Circulatory System: The Heart

- Overview of Cardiovascular System
- Gross Anatomy of the Heart
- Cardiac Conduction System and Cardiac Muscle
- Electrical and Contractile Activity of Heart
- Blood Flow, Heart Sounds, and Cardiac Cycle
- Cardiac Output

Circulatory System: The Heart

- cardiology the scientific study of the heart and the treatment of its disorders
- cardiovascular system
 - heart and blood vessels
- circulatory system
 - heart, blood vessels, and the blood
- major divisions of circulatory system
 - pulmonary circuit right side of heart
 - carries blood to lungs for gas exchange and back to heart
 - systemic circuit left side of heart
 - supplies oxygenated blood to all tissues of the body and returns it to the heart

Cardiovascular System Circuit

Figure 19.1

- left side of heart
 - fully oxygenated blood arrives from lungs via pulmonary veins
 - blood sent to all organs of the body via aorta
- right side of heart
 - lesser oxygenated blood arrives from inferior and superior vena cava
 - blood sent to lungs via pulmonary trunk

Position, Size, and Shape

- heart located in mediastinum, between lungs
- base wide, superior portion of heart, blood vessels attach here
- apex inferior end, tilts to the left, tapers to point
- 3.5 in. wide at base,
 5 in. from base to apex and 2.5 in. anterior to posterior; weighs 10 oz.

Figure 19.2c

Heart Position

Figure 19.2 a-b

Pericardium

- pericardium double-walled sac (pericardial sac) that encloses the heart
 - allows heart to beat without friction, provides room to expand, yet resists excessive expansion
 - anchored to diaphragm inferiorly and sternum anteriorly
- parietal pericardium outer wall of sac
 - superficial fibrous layer of connective tissue
 - a deep, thin serous layer
- visceral pericardium (epicardium) heart covering
 - serous lining of sac turns inward at base of heart to cover the heart surface
- pericardial cavity space inside the pericardial sac filled with 5 - 30 mL of pericardial fluid
- pericarditis inflammation of the membranes
 - painful friction rub with each heartbeat

Pericardium and Heart Wall

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Cadaver Heart

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Anterior view, external anatomy

Figure 19.4 a-b

19-8

© The McGraw-Hill Companies, Inc.

Heart Wall

- epicardium (visceral pericardium)
 - serous membrane covering heart
 - adipose in thick layer in some places
 - coronary blood vessels travel through this layer

endocardium

- smooth inner lining of heart and blood vessels
- covers the valve surfaces and continuous with endothelium of blood vessels

myocardium

- layer of cardiac muscle proportional to work load
 - muscle spirals around heart which produces wringing motion
- fibrous skeleton of the heart framework of collagenous and elastic fibers
 - provides structural support and attachment for cardiac muscle and anchor for valve tissue
 - electrical insulation between atria and ventricles important in timing and coordination of contractile activity

Heart Chambers

four chambers

- right and left atria
 - two superior chambers
 - receive blood returning to heart
 - auricles (seen on surface)
 enlarge chamber
- right and left ventricles
 - two inferior chambers
 - pump blood into arteries

Figure 19.7

External Anatomy - Anterior

- atrioventricular sulcus
 - separates atria and ventricles
- interventricular sulcus
 - overlies the interventricular septum that divides the right ventricle from the left
- sulci contain coronary arteries

Figure 19.5a

External Anatomy - Posterior

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19-12

Heart Chambers - Internal

interatrial septum

wall that separates atria

pectinate muscles

 internal ridges of myocardium in right atrium and both auricles

interventricular septum

- muscular wall that separates ventricles

trabeculae carneae

internal ridges in both ventricles

Internal Anatomy - Anterior

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 19.7

Heart Valves

- valves ensure a one-way flow of blood through the heart
- atrioventricular (AV) valves controls blood flow between atria and ventricles
 - right AV valve has 3 cusps (tricuspid valve)
 - left AV valve has 2 cusps (mitral or bicuspid valve)
 - chordae tendineae cords connect AV valves to papillary muscles on floor of ventricles
 - prevent AV valves from flipping inside out or bulging into the atria when the ventricles contract
- semilunar valves control flow into great arteries open and close because of blood flow and pressure
 - pulmonary semilunar valve in opening between right ventricle and pulmonary trunk
 - aortic semilunar valve in opening between left ventricle and aorta

Heart Valves

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19-16

Endoscopic View of Heart Valve

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

© Manfred Kage/Peter Arnold, Inc.

Figure 19.8b

Heart Valves

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 19.8c

AV Valve Mechanics

- ventricles relax
 - pressure drops inside the ventricles
 - semilunar valves close as blood attempts to back up into the ventricles from the vessels
 - AV valves open
 - blood flows from atria to ventricles
- ventricles contract
 - AV valves close as blood attempts to back up into the atria
 - pressure rises inside of the ventricles
 - semilunar valves open and blood flows into great vessels

Blood Flow Through Heart

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 19.9

blood pathway travels from the right atrium through the body and back to the starting point

Coronary Circulation

- 5% of blood pumped by heart is pumped to the heart itself through the coronary circulation to sustain its strenuous workload
 - 250 ml of blood per minute
 - needs abundant O₂ and nutrients
- left coronary artery (LCA) branch off the ascending aorta
 - anterior interventricular branch
 - supplies blood both ventricles and anterior two-thirds of the interventricular septum
 - circumflex branch
 - passes around left side of heart in coronary sulcus
 - gives off left marginal branch and then ends on the posterior side of the heart
 - supplies left atrium and posterior wall of left ventricle
- right coronary artery (RCA) branch off the ascending aorta
 - supplies right atrium and sinoatrial node (pacemaker)
 - right marginal branch
 - supplies lateral aspect of right atrium and ventricle
 - posterior interventricular branch
 - supplies posterior walls of ventricles

Coronary Vessels - Anterior

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Ligamentum Aortic arch arteriosum **Ascending** Superior vena cava aorta Left pulmonary artery Branches of the right pulmonary **Pulmonary trunk** artery Left pulmonary Right pulmonary veins veins Left auricle Right auricle Right atrium Coronary sulcus Anterior Right ventricle interventricular sulcus Inferior vena cava-Left ventricle Apex of heart

(a) Anterior view

Figure 19.5a

Coronary Vessels - Posterior

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. **Aorta** Left pulmonary Superior artery vena cava Right pulmonary artery Left pulmonary veins Right pulmonary veins Left atrium Coronary sulcus Right atrium Coronary sinus Inferior vena cava Fat **Posterior** interventricular Left ventricle sulcus Apex of heart Right ventricle

Figure 19.5b

Coronary Blood Flow

- blood flow to the heart muscle during ventricular contraction is slowed, unlike the rest of the body
- three reasons:
 - contraction of the myocardium compresses the coronary arteries and obstructs blood flow
 - opening of the aortic valve flap during ventricular systole covers the openings to the coronary arteries blocking blood flow into them
 - during ventricular diastole, blood in the aorta surges back toward the heart and into the openings of the coronary arteries
 - blood flow to the myocardium increases during ventricular relaxation

Angina and Heart Attack

- angina pectoris chest pain from partial obstruction of coronary blood flow
 - pain caused by ischemia of cardiac muscle
 - obstruction partially blocks blood flow
 - myocardium shifts to anaerobic fermentation producing lactic acid stimulating pain
- myocardial infarction sudden death of a patch of myocardium resulting from long-term obstruction of coronary circulation
 - atheroma (blood clot or fatty deposit) often obstruct coronary arteries
 - cardiac muscle downstream of the blockage dies
 - heavy pressure or squeezing pain radiating into the left arm
 - some painless heart attacks may disrupt electrical conduction pathways, lead to fibrillation and cardiac arrest
 - silent heart attacks occur in diabetics & elderly
 - MI responsible for about half of all deaths in the United States

Venous Drainage of Heart

- 5 -10% drains directly into heart chambers, right atrium and right ventricle, by way of the thebesian veins
- the rest returns to right atrium by way of the coronary sinus:
 - great cardiac vein, middle cardiac vein, left marginal vein
 - empty into coronary sinus

coronary sinus

- large transverse vein in coronary sulcus on posterior side of heart
- collects blood and empties into right atrium

Structure of Cardiac Muscle

- cardiocytes striated, short, thick, branched cells, one central nucleus surrounded by light staining mass of glycogen
- intercalated discs join cardiocytes end to end
 - electrical junctions gap junctions allow ions to flow between cells can stimulate neighbors
 - entire myocardium of either two atria or two ventricles acts like single unified cell
- repair of damage of cardiac muscle is almost entirely by fibrosis (scarring)

Metabolism of Cardiac Muscle

- cardiac muscle depends almost exclusively on aerobic respiration used to make ATP
 - rich in myoglobin and glycogen
 - huge mitochondria fill 25% of cell
- adaptable to organic fuels used
 - fatty acids (60%), glucose (35%), ketones, lactic acid and amino acids (5%)
 - more vulnerable to oxygen deficiency than lack of a specific fuel
- fatigue resistant since makes little use of anaerobic fermentation or oxygen debt mechanisms
 - does not fatigue for a lifetime

Cardiac Conduction System

- coordinates the heartbeat
 - composed of an internal pacemaker and nervelike conduction pathways through myocardium
 - generates and conducts rhythmic electrical signals in the following order:
- sinoatrial (SA) node modified cardiocytes
 - initiates each heartbeat and determines heart rate
 - signals spread throughout atria
 - pacemaker in right atrium near base of superior vena cava

atrioventricular (AV) node

- located near the right AV valve at lower end of interatrial septum
- electrical gateway to the ventricles
- fibrous skeleton acts as an insulator to prevent currents from getting to the ventricles from any other route

atrioventricular (AV) bundle (bundle of His)

- bundle forks into right and left bundle branches
- these branches pass through interventricular septum toward apex

Purkinje fibers

- nervelike processes spread throughout ventricular myocardium
- signal pass from cell to cell through gap junctions

Cardiac Conduction System

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- 1 SA node fires.
- 2 Excitation spreads through atrial myocardium.
- 3 AV node fires.
- 4 Excitation spreads down AV bundle.
- 5 Purkinje fibers distribute excitation through ventricular myocardium.

Cardiac Rhythm

- cycle of events in heart special names
 - systole atrial or ventricular contraction
 - diastole atrial or ventricular relaxation
- sinus rhythm normal heartbeat triggered by the SA node
 - set by SA node at 60 100 bpm
 - adult at rest is 70 to 80 bpm
- ectopic focus another parts of heart fires before SA node
 - caused by hypoxia, electrolyte imbalance, or caffeine, nicotine, and other drugs

Abnormal Heart Rhythms

- spontaneous firing from some part of heart not the SA node
 - ectopic foci region of spontaneous firing
 - nodal rhythm if SA node is damaged, heart rate is set by AV node, 40 to 50 bpm
 - intrinsic ventricular rhythm if both SA and AV nodes are not functioning, rate set at 20 to 40 bpm
 - this requires pacemaker to sustain life
- arrhythmia any abnormal cardiac rhythm
 - failure of conduction system to transmit signals (heart block)
 - bundle branch block
 - total heart block (damage to AV node)

Cardiac Arrhythmias

- atrial flutter ectopic foci in atria
 - atrial fibrillation
 - atria beat 200 400 times per minute
- premature ventricular contractions (PVCs)
 - caused by stimulants, stress or lack of sleep
- ventricular fibrillation
 - serious arrhythmia caused by electrical signals reaching different regions at widely different times
 - heart can't pump blood and no coronary perfusion
 - kills quickly if not stopped
 - defibrillation strong electrical shock whose intent is to depolarize the entire myocardium, stop the fibrillation, and reset SA nodes to sinus rhythm

Impulse Conduction to Myocardium

- signal from SA node stimulates two atria to contract almost simultaneously
 - reaches AV node in 50 msec
- signal slows down through AV node
 - thin cardiocytes have fewer gap junctions
 - delays signal 100 msec which allows the ventricles to fill
- signals travel very quickly through AV bundle and Purkinje fibers
 - entire ventricular myocardium depolarizes and contracts in near unison
 - papillary muscles contract an instant earlier than the rest, tightening slack in chordae tendineae
- ventricular systole progresses up from the apex of the heart
 - spiral arrangement of cardiocytes twists ventricles slightly
 - like someone wringing out a towel

Electrocardiogram (ECG or EKG)

 composite of all action potentials of nodal and myocardial cells detected, amplified and recorded by electrodes on arms, legs and chest

Figure 19.15

ECG Deflections

P wave

- SA node fires, atria depolarize and contract
- atrial systole begins 100 msec after SA signal

QRS complex

- ventricular depolarization
- complex shape of spike due to different thickness and shape of the two ventricles

ST segment - ventricular systole

plateau in myocardial action potential

T wave

ventricular repolarization and relaxation

Normal Electrocardiogram (ECG)

Figure 19.15

Electrical Activity of Myocardium

- atrial depolarization begins
- 2) atrial depolarization complete (atria contracted)
- ventricles begin to depolarize at apex; atria repolarize (atria relaxed)
- ventricular depolarization complete (ventricles contracted)
- ventricles begin to repolarize at apex
- 6) ventricular repolarization complete (ventricles relaxed)

Figure 19.16

Diagnostic Value of ECG

- abnormalities in conduction pathways
- myocardial infarction
- nodal damage
- heart enlargement
- electrolyte and hormone imbalances

ECGs: Normal and Abnormal

abnormalities in conduction pathways

myocardial infarction

heart enlargement

(b) Nodal rhythm—no SA node activity

 electrolyte and hormone imbalances

Figure 19.17 a-b

Cardiac Cycle

- cardiac cycle one complete contraction and relaxation of all four chambers of the heart
- atrial systole (contraction) occurs while ventricles are in diastole (relaxation)
- atrial diastole occurs while ventricles in systole
- quiescent period all four chambers relaxed at same time
- questions to solve how does pressure affect blood flow? and how are heart sounds produced?

Operation of Heart Valves Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Atrioventricular valves open

Atrioventricular valves closed

(a)

Figure 19.19

19-42

Valvular Insufficiency

- valvular insufficiency (incompetence) any failure of a valve to prevent reflux (regurgitation) the backward flow of blood
 - valvular stenosis cusps are stiffened and opening is constricted by scar tissue
 - result of rheumatic fever autoimmune attack on the mitral and aortic valves
 - heart overworks and may become enlarged
 - heart murmur abnormal heart sound produced by regurgitation of blood through incompetent valves
 - mitral valve prolapse insufficiency in which one or both mitral valve cusps bulge into atria during ventricular contraction
 - hereditary in 1 out of 40 people
 - may cause chest pain and shortness of breath

Heart Sounds

- auscultation listening to sounds made by body
- first heart sound (S₁), louder and longer "lubb", occurs with closure of AV valves, turbulence in the bloodstream, and movements of the heart wall
- second heart sound (S₂), softer and sharper "dupp" occurs with closure of semilunar valves, turbulence in the bloodstream, and movements of the heart wall
- S₃ rarely heard in people over 30
- exact cause of each sound is not known with certainty

Phases of Cardiac Cycle

- ventricular filling
- isovolumetric contraction
- ventricular ejection
- isovolumetric relaxation

 all the events in the cardiac cycle are completed in less than one second!

Timing of Cardiac Cycle

- in a resting person
 - atrial systole last about 0.1 sec
 - ventricular systole about 0.3 sec
 - quiescent period, when all four chambers are in diastole, 0.4 sec

 total duration of the cardiac cycle is therefore 0.8 sec in a heart beating 75 bpm

Major Events of Cardiac Cycle

- ventricular filling
- isovolumetric contraction
- ventricular ejection
- isovolumetric relaxation

Congestive Heart Failure

- congestive heart failure (CHF) results from the failure of either ventricle to eject blood effectively
 - usually due to a heart weakened by myocardial infarction, chronic hypertension, valvular insufficiency, or congenital defects in heart structure.
- left ventricular failure blood backs up into the lungs causing pulmonary edema
 - shortness of breath or sense of suffocation
- right ventricular failure blood backs up in the vena cava causing systemic or generalized edema
 - enlargement of the liver, ascites (pooling of fluid in abdominal cavity), distension of jugular veins, swelling of the fingers, ankles, and feet
- eventually leads to total heart failure

Unbalanced Ventricular Output

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

peripheral edema

Figure 19.21b

Unbalanced Ventricular Output

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

pulmonary edema

Figure 19.21a

Cardiac Output (CO)

- cardiac output (CO) the amount ejected by ventricle in 1 minute
- cardiac output = heart rate x stroke volume
 - about 4 to 6 L/min at rest
 - a RBC leaving the left ventricle will arrive back at the left ventricle in about 1 minute
 - vigorous exercise increases CO to 21 L/min for fit person and up to 35 L/min for world class athlete
- cardiac reserve the difference between a person's maximum and resting CO
 - increases with fitness, decreases with disease

Heart Rate

- pulse surge of pressure produced by each heart beat that can be felt by palpating a superficial artery with the fingertips
 - infants have HR of 120 bpm or more
 - young adult females avg. 72 80 bpm
 - young adult males avg. 64 to 72 bpm
 - heart rate rises again in the elderly
- tachycardia resting adult heart rate above 100 bpm
 - stress, anxiety, drugs, heart disease, or fever
 - loss of blood or damage to myocardium
- bradycardia resting adult heart rate of less than 60 bpm
 - in sleep, low body temperature, and endurance trained athletes

Chronotropic Effects of the Autonomic Nervous System

sympathetic

- release norepinephrine
- binds to β-adrenergic fibers in the heart
- accelerated depolarization of SA node
- cardiocytes relax more quickly
- by accelerating both contraction and relaxation, heart rate increases as high as 230 bpm
- diastole becomes too brief for adequate filling
- both stroke volume and cardiac output are reduced

Chronotropic Effects of the Autonomic Nervous System

- parasympathetic vagus nerves
 - Release acetylcholine (ACh) binds to muscarinic receptors
 - hyperpolarized nodal cells fire less frequently
 - heart slows down
 - parasympathetics work on the heart faster than sympathetics
 - parasympathetics do not need a second messenger system
- without influence from the cardiac centers, the heart has a intrinsic "natural" firing rate of 100 bpm
- vagal tone holds down this heart rate to 70 80 bpm at rest
 - steady background firing rate of the vagus nerves

Inputs to Cardiac Center

- cardiac centers in the medulla receive input from many sources and integrate it into the 'decision' to speed or slow the heart
- higher brain centers affect heart rate
 - cerebral cortex, limbic system, hypothalamus
 - sensory or emotional stimuli
- medulla also receives input from muscles, joints, arteries, and brainstem
 - proprioceptors in the muscles and joints
 - inform cardiac center about changes in activity, HR increases before metabolic demands of muscle arise
 - baroreceptors signal cardiac center
 - pressure sensors in aorta and internal carotid arteries
 - blood pressure decreases, signal rate drops, cardiac center increases heart rate
 - if blood pressure increases, signal rate rises, cardiac center decreases heart rate

Chronotropic Chemicals

- chemicals affect heart rate as well as neurotransmitters from cardiac nerves
 - blood born adrenal catecholamines (NE and epinephrine) are potent cardiac stimulants
- drugs that stimulate heart
 - nicotine stimulates catecholamine secretion
 - thyroid hormone increases number adrenergic receptors on heart so more responsive to sympathetic stimulation
 - caffeine inhibits cAMP breakdown prolonging adrenergic effect

Chronotropic Chemicals

- electrolytes
 - K⁺ has greatest chronotropic effect
 - hyperkalemia excess K⁺ in cardiocytes
 - myocardium less excitable, heart rate slows and becomes irregular
 - hypokalemia deficiency K⁺ in cardiocytes
 - cells hyperpolarized, require increased stimulation
 - calcium
 - hypercalcemia excess of Ca²⁺
 - decreases heart rate and contraction strength
 - hypocalcemia deficiency of Ca²⁺
 - increases heart rate and contraction strength

Stroke Volume (SV)

- the other factor that in cardiac output, besides heart rate, is stroke volume
- three variables govern stroke volume:
 - 1. preload
 - 2. contractility
 - 3. afterload
- example
 - increased preload or contractility causes increases stroke volume
 - increased afterload causes decrease stroke volume

Exercise and Cardiac Output

- exercise makes the heart work harder and increases cardiac output
- proprioceptors signal cardiac center
 - at beginning of exercise, signals from joints and muscles reach the cardiac center of brain
 - sympathetic output from cardiac center increases cardiac output
- increased muscular activity increases venous return
 - increases preload and ultimately cardiac output
- increase in heart rate and stroke volume cause an increase in cardiac output
- exercise produces ventricular hypertrophy
 - increased stroke volume allows heart to beat more slowly at rest
 - athletes with increased cardiac reserve can tolerate more exertion than a sedentary person

Coronary Artery Disease

- coronary artery disease (CAD) a constriction of the coronary arteries
 - usually the result of atherosclerosis accumulation of lipid deposits that degrade the arterial wall and obstruct the lumen
 - endothelium damaged by hypertension, virus, diabetes or other causes
 - monocytes penetrate walls of damaged vessels and transform into macrophages
 - absorb cholesterol and fats to be called foam cells
 - look like fatty streak on vessel wall
 - can grow into atherosclerotic plaques (atheromas)
 - platelets adhere to damaged areas and secrete platelet-derived growth factor
 - attracting immune cells and promoting mitosis of muscle and fibroblasts, and the deposition of collagen
- bulging mass grows to obstruct arterial lumen

Affects of Atheromas

- causes angina pectoris, intermittent chest pain, by obstructing 75% or more of the blood flow
- immune cells of atheroma stimulate inflammation

 may rupture traveling clots or fatty emboli
 may result
- inflammation transforms atheroma into a hardened complicated plaque called arteriosclerosis

Risk

- major risk factor for atherosclerosis is excess of lowdensity lipoprotein (LDL) in the blood combined with defective LDL receptors in the arterial walls
 - protein-coated droplets of cholesterol, neutral fats, free fatty acids and phospholipids
- most cells have LDL receptors that take up these droplets from blood by receptor-mediated endocytosis
 - dysfunctional receptors in arterial cells accumulate excess cholesterol
- familial hypercholesterolemia
 - dominant gene makes no receptors for LDL
 - heterozygous individual suffer heart attacks by 35
 - homozygous individuals suffer heart attacks by 2
- unavoidable risk factors heredity, aging, being male
- avoidable risk factors obesity, smoking, lack of exercise, anxious personality, stress, aggression, and diet

Prevention and Treatment

- treatment
 - coronary bypass surgery
 - great saphenous vein
 - balloon angioplasty
 - laser angioplasty