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Operating System Design and 
Implementation
• Design and implementation of OS not “solvable”, but some 

approaches have proven successful

• Internal structure of different Operating Systems  can vary 
widely

• Start the design by defining goals and specifications 

• Affected by choice of hardware, type of system

• User goals and System goals

• User goals – operating system should be convenient to use, easy to 
learn, reliable, safe, and fast

• System goals – operating system should be easy to design, implement, 
and maintain, as well as flexible, reliable, error-free, and efficient
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Policy vs. Mechanism

• Important principle

• Separation of policy and mechanism

• Mechanisms determine how to do something

• Policies decide what will be done

• The separation of policy from mechanism is a very 
important principle, it allows maximum flexibility if 
policy decisions are to be changed later

• Example: timer

• Specifying and designing an OS is highly creative 
task of software engineering
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Implementation

• Much variation

• Early OSes in assembly language

• Then in system programming languages like Algol, PL/1

• Now in C, C++

• Actually usually a mix of languages

• Lowest levels still in assembly

• Main body in C

• Systems programs in C, C++, scripting languages like PERL, Python, shell scripts

• In more high-level language, an OS is easier to port to other 
hardware

• But slower

• Emulation can allow an OS to run on non-native hardware
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Questions?

• Policy vs. mechanism

• Design and implementation concepts
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Operating System Structure

• General-purpose OS is very large program

• Various ways to structure ones

• Simple structure

• e.g., MS-DOS

• More complex,

• e.g., UNIX

• Layered: an abstraction

• Microkernel, 

• e.g., Mach
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Simple Structure: MS-DOS

• Written to provide the most functionality in 
the least space

• Not divided into modules

• Although MS-DOS has some structure, its 
interfaces and levels of functionality are not well 
separated
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MS-DOS

• Single-tasking

• Shell invoked when system 
booted

• Simple method to run 
program

• No process created

• Single memory space

• Loads program into memory, 
overwriting all but the 
kernel

• Program exit -> shell 
reloaded
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MS-DOS
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More Complex Structure: 
Traditional UNIX
• Limited by hardware functionality, the original UNIX 

operating system had limited structuring. 

• Beyond simple but not fully layered

• The UNIX OS consists of two separable parts

• Systems programs

• The kernel

• Consists of everything below the system-call interface 
and above the physical hardware

• Provides the file system, CPU scheduling, memory 
management, and other operating-system functions; a 
large number of functions for one level
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FreeBSD

• Unix variant

• Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork() system call to create 
process

• Executes exec() to load program into 
process

• Shell waits for process to terminate or 
continues with user commands

• Process exits with:

• code = 0 – no error 

• code > 0 – error code
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Layered Approach

• The operating system is divided into a 
number of layers (levels), each built on top 
of lower layers.  

• The bottom layer (layer 0), is the hardware; 

• the highest (layer N) is the user interface.

• With modularity, layers are selected such 
that each uses functions (operations) and 
services of only lower-level layers
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Microkernel System Structure

• Moves as much from the kernel into user space

• Mach example of microkernel

• Mac OS X kernel (Darwin) partly based on Mach

• Communication takes place between user modules using message 
passing

• Benefits:

• Easier to extend a microkernel

• Easier to port the operating system to new architectures

• More reliable (less code is running in kernel mode)

• More secure

• Detriments:

• Performance overhead of user space to kernel space communication
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Modules

• Many modern operating systems implement 
loadable kernel modules

• Uses object-oriented approach

• Each core component is separate

• Each talks to the others over known interfaces

• Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

• Linux, Solaris, etc

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 19



Solaris Modular Approach
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Hybrid Systems

• Most modern operating systems are actually not one pure 
model

• Hybrid combines multiple approaches to address performance, 
security, usability needs

• Linux and Solaris kernels in kernel address space, so monolithic, plus 
modular for dynamic loading of functionality

• Windows mostly monolithic, plus microkernel for different 
subsystem personalities

• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa 
programming environment

• Below is kernel consisting of Mach microkernel and BSD Unix parts, 
plus I/O kit and dynamically loadable modules (called kernel 
extensions)
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Mac OS X Structure
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iOS

• Apple mobile OS for iPhone, iPad

• Structured on Mac OS X, added functionality

• Does not run OS X applications natively

• Also runs on different CPU architecture (ARM vs. 
Intel)

• Cocoa Touch Objective-C API for developing apps

• Media services layer for graphics, audio, video

• Core services provides cloud computing, databases

• Core operating system, based on Mac OS X kernel
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Android

• Developed by Open Handset Alliance (mostly Google)

• Open Source

• Similar stack to IOS

• Based on Linux kernel but modified

• Provides process, memory, device-driver management

• Adds power management 

• Runtime environment includes core set of libraries and Dalvik virtual 
machine

• Apps developed in Java plus Android API

• Java class files compiled to Java bytecode then translated to executable than runs 
in Dalvik VM

• Libraries include frameworks for web browser (webkit), database 
(SQLite), multimedia, smaller libc
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Android Structure
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Questions?

• OS structure

• Simple

• Traditional

• Layered

• Microkernel

• Hybrid
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Implement OS: Kernel Data 
Structures
Many similar to standard programming data structures

Singly linked list

Doubly linked list

Circular linked list
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Kernel Data Structures: Binary 
Search Tree
• Binary search tree: left <= right

• Search performance is O(n)

• Balanced binary search tree is O(lg n)
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Kernel Data Structures: Hash 
Map
• Hash function can create a hash map

• Bitmap – string of n binary digits representing the status of n items

• Linux data structures defined in

include files <linux/list.h>, <linux/kfifo.h>,       
<linux/rbtree.h>
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Questions?

• Kernel data structures? 
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Operating System Debugging

• Debugging is finding and fixing errors, or bugs

• OS generate log files containing error information

• Failure of an application can generate core dump file capturing 
memory of the process

• Operating system failure can generate crash dump file containing 
kernel memory

• Beyond crashes, performance tuning can optimize system 
performance

• Sometimes using trace listings of activities, recorded for analysis

• Profiling is periodic sampling of instruction pointer to look for statistical 
trends

• Kernighan’s Law: “Debugging is twice as hard as writing the code in 
the first place. Therefore, if you write the code as cleverly as 
possible, you are, by definition, not smart enough to debug it.”
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Performance Tuning

• Improve performance by removing 
bottlenecks

• OS must provide means of computing and 
displaying measures of system behavior

• For example, “top” program or Windows Task 
Manager
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DTrace

• DTrace tool in Solaris, FreeBSD, Mac OS X 
allows live instrumentation on production 
systems

• Probes fire when code is executed within a 
provider, capturing state data and sending it 
to consumers of those probes 
Example of following XEventsQueued system 
call move from libc library to kernel and 
back
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Example: Record Process 
Running Time
• Using DTrace to record amount of time each 

process with UserID 101 is in running mode 
(on CPU) in nanoseconds
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Example: DTrace Code
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Example: Running the DTrace
Code 
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Questions

• OS debugging
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Operating System Generations

• Operating systems are designed to run on any of 
a class of machines; the system must be 
configured for each specific computer site

• SYSGEN program obtains information 
concerning the specific configuration of the 
hardware system

• Used to build system-specific compiled kernel or 
system-tuned

• Can general more efficient code than one general 
kernel
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System Boot

• When power initialized on system, execution starts at a fixed 
memory location

• Firmware ROM used to hold initial boot code

• Operating system must be made available to hardware so 
hardware can start it

• Small piece of code – bootstrap loader, stored in ROM or EEPROM 
locates the kernel, loads it into memory, and starts it

• Sometimes two-step process where boot block at fixed location 
loaded by ROM code, which loads bootstrap loader from disk

• Common bootstrap loader, GRUB, allows selection of kernel 
from multiple disks, versions, kernel options

• Kernel loads and system is then running
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Questions

• Concept of system generation

• System boot
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