
CISC 3320 MW3

C04a: Overview of OS
Design and Implementation

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/6/2019 1CUNY | Brooklyn College: CISC 3320 OS

Acknowledgement

• This slides are a revision of the slides by
the authors of the textbook

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 2

Outline

• Operating System Design and
Implementation

• Operating System Structure

• Operating System Debugging

• Operating System Generation

• System Boot

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 3

Operating System Design and
Implementation
• Design and implementation of OS not “solvable”, but some

approaches have proven successful

• Internal structure of different Operating Systems can vary
widely

• Start the design by defining goals and specifications

• Affected by choice of hardware, type of system

• User goals and System goals

• User goals – operating system should be convenient to use, easy to
learn, reliable, safe, and fast

• System goals – operating system should be easy to design, implement,
and maintain, as well as flexible, reliable, error-free, and efficient

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 4

Policy vs. Mechanism

• Important principle

• Separation of policy and mechanism

• Mechanisms determine how to do something

• Policies decide what will be done

• The separation of policy from mechanism is a very
important principle, it allows maximum flexibility if
policy decisions are to be changed later

• Example: timer

• Specifying and designing an OS is highly creative
task of software engineering

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 5

Implementation

• Much variation

• Early OSes in assembly language

• Then in system programming languages like Algol, PL/1

• Now in C, C++

• Actually usually a mix of languages

• Lowest levels still in assembly

• Main body in C

• Systems programs in C, C++, scripting languages like PERL, Python, shell scripts

• In more high-level language, an OS is easier to port to other
hardware

• But slower

• Emulation can allow an OS to run on non-native hardware
2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 6

Questions?

• Policy vs. mechanism

• Design and implementation concepts

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 7

Operating System Structure

• General-purpose OS is very large program

• Various ways to structure ones

• Simple structure

• e.g., MS-DOS

• More complex,

• e.g., UNIX

• Layered: an abstraction

• Microkernel,

• e.g., Mach

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 8

Simple Structure: MS-DOS

• Written to provide the most functionality in
the least space

• Not divided into modules

• Although MS-DOS has some structure, its
interfaces and levels of functionality are not well
separated

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 9

MS-DOS

• Single-tasking

• Shell invoked when system
booted

• Simple method to run
program

• No process created

• Single memory space

• Loads program into memory,
overwriting all but the
kernel

• Program exit -> shell
reloaded

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 10

At system startup running a program

MS-DOS

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 11

More Complex Structure:
Traditional UNIX
• Limited by hardware functionality, the original UNIX

operating system had limited structuring.

• Beyond simple but not fully layered

• The UNIX OS consists of two separable parts

• Systems programs

• The kernel

• Consists of everything below the system-call interface
and above the physical hardware

• Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 12

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 13

FreeBSD

• Unix variant

• Multitasking

• User login -> invoke user’s choice of shell

• Shell executes fork() system call to create
process

• Executes exec() to load program into
process

• Shell waits for process to terminate or
continues with user commands

• Process exits with:

• code = 0 – no error

• code > 0 – error code
2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 14

Layered Approach

• The operating system is divided into a
number of layers (levels), each built on top
of lower layers.

• The bottom layer (layer 0), is the hardware;

• the highest (layer N) is the user interface.

• With modularity, layers are selected such
that each uses functions (operations) and
services of only lower-level layers

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 15

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 16

Microkernel System Structure

• Moves as much from the kernel into user space

• Mach example of microkernel

• Mac OS X kernel (Darwin) partly based on Mach

• Communication takes place between user modules using message
passing

• Benefits:

• Easier to extend a microkernel

• Easier to port the operating system to new architectures

• More reliable (less code is running in kernel mode)

• More secure

• Detriments:

• Performance overhead of user space to kernel space communication

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 17

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 18

Application

Program

File

System

Device

Driver

Interprocess

Communication

memory

managment

CPU

scheduling

messagesmessages

microkernel

hardware

user

mode

kernel

mode

Modules

• Many modern operating systems implement
loadable kernel modules

• Uses object-oriented approach

• Each core component is separate

• Each talks to the others over known interfaces

• Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

• Linux, Solaris, etc

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 19

Solaris Modular Approach

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 20

Hybrid Systems

• Most modern operating systems are actually not one pure
model

• Hybrid combines multiple approaches to address performance,
security, usability needs

• Linux and Solaris kernels in kernel address space, so monolithic, plus
modular for dynamic loading of functionality

• Windows mostly monolithic, plus microkernel for different
subsystem personalities

• Apple Mac OS X hybrid, layered, Aqua UI plus Cocoa
programming environment

• Below is kernel consisting of Mach microkernel and BSD Unix parts,
plus I/O kit and dynamically loadable modules (called kernel
extensions)

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 21

Mac OS X Structure

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 22

graphical user interface
Aqua

application environments and services

kernel environment

Java Cocoa Quicktime BSD

Mach

I/O kit kernel extensions

BSD

iOS

• Apple mobile OS for iPhone, iPad

• Structured on Mac OS X, added functionality

• Does not run OS X applications natively

• Also runs on different CPU architecture (ARM vs.
Intel)

• Cocoa Touch Objective-C API for developing apps

• Media services layer for graphics, audio, video

• Core services provides cloud computing, databases

• Core operating system, based on Mac OS X kernel

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 23

Android

• Developed by Open Handset Alliance (mostly Google)

• Open Source

• Similar stack to IOS

• Based on Linux kernel but modified

• Provides process, memory, device-driver management

• Adds power management

• Runtime environment includes core set of libraries and Dalvik virtual
machine

• Apps developed in Java plus Android API

• Java class files compiled to Java bytecode then translated to executable than runs
in Dalvik VM

• Libraries include frameworks for web browser (webkit), database
(SQLite), multimedia, smaller libc

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 24

Android Structure

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 25

Applications

Application Framework

Android runtime

Core Libraries

Dalvik

virtual machine

Libraries

Linux kernel

SQLite openGL

surface

manager

webkit libc

media

framework

Questions?

• OS structure

• Simple

• Traditional

• Layered

• Microkernel

• Hybrid

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 26

Implement OS: Kernel Data
Structures
Many similar to standard programming data structures

Singly linked list

Doubly linked list

Circular linked list

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 27

Kernel Data Structures: Binary
Search Tree
• Binary search tree: left <= right

• Search performance is O(n)

• Balanced binary search tree is O(lg n)

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 28

Kernel Data Structures: Hash
Map
• Hash function can create a hash map

• Bitmap – string of n binary digits representing the status of n items

• Linux data structures defined in

include files <linux/list.h>, <linux/kfifo.h>,
<linux/rbtree.h>

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 29

Questions?

• Kernel data structures?

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 30

Operating System Debugging

• Debugging is finding and fixing errors, or bugs

• OS generate log files containing error information

• Failure of an application can generate core dump file capturing
memory of the process

• Operating system failure can generate crash dump file containing
kernel memory

• Beyond crashes, performance tuning can optimize system
performance

• Sometimes using trace listings of activities, recorded for analysis

• Profiling is periodic sampling of instruction pointer to look for statistical
trends

• Kernighan’s Law: “Debugging is twice as hard as writing the code in
the first place. Therefore, if you write the code as cleverly as
possible, you are, by definition, not smart enough to debug it.”

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 31

Performance Tuning

• Improve performance by removing
bottlenecks

• OS must provide means of computing and
displaying measures of system behavior

• For example, “top” program or Windows Task
Manager

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 32

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 33

DTrace

• DTrace tool in Solaris, FreeBSD, Mac OS X
allows live instrumentation on production
systems

• Probes fire when code is executed within a
provider, capturing state data and sending it
to consumers of those probes
Example of following XEventsQueued system
call move from libc library to kernel and
back

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 34

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 35

Example: Record Process
Running Time
• Using DTrace to record amount of time each

process with UserID 101 is in running mode
(on CPU) in nanoseconds

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 36

Example: DTrace Code

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 37

Example: Running the DTrace
Code

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 38

Questions

• OS debugging

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 39

Operating System Generations

• Operating systems are designed to run on any of
a class of machines; the system must be
configured for each specific computer site

• SYSGEN program obtains information
concerning the specific configuration of the
hardware system

• Used to build system-specific compiled kernel or
system-tuned

• Can general more efficient code than one general
kernel

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 40

System Boot

• When power initialized on system, execution starts at a fixed
memory location

• Firmware ROM used to hold initial boot code

• Operating system must be made available to hardware so
hardware can start it

• Small piece of code – bootstrap loader, stored in ROM or EEPROM
locates the kernel, loads it into memory, and starts it

• Sometimes two-step process where boot block at fixed location
loaded by ROM code, which loads bootstrap loader from disk

• Common bootstrap loader, GRUB, allows selection of kernel
from multiple disks, versions, kernel options

• Kernel loads and system is then running

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 41

Questions

• Concept of system generation

• System boot

2/6/2019 CUNY | Brooklyn College: CISC 3320 OS 42

