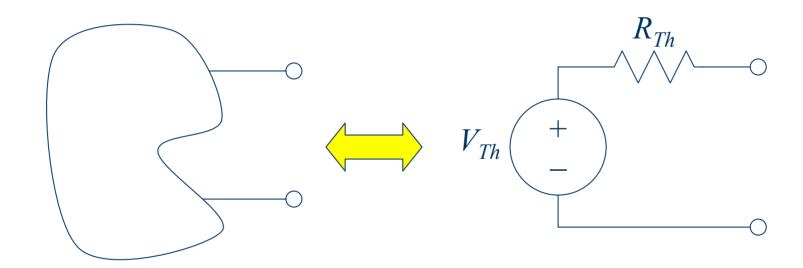
Circuit Theorems: Thevenin and Norton Equivalents, Maximum Power Transfer

Dr. Mustafa Kemal Uyguroğlu

Thevenin's Theorem

- Any circuit with sources (dependent and/or independent) and resistors can be replaced by an equivalent circuit containing a single voltage source and a single resistor.
- Thevenin's theorem implies that we can replace arbitrarily complicated networks with simple networks for purposes of analysis.

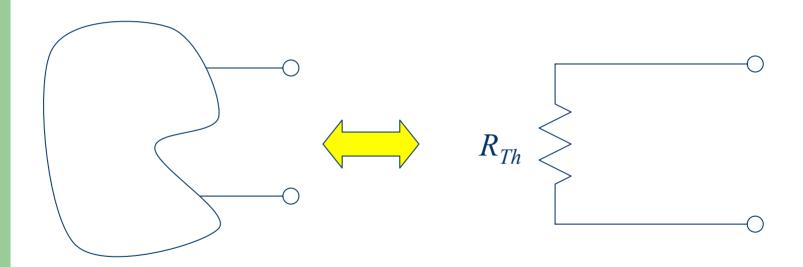
Independent Sources (Thevenin)



Circuit with independent sources

Thevenin equivalent circuit

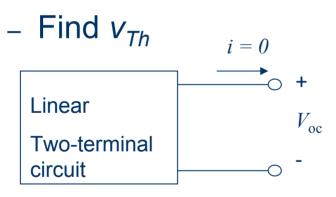
No Independent Sources

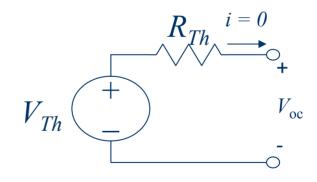


Circuit without independent sources

Thevenin equivalent circuit

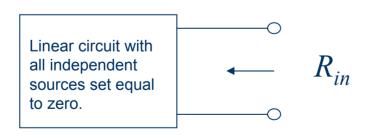
 Basic steps to determining Thevenin equivalent are

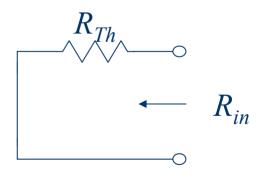




$$V_{\rm oc} = V_{Th}$$

- Compute the Thevenin equivalent resistance, R_{Th}
 - (a) If there are <u>only</u> independent sources, then short circuit all the voltage sources and open circuit the current sources (just like superposition).





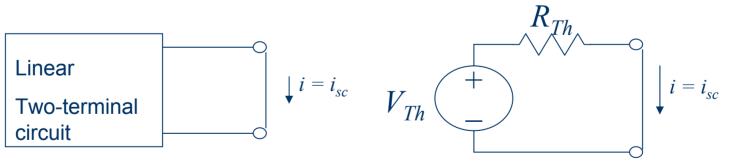
$$R_{in} = R_{Th}$$

(b) If there are <u>only</u> dependent sources, then must use a test voltage or current source in order to calculate

$$R_{Th} = V_{Test}/I_{test}$$



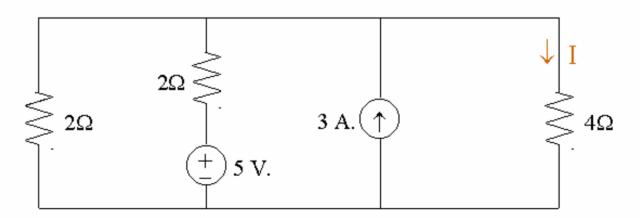
- (c) If there are <u>both</u> independent and dependent sources, then compute
 - (i) $R_{Th} = V_{Test}/I_{test}$ (all independent sources set equal to zero)
 - (ii) compute R_{Th} from V_{OC}/I_{SC} .



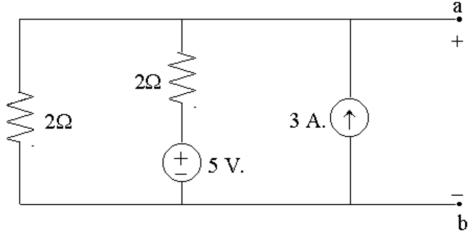
$$i_{sc} = V_{Th} / R_{Th}$$

Example

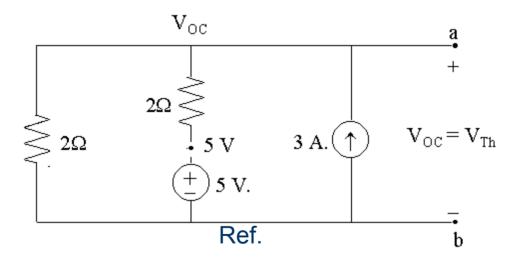
Find I using Thevenin's Theorem



Step 1: Get the Thevenin Equiv. of the circuit to the left of terminals a-b

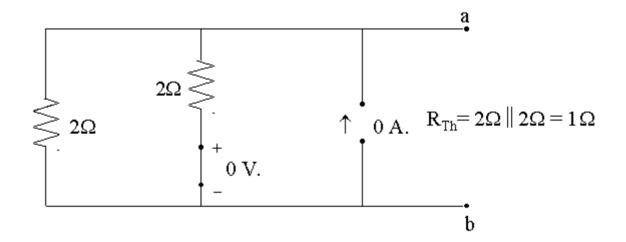


Step 1a: Open circuit voltage calculation

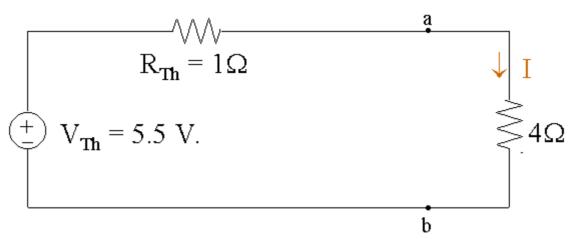


KCL at
$$V_{oc}$$
:
$$\frac{V_{oc}}{2} + \frac{V_{oc} - 5}{2} = 3 \implies V_{oc} = 5.5V$$

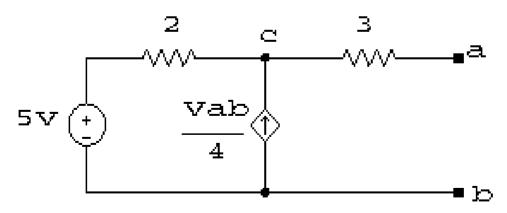
Step 1b: Determination of R_{Th}



$$I = 5.5 \text{ V.} / (1 + 4) \Omega = 1.1 \text{ A.}$$
 (Ohm's Law)



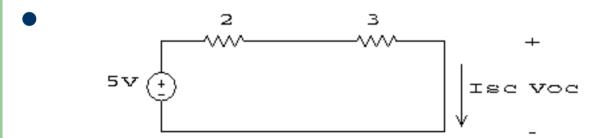
• **Problem:** for the following circuit, determine the Thevenin equivalent circuit.



Solution:

- Step 1: In this circuit, we have a dependent source. Hence, we start by finding the open circuit voltage V_{oc} = V_{ab}.
- KCL at node C
- $(5 V_{oc})/2 + V_{oc}/4 = 0$
- $V_{00} = 10 \text{ V}$

 Step 2: We obtain the short circuit current Isc by shorting nodes a-b and finding the current through it.



•
$$5 = 2 \operatorname{Isc} + 3 \operatorname{Isc} = > \operatorname{Isc} = 5/5$$

 Step 3: Find the equivalent Thevenin Voltage and Resistance

•
$$V_{th} = V_{oc} = V_{ab} = 10V$$

•
$$R_{th} = V_{oc}/I_{sc}$$
 => $R_{th} = 10/1 \Omega$

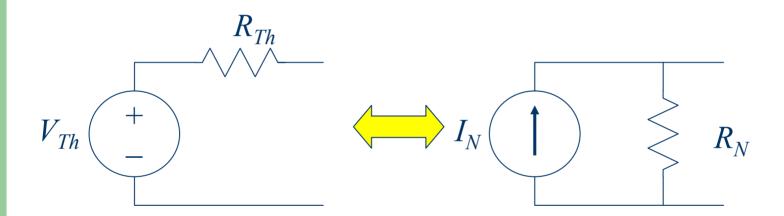
•
$$V_{th} = 10V$$

•
$$R_{th} = 10 \Omega$$

Norton Equivalent Circuit

- Any Thevenin equivalent circuit is in turn equivalent to a current source in parallel with a resistor [source transformation].
- A current source in parallel with a resistor is called a Norton equivalent circuit.

Norton Equivalent Circuit



$$V_{Th} = R_N I_N$$
 $I_N = \frac{V_{Th}}{R_{Th}}$ $R_{Th} = R_N$

• Finding a Norton equivalent circuit requires essentially the same process as finding a Thevenin equivalent circuit.

Thevenin/Norton Analysis

- 1. Pick a good breaking point in the circuit (cannot split a dependent source and its control variable).
- 2. **Thevenin**: Compute the open circuit voltage, V_{OC} . **Norton**: Compute the short circuit current, I_{SC} .

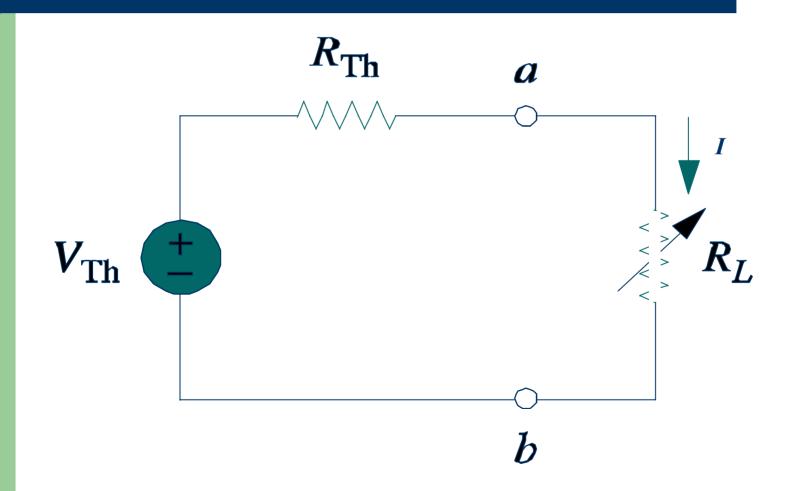
If there is not any independent source then both V_{oc} =0 and I_{sc} =0 [so skip step 2]

Thevenin/Norton Analysis

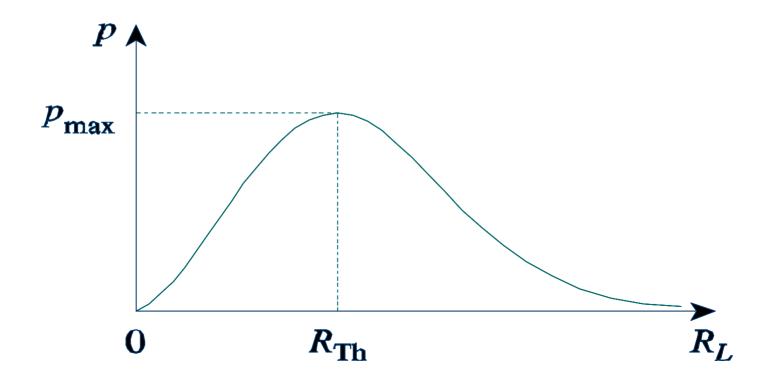
- 3. Calculate $R_{Th}(R_N) = V_{oc} / I_{sc}$
- 4. **Thevenin**: Replace circuit with V_{OC} in series with R_{Th} **Norton**: Replace circuit with I_{SC} in parallel with R_{Th}

Note: for circuits containing no independent sources the equivalent network is merely R_{Th} , that is, no voltage (or current) source.

Only steps 2 & 4 differ from Thevenin & Norton!



Power delivered to the load as a function of R_L.



$$I = \frac{V_{Th}}{R_{Th} + R_{L}}$$

$$P_{R_{L}} = I^{2} R_{L} = \frac{V^{2}_{Th}}{(R_{Th} + R_{L})^{2}} R_{L}$$

To find the maxima

$$\frac{\frac{d p_{R_L}}{d R_L} = \mathbf{0}}{\frac{d}{d R_L} \left[\frac{V^2 Th R_L}{(R_{Th} + R_L)^2} \right] = \mathbf{0}}$$

Note :
$$d(\frac{u}{v}) = \frac{u'v - uv'}{v^2}$$

$$V^{2}_{Th} \left(\frac{(R_{Th} + R_{L})^{2} \cdot 1 - R_{L} \cdot (2(R_{Th} + R_{L}))}{\{(R_{Th} + R_{L})^{2}\}^{2}} \right) = 0$$

$$R^{2}_{Th} + R^{2}_{L} + 2R_{Th} R_{L} - 2R_{Th} R_{L} - 2R^{2}_{L} = 0$$

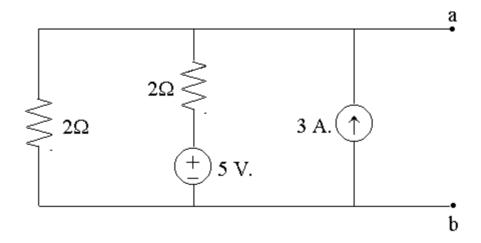
$$R^{2}_{Th} - R^{2}_{L} = 0$$

$$R_{Th} = R_{L} \leftarrow Maximum \ Power \ Transfer$$

$$P_{max} = \left(\frac{V^{2}_{Th}}{(2R_{L})^{2}} \right) \cdot R_{L} = \left(\frac{V^{2}_{Th}}{4R_{L}} \right) watts$$

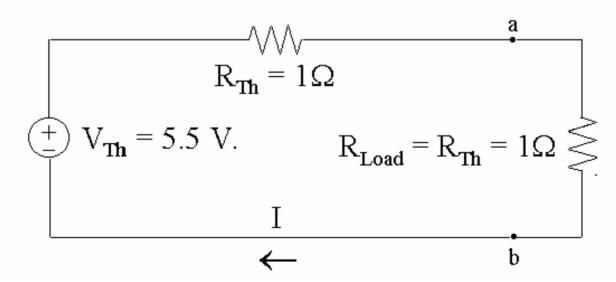
Example

What's the maximum power that can be extracted from terminals a-b?



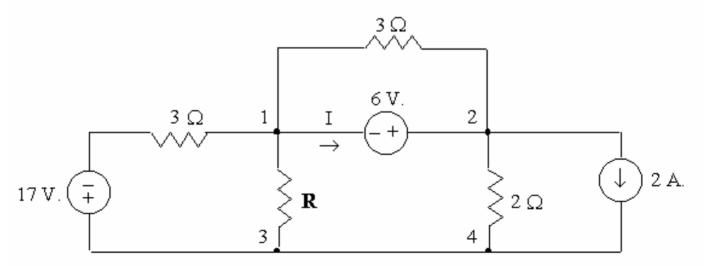
The circuit's Thevenin equivalent loaded with R_{Th} at terminals a-b yields:

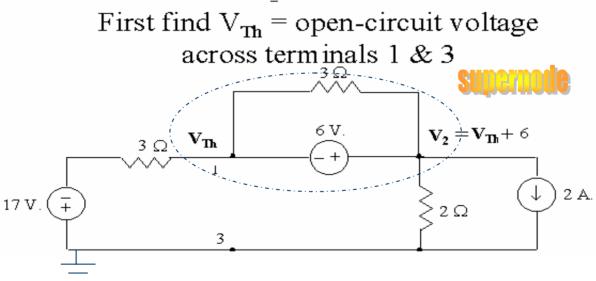
 $I = 5.5 \text{ V./}(1 + 1)\Omega = 2.75 \text{ A. so the (maximum) load power is: } P_{\text{max.}} = I^2R = (2.75 \text{ A.})^2 \times 1 \Omega = 7.5625 \text{ W.}$



Example

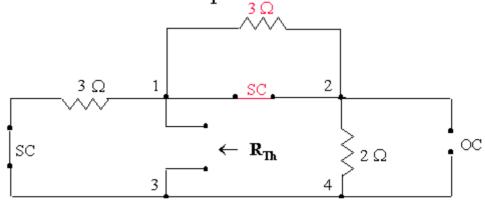
Determine the value of R in the circuit which will draw maximum power and calculate the corresponding maximum power.





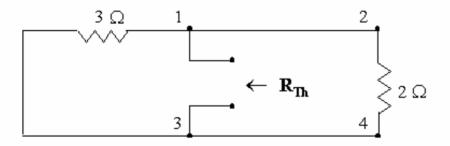
KCL at the supernode: $\frac{V_{Th} + 17}{3} + \frac{V_{Th} + 6}{2} = -2 \Rightarrow \frac{5}{6}V_{Th} = -2 - \frac{17}{3} - 3$ $V_{Th} = \frac{6}{5} \left(\frac{-32}{3}\right) = -\frac{64}{5} = -12.8V$

R_{Th} = Resistance across (open-circuited) terminals 1 & 3 with the independent sources deactivated



The parallel combination of the 0Ω SC and the 3Ω resistor is 0Ω (another SC) so the circuit becomes (next slide) ...

R_{Th} = Resistance across (open-circuited) terminals 1 & 3 with the independent sources deactivated



$$R_{Th} = 3 \Omega \parallel 2 \Omega = 1.2 \Omega$$

The circuit's Thevenin equivalent loaded with $R = R_{Th}$ draws a current of:

$$\begin{split} I = V_{Th}/(R_{Th} + R) = & (-12.8 \text{ V.})/(1.2 \ \Omega + 1.2 \ \Omega) = -5^{1/3}A. \\ \text{and the corresponding maximum power is} \\ P_{max.} = I^2R = & (-5^{1/3}A.)^2 \times 1.2 \ \Omega = 34^2/15 \ \text{W.} \approx 34.13 \ \text{W.} \end{split}$$

