
 

CircuitPython Made Easy on Circuit

Playground Express and Bluefruit

Created by Kattni Rembor

 

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express

Last updated on 2022-12-01 03:13:07 PM EST

©Adafruit Industries Page 1 of 67



5

6

9

13

16

20

23

27

32

37

41

47

53

54

56

Table of Contents

Circuit Playground Library

First Things First

• Before We Get Started

• Installing and Updating CircuitPython

• Installing the Circuit Playground Library on Circuit Playground Bluefruit

• Creating and Editing Code

• Using the Circuit Playground Library

Red LED

• Blinky!

• Red LED On = Red LED Off

Slide Switch

• Blinky Switch

• True is True

Tap

• Single Double

Shake

• Shake It Up A Little

NeoPixels

• One Pixel, Two Pixel, Red Pixel, Blue Pixel!

Light

• Plotting Light

• NeoPixel Light Meter

Acceleration

• Color Glow Accelerometer

Buttons

• Half and Half

Temperature

• Plotting Temperature

• Temperature Meter

Capacitive Touch

• Touch the Rainbow

Play Tone

• Two Tone Buttons

Start and Stop Tone

Play File

©Adafruit Industries Page 2 of 67



58

63

63

Sound

• Plotting Sound Level

• Loud Sound

• Loud Sound Threshold

Time to Get Creative!

• Circuit Playground Express Project Guides Using the Circuit Playground Library:

The Technical Side

• Circuit Playground Library Modules

• Circuit Playground Library Use

• Circuit Playground Library vs. Basic CircuitPython

• The Library on Circuit Playground Express

• Memory Allocation Failure on Circuit Playground Express

©Adafruit Industries Page 3 of 67



©Adafruit Industries Page 4 of 67



Circuit Playground Library 

The Circuit Playground Express (), or CPX, and the Circuit Playground Bluefruit (), or

CPB, have all kinds of sensors, buttons, switches and LEDs built into them. To top it

off, they work with CircuitPython (). Normally, using CircuitPython with a button or

sensor requires setup in your code. Sometimes this means one line of code. Other

times, it can mean several. Wouldn't it be nice to be able to skip all of that and get

right to work? We've got you covered. Whether you're new to programming

CircuitPython, or would like a simple way to include the Circuit Playground

functionality in your code, the Circuit Playground CircuitPython library is exactly what

you're looking for.

We've designed a CircuitPython library that makes it super easy to get started with

Circuit Playground Express and Bluefruit. All of the setup normally required for much

of what is built into the CPX or CPB is done for you. All you need to do is import this

library, and you can immediately begin to tell the board what to do. This guide will go

through each feature available in the library and provide examples of how to use it.

For the purposes of this guide, we'll refer to the Circuit Playground Express and

Circuit Playground Bluefruit as "Circuit Playground", as the majority of the code within

works on both boards with no changes needed. Where necessary, it will be made

explicitly clear that a particular section works with a specific board.

Most of the images are of the Circuit Playground Express because most of the

features of the Express and Bluefruit are in the same location. Images of both are

included when a feature is in a different location on the Bluefruit.

 

©Adafruit Industries Page 5 of 67

https://www.adafruit.com/product/3333
https://www.adafruit.com/product/4333
https://www.adafruit.com/circuitpython


There's a few things you should do before going through this guide to make sure

you're all set to go. Let's take a look!

First Things First 

Before We Get Started

If you're new to programming and CircuitPython, check out the Welcome to

CircuitPython guide ().

We recommend using Mu as your code editor, as it has the serial console built right in,

and you can get immediate feedback from your code right inside the editor. For help

getting Mu setup, read through Installing Mu Editor (). A few of the features of this

library work really well with the plotter function available in the Mu editor. Be sure to

install the latest version to make sure you have access to this feature of Mu.

 

 

©Adafruit Industries Page 6 of 67

https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor


Connecting to the serial console in Mu is as simple as clicking the serial button,

shown above in magenta. To activate the plotter feature, click the Plotter button,

shown above in green.

If you already have a favorite editor, feel free to use it for this guide. Many of the

examples will utilise the serial console, so if you opt not to use Mu, and you've never

connected to the serial console before, read through the Advanced Serial Console on

Mac and Linux (), or the Advanced Serial Console on Windows () for help getting

connected.

Installing and Updating CircuitPython

This process is covered in the Installing CircuitPython section of the Welcome to

CircuitPython guide (). Even if your board arrived with CircuitPython installed, it may

not be the latest version. You always want to have the most up-to-date version of

CircuitPython on your board - this ensures the latest features and best functionality.

Please take the time to go through the Welcome to CircuitPython: Installing

CircuitPython () page (if you haven't already) and make sure you've got CircuitPython

installed and up to date.

Updating CircuitPython is especially important on the Circuit Playground Express

because the Circuit Playground Library is built into CircuitPython for the Express, and

this guide expects the most up-to-date version of the library.

Installing the Circuit Playground Library on Circuit

Playground Bluefruit

Before you can use the Circuit Playground library with the Circuit Playground

Bluefruit, you must install the library and the modules it depends on. Follow the steps

 

The Circuit Playground library and its dependencies are built into CircuitPython 

for the Circuit Playground Express. To use the library, no further action is needed. 

To use the Circuit Playground library with Circuit Playground Bluefruit, you must 

install the Circuit Playground library and its dependencies. 

©Adafruit Industries Page 7 of 67

https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-mac-and-linux
https://learn.adafruit.com/welcome-to-circuitpython/advanced-serial-console-on-windows
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython


found on the Installing CircuitPython Libraries on Circuit Playground Bluefruit ()

section in the Circuit Playground Bluefruit guide to get all the necessary libraries

installed.

The Circuit Playground library requires the following additional libraries

adafruit_bus_device

adafruit_lis3dh

adafruit_thermister

neopixel

If you try to run the code found within this guide without following these steps, the

code will fail with the following error or one similar:

If you receive an ImportError: no module named 'module_name`  error, verify

that you have installed all the libraries by going through the steps in the Installing

CircuitPython Libraries on Circuit Playground Bluefruit () section again until your lib fol

der looks the same as the image found on that page.

Creating and Editing Code

This is covered in more detail in the Welcome to CircuitPython guide (). However,

since workflow is a key part of going through this guide, we're including a short

explanation here.

Your Circuit Playground shows up on your computer as a USB drive called CIRCUITPY.

You may already have some files on your CIRCUITPY drive. CircuitPython looks for

specific files to run the code they contain, including code.py. We'll be putting each

piece of code from this guide into code.py on your CIRCUITPY drive. This is easy to

remember: code.py is where your code lives. As you progress through this guide, you

have a couple of options to get the code from the guide onto your board.

You can download the file, rename it to code.py and copy the file to your

CIRCUITPY drive, replacing the current code.py if one already exists.

• 

• 

• 

• 

 

1. 

©Adafruit Industries Page 8 of 67

https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/circuit-playground-bluefruit-circuitpython-libraries#installing-circuitpython-libraries-on-circuit-playground-bluefruit-6-2
https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/circuit-playground-bluefruit-circuitpython-libraries#installing-circuitpython-libraries-on-circuit-playground-bluefruit-6-2
https://learn.adafruit.com/adafruit-circuit-playground-bluefruit/circuit-playground-bluefruit-circuitpython-libraries#installing-circuitpython-libraries-on-circuit-playground-bluefruit-6-2
https://learn.adafruit.com/welcome-to-circuitpython/creating-and-editing-code


You can copy and paste the contents of the code from the guide into your

current code.py file on your CIRCUITPY drive using your editor. Be sure to replac

e all the code currently in your code.py. Do not add it to the end.

Both of these options work. It's entirely up to you which one to use. If you're unsure

which to pick, give them both a try and see which workflow is best for you!

Using the Circuit Playground Library

Regardless of which type of board you're using, to use the Circuit Playground library,

simply include the following line at the beginning of code.py:

from adafruit_circuitplayground import cp

That's it! After that, you can begin telling the board what to do.

Now, we'll take a look at all of the different things you can do with this library. Let's

get started!

Red LED 

The Circuit Playground Express and Bluefruit have a little red LED next to the USB

port. It's labeled D13. Though the images are of the Circuit Playground Express, the

LED is in the same location on the Bluefruit. The first thing we're going to do is turn on

that red LED.

2. 

 

©Adafruit Industries Page 9 of 67



First, we need to add the following code to code.py. Remember, if you need help with

this, check here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example turns on the little red LED."""

from adafruit_circuitplayground import cp

while True:

    cp.red_led = True

Red LED!

Now let's look at the code.

 

 

©Adafruit Industries Page 10 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


First we import the library with from adafruit_circuitplayground import cp .

Then we have a while  statement. while True:  essentially means, "Forever do:". w

hile True:  creates a loop. When there is a loop, the code will forever go through

the code inside the loop. All code that is indented under while True:  is "inside" the

loop.

For the red LED, "on" and "off" are states referred to as True  and False

respectively. So, if you want to turn on the LED, you set it to True . If you want to turn

it off, you set it to False . We want to turn on the LED. So let's set it to True  by

saying cp.red_led = True .

And that's it! You should be rewarded by the little red LED next to your USB connector

turning on! But why stop there? Let's try something a little more fun.

Blinky!

In any programming language, the first piece of code any programmer writes is a

program called "Hello, world!" that prints exactly that. The idea behind it is it's an

excellent introduction to the language and programming environment. In

CircuitPython, our Hello, world!  is called Blinky. Instead of simply writing code

that prints out hello , we write code that blinks the LED! So, to welcome you to the

world of programming, we're going to blink the little red LED. Let's take a look!

Add the following code to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This is the "Hello, world!" of CircuitPython: Blinky! This example blinks the 

little red LED on

and off!"""

import time

from adafruit_circuitplayground import cp

while True:

    cp.red_led = True

    time.sleep(0.5)

    cp.red_led = False

    time.sleep(0.5)

©Adafruit Industries Page 11 of 67



It blinks!

In this program, we need another library as well: time . So, we import time  and cp .

The first line inside our while True:  loop is the same as the first line of our last

program. We're turning on the red LED with cp.red_led = True . Next, we have 

time.sleep(0.5) . This tells the code to pause in the current state for 0.5 seconds.

In other words, we're turning on the red LED and waiting with it on for 0.5 seconds.

The next line, cp.red_led = False , turns the LED off. And the last line, 

time.sleep(0.5) , again tells the code to wait, this time with the LED off. Then it

repeats forever - remember we're inside our while  loop! And, when the LED turns

on for 0.5 seconds and then off for 0.5 seconds, we have a blinking LED!

Try changing the numbers in the time.sleep(0.5)  lines to change the speed of the

blinking. You can slow down the blinking by replacing both 0.5 's with a higher

number, such as 1: time.sleep(1) . You can speed it up by replacing both 0.5 's

with a lower number, such as 0.1: time.sleep(0.1) . Or, try setting them to different

times to give it a funky rhythm!

Red LED On = Red LED Off

There's an even shorter way to do the same thing. Add the following code to your cod

e.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

 

©Adafruit Industries Page 12 of 67



"""This is the "Hello, world!" of CircuitPython: Blinky! This example blinks the 

little red LED on

and off! It's a shorter version of the other Blinky example."""

import time

from adafruit_circuitplayground import cp

while True:

    cp.red_led = not cp.red_led

    time.sleep(0.5)

This code simply tells the LED to cycle back and forth between on and off, or True

and False , every 0.5 seconds. You can change the time.sleep(0.5)  to a higher

or lower number to slow down or speed up the blinking. That's it!

Slide Switch 

The Circuit Playground Express and Bluefruit have a slide switch on it, above the

battery connector. Though the images are of the Circuit Playground Express, the

switch is in the same location on the Bluefruit. The slide switch doesn't control the

power of the board. It is a switch that returns True or False depending on whether it's

left or right. So, you can use it as a toggle switch in your code! Let's take a look.

Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example prints the status of the slide switch. Try moving the switch back 

and forth to see

what's printed to the serial console!"""

import time

from adafruit_circuitplayground import cp

while True:

    print("Slide switch:", cp.switch)

    time.sleep(0.1)

 

©Adafruit Industries Page 13 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


Open the serial console to see the switch status printed out. Try moving the slide

switch back and forth to see the status change!

Let's take a look at the code. First we import time  and cp .

Then, inside our while  loop, we print  the status of the switch to the serial

console. This will print True  if the switch is to the left, and False  is the switch is to

the right. We include a time.sleep(0.1)  to slow down the printed output. To see

the results, click the Serial button in Mu, or connect to the serial console if you're not

using Mu. If the switch is to the left, you'll see Slide switch: True  printing the

serial console. If the switch is to the right, you'll see Slide switch: False  printing

to the serial console.

 

 

©Adafruit Industries Page 14 of 67



Simple enough, right? Now, let's do something with it!

Blinky Switch

We just learned how to turn the little red LED on and off. Now let's incorporate an

input to control it. Since the switch returns True  or False , we can use it as an input.

Add the following code to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example uses the slide switch to control the little red LED."""

from adafruit_circuitplayground import cp

# This code is written to be readable versus being Pylint compliant.

# pylint: disable=simplifiable-if-statement

while True:

    if cp.switch:

        cp.red_led = True

    else:

        cp.red_led = False

After importing cp , our loop starts with an if  statement. An if  statement says, "if

this event is happening, do the following." Our code says, if the switch is to the left, or

True , turn on the red LED.

Note that we don't have to say if cp.switch == True: . The True  is implied in

the if  statement.

This is followed by an else  statement. And else  statement says, "Otherwise, do the

following." An else  typically follows an if . Together they say, "If this is happening,

do this first thing, otherwise, do the second thing." Our code says, when the switch is

to the right, or False , turn off the red LED.

Now, try moving the switch back and forth. Your red LED will turn on and off!

True is True

You may have noticed that when the switch is to the right, it's True , and when the

LED is on, it is also True . We can use this to make our code even shorter. We started

with the if / else  block because it's easier to understand what's happening when

it's written out. However, the following code does the same thing. Add the code to

your code.py.

©Adafruit Industries Page 15 of 67



# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example uses the slide switch to control the little red LED. When the 

switch is to the

right it returns False, and when it's to the left, it returns True."""

from adafruit_circuitplayground import cp

while True:

    cp.red_led = cp.switch

Whatever the switch is returning is what it will set the red LED to. So, if the switch is

returning True , the LED is True . If the switch is False , the LED will be False . 

True  is True , False  is False . Move the switch back and forth and you'll still be

turning the red LED on and off with this shorter code!

Tap 

Circuit Playground Express and Bluefruit have an accelerometer built in which opens

up all kinds of opportunities for inputs. One of those inputs is tap. You have the ability

to tap your board to tell it to do something. There are two options: single tap and

double tap. Single tap looks for one tap before reacting. Double tap looks for two

taps before reacting. Let's take a look!

Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example prints to the serial console when the board is double-tapped."""

 

 

©Adafruit Industries Page 16 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


import time

from adafruit_circuitplayground import cp

# Change to 1 for single-tap detection.

cp.detect_taps = 2

while True:

    if cp.tapped:

        print("Tapped!")

    time.sleep(0.05)

Open the serial console to see when the board is double tapped. Try tapping the

board twice to see it printed out!

First we import time  and cp .

Then we set cp.detect_taps = 2 . This tells the code to look for a double tap, or

two taps, before responding.

Inside our loop, we have if cp.tapped: . The code tells cp.tapped  that we're

looking for 2 taps before responding. So, if the board is tapped twice, the response is

to print  Tapped!  to the serial output. To see this, open the serial console, and tap

your board twice. Tap twice. Tapped! We include a time.sleep(0.05)  to prevent

mistakenly detecting multiple double-taps at once.

Try changing cp.detect_taps  to 1 . Tap the board once to see the same response!

Now, let's do something with it! Add the following code to your code.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example turns on the little red LED and prints to the serial console when 

you double-tap

 

©Adafruit Industries Page 17 of 67



the Circuit Playground!"""

import time

from adafruit_circuitplayground import cp

# Change to 1 for detecting a single-tap!

cp.detect_taps = 2

while True:

    if cp.tapped:

        print("Tapped!")

        cp.red_led = True

        time.sleep(0.1)

    else:

        cp.red_led = False

Try tapping twice. Red LED!

Let's look at the code. First we import time  and cp .

We'll keep cp.detect_taps = 2  to tell the code to look for two taps.

Inside our loop, we are checking to see if  the board has been tapped twice. We still

print  to the serial output, so we can see if we've successfully tapped. But now,

we've added turning on the red LED. Since the tap event is extremely quick, we've

also included a time.sleep(0.1)  so the red LED stays on long enough for us to

see. Without it, it's a super quick flash. And we have our else  to turn off the red LED

when not tapping the board - otherwise it would turn on and never turn off.

Single Double

You can't detect a single tap and a double tap at the same time - it's a limitation of the

hardware. You can include both single tap and double tap detection in one piece of

code if you separate them with a delay of some sort. Let's take a look. Add the

following code to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example shows how you can use single-tap and double-tap together with a 

delay between.

Single-tap the board twice and then double-tap the board twice to complete the 

program."""

from adafruit_circuitplayground import cp

# Set to check for single-taps.

cp.detect_taps = 1

tap_count = 0

# We're looking for 2 single-taps before moving on.

while tap_count < 2:

    if cp.tapped:

        tap_count += 1

print("Reached 2 single-taps!")

©Adafruit Industries Page 18 of 67



# Now switch to checking for double-taps

tap_count = 0

cp.detect_taps = 2

# We're looking for 2 double-taps before moving on.

while tap_count < 2:

    if cp.tapped:

        tap_count += 1

print("Reached 2 double-taps!")

print("Done.")

while True:

    cp.red_led = True

This code looks for two single-taps and then two double-taps to complete the

sequence. So, if you single-tap the board twice, and then double-tap the board twice,

you'll work though this code and see the messages printed out as you go!

Let's take a look at the code. First we import cp  and then set it to look for single taps

with cp.detect_taps = 1 .

Then we create the variable tap_count  and assign it to 0  with tap_count = 0 .

We're going to use this to keep track of how many times we've tapped the board. This

is how we know when to move on to the next part of the code.

Our loop is different from our previous loops. This loop begins with 

while tap_count < 2: . It says, "keep looping through the following indented code

 

©Adafruit Industries Page 19 of 67



until tap_count  is greater than 2 ." Since tap_count  is currently 0 , we'll begin the

loop. The code inside the loop says, "If the board has been tapped, increase tap_cou

nt  by 1 ." Each time you tap the board, it prints  to the serial console, Single-

tap!  The first time you tap the board, tap_count = 1 . The second time, 

tap_count = 2 . 2  is not less than 2 , so after the second tap, the code stops

working through this loop and moves on to the next section. The last thing we do

before moving on is print  to the serial console, Reached 2 single-taps!  so we

know we've reached the end of this section.

Next, we set tap_count = 0  again since we're going to start looking for a new type

of tap. Then we set the code to look for double taps with cp.detect_taps = 2 .

Our next loop is the same as the first. While tap_count  is greater than 2 , check to

see if the board is double tapped, and if it is, print Double tapped!  and increase 

tap_count  by 1 . Once it reaches 2 , the code moves on. Then we print  to the

serial console, Reached 2 double-taps! .

The last thing we do is print Done , and turn on the red LED so we know our code is

finished.

This type of code could be used to create a Circuit Playground Express controlled

combination lock where the combination is a series of taps. Get creative with it and

see what you can come up with!

Shake 

The Circuit Playground Express and Bluefruit accelerometer can detect other types of

input actions besides taps. One of those inputs is shake. You have the ability to shake

your board to tell it to do something. Let's give it a try!

 

©Adafruit Industries Page 20 of 67



Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example prints to the serial console when the Circuit Playground is 

shaken."""

from adafruit_circuitplayground import cp

while True:

    if cp.shake():

        print("Shake detected!")

Open the serial console and give the board a good shake. Shake detected!

Let's look at the code. First we import cp .

Inside our loop, we check to see if the board has been shaken with if

cp.shake(): . If the board is shaken, we print  to the serial console, Shake

detected!

 

 

©Adafruit Industries Page 21 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


Notice that there are parentheses after cp.shake . These are necessary for shake

detection to work properly. Without them, your code will run, but it won't work

properly. Make sure you include them!

Shake It Up A Little

Let's use shaking the board to turn on the red LED. Add the following code to your co

de.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example flashes the little red LED when the Circuit Playground is shaken."""

from adafruit_circuitplayground import cp

while True:

    if cp.shake(shake_threshold=20):

        print("Shake detected!")

        cp.red_led = True

    else:

        cp.red_led = False

Shake the board. Red LED!

Let's look at the code. First we import cp .

Inside our loop, we check to see if the board has been shaken. However, we've

added something to this line, shake_threshold=20 . Sometimes you may find that

the board doesn't respond to your shaking, or it responds too easily. You have the

option to change the threshold to make it harder or easier to shake the board. The

default threshold is 30. Decreasing the threshold makes it easier to have a shake

detected. Increasing the threshold makes it harder to have a shake detected. The

minimum value allowed is 10. 10 is the value when the board is not moving. So if you

set the threshold to less than 10, the code will constantly return a shake detected

even if the board is not moving. Set the threshold to any whole number above 10 to

change the threshold to fit your needs.

In this case, we've included if cp.shake(shake_threshold=20):  which lowers the

threshold, making it easier to shake the board. If a shake over the threshold of 20 is

detected, we print  Shake Detected!  and we turn on the red LED. Otherwise, we

turn off the red LED with our else  block.

Try changing the threshold to 40 and see what happens. Be aware, if you set the

threshold too high, the shake will never be detected. Play around with it to find out

what works best for you!

©Adafruit Industries Page 22 of 67



NeoPixels 

The Circuit Playground Express and Bluefruit have ten RGB NeoPixel LEDs built in.

Though the images are of the Circuit Playground Express, the LEDs are in the same

location on the Bluefruit. They're located in a ring around the board, just inside the

outer ring of alligator-clip-friendly pads. RGB means red, green and blue, and that

means you can create any color of the rainbow with these LEDs!

LED colors are set using a combination of red, green, and blue, in the form of an (R, G,

B) tuple. A tuple is typically a group of numbers. Each member of the RGB tuple is set

to a number between 0 and 255 that determines the amount of each color present.

Red, green and blue in different combinations can create all the colors in the rainbow!

So, for example, to set the LED to red, the tuple would be (255, 0, 0), which has the

maximum level of red, and no green or blue. Green would be (0, 255, 0), etc. For the

colors between, you set a combination, such as cyan which is (0, 255, 255), with

equal amounts of green and blue.

We won't make you wait any longer. Let's get started!

Add the following code to your code.py. Remember if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example lights up all the NeoPixel LEDs red."""

from adafruit_circuitplayground import cp

while True:

    cp.pixels.fill((50, 0, 0))

Red lights!

 

©Adafruit Industries Page 23 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


First we import cp .

Inside our loop, we have cp.pixels.fill((50, 0, 0))  which turns on all the

pixels red at approximately 20% brightness. Remember, the maximum level of red is

255. That's really bright! So we've set it to a lower level of red so that it's not so

blinding by setting it to 50 . The other two are 0, so there's no green or blue added

into the mix yet. That's all there is to it!

Now, try changing the numbers to other values. For example, try 

cp.pixels.fill((50, 50, 0)) . See what happens!

One Pixel, Two Pixel, Red Pixel, Blue Pixel!

We turned on all the pixels to the same color. But what if you want to control each one

individually? We can do that!

Add the following code to your code.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example lights up the first NeoPixel red."""

from adafruit_circuitplayground import cp

cp.pixels.brightness = 0.3

while True:

    cp.pixels[0] = (255, 0, 0)

Now only the first pixel is red!

 

©Adafruit Industries Page 24 of 67



Let's look at the code.

First we import cp .

Next, we have a new line: cp.pixels.brightness = 0.3 . Remember, we controlled

brightness by using a lower number in the color tuple in the first piece of code. It's

also possible to control brightness separately using cp.pixels.brightness . The

brightness is set by a number between 0 and 1 that represents a percentage. So,

when we set it to 0.3 , we are setting it to 30% brightness.

Inside our loop, we have cp.pixels[0] = (255, 0, 0) . Since we've set the

brightness separately from the color, we are able to set the color to maximum red, or

255.

Notice we've set pixel number 0 , but it's turned on the first pixel. This is because

CircuitPython begins counting with 0. So the first of something numbered in

CircuitPython will always be 0.

 

©Adafruit Industries Page 25 of 67



Let's try setting the second pixel to blue. Remember, the second pixel will be pixel

number 1. Add the following to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example lights up the first and second NeoPixel, red and blue 

respectively."""

from adafruit_circuitplayground import cp

cp.pixels.brightness = 0.3

while True:

    cp.pixels[0] = (255, 0, 0)

    cp.pixels[1] = (0, 0, 255)

Now your second pixel is blue.

 

 

©Adafruit Industries Page 26 of 67



That's all there is to it! You can keep adding more pixels up through 9 to set all of

them different colors.

Give it a try!

Light 

The Circuit Playground Express and Bluefruit have a light sensor on the right side,

near the eye printed on the board. Though the images are of the Circuit Playground

Express, the sensor is in essentially the same location on the Bluefruit. It senses the

amount of ambient light and returns the light level based on that data. We've made it

super easy to use. Let's take a look!

Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example uses the light sensor on your Circuit Playground, located next to 

the picture of

the eye. Try shining a flashlight on your Circuit Playground, or covering the light 

sensor with

your finger to see the values increase and decrease."""

import time

from adafruit_circuitplayground import cp

while True:

    print("Light:", cp.light)

    time.sleep(0.2)

 

©Adafruit Industries Page 27 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


Open the serial console and try shining a flashlight at your Circuit Playground. The

printed values go up! If you place your hand over the board to block the light, the

values go down.

Let's look at the code. First we import time  and cp .

Inside our loop, we print  to the serial console, Light:  followed by the light value, 

cp.light . Then we have time.sleep(1)  to slow down the speed at which it prints

to the serial console. If it's too fast, it's really hard to read!

Plotting Light

Let's take a look at these values on the Mu plotter! Add the following code to your co

de.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""If you're using Mu, this example will plot the light levels from the light 

sensor (located next

to the eye) on your Circuit Playground. Try shining a flashlight on your Circuit 

Playground, or

covering the light sensor to see the plot increase and decrease."""

import time

from adafruit_circuitplayground import cp

while True:

    print("Light:", cp.light)

    print((cp.light,))

    time.sleep(0.1)

The code is almost identical, but we've added one line, print((cp.light,)) .

 

©Adafruit Industries Page 28 of 67



Note that the Mu plotter looks for tuple values to plot. Tuples in Python come in

parentheses ()  with comma separators. If you have two values, a tuple would look

like (1.0, 3.14) . Since we have only one value, we need to have it print out

like  (1.0,)  - note the parentheses around the number, and the comma after the

number. Thus the extra parentheses and comma in print((cp.light,)) .

As well, the Mu plotter requires that the tuple value be on a line all its own. That's why

we can't simply add extra parenthesis and a comma to the print("Light:",

cp.light)  line. The plotter doesn't know what to do with it if there's other

information in there.

Click on the Plotter button on the top of Mu to see the plotter. Try shining a flashlight

on your Circuit Playground and watch the plotter line go up! Remove or block the light

with your hand to see it go down. Have fun with it!

NeoPixel Light Meter

You can also use the light values to create a fun light meter using the NeoPixels on

your Circuit Playground! Add the following code to your code.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""

This example uses the light sensor on the Circuit Playground, located next to the 

picture of the

eye on the board. Once you have the library loaded, try shining a flashlight on 

your Circuit

Playground to watch the number of NeoPixels lit up increase, or try covering up the 

light sensor

to watch the number decrease.

"""

import time

from adafruit_circuitplayground import cp

 

©Adafruit Industries Page 29 of 67



cp.pixels.auto_write = False

cp.pixels.brightness = 0.3

def scale_range(value):

    """Scale a value from 0-320 (light range) to 0-9 (NeoPixel range).

    Allows remapping light value to pixel position."""

    return round(value / 320 * 9)

while True:

    peak = scale_range(cp.light)

    print(cp.light)

    print(int(peak))

    for i in range(10):

        if i <= peak:

            cp.pixels[i] = (0, 255, 255)

        else:

            cp.pixels[i] = (0, 0, 0)

    cp.pixels.show()

    time.sleep(0.05)

Now try shining the flashlight on your Circuit Playground and watch the LEDs light up!

Slowly remove the light to watch the number of LEDs lit up slowly go down.

 

©Adafruit Industries Page 30 of 67



Let's take a look at the code. First we import time , and cp .

Next, we set cp.pixels.auto_write = False . This means that anything we tell the

LEDs to do will not happen automatically. By default, this is set to True . This means,

we tell the LEDs to turn on, and they turn on. If it's set to False , it means we have to

include cp.pixels.show()  after anything we try to tell the LEDs to do. This is

required for this code to work since the LEDs turn on based on the light values.

We set the brightness  to 0.3 , or 30%.

Next we have a helper function called scale_range . The light values are

approximately 0-320 but there are only 10 NeoPixels. So, we include a helper function

that scales the 0-320 range to 0-9 so we can map light levels to pixel position.

Our loop begins with setting peak = scale_range(cp.light) . Then we print the c

p.light  values and the peak  values.

The next section takes the peak  value and says for the total number of LEDs,

whatever number peak  is equal to or less than, light up that many LEDs, and

otherwise turn them off. So, if peak is 4, light up 4 LEDs!

Then we have cp.pixels.show()  to make the LEDs light up. And a time.sleep(0.

05)  to create a little delay.

You can change the number values in cp.pixels[i] = (0, 255, 255)  to change

the color of the light meter. Give it a try!

 

©Adafruit Industries Page 31 of 67



Acceleration 

The Circuit Playground Express and Bluefruit both come with an accelerometer near

the center of the board. This sensor can provide acceleration values for the x, y and z

axes in addition to taps and shakes. The values returned are in m/s
2 

(meters per

second-squared). An axis is an invisible line going through the center of the

accelerometer in the center of your board. The x axis is across the board, left to right.

The y axis is across the board, top to bottom. The z axis is straight through the board

front to back. The values can be grouped together in a Python tuple:  (x, y, z) .

An accelerometer measures acceleration. You can read more about acceleration here 

(). When the board is held still in any given position, it is still being affected by gravity.

Gravity is -9.8m/s
2

. So, at any given point in time, that value is being applied

downward. For example, the values returned if the board is laying flat, facing up, are

(0, 0, 9.8), because gravity is pulling on the sensor along the z axis. If you were to pick

up the board and shake it, you'll find that you get much higher values. This is because

the force with which you are shaking the board causes increased acceleration to be

applied to the sensor along whichever axes you are shaking it.

Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""

This example uses the accelerometer on the Circuit Playground. It prints the 

values. Try moving

 

 

©Adafruit Industries Page 32 of 67

https://en.wikipedia.org/wiki/Acceleration
https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


the board to see the values change. If you're using Mu, open the plotter to see the 

values plotted.

"""

import time

from adafruit_circuitplayground import cp

while True:

    x, y, z = cp.acceleration

    print((x, y, z))

    time.sleep(0.1)

Open the serial console to see the x, y and z values printed out. Try moving the board

around to see the values change!

Let's take a look at the code. First, we import  time  and cp .

Inside our loop, we assign x, y, z = cp.acceleration . Since acceleration values

are a 3-member tuple (x, y, z), you need to assign three variables to cp.acceleratio

n  to get those three values. We've chosen x , y  and z  because those are the three

axes represented by cp.acceleration .

Then we print((x, y, z)) . We include a time.sleep(0.1)  to slow down the

printed values - if they print  too quickly it's difficult to read.

Since (x, y, z)  is already a tuple, and we aren't printing any labels for the values,

we can use the Mu plotter with the code without any changes. Click on the Plotter

button on the top of Mu to see the plotter. Try moving the board around to watch the

plotter lines change!

 

©Adafruit Industries Page 33 of 67



Color Glow Accelerometer

You can use the acceleration values to make a fun light up project with the NeoPixels.

There are three acceleration values, and the LEDs have three color values. Let's see

what we can do with that!

Add the following code to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""If the switch is to the right, it will appear that nothing is happening. Move 

the switch to the

left to see the NeoPixels light up in colors related to the accelerometer! The 

Circuit Playground

has an accelerometer in the center that returns (x, y, z) acceleration values. This 

program uses

those values to light up the NeoPixels based on those acceleration values."""

from adafruit_circuitplayground import cp

# Main loop gets x, y and z axis acceleration, prints the values, and turns on

# red, green and blue, at levels related to the x, y and z values.

while True:

    if not cp.switch:

        # If the switch is to the right, it returns False!

        print("Slide switch off!")

        cp.pixels.fill((0, 0, 0))

        continue

    R = 0

    G = 0

    B = 0

    x, y, z = cp.acceleration

    print((x, y, z))

    cp.pixels.fill(((R + abs(int(x))), (G + abs(int(y))), (B + abs(int(z)))))

Move the slide switch to the right if it isn't already. Lights! Now move the board in

different directions to see the colors change!

Let's take a look at the code. First we import cp .

Inside our loop, we start by checking to see if  the switch is to the left. If it is, we 

print  Slide switch off!  and turn off all the LEDs. This creates an "off switch" for

the project in case you'd like to leave it sitting around but not have the lights on. 

continue  tells the code to keep checking the switch until the state changes, i.e. you

move the switch to the right. Once that happens, we move on to the rest of the code.

Next we have the else  block. First, we create three variables, R , G  and B . We're

going to use these to set the colors. We assign them to 0  to start. Then, we assign 

x, y, z = cp.acceleration  and print the values. If you look at the serial output,

you'll see how fast the values are scrolling. This is why we typically include a 

©Adafruit Industries Page 34 of 67



time.sleep()  in the code, to slow those values down to a readable speed.

However, this project works best without a sleep , so we've left it out.

The last line fills the LEDs with RGB values based on acceleration using the following

line:

cp.pixels.fill(((R + abs(int(x))), (G + abs(int(y))), (B + abs(int(z)

))))

This involves some special math to work. Let's take a look!

First we'll look at the red value. We start with R  which we created at the beginning of

our loop. We're going to add the x  value to R . However, there's a lot about the basic

acceleration value that won't work for adding to color values, such as it potentially

being a decimal or negative number. Luckily, Python has some easy ways to deal with

this.

You'll notice that our value of x is modified a little with abs(int(x)) . This returns the

absolute value of the whole number value of x . Absolute values are explained 

here (). Since color values are all whole numbers, we use int(x)  to return only the

nearest whole number value of x , instead of a long decimal which is often what

acceleration returns. Since color values are all positive, we take the absolute value of 

int(x)  to remove any potential negative numbers from the mix.

We add abs(int(x))  to R  and we have our R  value to use for red! Then we do the

same thing for y  and z , except abs(int(y))  is added to G and abs(int(z))  is

added to B. This gives us our three color values!

As you move the board around, the acceleration values change, and that causes each

of our color values to be different. Now, depending on what angle you hold the board,

you'll get a different color combination!

Remember the earlier example, where we explained that if the board is laying flat, the

returned values are (0, 0, 9.8). This means, if the board is laying flat, facing up, while

this code is running, the color values are (0, 0, 9.8) . So, you'll see if it's laying flat

on your desk, it's blue!

©Adafruit Industries Page 35 of 67

https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/blink-vs-blink#absolute-value-3-3


If you hold it so the USB cable is on the top and pointed downwards, the values are, 

(0, 9.8, 0) , so the LEDs are green.

If you hold it so the USB cable is sideways, pointing left or right, the values are (9.8,

0, 0)  so the LEDs are red.

 

 

©Adafruit Industries Page 36 of 67



As you move the board around at different angles, you'll find every color between!

We also explained that if you shake the board, you'll get back higher values from the

accelerometer. This means that the LEDs will be brighter if you shake it. Give it a try!

Buttons 

The Circuit Playground Express and Bluefruit have two buttons. Button A is on the left

and button B is on the right. Though the images are of the Circuit Playground Express,

the buttons are in the same location on the Bluefruit. These buttons can be used as

inputs, which means you can use them to tell your board to do something when you

press them.

Let's start with button A. Add the following code to your code.py. Remember, if you

need help with this, check here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example turns on the little red LED when button A is pressed."""

from adafruit_circuitplayground import cp

 

 

©Adafruit Industries Page 37 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


while True:

    if cp.button_a:

        print("Button A pressed!")

        cp.red_led = True

Now, press button A. Red LED!

Let's look at the code. First, we import cp .

Inside our loop, we check to see if button A is pressed with if cp.button_a: . Then,

if it is, we print Button A pressed!  to the serial console and we turn on the red

LED!

Notice the LED stays on once button A is pressed. This is because we didn't tell the

code to turn it off. So, let's try something a little different.

Add the following code to your code.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example turns the little red LED on only while button B is currently being 

pressed."""

from adafruit_circuitplayground import cp

# This code is written to be readable versus being Pylint compliant.

# pylint: disable=simplifiable-if-statement

while True:

    if cp.button_b:

        cp.red_led = True

    else:

        cp.red_led = False

# Can also be written as:

#    cp.red_led = cp.button_b

 

©Adafruit Industries Page 38 of 67



Now press button B. Red LED! But only while it's pressed. Nice!

Let's take a look at the code. First we import cp .

Inside our loop, we check to see if button B is pressed with if cp.button_b: . If it

is, we turn on the red LED. Then, with our else: , we're telling the code, "otherwise,

turn off the red LED." So, when the button is not being pressed, the LED turns off!

You can use both buttons in the same program. Let's change things up.

Add the following code to your code.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example lights up the third NeoPixel while button A is being pressed, and 

lights up the

eighth NeoPixel while button B is being pressed."""

from adafruit_circuitplayground import cp

cp.pixels.brightness = 0.3

cp.pixels.fill((0, 0, 0))  # Turn off the NeoPixels if they're on!

while True:

    if cp.button_a:

        cp.pixels[2] = (0, 255, 0)

    else:

        cp.pixels[2] = (0, 0, 0)

    if cp.button_b:

        cp.pixels[7] = (0, 0, 255)

    else:

        cp.pixels[7] = (0, 0, 0)

Now press button A or B. Or press them both at the same time. Green and blue

NeoPixels!

©Adafruit Industries Page 39 of 67



Our code is checking to see if  each button is pressed. If it is, it turns on the LED

next to the button to the specified color. Button A turns the LED next to it green.

Button B turns the LED next to it blue. And, if the buttons are not being pressed, the

LEDs are otherwise turned off by cp.pixels.fill((0, 0, 0)) .

Half and Half

Let's get a little fancier. Add the following code to your code.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example lights up half the NeoPixels red while button A is being pressed, 

and half the

NeoPixels green while button B is being pressed."""

from adafruit_circuitplayground import cp

cp.pixels.brightness = 0.3

cp.pixels.fill((0, 0, 0))  # Turn off the NeoPixels if they're on!

while True:

    if cp.button_a:

        cp.pixels[0:5] = [(255, 0, 0)] * 5

    else:

        cp.pixels[0:5] = [(0, 0, 0)] * 5

    if cp.button_b:

        cp.pixels[5:10] = [(0, 255, 0)] * 5

    else:

        cp.pixels[5:10] = [(0, 0, 0)] * 5

Now press button A or button B. Neopixels half and half, split down the middle,

matching the sides the buttons are on!

 

©Adafruit Industries Page 40 of 67



Here we're using a concept called slicing. Slicing allows you to specify a start point

and an end point and enables us to tell the code to light up everything in between.

So, instead of specifying a single LED with [0] , we tell the board to light up the first

half of the LEDs on pressing button A with cp.pixels[0:5] = [(255, 0, 0)] * 

5 . The [0:5]  is the start and end point, and the * 5  is the slice size (5 out of 10

LEDs). We do the same with button B and the second half of the LEDs with 

cp.pixels[5:10] . And we tell the LEDs to otherwise be off if no buttons are

pressed.

Note that the end points are 1 higher than the normal LED numbering - slice math is a

little bit different than CircuitPython counting. Try playing with it a little bit. Change the

first set to cp.pixels[1:4] = [(255, 0, 0)] * 3 . See which LEDs light up!

If you try to specify a set of LEDs that's different from the slice size, you code won't

run and an error will be printed to the serial console. For example, cp.pixels[1:4] 

= [(255, 0, 0)] * 4  will fail because your slice size should be 3. So be sure to

match them up!

Temperature 

The Circuit Playground Express and Bluefruit have a temperature sensor built in, next

to the little thermometer printed on the board. Though the images are of the Circuit

Playground Express, the sensor is in essentially the same location on the Bluefruit. It's

near the A9 label on the board. It returns the temperature in Celsius.

 

©Adafruit Industries Page 41 of 67



Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example uses the temperature sensor on the Circuit Playground, located next 

to the image of

a thermometer on the board. It prints the temperature in both C and F to the serial 

console. Try

putting your finger over the sensor to see the numbers change!"""

import time

from adafruit_circuitplayground import cp

while True:

    print("Temperature C:", cp.temperature)

    print("Temperature F:", cp.temperature * 1.8 + 32)

    time.sleep(1)

Open the serial console to see the temperature printed out. Try holding your finger

over the thermometer printed on the board to see the values change!

 

©Adafruit Industries Page 42 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


Let's take a look at the code. We import time  and cp .

Inside our loop, we print Temperature C: , followed by the temperature value, 

cp.temperature . This prints the temperature in Celsius.

But what if you're used to the temperature in Fahrenheit? It's as easy as a little math

to display that as well. After printing the temp in C, we print Temperature F: ,

followed by cp.temperature  again, this time modified by * 1.8 + 32 , to convert it

to Fahrenheit.

Then we have a time.sleep(1)  to slow down the readings. If they're too fast,

they're hard to read!

Plotting Temperature

Let's take a look at these values on the Mu plotter! Add the following code to your co

de.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""If you're using Mu, this example will plot the temperature in C and F on the 

plotter! Click

"Plotter" to open it, and place your finger over the sensor to see the numbers 

change. The

sensor is located next to the picture of the thermometer on the CPX."""

import time

from adafruit_circuitplayground import cp

while True:

    print("Temperature C:", cp.temperature)

 

©Adafruit Industries Page 43 of 67



    print("Temperature F:", cp.temperature * 1.8 + 32)

    print((cp.temperature, cp.temperature * 1.8 + 32))

    time.sleep(0.1)

The code is almost identical, but we've added one line: print((cp.temperature,

cp.temperature * 1.8 + 32)) .

Note that the Mu plotter looks for tuple values to plot. Tuples in Python come in

parentheses ()  with comma separators. If you have two values, a tuple would look

like (1.0, 3.14)  - note the parentheses around the number set, and the comma

between. That's why there's an extra set of parenthesis around and a comma between

the two temperature values in  print((cp.temperature, cp.temperature * 1.8 

+32)) .

As well, the Mu plotter requires that the tuple value be on a line all its own. That's why

we can't simply add extra parenthesis and a comma to the 

print("Temperature C:", cp.temperature)  line. The plotter doesn't know what

to do with it if there's other information in there.

Click on the Plotter button on the top of Mu to see the plotter. Try breathing on your

Circuit Playground to watch the plotter go up. Try setting it on an ice pack to watch

the plotter go down!

Temperature Meter

You can also use the temperature values to create a fun light meter using the

NeoPixels on your Circuit Playground! Add the following code to your code.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

 

©Adafruit Industries Page 44 of 67



"""

This example use the temperature sensor on the Circuit Playground, located next to 

the picture of

the thermometer on the board. Try warming up the board to watch the number of 

NeoPixels lit up

increase, or cooling it down to see the number decrease. You can set the min and 

max temperatures

to make it more or less sensitive to temperature changes.

"""

import time

from adafruit_circuitplayground import cp

cp.pixels.auto_write = False

cp.pixels.brightness = 0.3

# Set these based on your ambient temperature in Celsius for best results!

minimum_temp = 24

maximum_temp = 30

def scale_range(value):

    """Scale a value from the range of minimum_temp to maximum_temp (temperature 

range) to 0-10

    (the number of NeoPixels). Allows remapping temperature value to pixel 

position."""

    return int((value - minimum_temp) / (maximum_temp - minimum_temp) * 10)

while True:

    peak = scale_range(cp.temperature)

    print(cp.temperature)

    print(int(peak))

    for i in range(10):

        if i <= peak:

            cp.pixels[i] = (0, 255, 255)

        else:

            cp.pixels[i] = (0, 0, 0)

    cp.pixels.show()

    time.sleep(0.05)

Now try holding your finger over the thermometer printed on your Circuit Playground

and watch the LEDs light up! Remove your finger to watch the number of LEDs lit up

change.

©Adafruit Industries Page 45 of 67



Let's take a look at the code. First we import time , and cp .

Next, we set cp.pixels.auto_write = False . This means that anything we tell the

LEDs to do will not happen automatically. By default, this is set to True . This means,

we tell the LEDs to turn on, and they turn on. If it's set to False , it means we have to

include cp.pixels.show()  after anything we try to tell the LEDs to do. This is

required for this code to work since the LEDs turn on based on the temperature

values.

We set the brightness  to 0.3 , or 30%.

You should be able to see what the temperature changes are from when the Circuit

Playground is simply sitting on your desk and when you're holding your finger over it.

For best results, change the minimum_temp  and maximum_temp  to fit your ambient

temperature values. Otherwise, you might not get the best results from the

temperature meter. When sitting here, the minimum was about 24 degrees, and when

holding a finger on it, the maximum was about 30. This is how we chose the values

already in the code.

Next we have a helper function called scale_range . The temperature range is

currently 24-30 but there are 10 NeoPixels. So, we include a helper function that

scales the 24-30 range to 0-9 so we can map light levels to pixel position.

Our loop begins with setting peak = scale_range(cp.temperature) .  Then we

print the cp.temperature  values and the peak  values.

 

©Adafruit Industries Page 46 of 67



The next section takes the peak  value and says for the total number of LEDs,

whatever number peak  is equal to or less than, light up that many LEDs, and

otherwise turn them off. So, if peak is 4, light up 4 LEDs!

Then we have cp.pixels.show()  to make the LEDs light up. And a time.sleep(0.

05)  to create a little delay.

You can change the number values in cp.pixels[i] = (0, 255, 255)  to change

the color of the temperature meter. Give it a try!

Capacitive Touch 

The Circuit Playground Express and Bluefruit have seven capacitive touch pads

around the outside, labeled A1 - A6 and TX. Though the images are of the Circuit

Playground Express, the touch pads are in the same location on the Bluefruit. These

pads return True if you touch them. So you can use them as inputs to do all sorts of

fun stuff!

Since the pads are capacitive, you can also attach alligator clips to them and any

number of capacitive items and touch those to activate them as well! For example,

you could attach one end of an alligator clip to one of the pads and the other end to

an apple or a lime. Or place the other end in a glass of water. Then touch the fruit or

the glass of water. You'll activate the pad!

 

©Adafruit Industries Page 47 of 67



Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example prints to the serial console when you touch capacitive touch pad 

A1."""

from adafruit_circuitplayground import cp

while True:

    if cp.touch_A1:

        print("Touched pad A1")

Open the serial console. Now, touch the pad labeled A1 on your Circuit Playground. T

ouched pad A1 !

Let's look at the code. First we import time  and cp .

Inside our loop, we check to see if pad A1 is touched with if cp.touch_A1: . If it is,

we print  Touched pad A1  to the serial console. Then we have a 

time.sleep(0.1)  to slow down the speed of the printing.

 

 

©Adafruit Industries Page 48 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


Nice! But what about the rest of the touch pads? Add the following code to your code.

py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example prints to the serial console when you touch the capacitive touch 

pads."""

import time

import board

from adafruit_circuitplayground import cp

# You'll need to first use the touchpads individually to register them as active 

touchpads

# You don't have to use the result though

is_a1_touched = cp.touch_A1  # This result can be used if you want

if is_a1_touched:

    print("A1 was touched upon startup!")

is_a2_touched = cp.touch_A2

is_a3_touched = cp.touch_A3

is_a4_touched = cp.touch_A4

print("Pads that are currently setup as touchpads:")

print(cp.touch_pins)

while True:

    current_touched = cp.touched

    if current_touched:

        print("Touchpads currently registering a touch:")

        print(current_touched)

    else:

        print("No touchpads are currently registering a touch.")

    if all(pad in current_touched for pad in (board.A2, board.A3, board.A4)):

        print("This only prints when A2, A3, and A4 are being held at the same 

time!")

    time.sleep(0.25)

Now look at the serial console and touch any of the touch pads. Touched pad... !

©Adafruit Industries Page 49 of 67



The code begins the same way. But, we've added in another two lines for each touch

pad. We check if  each pad is touched, and if it is, we print Touched pad  and the

pad number to the serial console.

Now we've included all of the touch pads. Let's do something with them!

Touch the Rainbow

Add the following code to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example uses the capacitive touch pads on the Circuit Playground. They are 

located around

the outer edge of the board and are labeled A1-A6 and TX. (A0 is not a touch pad.) 

This example

lights up the nearest NeoPixel to that pad a different color of the rainbow!"""

import time

from adafruit_circuitplayground import cp

cp.pixels.brightness = 0.3

while True:

    if cp.touch_A1:

        print("Touched A1!")

        cp.pixels[6] = (255, 0, 0)

    if cp.touch_A2:

        print("Touched A2!")

        cp.pixels[8] = (210, 45, 0)

    if cp.touch_A3:

 

©Adafruit Industries Page 50 of 67



        print("Touched A3!")

        cp.pixels[9] = (155, 100, 0)

    if cp.touch_A4:

        print("Touched A4!")

        cp.pixels[0] = (0, 255, 0)

    if cp.touch_A5:

        print("Touched A5!")

        cp.pixels[1] = (0, 135, 125)

    if cp.touch_A6:

        print("Touched A6!")

        cp.pixels[3] = (0, 0, 255)

    if cp.touch_TX:

        print("Touched TX!")

        cp.pixels[4] = (100, 0, 155)

    time.sleep(0.1)

Now touch each touch pad. You get an LED in one color of the rainbow for each of

them!

Now let's look at the code. We import time  and cp . We set the LED brightness to

30%. We check to see if  each pad is touched, and if it is, we print  to the serial

console. This time, though, we also light up a specific LED with each pad using cp.pi

xels[#] = (r, g, b)  where #  is the pixel number and r, g, b  are the color

values. We didn't include any code to tell the LEDs to turn off, so they will stay on

once you turn them on.

Now let's add more light! Add the following code to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example uses the capacitive touch pads on the Circuit Playground. They are 

located around

the outer edge of the board and are labeled A1-A6 and TX. (A0 is not a touch pad.) 

This example

lights up all the NeoPixels a different color of the rainbow for each pad 

touched!"""

 

©Adafruit Industries Page 51 of 67



import time

from adafruit_circuitplayground import cp

cp.pixels.brightness = 0.3

while True:

    if cp.touch_A1:

        print("Touched A1!")

        cp.pixels.fill((255, 0, 0))

    if cp.touch_A2:

        print("Touched A2!")

        cp.pixels.fill((210, 45, 0))

    if cp.touch_A3:

        print("Touched A3!")

        cp.pixels.fill((155, 100, 0))

    if cp.touch_A4:

        print("Touched A4!")

        cp.pixels.fill((0, 255, 0))

    if cp.touch_A5:

        print("Touched A5!")

        cp.pixels.fill((0, 135, 125))

    if cp.touch_A6:

        print("Touched A6!")

        cp.pixels.fill((0, 0, 255))

    if cp.touch_TX:

        print("Touched TX!")

        cp.pixels.fill((100, 0, 155))

    time.sleep(0.1)

Touch each pad. You get every LED lit up in one color of the rainbow for each of them!

The code is almost identical, except instead of cp.pixels[#] , we use cp.pixels.f

ill((r, g, b))  to light up every LED instead of only one.

You can change the color values to whatever you like to create your own personal

rainbow. Give it a try!

 

©Adafruit Industries Page 52 of 67



Play Tone 

The Circuit Playground Express and Bluefruit have a built-in speaker above the music

note printed on the board. It is the grey box with a + on it, below button A, to the left

of the slide switch. Though the image is of the Circuit Playground Express, the

speaker is in the same location on the Bluefruit. This speaker is capable of multiple

things including the ability to play tones.

Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example plays two tones for 1 second each. Note that the tones are not in a 

loop - this is

to prevent them from playing indefinitely!"""

from adafruit_circuitplayground import cp

cp.play_tone(262, 1)

cp.play_tone(294, 1)

When you save the code, you'll have two tones!

First we import cp . Then, we play one tone, followed by another with cp.play_tone

(262, 1)  and cp.play_tone(294, 1) .

Note that we did not include a loop in this code. This is because if the code is in a

loop, it will continue playing indefinitely. This is not always desirable, so we've

designed the code to play each tone once.

 

©Adafruit Industries Page 53 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


cp.play_tone()  requires two things from you: a frequency in hertz and a length of

time in seconds. So anytime you want to use it, you'll add cp.play_tone(frequency

, seconds)  to your code, where frequency  is the hertz of the tone you'd like to

play, and seconds  is the length of time you'd like it to play.

There are many tone generators available on the internet that will give you the hertz

of a specific tone. The two tones we've added to the current code are middle C and

the D above middle C. Try adding another tone. Have fun with it!

Two Tone Buttons

You can use any of the inputs that we've talked about to play tones. Let's try using the

buttons. Add the following code to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example plays a different tone for a duration of 1 second for each button 

pressed."""

from adafruit_circuitplayground import cp

while True:

    if cp.button_a:

        cp.play_tone(262, 1)

    if cp.button_b:

        cp.play_tone(294, 1)

Now, press each button. Each one plays a tone for one second!

This code is the same as previous code using the buttons. Inside the loop, it checks

to see if  each button is pressed. This time, if button A is pressed, it plays a 262 Hz

tone for 1  second, and if button b is pressed, it plays a 294 Hz tone for 1  second.

You can use any of the inputs we've discussed in this guide to trigger a tone. Try

replacing the button presses with touch pads. Have fun with it!

Start and Stop Tone 

The Circuit Playground Express and Bluefruit have a built-in speaker above the music

note printed on the board. It is the grey box with a + on it, below button A, to the left

of the slide switch. Though the image is of the Circuit Playground Express, the

speaker is in the same location on the Bluefruit. This speaker is capable of multiple

things including the ability to play tones.

©Adafruit Industries Page 54 of 67



What if, instead of playing a tone for a specified amount of time (using play_tone() )

, you want to play the tone only when you provide an input? For example, instead of

playing a tone for 1 second, what if you want the tone to play while you're pressing a

button? Or touching a touch pad? You can do that!

Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""This example plays a different tone for each button, while the button is 

pressed."""

from adafruit_circuitplayground import cp

while True:

    if cp.button_a:

        cp.start_tone(262)

    elif cp.button_b:

        cp.start_tone(294)

    else:

        cp.stop_tone()

Press button A. Now, press button B. Each button plays a tone, but only while it's

being pressed!

Let's look at the code. First we import cp .

Inside our loop, we check to see if  the buttons are being pressed. If button A is

pressed, we start a tone with cp.start_tone(262) . If button B is pressed, we start a

tone with cp.start_tone(294) . Otherwise, if they're not being pressed, we stop the

tone. That's it!

 

©Adafruit Industries Page 55 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


cp.start_tone()  requires one thing from you, a frequency in hertz of the tone you

would like to start. So anytime you want to use it, you'll add 

cp.start_tone(frequency)  to your code, where frequency  is the hertz of the

tone you'd like to start.

cp.start_tone()  requires cp.stop_tone()  to stop playing. Without it, you'll start

the tone and it will play indefinitely. You'll know very quickly if you've forgotten to add 

cp.stop_tone() !

Try replacing buttons A and B with touch pads A1 and A2, and change the frequencies

to have different tones. Try using all the touch inputs to have more tone options!

Play File 

The Circuit Playground Express and Bluefruit have a built-in speaker above the music

note printed on the board. It is the grey box with a + on it, below button A, to the left

of the slide switch. Though the image is of the Circuit Playground Express, the

speaker is in the same location on the Bluefruit. The speaker is also able to play

monotone music encoded in a special format called wav files!

Sound files for the Circuit Playground library should be 22,050 kHz, 16-bit, mono (or

less) WAV files to play on these boards. If you have an MP3 or a file you downloaded

and are unsure of the encoding, you can follow this audio conversion guide () to get

your files into the proper format.

For testing, we've prepared two WAV files in the proper format. You can download the

following two .wav files and copy them to your Circuit Playground CIRCUITPY drive.

 

©Adafruit Industries Page 56 of 67

https://learn.adafruit.com/microcontroller-compatible-audio-file-conversion


dip.wav

rise.wav

Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""THIS EXAMPLE REQUIRES A WAV FILE FROM THE examples FOLDER IN THE

Adafruit_CircuitPython_CircuitPlayground REPO found at:

https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/tree/main/

examples

Copy the "dip.wav" file to your CIRCUITPY drive.

Once the file is copied, this example plays a wav file!"""

from adafruit_circuitplayground import cp

cp.play_file("dip.wav")

Dip!

Let's look at the code. First we import cp .

Then, we play a wav file called "dip.wav" with cp.play_file("dip.wav") . That's it!

Note that we did not include a loop in this code. This is because if the code is in a

loop, it will continue playing indefinitely. This is not always desirable, so we've

designed the code to play the file once.

cp.play_file()  requires one thing from you: the name of the wav file you're trying

to play back in quotation marks. This is how it knows what file to play. So anytime you

want to use it, you'll want to add cp.play_file("Filename.wav")  to your code,

replacing Filename.wav  with the name of your wav file. It is case sensitive, so match

the file name exactly.

Let's add some inputs and another wav file. Add the following code to your code.py.

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""THIS EXAMPLE REQUIRES A WAV FILE FROM THE examples FOLDER IN THE

Adafruit_CircuitPython_CircuitPlayground REPO found at:

https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/tree/main/

examples

Copy the "dip.wav" and "rise.wav" files to your CIRCUITPY drive.

©Adafruit Industries Page 57 of 67

https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/raw/main/examples/dip.wav
https://github.com/adafruit/Adafruit_CircuitPython_CircuitPlayground/raw/main/examples/rise.wav
https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


Once the files are copied, this example plays a different wav file for each button 

pressed!"""

from adafruit_circuitplayground import cp

while True:

    if cp.button_a:

        cp.play_file("dip.wav")

    if cp.button_b:

        cp.play_file("rise.wav")

Now press button A. Dip! Press button B. Rise!

Inside the loop, we check to see if  each button is pressed. If button A is pressed,

we play "dip.wav" . If button B is pressed, we play "rise.wav" .

Notice if you press button B and then immediately try to press button A, the rise.wav

file completes before you're able to dip again. This is because you cannot begin

playing another file until the first file is completed. So, if you have a really long wav

file, you'll find you can't do anything else until the file is finished playing. Keep that in

mind if you're going to include wav files with other code.

You can use any of the inputs we've discussed to trigger a file to play. Try replacing

the button presses with touch inputs. Try adding different files to use!

If your code is running but your file doesn't sound quite right or doesn't play back, be

sure to check the encoding of your sound file by following this Adafruit guide ().

Sound 

The Circuit Playground Bluefruit has a sound sensor located on the right side of the

board, above the ear printed on the board, and below button B. This sensor can be

used to detect sound levels. 

This Circuit Playground library feature is only available on the Circuit Playground 

Bluefruit. 

©Adafruit Industries Page 58 of 67

https://learn.adafruit.com/microcontroller-compatible-audio-file-conversion


Add the following code to your code.py. Remember, if you need help with this, check 

here ().

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""

This example prints out sound levels using the sound sensor on a Circuit Playground 

Bluefruit.

Try making sounds towards the board to see the values change.

NOTE: This example does NOT support Circuit Playground Express.

"""

import time

from adafruit_circuitplayground import cp

while True:

    print("Sound level:", cp.sound_level)

    time.sleep(0.1)

Open the serial console to see the sound level printed out. Try making noise at your

Circuit Playground to see the values change!

 

While the Circuit Playground Express also has a sound sensor, this feature of the 

Circuit Playground library is not available for the Express. The Express and 

Bluefruit have different microcontroller chips. The SAMD21 on the Express is not 

capable of handling the sound sensor features of the Circuit Playground Library. 

©Adafruit Industries Page 59 of 67

https://learn.adafruit.com/circuitpython-made-easy-on-circuit-playground-express/first-things-first#creating-and-editing-code-2-8


Let's look at the code. First we import time  and cp .

Inside our loop, we print to the serial console, Sound level:  followed by the sound

level value, cp.sound_level . Then we have a time.sleep(0.1)  to slow down the

speed at which it prints to the serial console. If it's too fast, it's difficult to read!

Plotting Sound Level

Let's take a look at these values on the Mu plotter! Add the following code to your co

de.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""

This example prints out sound levels using the sound sensor on a Circuit Playground 

Bluefruit. If

you are using Mu, open the plotter to see the sound level plotted. Try making 

sounds towards the

board to see the values change.

NOTE: This example does NOT support Circuit Playground Express.

"""

import time

from adafruit_circuitplayground import cp

while True:

    print("Sound level:", cp.sound_level)

    print((cp.sound_level,))

    time.sleep(0.1)

The code is almost identical, but we've added one line, 

print((cp.sound_level,)) .

 

©Adafruit Industries Page 60 of 67



Note that the Mu plotter looks for tuple values to plot. Tuples in Python come in

parentheses ()  with comma separators. If you have two values, a tuple would look

like (1.0, 3.14) . Since we have only one value, we need to have it print out

like  (1.0,)  - note the parentheses around the number, and the comma after the

number. Thus the extra parentheses and comma in print((cp.sound_level,)) .

Click on the Plotter button on the top of Mu to see the plotter. Try making sounds

towards your board to see the plotter line go up. Try being quiet to see the plotter line

go down. Have fun with it!

Loud Sound

What if you wanted to use a sound as an input? With the loud_sound()  feature, you

can! It allows you to use a clap, snap or any other suitably loud sound as an input.

The following example lights up the NeoPixel LEDs when a loud enough sound

occurs. Add the following code to your code.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""

This example lights up the NeoPixels on a Circuit Playground Bluefruit in response 

to a loud sound.

Try snapping or clapping near the board to trigger the LEDs.

NOTE: This example does NOT support Circuit Playground Express.

"""

import time

from adafruit_circuitplayground import cp

while True:

    if cp.loud_sound():

        cp.pixels.fill((50, 0, 50))

        time.sleep(0.2)

 

©Adafruit Industries Page 61 of 67



    else:

        cp.pixels.fill((0, 0, 0))

Try clapping, snapping, or yelling at your board. Purple NeoPixels!

Let's take a look at the code. First we import time  and cp .

Inside our loop, we begin by saying if a loud sound occurs, if cp.loud_sound() ,

turn on the NeoPixels a slightly dim purple, cp.pixels.fill((50, 0, 50)) . Then

we add a time.sleep(0.2)  so the LEDs stay on long enough to see them. Without

it, they only flash on for a moment.

Then we say, otherwise, turn the pixels off by setting them to (0, 0, 0) . Without

this, the pixels would turn on and stay on.

Loud Sound Threshold

If you find it's too easy or too difficult to trigger the loud sound, you can decrease or

increase the threshold. loud_sound()  defaults to sound_threshold=200 . To make

it harder to trigger, you can increase the threshold. Add the following code to your co

de.py:

# SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries

# SPDX-License-Identifier: MIT

"""

This example lights up the NeoPixels on a Circuit Playground Bluefruit in response 

to a loud sound.

Try snapping or clapping near the board to trigger the LEDs.

NOTE: This example does NOT support Circuit Playground Express.

"""

import time

from adafruit_circuitplayground import cp

while True:

    if cp.loud_sound(sound_threshold=250):

        cp.pixels.fill((50, 0, 50))

        time.sleep(0.2)

    else:

        cp.pixels.fill((0, 0, 0))

The code is the same except we've increased the threshold by setting sound_thresh

old=250 , making it require a louder sound to trigger.

If you find it's too difficult to trigger, you can lower the threshold, making it require a

quieter sound to trigger. Try setting sound_threshold=150  to see the difference.

©Adafruit Industries Page 62 of 67



Now you can use sound as an input on the Circuit Playground Bluefruit. Try combining

it with the other concepts learned in this guide to see what else you can do!

Time to Get Creative! 

Now that you have examples of how everything works, it's time to get creative! Try

combining different concepts to put together a whole new project. You could make

something like a capacitive touch combination lock or a book light. The possibilities

are endless!

Circuit Playground Express Project Guides Using the

Circuit Playground Library:

Circuit Playground Express: Piano in the Key of Lime () 

UFO Flying Saucer with Circuit Playground Express () 

CircuitPython Snow Globe () 

Hacking Ikea Lamps with Circuit Playground Express: CircuitPython Creature

Friend () 

Combo Dial Safe with Circuit Playground Express () 

Fruitbox Sequencer: Musically Delicious Step Pattern Generator ()

The Technical Side 

If you're new to programming, and looking for an easy way to get started with your

Circuit Playground Express and CircuitPython, the important thing to know is that this

library provides exactly that. However, if you'd like a deeper explanation of how it

does that, we've got you covered. This section gets into some fairly technical

concepts, so don't worry if you don't follow everything. We've included this to clear up

any questions more advanced users may have about how the library works behind

the scenes.

There are multiple layers to how this library functions. The following is an explanation

of the Circuit Playground library.

The following guides will only work on Circuit Playground Express. Though they 

use a different import and code format, they will still work with the current 

version of the Circuit Playground library for Circuit Playground Express. 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 63 of 67

https://learn.adafruit.com/circuit-playground-express-piano-in-the-key-of-lime/overview
https://learn.adafruit.com/ufo-circuit-playground-express/code-the-ufo-with-circuitpython
https://learn.adafruit.com/circuitpython-snow-globe/code-with-circuitpython
https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/circuitpython-creature-friend
https://learn.adafruit.com/hacking-ikea-lamps-with-circuit-playground-express/circuitpython-creature-friend
https://learn.adafruit.com/combo-dial-safe-with-circuit-playground-express/overview
https://learn.adafruit.com/circuitpython-fruitbox-sequencer-musically-delicious-step-pattern-generator/code-with-circuitpython


Note: This library works with the Circuit Playground Express and Circuit Playground

Bluefruit, NOT the Circuit Playground Classic. Any reference in this explanation to

"Circuit Playground" is referring to the Express and Bluefruit only.

Circuit Playground Library Modules

The library is divided up into multiple modules. The circuit_playground_base

module defines a base class called CircuitPlaygroundBase , which includes the

library features available for all of the Circuit Playground boards, such as red_led , b

utton_a , etc. The express  module defines the Express  class, which is a subclass

of CircuitPlaygroundBase , which adds features available for only the Circuit

Playground Express, such as an alias for touch.A7  to touch.TX  (only the CPX has

the A7 label on the seventh touch pad). The bluefruit  module similarly defines the 

Bluefruit  class, which adds features available for only the Circuit Playground

Bluefruit, such as sound_level  and loud_sound . The Express  and Bluefruit

classes inherit the features of the CircuitPlaygroundBase  class so when either of

the board-specific modules is imported, all of the base and board-specific features

are made available.

Within the modules, all of the necessary libraries and CircuitPython modules are

imported. All of the hardware and software initialisation is done in __init__()

within the module, such as initialising the accelerometer or creating variables for later

use. Then we use methods and properties to expose the features for use in your

code.

Circuit Playground Library Use

To use the library, you include from adafruit_circuitplayground import cp  at

the beginning of your program. The first thing the library does is use sys.platform

to determine whether the connected board is an Atmel SAMD21 or an nRF52840

microcontroller. This code is contained within the __init__.py  file, and is run on

import before any other code. Based on the results, it imports the appropriate library

module, either express  or bluefruit . So for instance if you are running on a

Circuit Playground Bluefruit, all of the bluefruit  features will be imported. This

This section is not meant for beginners. It includes a very technical explanation 

of how the Circuit Playground library works. It assumes that you have a certain 

level of knowledge about CircuitPython, its underlying code, and how modules 

work. 

©Adafruit Industries Page 64 of 67



import mechanism allows the same piece of code to work with all Circuit Playground

boards. Here is the essence of __init__.py :

import sys

if sys.platform == 'nRF52840':

    from .bluefruit import cpb as cp

elif sys.platform == 'Atmel SAMD21':

    from .express import cpx as cp

Once imported, all of features for the connected board are available for use as cp.fe

ature_name . For example, to address the little red status LED, you would include 

cp.red_led  in your program.

This library is unusual in that you don't create the primary object yourself. Instead, the

object is created on import. When you do from adafruit_circuitplayground

import cp , you're importing the cp  object has already been created and assigned 

the name cp . You do not use the Express  or Bluefruit  class directly.

This library was originally written only for Circuit Playground Express. Previously, you

would have used the import from adafruit_circuitplayground.express import

cpx . cpx  is the name for the Express  class object created inside the express.py

module. When we added support for Circuit Playground Bluefruit, we had the bluefr

uit.py  module create an object named cpb , analogous to cpx . However, we

realized that any code written to use both boards would have to have all its

references to cpb  change to cpx  or vice versa. To alleviate this, we added

  __init__.py , which, as described above discovers which board is the code is

running on, and imports either cpx  or cpb , renaming it to just cp . 

Circuit Playground Library vs. Basic CircuitPython

Without this library, each feature of the board would require setup in your code,

ranging from one to several extra lines of code necessary. Consider the following

examples.

The first example turns on the red LED without using the Circuit Playground library.

import digitalio

import board

led = digitalio.DigitalInOut(board.D13)

led.direction = digitalio.Direction.OUTPUT

led.value = True

The second example turns on the red LED using the Circuit Playground library.

©Adafruit Industries Page 65 of 67



from adafruit_circuitplayground import cp

cp.red_led = True

Instead of including the setup in the program, the Circuit Playground library includes

all the setup in __init__()  within the module, so setup is automatically done when

you import the library. This is a simple example for comparison; some hardware

requires significantly more setup than the red LED.

The Library on Circuit Playground Express

The Circuit Playground library has always pushed the memory limits on the Circuit

Playground Express. This led us to include the Circuit Playground library and all of its

dependencies in the CircuitPython build for Circuit Playground Express as frozen

modules.

Frozen modules are library modules that are "frozen" into, or built into, CircuitPython.

Freezing a module into CircuitPython moves execution to the flash to save RAM.

Normally when a module is imported, the following occurs:

If it is a .py file, it is compiled into byte codes, which are put in RAM and

executed there.

If it is a .mpy file, it is already compiled into byte codes, and they are put in RAM.

Both of these options use available RAM. This module is complex enough that it

quickly outgrew the available RAM on the Circuit Playground Express. So, instead, we

freeze the .mpy file into CircuitPython. A frozen .mpy file is already compiled into byte

codes like any .mpy file, but the byte codes are already in directly accessible memory

(flash), so they don't have to be copied in RAM. This saves on RAM.

In short, it allows us to run a module that would normally run out of memory on import

and cause a memory allocation failure. It also means that to use the library with Circuit

Playground Express, you simply need to install CircuitPython as the library and all of

its dependencies are included in the build.

Normally, you load library modules onto your microcontroller board and place them in

the lib  folder. However, as explained, this module will not function if it is running

from the local copy. The express  module uses sys.path  on import to specify

where the library module should be pulled from. It prefers frozen modules over those

contained within the /lib  folder to ensure that if a user installs the library locally in

the /lib  folder, it will still use the frozen module. It also, however, check the root

• 

• 

©Adafruit Industries Page 66 of 67



directory first. In order, it checks root, then frozen, then the /lib  folder. This order

was put in place to ensure the ability to test libraries locally without modifying the

library. If you wish to test modifications to one of the modules frozen into

CircuitPython for Circuit Playground Express, place the library file in your root

directory and it will use that version.

Memory Allocation Failure on Circuit Playground Express

You may find with larger amounts of code or more complicated projects involving

external peripherals, that your code fails to run and returns a MemoryError  in the

serial console. The Circuit Playground library includes all the imports and setup

necessary to use all of the functionality it provides. This means that it has a relatively

large memory footprint. The Circuit Playground Express has limited memory available.

The library was designed to make it easy to get started with Circuit Playground and all

of the fun stuff that is built in. If you try to use it with a significant amount of code or

with many other libraries, you'll find that you may run out of memory on your board. If

this happens from either of these scenarios, you're probably ready to move on to

using the individual libraries necessary for the hardware you're trying to utilise in your

code. This means you would use basic CircuitPython to "manually" initialise all of the

hardware you intend to use, instead of relying on the Circuit Playground library. This

allows you to initialise only the hardware you will use in your project versus the Circuit

Playground library initialising all available features of the CPX.

©Adafruit Industries Page 67 of 67


	CircuitPython Made Easy on Circuit Playground Express and Bluefruit
	Table of Contents
	Circuit Playground Library
	First Things First
	Red LED
	Slide Switch
	Tap
	Shake
	NeoPixels
	Light
	Acceleration
	Buttons
	Temperature
	Capacitive Touch
	Play Tone
	Start and Stop Tone
	Play File
	Sound
	Time to Get Creative!
	The Technical Side


	Circuit Playground Library
	First Things First
	Before We Get Started
	Installing and Updating CircuitPython
	Installing the Circuit Playground Library on Circuit Playground Bluefruit
	Creating and Editing Code
	Using the Circuit Playground Library

	Red LED
	Blinky!
	Red LED On = Red LED Off

	Slide Switch
	Blinky Switch
	True is True

	Tap
	Single Double

	Shake
	Shake It Up A Little

	NeoPixels
	One Pixel, Two Pixel, Red Pixel, Blue Pixel!

	Light
	Plotting Light
	NeoPixel Light Meter

	Acceleration
	Color Glow Accelerometer

	Buttons
	Half and Half

	Temperature
	Plotting Temperature
	Temperature Meter

	Capacitive Touch
	Touch the Rainbow

	Play Tone
	Two Tone Buttons

	Start and Stop Tone
	Play File
	Sound
	Plotting Sound Level
	Loud Sound
	Loud Sound Threshold

	Time to Get Creative!
	Circuit Playground Express Project Guides Using the Circuit Playground Library:

	The Technical Side
	Circuit Playground Library Modules
	Circuit Playground Library Use
	Circuit Playground Library vs. Basic CircuitPython
	The Library on Circuit Playground Express
	Memory Allocation Failure on Circuit Playground Express


