWrite(speakerPin,HIGH); // Set the pin high
 delayMicroseconds(delayAmount); // and make the tall part of the wave
 digitalWrite(speakerPin,LOW); // switch the pin back to low
 delayMicroseconds(delayAmount); // and make the bottom part of the wave
 }
}

The program's main loop function reads the two Circuit Playground push buttons. If

the left one is pressed, the speaker outputs a sound at 440 Hz (a low tone) , if the

right button is pressed, it outputs a sound at 1760 Hz (a higher tone). At the bottom of

the program we can peek into the code making the tone via the makeTone function.

©Adafruit Industries Page 5 of 23

 The loop turns on the speaker, waits, then turns it off. The speed of switching, slow or

fast, makes the tone at the frequency at which the speaker pin is turned on and off.

Next is how to write the same code using the Circuit Playground library.

The Circuit Playground Library

The Arduino development environment provides a handy function for creating a

varying square wave on a digital pin: the tone command. It is basically the same

function as the makeTone function we used on the last page. You can read more on

the arduino.cc website here (https://adafru.it/pFN).

For Circuit Playground, Adafruit provides a number of handy functions to use all the

goodies on the board - all wrapped up into a library called CircuitPlayground .

Visit this page to learn how to install

the library

https://adafru.it/pAQ

Adding the library gives us great functionality which we'll explore in the examples

going forward.

Let's start by rewriting the demo program on the previous page.

We will add the following:

A call to CircuitPlayground.begin to initialize the library

Reading the buttons is accomplished via CircuitPlayground. leftButton and Ci

rcuitPlayground.rightButton

Finally, the Circuit Playground library plays tones through the speaker through the Ci

rcuitPlayground. playTone function.

Note we do not have to know anything about the underlying hardware to use the

library, rather handy.

Here is the whole example:

// Adafruit Circuit Playground - Two tone sounds Support Open Source, buy at
Adafruit
// 2016-08-05 Version 1 by Mike Barela for Adafruit Industries

©Adafruit Industries Page 6 of 23

https://www.arduino.cc/en/Reference/Tone
https://learn.adafruit.com/introducing-circuit-playground/libraries

// Uses the CircuitPlayground library to easily use the full functionality of the
board

#include <Adafruit_CircuitPlayground.h>

void setup() {
 CircuitPlayground.begin();
}

void loop() {
 if(CircuitPlayground.leftButton()) { // if reading the left button returns true
 CircuitPlayground.playTone(440,100); // output a 440 Hz sound for a tenth of
a second
 }
 else if(CircuitPlayground.rightButton()) { // if reading the right button returns
true
 CircuitPlayground.playTone(1760,100); // output a 1760 Hz sound for a tenth
of a second
 }
}

The code is alot shorter and is easy to read. It should also work on any board which

supports the Circuit Playground library.

The program will play one tone when you push the left pushbutton, another tone

when you push the right pushbutton.

We'll use other Circuit Playground library functions as we explore what can be done

with the board's sound capabilities. You'll see why 440 and 1760 Hertz were chosen

above.

The Sound of Music

One of the joys of our existence: music! But what is music? It turns out our ears are

tuned to certain tone frequencies. These frequencies make up mathematically

defined sets of tones called musical notes (https://adafru.it/pFO). You can generate

notes yourself by saying "Do-Re-Me-Fa-Sol-La-Si". You can say those notes in a low

pitch (at low frequencies) or very high pitch (at higher frequencies). In musical

notation, the syllables above are given the letters C-D-E-F-G-A-B. In some languages,

other symbols are used but the English convention is widespread.

As you go from lower to higher frequencies, you progress through sound octaves.

 Low octaves are very low, while the highest octave would be rather high pitched.

 Think of a piano, one side has notes at a low frequency, and as you play the keys you

hear the "Do-Re-Mi" sequence, repeating to higher and higher frequency tones.

The following is a list of musical note frequencies we can use in our Circuit

Playground sketches. The definitions are adapted from the arduino.cc tutorial

©Adafruit Industries Page 7 of 23

https://en.wikipedia.org/wiki/Musical_note
https://www.arduino.cc/en/Tutorial/ToneMelody

ToneMelody (https://adafru.it/pFP) credited to Brett Hagman. Copy and save to file

pitches.h in your sketch folder.

/**
 * Musical Notes via https://www.arduino.cc/en/Tutorial/ToneMelody *
 **/

#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932

©Adafruit Industries Page 8 of 23

https://www.arduino.cc/en/Tutorial/ToneMelody

#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978

Now you can see why I picked the two frequencies in previous examples. 440 Hertz

is note A4, an A tone in the 4th octave. 1760 Hz is an A note in the 6th octave.

To play a song with the musical notes above, we need a bit more information. How

long do we play each tone is important in music, things "sound right" as you play

musical note at defined times, creating a tempo (https://adafru.it/pFQ) or a pace to

which the notes are played. So each note should have both a frequency to play and a

duration for how long we should play. They tempo is set in fractions or multiples of a

whole note (https://adafru.it/pFR) for example a half note, quarter note, 8th, 16th and

so on. In terms of time, music is played in beats per minute with notes at a faster or

slower tempo.

So we'll play a short selection of notes (not quite a song) with several notes.

// Adafruit Circuit Playground - Melody Support Open Source, buy at Adafruit
// 2016-08-06 Version 1 by Mike Barela for Adafruit Industries
// Adapted from melody by Tom Igoe on arduino.cc
// Uses the CircuitPlayground library to easily use the full functionality of the
board

#include <Adafruit_CircuitPlayground.h>
#include "pitches.h"

const int numNotes = 8; // number of notes we are playing
int melody[] = { // specific notes in the melody
 NOTE_C4, NOTE_G3, NOTE_G3, NOTE_A3, NOTE_G3, 0, NOTE_B3, NOTE_C4 };

int noteDurations[] = { // note durations: 4 = quarter note, 8 = eighth note,

©Adafruit Industries Page 9 of 23

https://en.wikipedia.org/wiki/Tempo
https://en.wikipedia.org/wiki/Whole_note

etc.:
 4, 8, 8, 4, 4, 4, 4, 4 };

void setup() {
 CircuitPlayground.begin(); // initialize the CP library
}

void loop() {
 if(CircuitPlayground.rightButton()) { // play when we press the right button
 for (int thisNote = 0; thisNote < numNotes; thisNote++) { // play notes of
the melody
 // to calculate the note duration, take one second divided by the note type.
 //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
 int noteDuration = 1000 / noteDurations[thisNote];
 CircuitPlayground.playTone(melody[thisNote], noteDuration);

 // to distinguish the notes, set a minimum time between them.
 // the note's duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);
 }
 }
}

You can find songs encoded with tone and duration in many places on the Internet.

Chiptunes

It is very popular in music and electronics culture to emulate the sounds/music of

classic video games. The music was most often on 8 bit machines and the resulting

music sounds a bit like the music we're playing. The melodies from classic gaming

and remixed music are called chiptunes.

For an in-depth discussion of Chiptunes, you can catch the Adafruit video post Pseud

orandom #13 (https://adafru.it/pFS) which discusses the chiptunes scene.

Below is a melody from a classic video game - can you name that tune?

// Adafruit Circuit Playground - Theme Song Support Open Source, buy at Adafruit
// 2016-08-12 Version 1 by Mike Barela for Adafruit Industries

#include <Adafruit_CircuitPlayground.h>
#include "pitches.h"

int melody[] = { // specific notes in the melody
NOTE_E7, NOTE_E7, 0, NOTE_E7,
 0, NOTE_C7, NOTE_E7, 0,
 NOTE_G7, 0, 0, 0,
 NOTE_G6, 0, 0, 0,

 NOTE_C7, 0, 0, NOTE_G6,
 0, 0, NOTE_E6, 0,
 0, NOTE_A6, 0, NOTE_B6,
 0, NOTE_AS6, NOTE_A6, 0,

 NOTE_G6, NOTE_E7, NOTE_G7,
 NOTE_A7, 0, NOTE_F7, NOTE_G7,

©Adafruit Industries Page 10 of 23

https://www.youtube.com/watch?v=uCFLTI8lB1Y
https://www.youtube.com/watch?v=uCFLTI8lB1Y

 0, NOTE_E7, 0, NOTE_C7,
 NOTE_D7, NOTE_B6, 0, 0,

 NOTE_C7, 0, 0, NOTE_G6,
 0, 0, NOTE_E6, 0,
 0, NOTE_A6, 0, NOTE_B6,
 0, NOTE_AS6, NOTE_A6, 0,

 NOTE_G6, NOTE_E7, NOTE_G7,
 NOTE_A7, 0, NOTE_F7, NOTE_G7,
 0, NOTE_E7, 0, NOTE_C7,
 NOTE_D7, NOTE_B6, 0, 0
 };
int numNotes; // Number of notes in the melody

int noteDurations[] = { // note durations
 12, 12, 12, 12,
 12, 12, 12, 12,
 12, 12, 12, 12,
 12, 12, 12, 12,

 12, 12, 12, 12,
 12, 12, 12, 12,
 12, 12, 12, 12,
 12, 12, 12, 12,

 9, 9, 9,
 12, 12, 12, 12,
 12, 12, 12, 12,
 12, 12, 12, 12,

 12, 12, 12, 12,
 12, 12, 12, 12,
 12, 12, 12, 12,
 12, 12, 12, 12,

 9, 9, 9,
 12, 12, 12, 12,
 12, 12, 12, 12,
 12, 12, 12, 12,
};

void setup() {
 CircuitPlayground.begin(); // initialize the CP library
 numNotes = sizeof(melody)/sizeof(int); // number of notes we are playing
}

void loop() {
 if(CircuitPlayground.rightButton()) { // play when we press the right button
 for (int thisNote = 0; thisNote < numNotes; thisNote++) { // play notes of
the melody
 // to calculate the note duration, take one second divided by the note type.
 int noteDuration = 1000 / noteDurations[thisNote];
 CircuitPlayground.playTone(melody[thisNote], noteDuration);

 // to distinguish the notes, set a minimum time between them.
 // the note's duration + 30% seems to work well:
 int pauseBetweenNotes = noteDuration * 1.30;
 delay(pauseBetweenNotes);
 }
 }
}

©Adafruit Industries Page 11 of 23

Why doesn't our electronic music sound like a rock band?

Most music is polyphonic - multiple notes played together. If we used several

Circuit Playground boards playing, we could achieve some of that.

But we still must deal with the physics of the speaker and the way we have been

driving, or moving the speaker. Surround sound systems usually have larger

speakers which can reproduce a wide range of sounds very well. Due to the

construction and size of the Circuit Playground speaker, it is not as good as a name

brand in making musical sounds.

We are also driving the speaker with a frequency which is on and off. As you can

see in the first example code, we calculate the desired frequency and turn the

speaker on then pause, then off, then pause and repeat. This is a square wave

which in many speakers sounds pretty good but not "pure" like the sine waves we

looke at in the overview. Mathematically, a square wave can be composed of

multiple sine waves added together (https://adafru.it/pFT). The wave we want is the

fundemental frequency and smaller amplitude sine waves at higher frequencies

that we might not want.

Circuit Playground allows us to easily work with sound and music. When we want

to explore more band-style music, we can look at other Adafruit products to build

great sounding musical circuits.

Light to Sound

Making music by varying lights is a very popular project. The effect is often called a

Light Theremin. The original Theremin (https://adafru.it/pFU) instrument by Léon

Theremin (https://adafru.it/Cgo) used tuned resonant radio frequency circuits

converting changes in resonance (https://adafru.it/pFW) to sound. Using a light

changes to make different sounds is quite a bit easier.

Circuit Playground has a perfect sensor for detecting light in the upper left of the

board (the part with the eye next to it). Light falling on the sensor changes the

sensors resistance, changing the voltage the microcontroller reads. The value read by

the sensor may be from 0 to 1023.

To make music, we will map the number received from the light sensor to the

frequency ranges we looked at in The Sound of Music page (notes C3 to A6). The

program will map to values that are not true musical notes though.

©Adafruit Industries Page 12 of 23

http://www.slack.net/~ant/bl-synth/4.harmonics.html
http://www.slack.net/~ant/bl-synth/4.harmonics.html
https://en.wikipedia.org/wiki/Theremin
https://en.wikipedia.org/wiki/L%C3%A9on_Theremin
https://en.wikipedia.org/wiki/L%C3%A9on_Theremin
https://en.wikipedia.org/wiki/Electrical_resonance

One more change is to use the Circuit Playground slide switch. There are times when

the people around you do not want to hear the sounds (believe me). The light to

sound code is only executed if the slide switch is moved to the "+" side.

// Adafruit Circuit Playground - Light Theremin Support Open Source, buy at
Adafruit
// 2016-08-07 Version 1 by Mike Barela for Adafruit Industries
// Uses the CircuitPlayground library to easily use the full functionality of the
board

#include <Adafruit_CircuitPlayground.h>

void setup() {
 CircuitPlayground.begin(); // initialize the Circuit Playground library
}

void loop() {
 uint16_t value, sound;
 if(CircuitPlayground.slideSwitch()) { // if the slide switch is on
 value = CircuitPlayground.lightSensor(); // read the light sensor
 sound = map(value, 5, 1000, 131, 1760); // map light values to music values
 CircuitPlayground.playTone(sound, 100); // play sound for 100 milliseconds
 }
}

To ensure each output frequency is a musical note, one could create an array of

musical notes and have the light values mapped to one of the musical notes in the

array and output the musical note.

I chose the musical note range so sounds did not get too low (low sounds may create

more of a click on the speaker) or too high (making a sound that is rather high or a

whine, harsh on the ear). Feel free to adjust the last two values in the map function to

change the sound values. Use the notes in pitches.h on the previous page to help you

look at frequency ranges to play.

Applications

Ways in which light to sound may be used:

Night Alarm - if you go to sleep but want to be awakened if someone enters a

room.

Box Alarm - if you want to be alerted if someone goes into your lunchbox,

toolbox, etc. place Circuit playground inside and it will make a high pitched

sound when someone opens the box.

Musical Instrument - be the Leo Theremin of the 21st century

•

•

•

©Adafruit Industries Page 13 of 23

Temperature to Sound

A useful use of sensor and actuator on Circuit Playground is to use the temperature

sensor and the speaker.

There are two modes you might want to consider in monitoring temperature and

using sound:

A sharp transition - for example, if the temperature hits a specific value like 79

degrees Fahrenheit / 26 degrees Celsius (a common thermostat value), a single

tone is played. Or if a refridgerator/dring cooler gets above a certain

temperature.

A changing tone - changing tyemperatures make a change in sound, useful if

you are monitoring temperature and also doing something else, you can hear if

a temperature is going up or down, even while working on something else.

Both of these may be programmed in the same sketch - we can use the slide switch

to chose one or the other:

•

•

©Adafruit Industries Page 14 of 23

// Adafruit Circuit Playground - Temperature to Sound Support Open Source, buy
Adafruit
// 2016-08-07 Version 1 by Mike Barela for Adafruit Industries
// Uses the CircuitPlayground library to easily use the full functionality of the
board

#include <Adafruit_CircuitPlayground.h>

const float alertTemp = 90.0; // temperature to alert on (use 32.0 for a freezer
etc.)

void setup() {
 CircuitPlayground.begin(); // initialize the Circuit Playground library
 Serial.begin(9600);
}

void loop() {
 float temp;
 uint16_t sound;
 if(CircuitPlayground.slideSwitch()) { // if the slide switch is at "+"
 temp = CircuitPlayground.temperatureF(); // read the light sensor
 Serial.println(temp);
 sound = (int) map(temp, 70.0, 100.0, 131.0, 1760.0); // map light to music
values
 CircuitPlayground.playTone(sound, 1000); // play sound fora second
 }
 else { // switch set to "-" for absolute temperature measurement
 temp = CircuitPlayground.temperatureF(); // read the light sensor
 Serial.println(temp);
 if(temp > alertTemp) { // if the read temperature is > your
prepicked alartTemp
 CircuitPlayground.playTone(3520, 1000); // play sound for a second
 }
 }
}

If you are more comfortable with Celcius, use the CircuitPlayground.temperature

function. I picked the temperatures to be reactive around body temperature for

demonstration. The temperature is printed on the Arduino serial monitor so you can

read the temperature while working with the code and adjusting values.

With the slide switch at "-", you should hear no sound if the air (ambient) temperature

is less than 90 degrees. Place your fingertip on the temperature sensor (where the

little thermometer is) and it will heat up and the CP will make a sound when it gets

above 90 degrees (the body is at 98.6 degrees F). Take your finger off and lightly

blow on the sensor, the sound should stop as the temperature goes below 90

degrees.

With the slide switch on "+", behavior changes. Circuit Playground will make a

continuous tone in response to the ambient temperature. You can use your finger

again to heat up the sensor. The tone should get higher as it heats up. TBlow on the

sensor to cool it down, and the tone will go lower.

©Adafruit Industries Page 15 of 23

Motion to Sound

The accelerometer at the center of the Circuit Playground board allows for some

great effects when it comes to using lights and sound.

The code below reads the accelerometer and outputs sound depending on the speed

of motion.

// Adafruit Circuit Playground - Movement to Sound Support Open Source, buy
Adafruit
// 2016-08-07 Version 1 by Mike Barela for Adafruit Industries
// Uses the CircuitPlayground library

#include <Adafruit_CircuitPlayground.h>

void setup() {
 CircuitPlayground.begin(); // initialize the Circuit Playground library
 Serial.begin(9600);
}

void loop() {
 float movementX, movementY, movementZ, movement;
 uint16_t sound;
 if(CircuitPlayground.slideSwitch()) { // sense & play when slide whitch at
"+"
 movementX = abs(CircuitPlayground.motionX()); // read the X motion (absolute
value)
 movementY = abs(CircuitPlayground.motionY()); // read the Y motion (absolute
value)
 movementZ = abs(CircuitPlayground.motionZ()); // read the Z motion (absolute
value)
 movement = movementX + movementY + movementZ; // aggregate the movement
sensed
 Serial.println(movement);
 sound = (int) map(movement, 8.0, 60.0, 440.0, 1760.0); // map movement to
music values
 CircuitPlayground.playTone(sound, 500); // play sound for 500 milliseconds
 }
}

The more rapidly you shake your Circuit Playground, the higher the pitch of sound it

output. Be careful of your power cord or battery pack while swinging it around.

Any movement in the X, Y, or Z axis is detected. The abs function makes movement

in either direction (negative or positive) positive as we're just looking to detect

movement, not movement in a specific direction. All movement is added together and

printed out on the serial monitor for inspection. The movement is mapped from values

observed from 8 to 60 (you can change these if you observe different minimum and

maximum values). I picked the low A and higher A notes from previous examples but

you can use any frequency range you want.

©Adafruit Industries Page 16 of 23

Applications

Bicycle sounds - connect to your bike spokes near the tire/rim side. Use tie

wraps or other connection to ensure it does not slip of fall off or your battery

pack does not fly off. Now the faster you pedal, the higher the sound.

Skate sounds - placed on your board, it will make different sounds based on

how hast you are going.

Drop sensor - makes a sound if Circuit Playground detects it has fallen.

Simon Says Game

One of the more fun electronic games of childhood is Simon Says. The game has 4

buttons with different color lights beside each button. The game will play a sequence

and you have to repeat it. Every time you copy Simon correctly, the game makes the

sequence you need to repeat one longer. Keep repeating the pattern until you get

through all the levels (you win!) or miss a pattern (and you lose).

The retail Simon games have sounds in addition to lighted buttons. So will we, with

Circuit Playground! The sequences get longer by one for each round - can you

remember them all?

// Adafruit Circuit Playground - Simon Game Support Open Source, buy Adafruit
// 2016-08-07 Version 1 by Mike Barela for Adafruit Industries
// Uses the CircuitPlayground library to easily use the full functionality of the
board
// Based on Simon Sings by @TheRealDod with permission http://goo.gl/ea4VDf

#include <Adafruit_CircuitPlayground.h> // Library for Circuit Playground
functions
#include "pitches.h" // File for musical tones

const int NLEDS = 4;
const int LEDPINS[NLEDS] = {1,3,6,8}; // The NeoPixels used (counterclockwise
from USB)
const int SWITCHPINS[NLEDS] = {2,0,6,9}; // Capacitive inputs 1-4 (match the
NeoPixel positions)

const int FADESTEPS = 8;
const int FADEINDURATION = 200;
const int FADEOUTDURATION = 150;
const int SEQDELAY = 50; // Millis between led flashes.
const int PAUSEB4SEQ = 500; // Millis before starting the sequence.
const int MINLEVEL = 2;
const int MAXLEVEL = 16;
int gameLevel;
int simonSez[MAXLEVEL]; // sequence of 0..NLEDS-1

const int16_t CAP_SAMPLES = 20; // number of samples for each capacitive
input pad
const int16_t CAP_THRESHOLD = 300; // Threshold for a capacitive touch (higher
= less sensitive)

// -- song-array note fields --

•

•

•

©Adafruit Industries Page 17 of 23

// Tone
const int NOTETONE = 0;
const int SILENCE = 0;
const int ENDOFSONG = -1;
// Duration
const int NOTEDURATION = 1;
const int SINGLEBEAT = 125; // Note duration (millis) is multiplied by this
const float PAUSEFACTOR=0.2; // relative length of silence after playing a note
// LED
const int NOTELED = 2;
const int ALLLEDS = -1;

const int NOTES[NLEDS] = {NOTE_C4, NOTE_D4, NOTE_E4, NOTE_F4}; // Notes for each
LED/Switch

int CORRECTSONG[][3] = { // song to play if you mimiced the sequence correctly
 {SILENCE,2,ALLLEDS}
 ,{NOTE_G4,1,ALLLEDS}
 ,{NOTE_G4,1,ALLLEDS}
 ,{NOTE_A4,2,ALLLEDS}
 ,{ENDOFSONG,ENDOFSONG,ENDOFSONG}
};

int WINSONG[][3] = { // song to play if you win the entire game
 {SILENCE,2,ALLLEDS}
 ,{NOTE_E4,1,2}
 ,{NOTE_E4,1,2}
 ,{NOTE_E4,1,2}
 ,{NOTE_F4,1,3}
 ,{NOTE_E4,1,2}
 ,{NOTE_D4,3,1}
 ,{NOTE_G4,1,ALLLEDS}
 ,{NOTE_G4,1,ALLLEDS}
 ,{NOTE_G4,1,ALLLEDS}
 ,{NOTE_A4,2,ALLLEDS}
 ,{NOTE_G4,5,ALLLEDS}
 ,{ENDOFSONG,ENDOFSONG,ENDOFSONG}
};

int LOSESONG[][3] = { // notes to play if you don't mimic correctly and lose the
game
 {NOTE_B5,2,3},{NOTE_A5,2,2},{NOTE_GS5,2,1},{NOTE_G5,8,ALLLEDS},
{ENDOFSONG,ENDOFSONG,ENDOFSONG}
};

//
===

void setup() {
 CircuitPlayground.begin(); // initialize the Circuit Playground library
 CircuitPlayground.setBrightness(30); // we don't want the NeoPixels too bright
 Serial.begin(9600); // Serial monitor for debugging and info
 randomSeed(analogRead(4)); // random value based on sounds
 gameLevel=MINLEVEL; // start game at the minimum guess level
 playWinSequence(); // Visual feedback after reset.
}

void loop() {
 int done;
 initGameSequence(gameLevel); // Set up moves for new game
 done = 0;
 while (!done) { // set up to loop while playing
 while(!CircuitPlayground.leftButton() && !
CircuitPlayground.rightButton()) ; // wait to start
 delay(PAUSEB4SEQ);
 playGameSequence(gameLevel); // Play the sequence to user
 if (playerGuess(gameLevel)) { // See if person repeated the same sequence
 playCorrectSequence(); // You did it right, make it harder by 1
move

©Adafruit Industries Page 18 of 23

 done = 1;
 if(gameLevel < MAXLEVEL) { // Increasing level by 1
 gameLevel++;
 }
 else { // You played all the levels
 playWinSequence(); // You won the entire game!
 while(1) ; // Press Circuit Playground Reset to restart
 }
 }
 else {
 playLoseSequence(); // You didn't get it right, sorry
 gameLevel = MINLEVEL; // Reset to the starting level
 }
 }
}

void initGameSequence(int gameLevel) { // Set the values for the values to mimic
 // assertion: gameLevel<=MAXLEVEL
 if(gameLevel == MINLEVEL) { // Minimum level all random
 for(int i=0; i < gameLevel; i++) {
 simonSez[i] = random(NLEDS); // Min - select all new random pattern
 }
 }
 else {
 simonSez[gameLevel-1] = random(NLEDS); // add one more random value for next
level
 } // which is different than some
variations of game
}

void playGameSequence(int gameLevel) { // Play the sequence to mimic
 Serial.print("Try this: ");
 for (int i=0; i < gameLevel; i++) {
 playLed(simonSez[i]); // Light LED and play its note
 Serial.print(SWITCHPINS[simonSez[i]]);
 if(i != gameLevel-1)
 Serial.print(", ");
 else
 Serial.println(" ");
 }
}

void fadeLed(int theLed,int val,int duration) { // fade NeoPixels in or out
 int fadeStep = 256/FADESTEPS;
 int fadeDelay = duration/FADESTEPS;
 for(int i=0; i < 256; i+=fadeStep) {
 if(theLed >= 0) {
 lightPixel(theLed, val?i:255-i);
 }
 else { // ALLLEDS
 for(int j=0; j < NLEDS; j++) {
 lightPixel(j, val?i:255-i);
 }
 }
 delay(fadeDelay);
 }
 // force val (in case fadeStep doesn't divide 256)
 if(theLed >= 0) {
 lightPixel(theLed, val);
 }
 else {
 for(int j=0; j < NLEDS; j++) {
 lightPixel(j, val);
 }
 }
}

void playLed(int theLed) { // Fade LED and play its note
 if(CircuitPlayground.slideSwitch()) { // Only play song if slide

©Adafruit Industries Page 19 of 23

switch on "+"
 CircuitPlayground.playTone(NOTES[theLed],100);
 }
 fadeLed(theLed,HIGH,FADEINDURATION); // Fade in LED
 fadeLed(theLed,LOW,FADEOUTDURATION); // Fade out LED
}

int playerGuess(int gameLevel) { // Get the user's guess and compare to
Simon's sequence
 for (int i=0 ; i < gameLevel ; i++) {
 int guess=getSwitchStroke();
 //Serial.print(guess,DEC);
 //Serial.print(",");
 //Serial.println(simonSez[i]);
 if (guess!=simonSez[i]) {
 return 0;
 }
 else {
 playLed(guess); // Fade LED and play its note
 }
 }
 return 1;
}

void playSong(int song[][3]) { // Play a predefined song sequence on CP
speaker
 for (int note=0; song[note][NOTETONE]!=ENDOFSONG; note++) {
 int theDuration=SINGLEBEAT*song[note][NOTEDURATION];
 int theTone=song[note][NOTETONE];
 if (theTone && CircuitPlayground.slideSwitch()) {
 CircuitPlayground.playTone(theTone, 500);
 }
 int theLed=song[note][NOTELED];
 fadeLed(theLed,HIGH,theDuration); // Fade in
 fadeLed(theLed,LOW,theDuration*PAUSEFACTOR); // Fade out + silence between note
 }
}

int playWinSequence() { // Play the winning song and light sequence
 playSong(WINSONG);
 Serial.println("Win!");
}

int playLoseSequence() { // Play the loosing song and light sequence
 playSong(LOSESONG);
 Serial.println("Loss");
}

int playCorrectSequence() { // Play the song and light sequence for a correct move
 playSong(CORRECTSONG);
 Serial.println("Correct Repeat");
}

int getSwitchStroke() { // Code to get a switch entry
 while (get1stPressedSwitch()>=0) {
 // flush everything until no switch is pressed
 delay(50);
 }
 while (get1stPressedSwitch()<0) {
 // wait for next press
 delay(50);
 }
 return get1stPressedSwitch();
}

int get1stPressedSwitch() { // Poll the switches, return the switch being pressed
or -1 for none
 for (int i=0; i<NLEDS; i++) {
 if(CircuitPlayground.readCap(SWITCHPINS[i], CAP_SAMPLES) >= CAP_THRESHOLD)

©Adafruit Industries Page 20 of 23

{ // read CP capacitive
// Serial.print("Switch "); //
switchpad
// Serial.print(SWITCHPINS[i]); // print switch presses if you like
// Serial.print(", ");
// Serial.println(i);
 return i; // return number of the switch pressed
 }
 }
 return -1; // no switch pressed this poll cycle
}

void lightPixel(uint8_t ledToLight, uint8_t intensity) { // light the NeoPixel at
passed intensity
 switch(ledToLight) {
 case(0):
 CircuitPlayground.setPixelColor(LEDPINS[ledToLight],intensity,0,0); // red
 break;
 case(1):
 CircuitPlayground.setPixelColor(LEDPINS[ledToLight],0,intensity,0); // green
 break;
 case(2):
 CircuitPlayground.setPixelColor(LEDPINS[ledToLight],0,0,intensity); // blue
 break;
 case(3):

CircuitPlayground.setPixelColor(LEDPINS[ledToLight],intensity,intensity,intensity); //
white
 break;
 }
}

Game Play:

Press the left or right button pushbutton to start the round. Simon will play a

sequence. You then mimic the sequence by touching the pads next to the

Neopixels Simon lit. The four buttons are SDA #2, RX #0, #6 and #9. If you repeat

the sequence right, the lights flash and Circuit Playground plays a brief tone. The

game will then increase the difficulty level by one more light. This variation keeps

the lower sequences the same, adding a random light to each round. If the tone is

annoying, move the slideswitch to "-" to silence the tones. If you get to the

maximum level and repeat it right, you've won and you get a long winning song! If

you miss a sequence, the game plays a losing tone. To play a whole new game,

press the RESET button.

©Adafruit Industries Page 21 of 23

The code uses the capacitive touch pads on Pins marked #2, #0, #6, and #9. When

the LED next to these pads blinks (and plays a unique tone), you need to memorize

the sequence. Then you play back the sequence by touching the above numbered

gold pads next to the LEDs you saw. Get through the maximum level and you're the

big winner. Great at keeping people entertained.

You can see I places small crews and nuts on the button pads - it makes it easier to

press the right pads as you play. One more is put on ground. The capacitive switch

effect works best with one hand on ground and one hand's finger touching the button

pads. Your body acts as a high resistance to electricity making a good capacitive

sensing capability, similar to touchscreens on many phones and tablets.

You can make the game harder (like the original author @TheRealDod did for an

Arduino version). Change initGameSequence to make each level unique - that

modification requires alot more memorization.

©Adafruit Industries Page 22 of 23

Having the tones play makes the game easier to remember as you go through the

sequences - memory association is stronger with multiple senses, in this case

position, light, and sound. You can turn the sound off with the slide switch (like in prior

examples) but you may find playing requires more concentration with "just" your eyes

on the lights. The power of association and music. Viva Circuit Playground's speaker.

©Adafruit Industries Page 23 of 23

	Circuit Playground Sound and Music
	Table of Contents
	Overview
	Using the Circuit Playground Speaker
	The Circuit Playground Library
	The Sound of Music
	Light to Sound
	Temperature to Sound
	Motion to Sound
	Simon Says Game

	Overview
	What is Sound?

	Using the Circuit Playground Speaker
	Our First Sounds!

	The Circuit Playground Library
	The Sound of Music
	Chiptunes
	Why doesn't our electronic music sound like a rock band?

	Light to Sound
	Applications

	Temperature to Sound
	Motion to Sound
	Applications

	Simon Says Game
	Game Play:

