

CERT-EU Page 1

CISCO IOS/IOS XE Risk Mitigation

 Version 1.5 – October 2014

1 Introduction
Following a risk assessment with respect to possible compromises in the network

infrastructure of its constituents, CERT-EU has documented best practices to mitigate

risks against the CISCO IOS and IOS XE operating systems. Among others, this

involves a centralized logging facility aiming to monitor specific execution and

configuration commands on a CISCO device. Also, alerts to administrators can be

raised not only from the SIEM, but from the device itself.

2 Cisco IOS/IOS XE Risks
There are two major risks against the Cisco IOS devices. The first involves an IOS

image that could potentially be modified offline by an attacker in order to operate in a

malicious manner. The second involves executing arbitrary code during runtime. In

addition the IOS XE inherits security threats that are derived from the underlying

linux based operating system.

2.1 Low level rootkit
In [5] authors describe a procedure that will produce a compromised IOS image. This

procedure involves an IOS image unpack process, the malware injection process into

the unpacked image, the process of repacking and final the delivery of the

compromised image to the target device. The latter requires privileged access to target

devices as well as rebooting the device.

Of course this kind of procedure may take place much easier by intervening in the

supply-chain of the manufacturer. Because of the large diversity of IOS images that

are developed only for a specific hardware platform, it is not expected that such an

approach will lead in a massive threat against a CISCO network infrastructure.

However, it is possible for a malicious user to design an attack against a specific

organization.

2.2 High level rootkit

2.2.1 Gnu Debugger (GDB) [6]

GDB is an embedded GNU debugger that is present inside every Cisco networking

device (switch, router). GDB is used by Cisco developers for online debugging of the

operation of the device.

There are three modes of GDB operation that are activated only by privileged users

from the command line interface (CLI):

 gdb examine pid: which gives the ability to inspect memory and CPU registers

(read only)

 gdb debug pid : which gives the ability to remotely (via telnet!!!) modify

memory and CPU registers (read/write), while the system still runs. The latter

may potentially lead in infection during runtime.

 gdb kernel : which is used by the developers when serial access is available.

This mode freezes the system.

CERT-EU Page 2

Although GDB is not useful during normal device operation and it appears to be a

serious security risk, it cannot be disabled.

2.2.2 Tool Command Language (Tcl)

The tcl (tcl shell) support provides scripting functionality for IOS devices. Tclsh is

enabled to accounts with privilege level 15. However, backdoors have been developed

with tclsh [7].

2.2.3 IOS XE additional risk

IOS XE runs as a daemon, named iosd, on a linux based operating system. The

adversary can potentially gain privileged access to the system and install a unix based

rootkit.

3 Detection of Compromises
Detection method relies on the fact that specific region of the memory of a Cisco

network device should be marked as RO (read-only) as it contains the instructions to

be executed. These instructions should not be overwritten. This specific memory area

is called as text memory area.

There are two main methods to check the integrity of code running an IOS/IOS XE

image, and both require a memory dump of the device. Memory dump is produced

with a built-in command of the IOS, which implies trust in the memory-dumping

process, which may itself be compromised. Described procedures do not apply to

Cisco's XR, NX-OS and PIX-OS operating systems.

3.1 Method with two memory dumps [9, 10]
First, a memory dump file of a possible infected router needs to be obtained. Then, the

hash of the text memory area region of the memory dump file needs to be computed.

Then, it is necessary to load the same IOS / IOS XE version from a known-good

image to the same router platform, and repeat again the process.

Integrity of code executed is verified by comparing the hashes of the two text memory

area extracts.

However, it appears that this procedure is applicable only to some versions of the IOS

(12.x and 15.x family) that have not implemented the ASLR technique. It is also a

procedure that only detects the code integrity being executed in memory. No other

information is revealed.

Finally, it is worth mentioning that this method is independent of the start-up

configuration or running configuration of the CISCO device.

3.1.1 Case Study of method with two memory dumps

This method is followed for a CISCO WS-C3750G-24TS layer 3 switch, with IOS

software version 12.2(55)SE6 but it is also similar for ASR1K series routers that run

IOS XE.

3.1.1.1 Device preparation

Device configuration must take place in order to be able to store the memory dump

core file on a remote server. Although this can be implemented with a protocol like

tftp, the ftp is preferred because of no limitations on memory core file size.

router#conf t

CERT-EU Page 3

ip ftp username Cisco

ip ftp password 7 0321xxxxxxxxxx710A1016141D

exception core-file r-router compress timestamp

exception protocol ftp

exception region-size 65536

exception dump ip_address

end

Listing 1: Configuration for the memory dump

The memory dump is actually produced by the execution command write core.

router# write core

Listing 2: Memory dump command

3.1.1.2 Extracting text memory area from memory dump

Now that the memory dump file is produced, an uncompressing is needed with a

common uncompressing tool and extraction of the text memory area. In order to do

that one has to find the starting address as well the size of the text memory area.

This information is provided by the show region command with the description as

"coredump:text".

router#sh region

Region Manager:

 Start End Size(b) Class Media Name

 0x00000000 0x07FFFFFF 134217728 Local R/W main

 0x00000020 0x07FFFFFF 134217696 Local R/W main:coredump

 0x00003054 0x00403053 4194304 Local R/W coredump:heap

 0x004030A8 0x008030A7 4194304 Local R/W coredump:heap

 0x008030FC 0x00FFFFFF 8376068 Local R/W coredump:heap

 0x01000000 0x02DD9C07 31300616 Text R/W coredump:text

 0x02E00000 0x02EFFFFF 1048576 Text R/W coredump:dltext

 0x02F00000 0x038D2DDB 10300892 Data R/W coredump:data

 0x035A179C 0x035E179B 262144 Local R/W data:reclaimed_heap

 0x038D2DDC 0x0433592B 10890064 Bss R/W coredump:bss

 0x04335930 0x063FFFFF 34383568 Local R/W coredump:heap

 0x06400000 0x06FFFFFF 12582912 Iomem R/W coredump:iomem

Free Region Manager:

 Start End Size(b) Class Media Name

 0x07000054 0x07FFDFFF 16768940 Local R/W heap

Listing 3: Memory mapping

The HEX value of starting address of the text memory area is computed which gives

HEX(10000000)=16777216.

Then, this value is used to extract the text memory area from the memory core dump

file along with the text area size which is 31300616. In order to complete extraction

the dd tool on a unix-like system is used:

dd if=router.dump bs=1 skip=16777216 count=31300616 of=router.dump_main_text

Then the md5 hash of the router.dump_main_text file has to be computed.

root@kali:~/# md5sum router.dump_main_text

2f07329cbb22330a1618a2f7201b844b router.dump_main_text

CERT-EU Page 4

Repeating the same process with the same router platform, but with a known-good

image and extracting again the text area memory can be used as a reference. Then the

md5 hash is computed again.

root@kali:~/# md5sum router.cleandump_main_text

2f07329cbb22330a1618a2f7201b844b router.cleandump_main_text

If hashes match as in this case the IOS image integrity of the device can be verified.

3.1.2 Extracting text memory area directly from CLI [9, 10]

A faster way to produce the text area file is to issue the following command from

command line interface (CLI) and then compute the hash from a computer

workstation.

router#copy system:memory/text ftp:

Address or name of remote host []? <FTP server ip address>

Destination filename [text]? router_main_text

Writing router_main_text !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

<output suppressed>

Except for ftp there is also a possibility to use another more secure protocol like scp

or https.

3.1.3 Computing the hash of text area from inside the router [9, 10]

At last there is a more convenient way to compute the hash of the text area directly

from CLI. Administrators may use the following command:

verify /md5 system:memory/text

Although this procedure produces the desired result in a fast and convenient way is

considered the least secure one. It should be avoided as it is very easy for an attacker

to preinstall this value within a possible compromised image.

3.2 Method of one memory dump and one known-good IOS image
Another method, which is convenient enough and easy to use, requires one memory

dump and a known-good image. This method also relies on the fact that the text

memory area contains the instructions to be executed and should not be overwritten.

The main difference is that the reference text area memory hash is derived from a

known-good image itself. This method has been described by Felix Lindner during a

talk on CISCO forensics.

CERT-EU Page 5

Slide form FX@25C3 talk on CISCO IOS Forensics and Exploits

Based on this method, Didier Stevens [4] has developed a tool to check the image

integrity which is a part of a python toolset named "Network Appliance Forensic

Toolkit". In order to use this script naft-icd.py, a memory dump is needed as

described in previous paragraphs as well as a known-good IOS image. The command

is issued with checktext argument.

e.g.
python naft-icd.py checktext router.dump router_ios_.bin

In case that the IOS image is compressed with a proprietary algorithm (as in 3750

switches) this method is not applicable because the tool cannot uncompress the image.

3.3 Proposed methods applicability
Newer versions of IOS have implemented the Address Space Layout

Randomization (ASLR) technique. ASLR is a computer security technique used in

protection against buffer overflow attacks. In order to prevent an attacker from

reliably jumping to a particular exploited function in memory (for example), ASLR

involves randomly arranging the positions of key data areas of a program, including

the base of the executable and the positions of the stack, heap, and libraries, in a

process's address space[2].

3.3.1 IOS ASLR enabled detection methods

Since CISCO is not able to provide users with a complete list of platform/IOS

combinations where the ASLR feature is implemented, one has to discover it by

http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Buffer_overflow_protection
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Stack-based_memory_allocation
http://en.wikipedia.org/wiki/Dynamic_memory_allocation
http://en.wikipedia.org/wiki/Library_%28computer_science%29
http://en.wikipedia.org/wiki/Process_%28computer_science%29
http://en.wikipedia.org/wiki/Address_space

CERT-EU Page 6

himself. It is tricky task and it requires rebooting the router and issuing the command

show region twice.

Router1#show region
Region Manager:

 Start End Size(b) Class Media Name
 0x16000000 0x17FFFFFF 33554432 Iomem R/W iomem:(iomem)
 0x60000000 0x75FFFFFF 369098752 Local R/W main
 0x6001B5B8 0x6487FFFF 75909704 IText R/O main:text
 0x6488BC40 0x6692125F 34166304 IData R/W main:data
 0x66921260 0x6742621F 11554752 IBss R/W main:bss
 0x67426220 0x75FFFFFF 247307744 Local R/W main:heap
 0x80000000 0x95FFFFFF 369098752 Local R/W main:(main_k0)
 0xA0000000 0xB5FFFFFF 369098752 Local R/W main:(main_k1)
 0xF6000000 0xF7FFFFFF 33554432 Iomem R/W iomem

show region before reboot

router1#show region
Region Manager:

 Start End Size(b) Class Media Name
 0x16000000 0x17FFFFFF 33554432 Iomem R/W iomem:(iomem)
 0x60000000 0x75FFFFFF 369098752 Local R/W main
 0x6001EDF8 0x6487FFFF 75895304 IText R/O main:text
 0x6488F480 0x66924A9F 34166304 IData R/W main:data
 0x66924AA0 0x67429A5F 11554752 IBss R/W main:bss
 0x67429A60 0x75FFFFFF 247293344 Local R/W main:heap
 0x80000000 0x95FFFFFF 369098752 Local R/W main:(main_k0)
 0xA0000000 0xB5FFFFFF 369098752 Local R/W main:(main_k1)
 0xF6000000 0xF7FFFFFF 33554432 Iomem R/W iomem

show region after reboot

As it can be noticed, the starting address of the main:text memory area, the

main:data and the main:bss area have been changed, which implies that the ASLR

technique is implemented.

There is also the chance that the starting address of the main:text area remains the

same but the main:data and the main:bss area have been changed.

The below example is taken from a 3845 CISCO router with c3845-

adventerprisek9_ivs-mz.124-3j.bin IOS image.

Router2#sh region

Region Manager:

 Start End Size(b) Class Media Name

 0x0FFFFE00 0x0FFFFFFF 512 Iomem R/W BCM region

 0x2D900000 0x2FFFFDFF 40893952 Iomem R/W iomem

 0x60000000 0x6D8FFFFF 227540992 Local R/W main

 0x6001105C 0x63040F77 50528028 IText R/O main:text

 0x63049EE0 0x6593FBFF 42949920 IData R/W main:data

 0x6593FC00 0x65EC833F 5801792 IBss R/W main:bss

 0x65EC8340 0x6D8FFFFF 128154816 Local R/W main:heap

 0x80000000 0x8D8FFFFF 227540992 Local R/W main:(main_k0)

 0xA0000000 0xAD8FFFFF 227540992 Local R/W main:(main_k1)

show region before reboot

Router2#sh region

Region Manager:

 Start End Size(b) Class Media Name

 0x0FFFFE00 0x0FFFFFFF 512 Iomem R/W BCM region

 0x2D900000 0x2FFFFDFF 40893952 Iomem R/W iomem

 0x60000000 0x6D8FFFFF 227540992 Local R/W main

 0x6001105C 0x63040F77 50528028 IText R/O main:text

 0x6304AB20 0x6594083F 42949920 IData R/W main:data

CERT-EU Page 7

 0x65940840 0x65EC8F7F 5801792 IBss R/W main:bss

 0x65EC8F80 0x6D8FFFFF 128151680 Local R/W main:heap

 0x80000000 0x8D8FFFFF 227540992 Local R/W main:(main_k0)

 0xA0000000 0xAD8FFFFF 227540992 Local R/W main:(main_k1)

show region after reboot

Another method to detect ASLR is to compute directly from CLI the hash of the

main:text region provided that a known-good image is loaded to the router. An

administrator can issue the command:

verify /md5 system:memory/text

record the hash value, reload the router, issue the same command and compare the

hashes.

In the case of an ASLR image, there is not a tool or method publicly available to

perform an IOS image integrity check and a verification process must be requested to

the vendor.

In the following Table 1 the advantages and disadvantages of each method are

summarized.

Method Advantages Disadvantages

2 Whole Memory

Dumps
Larger Scope.

Time consuming.

Possible Big impact on network

operation.

Not applicable on ASLR

enabled IOS.

2 Text Area

Memory Dumps

Fast deployment.

Larger Scope.

Possible medium impact on

network operation.

Not applicable on ASLR

enabled IOS.

Compute text area

hash from CLI

Negligible impact on

network operation.

Larger Scope.

Least reliable method.

Not applicable on ASLR

enabled IOS.

1 Memory Dump

 1 IOS image

Fast deployment.

Easier to deploy.

Low impact on network

operation.

Smaller Scope as MZIP

compressed IOS not supported.

Not applicable on ASLR

enabled IOS.

Table 1: IOS Integrity methods' comparison

3.3.2 Additional checks: call stacks and iosd boundaries [9, 10]

During typical operation, Cisco IOS processes should have the program counter (PC)

and return address (RA) within the boundary of the text section as this section was

identified by the output of the show region command. To confirm that the PC and RA

are within the text section boundaries, network administrators must use the show

CERT-EU Page 8

stacks pid command where the process ID (PID) can be obtained by using the show

processes command.

The following example shows how to display the PID of the process running on the

3750 Cisco IOS device of the previous example where the text region starts at

0x01000000 and ends at 0x02DD9C07.

 router#show processes
CPU utilization for five seconds: 21%/3%; one minute: 23%; five minutes: 22%

 PID QTy PC Runtime(ms) Invoked uSecs Stacks TTY Process

 1 Cwe 2AE82D4 4747 47028 100 5460/6000 0 Chunk Manager

 2 Csp 1BCC0D0 63375 2469566 25 2588/3000 0 Load Meter

 3 Hwe 1FF48E0 0 1 0 8764/9000 0 Connection Mgr

 4 Lst 2AF6C40 151037105 6356998 23759 5676/6000 0 Check heaps

 5 Cwe 2AFEAE4 15453 5433 2844 5524/6000 0 Pool Manager

 6 Mst 1F7CF14 0 2 0 5560/6000 0 Timers

 7 Mwe 10277FC 0 1 0 5760/6000 0 AggMgr Process

 8 Mwe 1392F64 0 1 0 23672/24000 0 Crash writer

 9 Mwe 1D353FC 40272795 75256891 535 3060/6000 0 ARP Input

[Output omitted for brevity]

router#show stacks 9

Process 9: ARP Input

 Stack segment 0x35A2CD4 - 0x35A4444

 FP: 0x35A43F0, RA: 0x2B03C80

 FP: 0x35A4430, RA: 0x1D35400

 FP: 0x35A4438, RA: 0x1BD4A68

 FP: 0x0, RA: 0x1BCB4E0

However this additional check is hard to accomplish in a manual manner considering

the fact that often exist more than 300 processes running in a router.

3.3.3 Checking the ROM Monitor Information [9, 10]

The ROM monitor is a bootstrap program that initializes the hardware and boots the

Cisco IOS Software. The booting location of the Cisco IOS Software is defined on the

information stored in ROMMON (See APPENDIX A for a full booting process

diagram). Although there is not a feasible way to check the integrity of the

ROMMON, one can interrupt the booting process and check the information stored

with the set command.

switch: set

BOOT=flash:/c2960-lanbasek9-mz.122-50.SE5/c2960-lanbasek9-mz.122-50.SE5.bin

CLEI_CODE_NUMBER=COMCU00ARB

MAC_ADDR=D4:D7:XX:XX:XX:XX

MODEL_NUM=WS-C2960-24TC-L

MODEL_REVISION_NUM=T0

MOTHERBOARD_ASSEMBLY_NUM=73-XXXXX-XX

MOTHERBOARD_REVISION_NUM=XX

MOTHERBOARD_SERIAL_NUM=FCQ1XXXXX

POWER_SUPPLY_PART_NUM=341-0097-03

POWER_SUPPLY_SERIAL_NUM=ALDXXXXXX

SDM_TEMPLATE_ID=0

SWITCH_PRIORITY=1

SYSTEM_SERIAL_NUM=FCQ15XXXXX

TAN_NUM=800-XXXXX-XX

TAN_REVISION_NUMBER=XX

VERSION_ID=V10

4 Memory Dump Analysis
In Network Appliance Forensic Toolkit there are some scripts available to analyze

memory dumps. The most useful ones can provide information such as:

CERT-EU Page 9

• show history: user issued commands from command line interface.

• show events: logging information which has been buffered

• show region: memory mapping

• Extract IPv4 packets: ip packets that were still in memory

• CW Strings: Information about IOS and hardware platform

• show Processes : running processes before memory dump

There are also some free tools available that have been developed by Recurity Labs.

However, these tools are only available for specific platforms (CISCO 1700, CISCO

2600, and CISCO 2691).

5 Prevention [1]
In order to prevent infection either during runtime or to avoid loading a compromised

image [8] into a networking device, there are some practices that the network

administrators should follow.

5.1.1 Up-to-Date Software

IOS is an operating system under continuous development. CISCO is releasing

software updates with bug fixes and new security features. Therefore, it is imperative

that network administrators maintain their networks with up-to-date software and they

are regularly informed about CISCO's advisories. The best available resource is

Cisco's Security Intelligence Operations portal that can be reached at:

http://tools.cisco.com/security/center/home.x

5.1.2 Implement Change Control

Change control is a mechanism through which changes being made to network

devices are requested, approved, implemented, and audited. In the context of ensuring

the authenticity of CISCO IOS software images used in the network, change control is

relevant because it helps greatly when determining which changes have been

authorized and which are unauthorized.

5.1.3 Limit Access to Devices

Once Authentication Authorization and Accounting AAA has been implemented to

control which users can log in to particular network devices, access control should be

implemented to limit from which IP addresses users may perform management

functions on a network device. This access control includes multiple security features

and solutions to limit access to a device:

 VTY access classes

 Infrastructure Access Control Lists (iACL)

 Simple Network Management Protocol (SNMP) access lists

5.1.4 Isolated Management VLAN

Workstations that are used for management purposes of network devices or IT

equipment in general should operate in an isolated Management VLAN. This VLAN

should also have no access to external networks either for incoming or outgoing

communications.

http://tools.cisco.com/security/center/home.x

CERT-EU Page 10

5.1.5 Verifying IOS image integrity (Offline)

Every IOS image that is going to be installed in any network device should follow a

verification procedure to ensure authenticity and integrity. It is also a good practice

not to run preinstalled IOS as it may have been compromised during the supply chain.

Network administrators should fully erase the flash and the NVram memory of the

router and install an IOS that has been verified by them, prior to installing the device

in a production environment. The first step is to download the latest IOS image with

the desired feature set form CISCO's website (Fig.1).

Figure 1: IOS image MD5 checksum

The MD5 checksum that is provided from the download page should be recorded.

Running the hash function against (Fig.2) the downloaded file or against one that is

on already saved in a storage server can verify the image.

Figure 2: Validating a stored IOS image with MD5 checksum

In CISCO IOS Software Releases 12.2(4)T and 12.0(22)S, a MD5 File Validation

feature was added that allows network administrators to calculate the MD5 hash of a

CISCO IOS software image file that is loaded on a device. It also allows

administrators to verify the calculated MD5 hash against that provided by the user.

Once the MD5 hash value of the installed CISCO IOS image is determined, it can also

be compared with the MD5 hash provided by CISCO to verify integrity of the image

file.
router#verify /md5 flash:c3750-ipservicesk9-mz.122-55.SE1.bin

..

CERT-EU Page 11

..

..

......................................Done!

verify /md5 (flash:/c3750-ipservicesk9-mz.122-55.SE1.bin) =

59c51e602afe4e63994c8ca24f1239a4

Figure 3: Validating an IOS image with MD5 checksum stored in a network device

Network administrators can save time by downloading a compressed file from

CISCO's web site that contains all the hash values of all IOS images. File can be

reached at the following link:

 http://www.cisco.com/c/dam/assets/about/security/resources/ioshashes.zip.

5.1.6 Verifying IOS image (online)

Network administrators can build a reference database with the hashes of the text area

region as described in the first paragraphs related with their own equipment. During

an initial networking device installation with a known-good IOS image, it is easy

enough to compute the hash value through the CLI command and identify if the IOS

image that is being used is also ASLR enabled. (See paragraphs 3.1.3 & 3.3.1).

Periodically checks of the image integrity can be scheduled according to the initially

developed methods and based on that reference database.

5.1.7 Centralized log management

For network administrators to overview events taking place on a network, a

comprehensive logging structure using centralized log collection and correlation must

be implemented - preferably using a SIEM platform. Additionally, standardized

logging and time configuration must be deployed on all network devices to facilitate

accurate logging. Furthermore, logging from the AAA functions in the network

should be included in the centralized logging implementation. It is described shortly

below along with the most important implementations that must exist in a centralized

log management system.

Set up “ntp” with authentication to ensure synchronization between network devices

with authentic time servers.
ntp authenticate

ntp authentication-key number md5 value

ntp trusted-key key-number

ntp server ip-address [version number] [key keyid] [source interface] [prefer]

Set up “timestamps” to ensure proper time format and zone for the syslog messages.
 service timestamps log datetime msec show-timezone

Setup the centralized “logging server(s)” where all syslog messages should be stored.
logging server ip

logging trap level

Setup the “login” facility to log successful or failed user logins.
login on-failure log

login on-success log

Setup “archive log” to log configuration changes. [3]

CERT-EU Page 12

archive

 log config

logging enable

logging size 200

hidekeys

notify syslog

Setup “accounting” with TACACS+ to log execution commands [1]
aaa accounting exec default start-stop group tacacs

aaa accounting commands 0 default start-stop group tacacs

aaa accounting commands 1 default start-stop group tacacs

aaa accounting commands 15 default start-stop group tacacs

TACACS+ logs are preserved in a file managed by TACAS+ configuration settings. It

is wise to index/store both syslog messages and tacacs+ log file into a SIEM system

(Fig 4).

Figure 4: Centralized log management with SIEM

The latter will also allow a correlation procedure to take place as well as a more

efficient monitoring process (Fig. 5).

5.1.8 Monitoring attributes

As it was stated before, some IOS features (such as GDB) may introduce a serious

security risk. As long as there is no way to disable these features, network

administrators should establish an alerting mechanism in case they are used.

The commands that should definitely raise an alert upon execution are:

 gdb

 test

 tclsh

 copy

 reload

The commands that should definitely raise an alert upon configuration change are:

 service internals

 boot

CERT-EU Page 13

 config-register

The last command controls the booting process of the network device which is

explained in detail in APPENDIX A.

Also the following commands may be used to connect to line cards or switch

processors on products that support them. They are particularly important because

after the CISCO IOS device is connected to a line card or switch processor the

commands executed are not logged or authorized using the AAA server.[10]

 attach

 remote

 ipc-con

 if-con

 execute-on

For IOS XE the following commands must be also monitored:

 attach

 hw-module

as well the commands that can be used to connect to the Linux shell of the Cisco IOS

XE.

 platform shell

 request

Common commands that should be monitor because they might be used during a

reconnaissance phase of an upcoming attack are:

 show platform

 show region

 show memory

Last but no least the do-exec version of any of the previously mentioned commands

while in configuration mode.

Important Note: While CISCO IOS allows command abbreviation, abbreviated

commands such as tes, rem, etc should also be considered when examining logs.

CERT-EU Page 14

Figure 5: Monitoring configuration changes with SPLUNK

5.1.9 Alert from a device with a CISCO IOS Applet

As mentioned before, some network devices have built-in scripting capabilities.

Network administrators can take advantage of this feature and raise an alert (an email

notification for example) from the device itself. In the following example, an email

notification is send to a predefined email address upon successful ssh login.

event manager environment _email_to username@domain

event manager environment _email_server ip_address

event manager environment _email_from device_name@domain

event manager applet login-ssh-ok

event syslog pattern "SEC_LOGIN-5-LOGIN_SUCCESS:"

action 1.0 mail server "$_email_server" to "$_email_to" from

"$_email_from" subject "$_event_pub_time: Login via SSH" body "$_syslog_msg"

 action 1.5 syslog msg "LOGIN SUCCESS - Mail Sent"

5.1.10 Restrict set of available commands

Another approach that network administrators may follow is to restrict their users to a

set of available execution commands. Since these commands cannot be disabled from

the device itself, it is possible to configure TACACS+ to deny execution of these

commands given that TACACS+ is used for AAA. Configuration is specific to the

used TACACS+ application.

mailto:username@domain
mailto:username@cert.europa.eu
mailto:sw-access@cert.europa.eu

CERT-EU Page 15

APPENDIX A: CISCO IOS booting process

CERT-EU Page 16

Bibliography

1. CISCO Guide to Harden CISCO IOS Devices, 2011

http://www.Cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.html#usingaaa

2. Address space layout randomization (ASLR)

http://en.wikipedia.org/wiki/Address_space_layout_randomization

3. Log configuration commands entered on your CISCO router

http://blog.ipspace.net/2006/11/log-configuration-commands-entered-on.html

4. Network Appliance Forensic Toolkit | Didier Stevens,2014

http://blog.didierstevens.com/programs/network-appliance-forensic-toolkit/

5. Killing the myth of CISCO IOS rootkits:DIK (Da Ios rootKit), Sebastian 'topo'

Muñiz, May 2008

http://www.coresecurity.com/files/attachments/Killing_the_myth_of_Cisco_IOS_rootkits.pdf

6. Fuzzing and Debugging CISCO IOS, Muniz Sebastian, Ortega Alfredo,

March 2011

https://media.blackhat.com/bh-eu-

11/Sebastian_Muniz/BlackHat_EU_2011_MunizOrtega_Cisco_iOS-WP.pdf

7. CISCO IOS rootkits and malware, Jason Nehrboss, 2012.

https://hakin9.org/exploiting-software-0412/

8. Rootkits on CISCO IOS Devices, 2008

http://www.Cisco.com/c/en/us/support/docs/csr/Cisco-sr-20080516-rootkits.html

9. CISCO IOS Software Integrity Assurance, 2014

http://www.cisco.com/web/about/security/intelligence/integrity-assurance.html

10. CISCO IOS XE Software Integrity Assurance, 2014

http://www.cisco.com/web/about/security/intelligence/ios-xe-integrity-assurance.html

http://www.cisco.com/c/en/us/support/docs/ip/access-lists/13608-21.html
http://en.wikipedia.org/wiki/Address_space_layout_randomization
http://blog.ipspace.net/2006/11/log-configuration-commands-entered-on.html
http://blog.didierstevens.com/programs/network-appliance-forensic-toolkit/
http://blog.didierstevens.com/programs/network-appliance-forensic-toolkit/
https://media.blackhat.com/bh-eu-11/Sebastian_Muniz/BlackHat_EU_2011_MunizOrtega_Cisco_iOS-WP.pdf
https://media.blackhat.com/bh-eu-11/Sebastian_Muniz/BlackHat_EU_2011_MunizOrtega_Cisco_iOS-WP.pdf
https://hakin9.org/exploiting-software-0412/
http://www.cisco.com/c/en/us/support/docs/csr/cisco-sr-20080516-rootkits.html
http://www.cisco.com/web/about/security/intelligence/integrity-assurance.html

	1 Introduction
	2 Cisco IOS/IOS XE Risks
	2.1 Low level rootkit
	2.2 High level rootkit
	2.2.1 Gnu Debugger (GDB) [6]
	2.2.2 Tool Command Language (Tcl)
	2.2.3 IOS XE additional risk

	3 Detection of Compromises
	3.1 Method with two memory dumps [9, 10]
	3.1.1 Case Study of method with two memory dumps
	3.1.1.1 Device preparation
	3.1.1.2 Extracting text memory area from memory dump

	3.1.2 Extracting text memory area directly from CLI [9, 10]
	3.1.3 Computing the hash of text area from inside the router [9, 10]

	3.2 Method of one memory dump and one known-good IOS image
	3.3 Proposed methods applicability
	3.3.1 IOS ASLR enabled detection methods
	3.3.2 Additional checks: call stacks and iosd boundaries [9, 10]
	3.3.3 Checking the ROM Monitor Information [9, 10]

	4 Memory Dump Analysis
	5 Prevention [1]
	5.1.1 Up-to-Date Software
	5.1.2 Implement Change Control
	5.1.3 Limit Access to Devices
	5.1.4 Isolated Management VLAN
	5.1.5 Verifying IOS image integrity (Offline)
	5.1.6 Verifying IOS image (online)
	5.1.7 Centralized log management
	5.1.8 Monitoring attributes
	5.1.9 Alert from a device with a CISCO IOS Applet
	5.1.10 Restrict set of available commands

