

CircuitPython Basics: I2C and SPI

Created by Tony DiCola

https://learn.adafruit.com/circuitpython-basics-i2c-and-spi

Last updated on 2021-11-15 07:01:12 PM EST

©Adafruit Industries Page 1 of 22

3

3

4

4

5

10

12

13

13

14

18

20

Table of Contents

Overview

Following Along in the REPL

I2C Devices

• I2C Protocol

• MCP9808 I2C Temperature Sensor

• I2CDevice Library

• Scan All Registers

SPI Devices

• SPI Protocol

• MAX31855 SPI Thermocouple Temperature Sensor

• SPIDevice Library

• Software SPI & I2C

©Adafruit Industries Page 2 of 22

Overview

Talking to hardware from your development board is when the real fun starts with a

project. You can connect sensors, actuators, and more to make your project come

alive with motion, sensation, sound, etc. However to communicate with other

hardware typically requires knowledge of a serial protocol like I2C or SPI. These

protocols are the common language that chips and add-on boards talk so they can be

connected to a development board. The board knows how to ‘speak’ these protocols

and control the connected hardware. This guide explores two very common serial

protocols, I2C and SPI.

Following Along in the REPL

This guide will show you how to interact with one of the Adafruit CircuitPython-

compatible boards which feature analog I/O such as the Circuit Playground Express (h

ttps://adafru.it/wpF).

If you'd like to learn more about CircuitPython (not required for this tutorial) you can s

ee this guide (https://adafru.it/cpy-welcome).

To see the CircuitPython REPL interactive environment and follow along yourself,

Adafruit recommends the Mu Editor. With a board connected, you can clock the Mu

Serial button to see the serial stream from a board. If you press a key, Mu will start a

REPL interactive session with the board like the code in this tutorial. Again, this is not

required for this tutorial, but if you'd like to learn about Mu and look to install it, see

this guide (https://adafru.it/ANO).

©Adafruit Industries Page 3 of 22

https://www.adafruit.com/product/3333
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

I2C Devices

I2C Protocol

The I2C, or inter-integrated circuit (https://adafru.it/u2a), protocol is one example of a

serial protocol for devices to communicate with one another. I2C is a serial protocol

because it has a clock line and single data line which is used for both sending and

receiving data. Compared to other serial protocols I2C has some interesting

properties:

The I2C protocol only uses 2 wires to send and receive data. One line is a clock,

called SCL, which pulses high and low to drive the sending and receiving of bits.

The other line is the data line, called SDA, which contains the value of a sent or

received bit during clock line transitions.

Multiple I2C devices can be connected to the same clock and data lines. This

means you can have many different sensors and devices all connected to the

same couple pins from your development board. The I2C protocol uses a 7-bit

address assigned to each device as a way for the development board to talk to

a specific device. As a result of using 7-bit addresses the I2C protocol is limited

to 127 unique devices connected to one bus (or pair of data and clock lines).

The speed of the I2C bus is fixed, typically to 100khz, 400khz, or 1mhz. This

means I2C is a good protocol for talking to devices that don’t send a lot of data

or need very fast responses. A TFT display which receives hundreds of kilobytes

and even megabytes of image data wouldn’t make sense as an I2C device

because sending so much data over a 100khz bus would be quite slow.

However a small sensor like a temperature or light sensor that sends a small 16

or 32-bit value typically doesn’t need a fast bus.

The I2C clock and data lines need pull-up resistors to prevent from floating to

random values. Since many different devices can share these lines the I2C

protocol requires that each device ‘give up’ or stop driving the lines when not in

use. If no device is driving the lines then the pull-up resistors ensure they go up

to a high logic level instead of floating at random values. Most I2C device

boards (in particular the boards Adafruit creates) have these pull-up resistors

built-in, but if you’re talking to a chip or building a board yourself you might

need to add ~2.2-10 kilo-ohm resistors connected from both data and clock lines

up to high logic level.

The I2C protocol includes a simple guarantee that data has been transferred

between devices. When one I2C device receives data from another device it

uses a special acknowledgement bit to tell the sending device that data has

•

•

•

•

•

©Adafruit Industries Page 4 of 22

https://en.wikipedia.org/wiki/I%C2%B2C

been received. There’s no error correction, parity checks, etc.–just a simple yes

/no that data has been successfully sent and received.

Typically one device on an I2C bus is the ‘main’ which controls the clock line

and sends requests to other connected devices. In most cases your

development board is the main device that drives the I2C bus clock. Sensors

and other I2C devices connected to the bus listen for requests from the main

and respond appropriately. This guide covers this most common scenario where

your development board is the I2C main and is talking to connected devices.

Many I2C devices expose data through a simple register table. This means to

query data from the device you need to know both the address of the device

and the address of the register you wish to query. Check your device’s

datasheet for the exact device and register address values. Typically registers

are 8-bit values (0 to 255) but devices are free to use larger or smaller sizes–

always check your device’s datasheet to be sure how it exposes data!

These properties make I2C an attractive protocol for sensors and other simple

devices that don’t need to send or receive data quickly. Many different sensors can all

be connected to the same I2C clock and data lines. By giving each sensor a unique 7-

bit address your development board and code can query each one for their current

value.

MCP9808 I2C Temperature Sensor

To demonstrate interacting with an I2C device this guide will show you how to query

the temperature from a MCP9808 high precision temperature sensor. This sensor is a

good example of an I2C device because it has a very simple register structure. To

read the temperature you simply read one register from the device–there’s no

complex logic or need to read other registers like on some other sensors. You’ll need

these parts to follow this section:

MCP9808 high precision temperature sensor (https://adafru.it/e06).

A breadboard and wires to connect the components and board together.

Connect the components together as follows:

•

•

•

•

©Adafruit Industries Page 5 of 22

https://www.adafruit.com/product/1782

Fritzing Source

https://adafru.it/zck

Board 5V or 3.3V output to MCP9808 VDD or VIN.

Board ground/GND to MCP9808 GND.

Board SCL (I2C clock line) to MCP9808 SCL.

Board SDA (I2C data line) to MCP9808 SDA.

Remember the I2C protocol requires pull-up resistors to be on the clock and data

lines. If you’re using an Adafruit breakout board like the MCP9808 sensor linked

above then these pull-ups are built-in and nothing else is necessary. However if

you’re wiring a chip directly to your board or using a differnet breakout you might

need to add pull-up resistors. Typically these are 2.2k - 10k ohm resistors that connect

both clock and data up to high logic / 3.3V.

Once the device is wired up you’re ready to start interacting with it from

CircuitPython. The easiest way to demonstrate this control is from the serial REPL and

an interactive Python session. Connect to your board’s serial REPL, then import the

board (https://adafru.it/yF5) and busio (https://adafru.it/zcl) module:

>>> import board
>>> import busio

The busio (https://adafru.it/zcl) module contains an interface for using hardware-

driven I2C communication from your board. Note that on some boards, like the

ESP8266, they might not support hardware-driven I2C and must fall back to a slower

software driven approach. You’ll learn more about software driven, or bit-banged,

access later in this guide. If you’re not sure check your board’s documentation for its

support of I2C–most boards like the Metro M0, Trinket M0, Gemma M0, Circuit

Playground Express support a hardware-driven I2C interface.

•

•

•

•

©Adafruit Industries Page 6 of 22

https://github.com/adafruit/circuitpython/blob/programming_guide/docs/programming_guide/fritzing/03_i2c_spi_figure_1.fzz
http://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
http://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
http://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio

Within the busio (https://adafru.it/zcl) module you’ll use the busio.I2C (https://

adafru.it/zcm) class to create an interface to access the I2C bus:

>>> i2c = busio.I2C(board.SCL, board.SDA)

When creating the I2C class you must specify the clock line and data line pins.

Typically these are the board.SCL and board.SDA objects but check your board’s

documentation in case there are other hardware I2C buses with different clock and

data line names.

Once you have access to the I2C bus it’s easy to scan the bus to find the address of

all devices connected to it. Call the busio.I2C.scan() (https://adafru.it/zcm)

function.

However before you make calls against the I2C bus you first need to take control, or

‘lock’, it to ensure your code has exclusive access to I2C. There are a few ways to

lock the bus like waiting on the busio.I2C.try_lock() (https://adafru.it/zcm)

function and then calling the busio.I2C.unlock() (https://adafru.it/zcm) function

when finished (typically in a Python try-finally block). Locking the bus tells

CircuitPython that your code needs to use I2C and that any other code using I2C

should wait for your code to finish. This helps different bits of code use the same

hardware peripherals by ensuring they don’t try to use it at the same time or interrupt

each other.

To lock the I2C bus you want to use a special loop syntax that waits for the busio.I

2C.try_lock (https://adafru.it/zcm)function to succeed:

>>> while not i2c.try_lock():
... pass
...
>>>

This loop will continually call the try_lock function until it returns true that the I2C bus

was locked. Remember other code might be using the bus so the loop will keep trying

to lock the bus and ensure it’s available to use. Once the bus is locked you can start

to call functions to access it, like scanning for any available I2C devices. Try calling

the busio.I2C.scan() (https://adafru.it/zcm) function to list the addresses of all I2C

devices found on the bus:

>>> i2c.scan()
[24]

©Adafruit Industries Page 7 of 22

http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan

Notice when you use the with statement all the code inside of it is indented and

doesn’t run until you end the with statement (but removing the indentation or pressing

enter three times). The great thing about the with statement and context manager is

that it’s automatically locking and unlocking the I2C interface so calls like scan can be

made.

Notice the busio.I2C.scan() (https://adafru.it/zcm) function returns a list of 7-bit

I2C device addresses. Be careful as Python treats these numbers as normal base 10

values when printing them, whereas most I2C addresses from datasheets are in hex.

You can use a special list comprehension syntax to convert the list of numbers into

hex strings:

>>> [hex(x) for x in i2c.scan()]
['0x18']

Now you’ll see a list of 2 digit hex strings which are easier to double check with your

device’s datasheet. In this case a device with address 0x18 is visible on the I2C bus

and if you check the MCP9808 datasheet (https://adafru.it/zcn) you’ll see by default

its I2C address is 0x18. Perfect! This means the sensor is properly connected,

powered, and responding to requests.

If for some reason you don’t see anything returned by scan, or completely different

addresses then double check your wiring, power, and if pull-up resistors are

necessary to add. If any one of those things isn’t setup correctly the device will not be

visible to the I2C bus and scan.

Next you can read bytes from registers using a combination of writing and reading

functions. With the I2C protocol all requests are actually transactions where the main

devices writes to and then reads from a connected device. First the main writes the

address of the register it wants to read, then it reads a number of bytes from the

device.

For example with the MCP9808 its temperature value is stored in a 16-bit register at

address 0x05. You can read the value of this register by running:

>>> i2c.writeto(0x18, bytes([0x05]), stop=False)
>>> result = bytearray(2)
>>> i2c.readfrom_into(0x18, result)
>>> result
bytearray(b'\xc1s')

©Adafruit Industries Page 8 of 22

http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.scan
http://ww1.microchip.com/downloads/en/DeviceDoc/25095A.pdf

Let’s break down step by step what’s happening here:

First the busio.I2C.writeto() (https://adafru.it/zcm) function is called to start

an I2C transaction by writing bytes of data from the board to the MCP9808. The

first parameter is the address of the MCP9808, 0x18, and the second parameter

is a list of bytes to be written. In this case only one byte, the value 0x05, is

written. If you check the MCP9808 datasheet this 0x05 value is the temperature

reading register. Finally the stop=False keyword argument tells the write

function that there are more calls to come in this I2C transaction. Each I2C

device can be different about how they expect transactions to be structured–

some devices want an explicit stop after any main writes, whereas others expect

the main to not send a stop and continue waiting for data from the device. You’ll

need to check your device’s datasheet to be sure how it expects I2C calls to

work, but for the vast majority of I2C devices this write with stop=False is what

they expect.

After writing data from the board to the MCP9808 we need to receive two bytes

of temperature sensor register data. To do this we’ll call the busio.I2C.readf

rom_into() (https://adafru.it/zcm)function. But before you can call the function

you need a place to store the returned bytes and to do this a bytearray of size 2

is created. This result bytearray will be passed to the read function and then

filled with the results read from the MCP9808.

The busio.I2C.readfrom_into() (https://adafru.it/zcm) function is finally

called to read two bytes of data from the MCP9808. Remember the I2C

transaction is still ‘open’ from the previous write with stop=False so the

MCP9808 knows to send back the previously requested temperature sensor

register values. Again the first parameter to the read function is the address of

the device (0x18) and the second parameter is a bytearray that will be filled with

the bytes that are read. How does the function know how many bytes to read?

The size of the passed in bytearray by default will determine how many bytes to

read, so if you need to read more or less bytes the easiest way is to change the

size of the bytearray passed in.

The last statement prints the two bytes that were read, 0xC173. This is the response

from the MCP9808 after it was asked to send the temperature sensor register. If you

check the datasheet you can see the format for this response actually encodes the

sensed temperature. Luckily with Python it’s easy to make a function that decodes the

temperature:

>>> def temp_c(data):
... value = data[0] << 8 | data[1]
... temp = (value & 0xFFF) / 16.0
... if value & 0x1000:
... temp -= 256.0

•

•

•

©Adafruit Industries Page 9 of 22

http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.writeto
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.writeto
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.writeto
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.readfrom_into

... return temp

...
>>> temp_c(result)
23.1875

Notice the temperature of the MCP9808 is printed in Celsius!

Once you’re finished using I2C devices be sure to call the busio.I2C.unlock() (ht

tps://adafru.it/zcm) function to give back control of the I2C bus to other code. You can

explicitly call it like:

>>> i2c.unlock()

Or you can put your code in a try-finally block in Python which ensures the unlock

function is called no matter what, even if your code fails. For example a complete

scan and read with try-finally might look like:

 >>> while not i2c.try_lock():
... pass
...
>>> try:
... [hex(x) for x in i2c.scan()]
... i2c.writeto(0x18, bytes([0x05]), stop=False)
... result = bytearray(2)
... i2c.readfrom_into(0x18, result)
... finally:
... i2c.unlock()
...
['0x18']
>>> result
bytearray(b'\xc1s')

That’s all there is to interacting with I2C devices from CircuitPython. With the busio.

I2C (https://adafru.it/zcm) class you have direct access to crafting I2C transactions of

almost unlimited complexity. Most devices will use the basic write register, read bytes

flow you saw here, but be sure to check your device’s datasheet in case it has

different I2C protocol requirements.

I2CDevice Library

You saw above how to interact with an I2C device using the API built-in to

CircuitPython. Remember using the built-in API requires careful management of the

lock and unlock functions to access the I2C bus. If you’re writing code to talk to an

I2C device you might find using the CircuitPython bus device library (https://adafru.it/

u0b) a bit easier to manage as it controls locking and unlocking automatically (using

Python’s context manager with statement).

©Adafruit Industries Page 10 of 22

http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice

To use the bus device library you’ll first need to install the library on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards.

For Express boards, install the entire bundle. For non-express boards, with limited

space, you'll need to grab just the adafruit_bus_device folder from inside lib to the lib

folder of your board’s CIRCUITPY drive.

Once you have the bus device library installed you can use the I2CDevice class (http

s://adafru.it/zcq) to simplify access to a device on the I2C device bus. First setup the

I2C bus exactly as you did before:

>>> import board
>>> import busio
>>> i2c = busio.I2C(board.SCL, board.SDA)

Now import the bus device module and create an instance of the I2CDevice class.

Notice the I2CDevice class needs to be told both the I2C bus object, and the address

of the I2C device to talk to (0x18 for the MCP9808 sensor here):

>>> from adafruit_bus_device.i2c_device import I2CDevice
>>> device = I2CDevice(i2c, 0x18)

Now you can use similar functions to read and write data on the I2C bus to interact

with the I2CDevice. The important difference here is that the read and write functions

on the I2CDevice object will remember and automatically send the right device

address. In addition you can use Python’s with statement as a context manager to

automatically lock and unlock the I2C bus.

Here’s how to read the temperature register using the I2CDevice:

©Adafruit Industries Page 11 of 22

file:///home/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
http://circuitpython.readthedocs.io/projects/bus_device/en/latest/adafruit_bus_device/#adafruit_bus_device.i2c_device.I2CDevice

>>> with device:
... device.write(bytes([0x05]), stop=False)
... result = bytearray(2)
... device.readinto(result)
...
>>> result
bytearray(b'\xc1s')
>>> temp_c(result)
23.1875

Notice you no longer need to specify the address of the device (0x18) when reading

and writing. The with statement is also automatically locking and unlocking the I2C

bus so you don’t need to manage the locking yourself either. The only limitation of the

I2CDevice class is that it needs to talk to a single device and can’t scan the entire bus

or interact with multiple devices (instead create multiple I2CDevice instances!). If

you’re writing code to interact with an I2C device it’s highly recommended to use the

I2CDevice class!

Also for interacting with most sensors and devices you typically don’t need to write

these low-level direct I2C bus manipulation requests (with either the built-in APIs or

I2CDevice class). Instead look for a higher level library to interact with the device, like

the CircuitPython MCP9808 library (https://adafru.it/zcr). Using a library saves you the

work of writing this low-level I2C code and instead you can interact with simple

temperature and other device properties. However it is handy to know how to write

low-level I2C transactions in case you’re dealing with devices that don’t yet have a

driver available!

Scan All Registers

An interesting property of most I2C devices is that they expose data with simple

registers. Like you saw above with the MCP9808 sensor the register 0x05 held the

temperature as 2 bytes of data. It’s sometimes handy to scan all of the registers of an

I2C device and print out their values. Here’s an example of scanning a set of registers

from the first I2C device found and printing their contents as hex (you might want to

save this as a main.py file that runs at boot instead of typing it all into the REPL!):

import board
import busio

REGISTERS = (0, 256) # Range of registers to read, from the first up to (but
 # not including!) the second value.

REGISTER_SIZE = 2 # Number of bytes to read from each register.

Initialize and lock the I2C bus.
i2c = busio.I2C(board.SCL, board.SDA)
while not i2c.try_lock():
 pass

©Adafruit Industries Page 12 of 22

https://github.com/adafruit/Adafruit_CircuitPython_MCP9808

Find the first I2C device available.
devices = i2c.scan()
while len(devices) < 1:
 devices = i2c.scan()
device = devices[0]
print('Found device with address: {}'.format(hex(device)))

Scan all the registers and read their byte values.
result = bytearray(REGISTER_SIZE)
for register in range(*REGISTERS):
 try:
 i2c.writeto(device, bytes([register]))
 i2c.readfrom_into(device, result)
 except OSError:
 continue # Ignore registers that don't exist!
 print('Address {0}: {1}'.format(hex(register), ' '.join([hex(x) for x in
result])))

Unlock the I2C bus when finished. Ideally put this in a try-finally!
i2c.unlock()

For example with the MCP9808 you might see output like:

Found device with address: 0x18
Address 0x0: 0x0 0x1d
Address 0x1: 0x0 0x0
Address 0x2: 0x0 0x0
Address 0x3: 0x0 0x0
Address 0x4: 0x0 0x0
Address 0x5: 0xc1 0x83
Address 0x6: 0x0 0x54
Address 0x7: 0x4 0x0
Address 0x8: 0x3 0x1
Address 0x9: 0x60 0x1
Address 0xa: 0xa2 0x1
Address 0xb: 0x25 0x88
Address 0xc: 0x0 0x1

SPI Devices

SPI Protocol

The SPI protocol, or serial peripheral interface (https://adafru.it/qhB), is another

example of a serial protocol for two devices to send and receive data. The big

difference between SPI and I2C is that SPI uses a few more wires, in particular an

explicit data input and data output wire instead of sharing a single data wire like with

I2C. There’s also a clock wire like in I2C, but with SPI it has the freedom to use almost

any speed it desires from a few kilohertz up to hundreds of megahertz (if the

hardware supports it!). This makes the SPI protocol great for devices like TFT displays

that need to be sent very large amounts of data–with control over the clock speed it’s

possible to very quickly send entire screen images to the display.

©Adafruit Industries Page 13 of 22

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

Compared to I2C the SPI protocol has some interesting properties:

SPI uses 3 to 4 wires for sending and receiving data. One wire is a clock line

that toggles up and down to drive bits being sent and received. Like with I2C

only the main device can drive the clock. Another wire is MOSI, or ‘main output,

secondary input’ which is the data output from your board and sent to a

connected device. Likewise a MISO wire, or ‘main input, secondary output’, is for

sending data from the device to the board receiving it. Finally most chips have a

CS, or chip select, wire which is toggled to tell the chip that it should listen and

respond to requests on the SPI bus.

Like I2C multiple devices can share the same SPI bus, however a big difference

is that each device typically requires its own unique CS line. Remember the CS/

chip select line is what tells a chip that it should listen for SPI traffic. As a result

for each SPI device you connect to your board it can share the clock, MOSI,

MISO lines but must have its own CS line (typically connected to any free digital

I/O pin).

SPI devices have different requirements for speed (sometimes called baudrate),

polarity, and phase. The SPI page on Wikipedia (https://adafru.it/qhB) has a good

description of what polarity and phase mean–they control how the data is sent

and received over the MISO and MOSI lines. Different polarity values control if a

digital high or low logic level means a bit is a one or zero. Similarly different

phase values control when data is read and written by devices–either with the

rising or falling edge of the clock line. The important thing to know about phase

and polarity is that each device has its own requirement for setting them so be

sure to check your device’s datasheet. Many devices are ‘mode 0’ which means

a polarity and phase of 0 but watch out because some devices use different

modes.

Like with I2C the basic operations are reading and writing bits and bytes of data

over the data lines. However unlike I2C there is no guarantee or check that a

connected device received or sent data successfully. Sometimes chips have

extra lines to watch for an acknowledgment, but sometimes they don’t and the

SPI requests are ‘fire and forget’ with no guarantee they were received.

MAX31855 SPI Thermocouple Temperature

Sensor

To demonstrate interacting with a SPI device this guide will show you how to query

the temperature from a MAX31855 thermocouple temperature sensor. This sensor is a

•

•

•

•

©Adafruit Industries Page 14 of 22

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus

good example of an SPI device because it has a very simple interface, you just

connect a MISO line and read bytes of temperature data. There are no registers or

other complex structures to configure and process on the chip. You’ll need these

parts to follow this section:

MAX31855 thermocouple temperature sensor (https://adafru.it/qhC).

If you don’t have one a simple K-type thermocouple (https://adafru.it/zcs) is also

required to connect to the MAX31855.

A breadboard and wires to connect the components and board together.

Connect the components together as follows:

Fritzing Source

https://adafru.it/zct

Board 5V or 3.3V output to MAX31855 VIN.

Board ground/GND to MAX31855 GND.

Board SCK (SPI clock line) to MAX31855 CLK/clock. Note this is on the small 2x3

header on a Metro M0 Express or other Arduino form-factor boards.

Board MISO to MAX31855 DO (data output, AKA MISO). Note this is also on the

small 2x3 header on a Metro M0 Express or other Arduino form-factor board.

Board D2 (or any free digital I/O pin) to MAX31855 CS/chip select.

The wiring above will configure hardware-based SPI communication. Like with I2C

you can choose to use your microprocessor’s built-in SPI communication hardware, or

you might use software ‘bit banging’ to talk SPI much more slowly over any digital I/O

lines. You’ll see how to switch to software SPI further in this guide.

Once the board is wired up connect to the REPL. You’ll need to import the board (htt

ps://adafru.it/yF5), busio (https://adafru.it/zcl), and digitalio (https://adafru.it/yFU)

modules:

•

•

•

•

•

•

•

•

©Adafruit Industries Page 15 of 22

https://www.adafruit.com/product/269
https://www.adafruit.com/product/270
https://github.com/adafruit/circuitpython/blob/programming_guide/docs/programming_guide/fritzing/03_i2c_spi_figure_2.fzz
http://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
http://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
http://circuitpython.readthedocs.io/en/latest/shared-bindings/board/__init__.html#module-board
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/__init__.html#module-busio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/__init__.html#module-digitalio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/__init__.html#module-digitalio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/digitalio/__init__.html#module-digitalio

>>> import board
>>> import busio
>>> import digitalio

Remember the CS line is just a simple digital I/O line so we need to use the digitalio

module to control it. Let’s setup a digital output to drive this line:

>>> cs = digitalio.DigitalInOut(board.D2)
>>> cs.direction = digitalio.Direction.OUTPUT
>>> cs.value = True

For most chips they expect the CS line to be held high when they aren’t in use and

then pulled low when the processor is talking to them. However check your device’s

datasheet as the polarity and phase (or mode) can change how the chip expects CS

to work! In this case the MAX31855 expects CS to be high when not in use and pulled

low when talking to it. We’ll start the CS line in a high or true value so that it isn’t yet

listening.

Now we need to create an interface to the SPI hardware bus. Do so with this line to

create an instance of the busio.SPI (https://adafru.it/zcu) class:

>>> spi = busio.SPI(board.SCK, MISO=board.MISO)

To create the SPI class you must pass at least a clock pin and then optionally the

MISO and MOSI pins. In this case the MAX31855 doesn’t use the MOSI pin so we only

provide MISO.

Now we’re almost ready to read data from the sensor. However just like with I2C you

must lock the SPI bus before you send and receive data. The busio.SPI.try_lock

() (https://adafru.it/zcu) and busio.SPI.unlock() (https://adafru.it/zcu)functions

can do this like with I2C. Let’s read 4 bytes of data from the chip:

>>> while not spi.try_lock():
... pass
...
>>> spi.configure(baudrate=5000000, phase=0, polarity=0)
>>> cs.value = False
>>> result = bytearray(4)
>>> spi.readinto(result)
>>> cs.value = True
>>> result
bytearray(b'\x01\xa8\x1a\xf0')

©Adafruit Industries Page 16 of 22

http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.try_lock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.unlock

Before digging into the results let’s break down what just happened:

The while loop at the start will attempt to lock the SPI bus so your code can

access SPI devices. Just like with I2C you need to call try_lock (and later unlock)

to ensure you are the only user of the SPI bus.

The busio.SPI.configure() (https://adafru.it/zcu) function is called to

configure the speed, phase, and polarity of the SPI bus. It’s important to always

call configure after locking the bus and before talking to your device as

communication with other devices might have changed the speed, polarity, etc.

You’ll need to look up the exact speed and other values from your device’s

datasheet. For the MAX31855 we’ll use a speed of 5mhz and a polarity and

phase of 0 (sometimes called mode 0).

Next we toggle the CS line down to a low logic level. Remember with SPI each

device needs a chip select line to tell it when it’s ready to send and receive

data.

A 4 byte buffer is created to hold the result of the SPI read. Just like with I2C

reads you need to pass a buffer that will be filled with response data, and the

size of the buffer determines how many bytes are read.

The busio.SPI.readinto() (https://adafru.it/zcu) function is called to read 4

bytes of data from the MAX31855. Remember the size of the passed in buffer

determines how many bytes of data are read.

Finally the CS line is toggled back to a high digital logic level. This tells the

MAX31855 we’re done talking to it and it can stop listening or sending data.

Notice the returned data has the hex value 0x01A81AF0. Just like with the MCP9808

you’ll need to check your device’s datasheet to see how to interpret the data. In this

case you can again make a little Python function to convert the raw bytes into

temperature data:

>>> def temp_c(data):
... temp = data[0] << 8 | data[1]
... if temp & 0x0001:
... return float('NaN') # Fault reading data.
... temp >>= 2
... if temp & 0x2000:
... temp -= 16384 # Sign bit set, take 2's compliment.
... return temp * 0.25
...
>>> temp_c(result)
26.5

Awesome, a value of 26.5 degrees Celsius was read from the sensor! Try touching the

thermocouple with your finger and running the SPI read code again to get another

temperature reading to compare. Remember to toggle the CS pin low and then back

high in between reading SPI data!

•

•

•

•

•

•

©Adafruit Industries Page 17 of 22

http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.configure
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.configure
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.configure
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.readinto
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.readinto
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.readinto

Although the MAX31855 doesn’t require it and it’s not shown above, you can also use

the busio.SPI.write() (https://adafru.it/zcu) function to send data over the MOSI

line. For example to send the bytes 0x01, 0xFF you would run:

>>> spi.configure(baudrate=5000000, phase=0, polarity=0)
>>> cs.value = False
>>> spi.write(bytes([0x01, 0xFF]))
>>> cs.value = True

Just like with reading data you want to make sure the bus is configured for the right

speed, phase, and polarity. Then you toggle the CS line low to tell the device you’re

about to talk to it, send data with the busio.SPI.write() (https://adafru.it/zcu)

function, and toggle the CS line back high again.

Finally, don’t forget to call busio.SPI.unlock() (https://adafru.it/zcu) to unlock the

SPI bus and let other code use it:

>>> spi.unlock()

Again you might want to put this all in a try-finally block to make sure unlock is always

called, even if something fails and throws an exception. Here’s an example of a

complete sensor read with the try-finally syntax:

>>> while not spi.try_lock():
... pass
...
>>> try:
... spi.configure(baudrate=5000000, phase=0, polarity=0)
... cs.value = False
... result = bytearray(4)
... spi.readinto(result)
... cs.value = True
... finally:
... spi.unlock()
...
>>> result
bytearray(b'\x01\xa8\x1a\xf0')

That’s all there is to the basics of reading and writing data with the SPI protocol and

the built-in SPI APIs of CircuitPython. However just like with I2C there’s a handy

SPIDevice library that can simplify talking to SPI devices.

SPIDevice Library

You saw above how to interact with a SPI device using the API built-in to

CircuitPython. Remember using the built-in API requires careful management of the

©Adafruit Industries Page 18 of 22

http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.write
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.write
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.write
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.write
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.write
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.write
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/SPI.html#busio.SPI.unlock

lock and unlock functions to access the SPI bus, and explicit manipulation of the chip

select line for a device. If you’re writing code to talk to a SPI device you might find

using the CircuitPython bus device library (https://adafru.it/u0b) a bit easier to manage

as it controls locking & unlocking, and the chip select line automatically (using

Python’s context manager with statement).

To use the bus device library you’ll first need to install the library on your board.

First make sure you are running the latest version of Adafruit CircuitPython (https://

adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow

the steps to find and install these libraries from Adafruit's CircuitPython library bundle

(https://adafru.it/zdx). Our introduction guide has a great page on how to install the

library bundle (https://adafru.it/ABU) for both express and non-express boards.

For Express boards, install the entire bundle. For non-express boards, with limited

space, you'll need to grab just the adafruit_bus_device folder from inside lib to the lib

folder of your board’s CIRCUITPY drive.

Once you have the bus device library installed you can use the SPIDevice class (https

://adafru.it/zcq) to simplify access to a device on the SPI bus. First setup the SPI bus

and CS line exactly as you did before:

>>> import board
>>> import busio
>>> import digitalio
>>> spi = busio.SPI(board.SCK, MISO=board.MISO)
>>> cs = digitalio.DigitalInOut(board.D2)

Now import the bus device module and create an instance of the SPIDevice class.

Notice the SPIDevice class needs to be told the SPI bus, chip select line, baudrate,

polarity, and phase of the SPI connection. These details will be remembered by the

SPIDevice class so it can automatically lock and configure the bus appropriately

(again using Python’s with statement and a context manager):

>>> from adafruit_bus_device.spi_device import SPIDevice
>>> device = SPIDevice(spi, cs, baudrate=5000000, polarity=0, phase=0)

Now you’re ready to interact with the SPI device instance using the same read and

write functions as before. However this time you’ll put your code in a with statement

context manager and it will automatically lock the bus, assert the CS line, configure

the SPI bus, and unlock the bus when done:

©Adafruit Industries Page 19 of 22

https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
file:///home/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
file:///home/welcome-to-circuitpython/circuitpython-libraries
file:///home/welcome-to-circuitpython/circuitpython-libraries
http://circuitpython.readthedocs.io/projects/bus_device/en/latest/adafruit_bus_device/#adafruit_bus_device.spi_device.SPIDevice

>>> with device:
... result = bytearray(4)
... spi.readinto(result)
...
>>> result
bytearray(b'\x01\xa8\x1a\xf0')
>>> temp_c(result)
26.5

Notice you didn’t need to call configure or even change the CS line from high to low

and back. The SPIDevice class takes care of all these details for you automatically!

You can even call the write function just like on the SPI bus directly and data will be

written out the MOSI line. One important thing to note is that the CS line is asserted

for the entire with statement block, so if you need to make two different transactions

be sure to put them in their own with statement blocks. Another thing to note with the

SPI device class is that it currently only supports devices with a chip select (it is not

optional) and whose chip select is asserted with a low logic signal. Devices asserted

with a high logic level are rare and uncommon so the SPI device class should cover

most needs.

Just like with I2C you typically don’t need to go straight to these low-level SPI

protocol requests (using built-in APIs or the SPIDevice class), instead look for a library

to interface with your hardware. In this case the CircuitPython MAX31855 library (http

s://adafru.it/zcv) is exactly what you want to use to talk to this thermocouple sensor.

Using a library simplifies access to the sensor data and saves you from writing all the

complex SPI transaction code. However if your device doesn’t have a library you

might need to interface with it directly using code like the above!

Software SPI & I2C

As mentioned above there are some cases where using the hardware’s SPI (or even

I2C) support isn’t possible. Perhaps you have so many devices you’ve exceeded the

available pins or resources, or maybe the hardware bus pins aren’t accessible. In

these cases you can fall back to a software-driven, or sometimes called ‘bit-banged’,

approach to driving the SPI protocol. This approach uses simple digital I/O lines to

read and write SPI protocol data. The big difference between hardware and software

SPI is speed–with software SPI it will run much slower than hardware SPI because

toggling digital I/O is slower than dedicated hardware SPI. However in many cases

like reading this temperature sensor the speed of the bus doesn’t matter and you can

use software SPI.

To try software SPI re-wire the MAX31855 as follows:

©Adafruit Industries Page 20 of 22

https://github.com/adafruit/Adafruit_CircuitPython_MAX31855

Fritzing Source

https://adafru.it/zcw

Board 5V or 3.3V output to MAX31855 VIN.

Board ground/GND to MAX31855 GND.

Board D4 to MAX31855 CLK/clock.

Board D3 to MAX31855 DO (data output, AKA MISO).

Board D2 to MAX31855 CS/chip select.

Notice all of the SPI lines are connected to digital I/O lines. You can actually change

these to any other digital I/O lines (but you’ll need to modify the code to match!).

Now import and configure the CS line exactly as before:

>>> import board
>>> import digitalio
>>> cs = digitalio.DigitalInOut(board.D2)
>>> cs.direction = digitalio.Direction.OUTPUT
>>> cs.value = True

At this point you’re ready to configure the software SPI bus by using the bitbangio (

https://adafru.it/zcx) module. The bitbangio (https://adafru.it/zcx) modules provides

all of the software-based protocol support, like SPI and I2C. Luckily the interface to

the bitbangio classes is exactly the same as for the busio hardware-based interfaces

so your code doesn’t change much beyond what library it imports and how it creates

the SPI class:

>>> import bitbangio
>>> spi = bitbangio.SPI(board.D4, MISO=board.D3)

Just like with the busio SPI class the bitbangio.SPI (https://adafru.it/zcy) class is

created and told the clock line and MISO line (it can also optionally be told the MOSI

line). Notice all these lines are just simple digital I/O pins that you wired above.

•

•

•

•

•

©Adafruit Industries Page 21 of 22

https://github.com/adafruit/circuitpython/blob/programming_guide/docs/programming_guide/fritzing/03_i2c_spi_figure_3.fzz
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/SPI.html#bitbangio.SPI
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/SPI.html#bitbangio.SPI
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/SPI.html#bitbangio.SPI

Now using the software-based SPI bus is exactly the same as with hardware like

above! Try the same code:

>>> while not spi.try_lock():
... pass
...
>>> spi.configure(baudrate=5000000, phase=0, polarity=0)
>>> cs.value = False
>>> result = bytearray(4)
>>> spi.readinto(result)
>>> cs.value = True
>>> result
bytearray(b'\x01\xa8\x1a\xf0')

Awesome you received 4 bytes of temperature data just like with hardware SPI! The

big difference here is that code in CircuitPython is driving the digital pins to run the

SPI protocol instead of hardware built-in to the microprocessor. This means the call to

read data is a little slower (it’s certainly not running at 5mhz like requested) but for

most devices they don’t care about the slower speed.

Again remember to call bitbangio.SPI.unlock() (https://adafru.it/zcy) to unlock

the software SPI bus!

>>> spi.unlock()

Don’t forget you can even use the SPIDevice library with the bit-bang I2C bus!

You can do the exact same software ‘bit-bang’ trick with the I2C protocol too (even

using the I2CDevice class). Use the bitbangio.I2C (https://adafru.it/zcz) class from

the bitbangio (https://adafru.it/zcx) module in place of the busio.I2C (https://

adafru.it/zcm) class. The interface between the two classes is the same so you just

change how you import and create the I2C interface, for example:

>>> import board
>>> import bitbangio
>>> i2c = bitbangio.I2C(board.D3, board.D2)

The above would create a software I2C interface using D3 as the clock and D2 as the

data line. This is handy for adding more I2C peripherals or using pins other than SCL

and SDA. Again the speed is slower, but most devices don’t care about speed. Also

note on some boards like the ESP8266 software I2C is required!

©Adafruit Industries Page 22 of 22

http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/SPI.html#bitbangio.SPI.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/SPI.html#bitbangio.SPI.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/SPI.html#bitbangio.SPI.unlock
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/I2C.html#bitbangio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/I2C.html#bitbangio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/I2C.html#bitbangio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/bitbangio/__init__.html#module-bitbangio
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C
http://circuitpython.readthedocs.io/en/latest/shared-bindings/busio/I2C.html#busio.I2C

	CircuitPython Basics: I2C and SPI
	Table of Contents
	Overview
	Following Along in the REPL
	I2C Devices
	SPI Devices

	Overview
	Following Along in the REPL
	I2C Devices
	I2C Protocol
	MCP9808 I2C Temperature Sensor
	I2CDevice Library
	Scan All Registers
	SPI Devices
	SPI Protocol
	MAX31855 SPI Thermocouple Temperature Sensor
	SPIDevice Library
	Software SPI & I2C

