

King Fahd University of Petroleum & Minerals

CISE 302

Linear Control Systems

Laboratory Manual
Systems Engineering Department

Revised - September 2012

2 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 2

Table of Contents

Lab Experiment 1: Using MATLAB for Control Systems .. 4

Part I: Introduction to MATLAB .. 4

Part II: Polynomials in MATLAB .. 15

Part III: Scripts, Functions & Flow Control in MATLAB .. 19

Laboratory Experiment 2: Mathematical Modeling of Physical Systems 26

Mass-Spring System Model .. 26

Speed Cruise Control example: ... 28

Mass-Spring System Example: ... 29

Exercise 1 .. 30

Exercise 2 .. 30

Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK 31

Overview: .. 31

Mass-Spring System Model .. 36

Exercise 1: Modeling of a second order system .. 37

Exercise 2: Simulation with system parameter variation .. 39

Exercise 3: System response from the stored energy with zero input ... 40

Exercise 4: Cruise System .. 40

Laboratory Experiment 4: Linear Time-invariant Systems and Representation 41

Objectives: This experiment has following two objectives: ... 41

Mass-Spring System Model .. 41

Transfer Function: ... 42

Linear Time-Invariant Systems in MATLAB: .. 42

Examples of Creating LTI Models .. 42

Simulation of Linear systems to different inputs .. 44

Exercise 1: ... 46

Exercise 2: ... 46

Exercise 3: ... 46

Exercise 4: ... 46

Lab Experiment 5: Block Diagram Reduction ... 47

Exercise 1: ... 51

Exercise 2: ... 51

Exercise 3: ... 52

Lab Experiment 6: Performance of First order and second order systems 53

3 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 3

Exercise 1: ... 54

Exercise 2: ... 56

Lab Experiment 7: DC Motor Characteristics ... 57

Model of the armature-controlled DC motor: ... 58

Model Simulation using Simulink: ... 59

Parameter Identification: ... 65

Lab Experiment 8: Validation of DC Motor Characteristics ... 68

Model validation: .. 68

Nonlinear characteristics ... 70

Lab Experiment 9: Effect of Feedback on disturbance & Control System Design 74

Lab Experiment 10: Effect of Feedback on disturbance & Control System Design of Tank Level

System .. 78

Lab Experiment 11: Introduction to PID controller ... 80

Lab Experiment 12: Open Loop and Closed Loop position control of DC Motor 88

Lab Experiment 13: Simple Speed Control of DC Motor ... 94

Lab Experiment 14: PID Controller Design for Two Tank System ... 101

Part – I: Design of Proportional Control in the PID Controller .. 103

Part – II: Design of Integral Part in the PID Controller .. 107

4 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 4

CISE 302

Linear Control Systems

Lab Experiment 1: Using MATLAB for Control Systems

Objectives: This lab provides an introduction to MATLAB in the first part. The lab also

provides tutorial of polynomials, script writing and programming aspect of MATLAB from

control systems view point.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

Category Soft-Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 MATLAB scripts and their results should be reported properly.

Part I: Introduction to MATLAB

Objective: The objective of this exercise will be to introduce you to the concept of

mathematical programming using the software called MATLAB. We shall study how to

define variables, matrices etc, see how we can plot results and write simple MATLAB codes.

MATLAB TUTORIAL

Reference: Engineering Problem Solving Using MATLAB, by Professor Gary Ford, University of California, Davis.

5 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 5

Topics

 Introduction

 MATLAB Environment

 Getting Help

 Variables

 Vectors, Matrices, and Linear Algebra

 Plotting

Introduction

 What is MATLAB ?

• MATLAB is a computer program that combines computation and
visualization power that makes it particularly useful tool for
engineers.

• MATLAB is an executive program, and a script can be made with a
list of MATLAB commands like other programming language.

 MATLAB Stands for MATrix LABoratory.

• The system was designed to make matrix computation particularly easy.

 The MATLAB environment allows the user to:
• manage variables
• import and export data
• perform calculations
• generate plots
• develop and manage files for use with MATLAB.

MATLAB

Environment

To start MATLAB:

START  PROGRAMS 

MATLAB 6.5  MATLAB

6.5

Or shortcut creation/activation

on the desktop

6 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 6

Display Windows

Display Windows (con’t…)

 Graphic (Figure) Window

 Displays plots and graphs

 Created in response to graphics

commands.

 M-file editor/debugger window

 Create and edit scripts of commands called

M-files.

Getting Help

 type one of following commands in the command
window:
 help – lists all the help topic

 help topic – provides help for the specified topic

 help command – provides help for the specified command

 help help – provides information on use of the help command

 helpwin – opens a separate help window for navigation

 lookfor keyword – Search all M-files for keyword

7 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 7

Variables

 Variable names:

 Must start with a letter

 May contain only letters, digits, and the underscore “_”

 Matlab is case sensitive, i.e. one & OnE are different variables.

 Matlab only recognizes the first 31 characters in a variable name.

 Assignment statement:

 Variable = number;

 Variable = expression;

 Example:

>> tutorial = 1234;

>> tutorial = 1234

tutorial =

1234

NOTE: when a semi-colon
”;” is placed at the end of
each command, the result
is not displayed.

Variables (con’t…)

 Special variables:
 ans : default variable name for the result

 pi:  = 3.1415926…………

 eps:  = 2.2204e-016, smallest amount by which 2 numbers can differ.

 Inf or inf : , infinity

 NaN or nan: not-a-number

 Commands involving variables:
 who: lists the names of defined variables

 whos: lists the names and sizes of defined variables

 clear: clears all varialbes, reset the default values of special
variables.

 clear name: clears the variable name

 clc: clears the command window

 clf: clears the current figure and the graph window.

Vectors, Matrices and Linear Algebra

 Vectors

 Matrices

 Array Operations

 Solutions to Systems of Linear

Equations.

8 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 8

Vectors

 A row vector in MATLAB can be created by an explicit list, starting with a left bracket,
entering the values separated by spaces (or commas) and closing the vector with a right
bracket.

 A column vector can be created the same way, and the rows are separated by semicolons.

 Example:

>> x = [0 0.25*pi 0.5*pi 0.75*pi pi]

x =

0 0.7854 1.5708 2.3562 3.1416

>> y = [0; 0.25*pi; 0.5*pi; 0.75*pi; pi]

y =

0

0.7854

1.5708

2.3562

3.1416

x is a row vector.

y is a column vector.

Vectors (con’t…)

 Vector Addressing – A vector element is addressed in MATLAB with an integer

index enclosed in parentheses.

 Example:

>> x(3)

ans =

1.5708

 1st to 3rd elements of vector x

 The colon notation may be used to address a block of elements.

(start : increment : end)

start is the starting index, increment is the amount to add to each successive index, and end

is the ending index. A shortened format (start : end) may be used if increment is 1.

 Example:

>> x(1:3)

ans =

0 0.7854 1.5708

NOTE: MATLAB index starts at 1.

 3rd element of vector x

Vectors (con’t…)
Some useful commands:

x = start:end create row vector x starting with start, counting by
one, ending at end

x = start:increment:end create row vector x starting with start, counting by
increment, ending at or before end

linspace(start,end,number) create row vector x starting with start, ending at
end, having number elements

length(x) returns the length of vector x

y = x’ transpose of vector x

dot (x, y) returns the scalar dot product of the vector x and y.

9 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 9

Matrices

A is an m x n matrix.

 A Matrix array is two-dimensional, having both multiple rows and multiple columns,

similar to vector arrays:

 it begins with [, and end with]

 spaces or commas are used to separate elements in a row

 semicolon or enter is used to separate rows.

•Example:

>> f = [1 2 3; 4 5 6]

f =

1 2 3

4 5 6

>> h = [2 4 6

1 3 5]

h =

2 4 6

1 3 5
the main diagonal

Matrices (con’t…)

 Magic Function

 For example you can generate a matrix by entering

>> m=magic(4)

It generates a matrix whose elements are such that the sum of all elements in
its rows, columns and diagonal elements are same

 Sum Function

 You can verify the above magic square by entering

>> sum(m)

 For rows take the transpose and then take the sum

>> sum(m’)

 Diag

 You can get the diagonal elements of a matrix by entering

>> d=diag(m)

>> sum(d)

Matrices (con’t…)

 Matrix Addressing:

-- matrixname(row, column)

-- colon may be used in place of a row or column reference to select
the entire row or column.

recall:
f =

1 2 3
4 5 6

h =
2 4 6
1 3 5

 Example:

>> f(2,3)

ans =

6

>> h(:,1)

ans =

2

1

10 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 10

Matrices (con’t…)

Some useful commands:

zeros(n)
zeros(m,n)

ones(n)
ones(m,n)

rand(n)
rand(m,n)

size (A)

length(A)

returns a n x n matrix of zeros
returns a m x n matrix of zeros

returns a n x n matrix of ones
returns a m x n matrix of ones

returns a n x n matrix of random number
returns a m x n matrix of random number

for a m x n matrix A, returns the row vector [m,n]
containing the number of rows and columns in
matrix.

returns the larger of the number of rows or
columns in A.

Matrices (con’t…)

Transpose B = A’

Identity Matrix eye(n)  returns an n x n identity matrix
eye(m,n)  returns an m x n matrix with ones on the main

diagonal and zeros elsewhere.

Addition and subtraction C = A + B
C = A – B

Scalar Multiplication B = A, where  is a scalar.

Matrix Multiplication C = A*B

Matrix Inverse B = inv(A), A must be a square matrix in this case.
rank (A)  returns the rank of the matrix A.

Matrix Powers B = A.^2  squares each element in the matrix
C = A * A  computes A*A, and A must be a square matrix.

Determinant det (A), and A must be a square matrix.

more commands

A, B, C are matrices, and m, n,  are scalars.

Array Operations
 Scalar-Array Mathematics

For addition, subtraction, multiplication, and division of an array by a
scalar simply apply the operations to all elements of the array.

 Example:

>> f = [1 2; 3 4]

f =

1 2

3 4

>> g = 2*f – 1

g =

1 3

5 7

Each element in the array f is
multiplied by 2, then subtracted
by 1.

11 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 11

Array Operations (con’t…)

 Element-by-Element Array-Array Mathematics.

Operation Algebraic Form MATLAB

Addition a + b a + b

Subtraction a – b a – b

Multiplication a x b a .* b

Division a  b a ./ b

Exponentiation ab a .^ b

 Example:
>> x = [1 2 3];

>> y = [4 5 6];

>> z = x .* y

z =

4 10 18

Each element in x is multiplied by
the corresponding element in y.

Solutions to Systems of Linear Equations

 Example: a system of 3 linear equations with 3 unknowns (x1, x2, x3):

3x1 + 2x2 – x3 = 10

-x1 + 3x2 + 2x3 = 5

x1 – x2 – x3 = -1

Then, the system can be described as:

Ax = b





















111

231

123

A



















3

2

1

x

x

x

x





















1

5

10

b

Let :

Solutions to Systems of Linear Equations

(con’t…)

 Solution by Matrix Inverse:
Ax = b

A-1Ax = A-1b

x = A-1b

 MATLAB:
>> A = [3 2 -1; -1 3 2; 1 -1 -1];

>> b = [10; 5; -1];

>> x = inv(A)*b

x =

-2.0000

5.0000

-6.0000

Answer:

x1 = -2, x2 = 5, x3 = -6

 Solution by Matrix Division:
The solution to the equation

Ax = b
can be computed using left division.

Answer:

x1 = -2, x2 = 5, x3 = -6

NOTE:
left division: A\b  b  A right division: x/y  x  y

 MATLAB:
>> A = [3 2 -1; -1 3 2; 1 -1 -1];

>> b = [10; 5; -1];

>> x = A\b

x =

-2.0000

5.0000

-6.0000

12 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 12

Plotting
 For more information on 2-D plotting, type help graph2d

 Plotting a point:

>> plot (variablename, ‘symbol’)
the function plot () creates a
graphics window, called a Figure
window, and named by default
“Figure No. 1”

 Example : Complex number
>> z = 1 + 0.5j;
>> plot (z, ‘.’)

commands for axes:

command description

axis ([xmin xmax ymin ymax]) Define minimum and maximum values of the axes

axis square Produce a square plot

axis equal equal scaling factors for both axes

axis normal turn off axis square, equal

axis (auto) return the axis to defaults

Plotting (con’t…)
 Plotting Curves:

 plot (x,y) – generates a linear plot of the values of x (horizontal axis) and y
(vertical axis).

 semilogx (x,y) – generate a plot of the values of x and y using a logarithmic
scale for x and a linear scale for y

 semilogy (x,y) – generate a plot of the values of x and y using a linear scale
for x and a logarithmic scale for y.

 loglog(x,y) – generate a plot of the values of x and y using logarithmic scales
for both x and y

Plotting (con’t…)
 Multiple Curves:

 plot (x, y, w, z) – multiple curves can be plotted on the same graph by using
multiple arguments in a plot command. The variables x, y, w, and z are
vectors. Two curves will be plotted: y vs. x, and z vs. w.

 legend (‘string1’, ‘string2’,…) – used to distinguish between plots on the
same graph

 Multiple Figures:
 figure (n) – used in creation of multiple plot windows. place this command

before the plot() command, and the corresponding figure will be labeled as
“Figure n”

 close – closes the figure n window.

 close all – closes all the figure windows.

 Subplots:
 subplot (m, n, p) – m by n grid of windows, with p specifying the

current plot as the pth window

13 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 13

Plotting (con’t…)
 Example: (polynomial function)

plot the polynomial using linear/linear scale, log/linear scale, linear/log scale, & log/log
scale:

y = 2x2 + 7x + 9

% Generate the polynomial:

x = linspace (0, 10, 100);

y = 2*x.^2 + 7*x + 9;

% plotting the polynomial:

figure (1);

subplot (2,2,1), plot (x,y);

title ('Polynomial, linear/linear scale');

ylabel ('y'), grid;

subplot (2,2,2), semilogx (x,y);

title ('Polynomial, log/linear scale');

ylabel ('y'), grid;

subplot (2,2,3), semilogy (x,y);

title ('Polynomial, linear/log scale');

xlabel('x'), ylabel ('y'), grid;

subplot (2,2,4), loglog (x,y);

title ('Polynomial, log/log scale');

xlabel('x'), ylabel ('y'), grid;

Plotting (con’t…)

Plotting (con’t…)
 Adding new curves to the existing graph:

 Use the hold command to add lines/points to an existing plot.

 hold on – retain existing axes, add new curves to current axes. Axes are
rescaled when necessary.

 hold off – release the current figure window for new plots

 Grids and Labels:

Command Description

grid on Adds dashed grids lines at the tick marks

grid off removes grid lines (default)

grid toggles grid status (off to on, or on to off)

title (‘text’) labels top of plot with text in quotes

xlabel (‘text’) labels horizontal (x) axis with text is quotes

ylabel (‘text’) labels vertical (y) axis with text is quotes

text (x,y,’text’) Adds text in quotes to location (x,y) on the current axes, where (x,y) is in
units from the current plot.

14 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 14

Additional commands for plotting

Symbol Color

y yellow

m magenta

c cyan

r red

g green

b blue

w white

k black

Symbol Marker

. 

o 

x 

+ +

* 

s □

d ◊

v 

^ 

h hexagram

color of the point or curve Marker of the data points Plot line styles

Symbol Line Style

– solid line

: dotted line

–. dash-dot line

– – dashed line

Exercise 1:

Use Matlab command to obtain the following

a) Extract the fourth row of the matrix generated by magic(6)

b) Show the results of ‘x’ multiply by ‘y’ and ‘y’ divides by ‘x’.

Given x = [0:0.1:1.1] and y = [10:21]

c) Generate random matrix ‘r’ of size 4 by 5 with number varying between -8 and 9

Exercise 2:

Use MATLAB commands to get exactly as the figure shown below

x=pi/2:pi/10:2*pi;
y=sin(x);
z=cos(x);

15 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 15

Part II: Polynomials in MATLAB

Objective: The objective of this session is to learn how to represent polynomials in

MATLAB, find roots of polynomials, create polynomials when roots are known and obtain

partial fractions.

Polynomial Overview:
MATLAB provides functions for standard polynomial operations, such as polynomial roots,

evaluation, and differentiation. In addition, there are functions for more advanced

applications, such as curve fitting and partial fraction expansion.

Polynomial Function Summary

Function Description

Conv Multiply polynomials

Deconv Divide polynomials

Poly Polynomial with specified roots

Polyder Polynomial derivative

Polyfit Polynomial curve fitting

Polyval Polynomial evaluation

Polyvalm Matrix polynomial evaluation

Residue Partial-fraction expansion (residues)

Roots Find polynomial roots

Symbolic Math Toolbox contains additional specialized support for polynomial operations.

Representing Polynomials

MATLAB represents polynomials as row vectors containing coefficients ordered by

descending powers. For example, consider the equation

 ()

This is the celebrated example Wallis used when he first represented Newton's method to the

French Academy. To enter this polynomial into MATLAB, use

>>p = [1 0 -2 -5];

Polynomial Roots

The roots function calculates the roots of a polynomial:

>>r = roots(p)

r =

 2.0946

 -1.0473 + 1.1359i

 -1.0473 - 1.1359i

By convention, MATLAB stores roots in column vectors. The function poly returns to the

polynomial coefficients:

16 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 16

>>p2 = poly(r)

p2 =

 1 8.8818e-16 -2 -5

poly and roots are inverse functions,

Polynomial Evaluation

The polyval function evaluates a polynomial at a specified value. To evaluate p at s = 5, use

>>polyval(p,5)

ans =

 110

It is also possible to evaluate a polynomial in a matrix sense. In this case the equation

 () becomes () , where X is a square matrix and I is the

identity matrix.

For example, create a square matrix X and evaluate the polynomial p at X:

>>X = [2 4 5; -1 0 3; 7 1 5];

>>Y = polyvalm(p,X)

Y =

 377 179 439

 111 81 136

 490 253 639

Convolution and Deconvolution

Polynomial multiplication and division correspond to the operations convolution and

deconvolution. The functions conv and deconv implement these operations. Consider the

polynomials () and () . To compute their product,

>>a = [1 2 3]; b = [4 5 6];

>>c = conv(a,b)

c =

 4 13 28 27 18

Use deconvolution to divide back out of the product:

>>[q,r] = deconv(c,a)

q =

 4 5 6

r =

 0 0 0 0 0

17 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 17

Polynomial Derivatives

The polyder function computes the derivative of any polynomial. To obtain the derivative of

the polynomial

>>p= [1 0 -2 -5]

>>q = polyder(p)

q =

 3 0 -2

polyder also computes the derivative of the product or quotient of two polynomials. For

example, create two polynomials a and b:

>>a = [1 3 5];

>>b = [2 4 6];

Calculate the derivative of the product a*b by calling polyder with a single output argument:

>>c = polyder(a,b)

c =

 8 30 56 38

Calculate the derivative of the quotient a/b by calling polyder with two output arguments:

>>[q,d] = polyder(a,b)

q =

 -2 -8 -2

d =

 4 16 40 48 36

q/d is the result of the operation.

Partial Fraction Expansion

‘residue’ finds the partial fraction expansion of the ratio of two polynomials. This is

particularly useful for applications that represent systems in transfer function form. For

polynomials b and a,

 ()

 ()

if there are no multiple roots, where r is a column vector of residues, p is a column vector of

pole locations, and k is a row vector of direct terms.

Consider the transfer function

>>b = [-4 8];

>>a = [1 6 8];

>>[r,p,k] = residue(b,a)

18 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 18

r =

 -12

 8

p =

 -4

 -2

k =

 []

Given three input arguments (r, p, and k), residue converts back to polynomial form:

>>[b2,a2] = residue(r,p,k)

b2 =

 -4 8

a2 =

 1 6 8

Exercise 1:

Consider the two polynomials () and () . Using

MATLAB compute

a. () ()
b. Roots of () and ()
c. () and ()

Exercise 2:

Use MATLAB command to find the partial fraction of the following

a.
 ()

 ()

b.
 ()

 ()

()

19 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 19

Part III: Scripts, Functions & Flow Control in MATLAB

Objective: The objective of this session is to introduce you to writing M-file scripts,

creating MATLAB Functions and reviewing MATLAB flow control like ‘if-elseif-end’, ‘for

loops’ and ‘while loops’.

Overview:
MATLAB is a powerful programming language as well as an interactive computational

environment. Files that contain code in the MATLAB language are called M-files. You create

M-files using a text editor, then use them as you would any other MATLAB function or

command. There are two kinds of M-files:

 Scripts, which do not accept input arguments or return output arguments. They

operate on data in the workspace. MATLAB provides a full programming language

that enables you to write a series of MATLAB statements into a file and then execute

them with a single command. You write your program in an ordinary text file, giving

the file a name of ‘filename.m’. The term you use for ‘filename’ becomes the new

command that MATLAB associates with the program. The file extension of .m makes

this a MATLAB M-file.

 Functions, which can accept input arguments and return output arguments. Internal

variables are local to the function.

If you're a new MATLAB programmer, just create the M-files that you want to try out in the

current directory. As you develop more of your own M-files, you will want to organize them

into other directories and personal toolboxes that you can add to your MATLAB search path.

If you duplicate function names, MATLAB executes the one that occurs first in the search

path.

Scripts:
When you invoke a script, MATLAB simply executes the commands found in the file.

Scripts can operate on existing data in the workspace, or they can create new data on which to

operate. Although scripts do not return output arguments, any variables that they create

remain in the workspace, to be used in subsequent computations. In addition, scripts can

produce graphical output using functions like plot. For example, create a file called

‘myprogram.m’ that contains these MATLAB commands:

Typing the statement ‘myprogram’ at command prompt causes MATLAB to execute the

commands, creating fifty random numbers and plots the result in a new window. After

execution of the file is complete, the variable ‘r’ remains in the workspace.

% Create random numbers and plot these numbers
clc
clear
r = rand(1,50)
plot(r)

20 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 20

Functions:
Functions are M-files that can accept input arguments and return output arguments. The

names of the M-file and of the function should be the same. Functions operate on variables

within their own workspace, separate from the workspace you access at the MATLAB

command prompt. An example is provided below:

M-File Element Description

Function definition line

(functions only)

Defines the function name, and the number and order of input and

output arguments.

H1 line A one line summary description of the program, displayed when

you request help on an entire directory, or when you use

‘lookfor’.

Help text A more detailed description of the program, displayed together

with the H1 line when you request help on a specific function

Function or script body Program code that performs the actual computations and assigns

values to any output arguments.

Comments Text in the body of the program that explains the internal

workings of the program.

The first line of a function M-file starts with the keyword ‘function’. It gives the function

name and order of arguments. In this case, there is one input arguments and one output

argument. The next several lines, up to the first blank or executable line, are comment lines

that provide the help text. These lines are printed when you type ‘help fact’. The first line of

the help text is the H1 line, which MATLAB displays when you use the ‘lookfor’ command

or request help on a directory. The rest of the file is the executable MATLAB code defining

the function.

The variable n & f introduced in the body of the function as well as the variables on the first

line are all local to the function; they are separate from any variables in the MATLAB

workspace. This example illustrates one aspect of MATLAB functions that is not ordinarily

found in other programming languages—a variable number of arguments. Many M-files

work this way. If no output argument is supplied, the result is stored in ans. If the second

input argument is not supplied, the function computes a default value.

Flow Control:

Conditional Control – if, else, switch

This section covers those MATLAB functions that provide conditional program control. if,

else, and elseif. The if statement evaluates a logical expression and executes a group of

statements when the expression is true. The optional elseif and else keywords provide for the

function f = fact(n) Function definition line
% Compute a factorial value. H1 line
% FACT(N) returns the factorial of N, Help text
% usually denoted by N!

% Put simply, FACT(N) is PROD(1:N). Comment
f = prod(1:n); Function body

21 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 21

execution of alternate groups of statements. An end keyword, which matches the if,

terminates the last group of statements.

The groups of statements are delineated by the four keywords—no braces or brackets are

involved as given below.

if <condition>

 <statements>;

elseif <condition>

 <statements>;

else

 <statements>;

end

It is important to understand how relational operators and if statements work with matrices.

When you want to check for equality between two variables, you might use

if A == B, ...

This is valid MATLAB code, and does what you expect when A and B are scalars. But when

A and B are matrices, A == B does not test if they are equal, it tests where they are equal; the

result is another matrix of 0's and 1's showing element-by-element equality. (In fact, if A and

B are not the same size, then A == B is an error.)

The proper way to check for equality between two variables is to use the isequal function:

if isequal(A, B), ...

isequal returns a scalar logical value of 1 (representing true) or 0 (false), instead of a matrix,

as the expression to be evaluated by the if function.

Using the A and B matrices from above, you get

>>A = magic(4);
>>B = A;
>>B(1,1) = 0;
>>A == B
ans =
 0 1 1 1
 1 1 1 1
 1 1 1 1
 1 1 1 1

>>isequal(A, B)
ans =
 0

22 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 22

Here is another example to emphasize this point. If A and B are scalars, the following

program will never reach the "unexpected situation". But for most pairs of matrices, including

our magic squares with interchanged columns, none of the matrix conditions A > B, A < B,

or A == B is true for all elements and so the else clause is executed:

Several functions are helpful for reducing the results of matrix comparisons to scalar

conditions for use with if, including ‘isequal’, ‘isempty’, ‘all’, ‘any’.

Switch and Case:

The switch statement executes groups of statements based on the value of a variable or

expression. The keywords case and otherwise delineate the groups. Only the first matching

case is executed. The syntax is as follows

switch <condition or expression>

case <condition>

 <statements>;

…

case <condition>

…

otherwise

 <statements>;

end

There must always be an end to match the switch. An example is shown below.

Unlike the C language switch statement, MATLAB switch does not fall through. If the first

case statement is true, the other case statements do not execute. So, break statements are not

required.

For, while, break and continue:

This section covers those MATLAB functions that provide control over program loops.

if A > B
 'greater'
elseif A < B
 'less'
elseif A == B
 'equal'
else
 error('Unexpected situation')
end

n=5
switch rem(n,2) % to find remainder of any number ‘n’
case 0
 disp(‘Even Number’) % if remainder is zero
case 1
 disp(‘Odd Number’) % if remainder is one
end

23 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 23

for:

The ‘for’ loop, is used to repeat a group of statements for a fixed, predetermined number of

times. A matching ‘end’ delineates the statements. The syntax is as follows:

for <index> = <starting number>:<step or increment>:<ending number>

 <statements>;

end

The semicolon terminating the inner statement suppresses repeated printing, and the r after

the loop displays the final result.

It is a good idea to indent the loops for readability, especially when they are nested:

while:

The ‘while’ loop, repeats a group of statements indefinite number of times under control of a

logical condition. So a while loop executes atleast once before it checks the condition to stop

the execution of statements. A matching ‘end’ delineates the statements. The syntax of the

‘while’ loop is as follows:

while <condition>

 <statements>;

end

Here is a complete program, illustrating while, if, else, and end, that uses interval bisection to

find a zero of a polynomial:

for n = 1:4
 r(n) = n*n; % square of a number
end
r

for i = 1:m
 for j = 1:n
 H(i,j) = 1/(i+j);
 end
end

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end
x

24 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 24

The result is a root of the polynomial x
3
 - 2x - 5, namely x = 2.0945. The cautions involving

matrix comparisons that are discussed in the section on the if statement also apply to the

while statement.

break:

The break statement lets you exit early from a ‘for’ loop or ‘while’ loop. In nested loops,

break exits from the innermost loop only. Above is an improvement on the example from the

previous section. Why is this use of break a good idea?

continue:

The continue statement passes control to the next iteration of the for loop or while loop in

which it appears, skipping any remaining statements in the body of the loop. The same holds

true for continue statements in nested loops. That is, execution continues at the beginning of

the loop in which the continue statement was encountered.

a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
 x = (a+b)/2;
 fx = x^3-2*x-5;
 if fx == 0
 break
 elseif sign(fx) == sign(fa)
 a = x; fa = fx;
 else
 b = x; fb = fx;
 end
end

25 Lab Experiment 1: Using MATLAB for Control Systems

CISE 302 Lab Manual Page 25

Exersice 1: MATLAB M-file Script

Use MATLAB to generate the first 100 terms in the sequence a(n) define recursively by

 () () (())
with p=2.9 and a(1) = 0.5.

After you obtain the sequence, plot the sequence.

Exersice 2: MATLAB M-file Function

Consider the following equation

 ()

√
 (√

)

a) Write a MATLAB M-file function to obtain numerical values of y(t). Your function

must take y(0), ζ, ωn, t and θ as function inputs and y(t) as output argument.

b) Write a second script m-file to obtain the plot for y(t) for 0<t<10 with an increment of

0.1, by considering the following two cases

Case 1: y0=0.15 m, ωn = √ rad/sec, ζ = 3/(2√) and θ = 0;

Case 2: y0=0.15 m, ωn = √ rad/sec, ζ = 1/(2√) and θ = 0;

Hint: When you write the function you would require element-by-element operator

Exersice 3: MATLAB Flow Control

Use ‘for’ or ‘while’ loop to convert degrees Fahrenheit (Tf) to degrees Celsius using the

following equation

 . Use any starting temperature, increment and ending

temperature (example: starting temperature=0, increment=10, ending temperature = 200).

Please submit the exercises (m-files and results) in the next lab.

26 Laboratory Experiment 2: Mathematical Modeling of Physical Systems

CISE 302 Lab Manual Page 26

CISE 302

Linear Control Systems

Laboratory Experiment 2: Mathematical Modeling of Physical Systems

Objectives: The objective of this exercise is to grasp the important role mathematical

models of physical systems in the design and analysis of control systems. We will learn how

MATLAB helps in solving such models.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

Category Soft-Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 MATLAB scripts and their results for all the assignments and exercises should be

properly reported.

Mass-Spring System Model

Consider the following Mass-Spring system shown in the figure. Where Fs(x) is the spring

force, Ff(̇) is the friction coefficient, x(t) is the displacement and Fa(t) is the applied force:

Where

 ()

 ()

 ()

and

 ()

According to the laws of physics

Fs(x)

M

Ff(𝑣)

Fa(t)

x(t)

M Fa(t)

Ff(𝑣)

Fs(x)

27 Laboratory Experiment 2: Mathematical Modeling of Physical Systems

CISE 302 Lab Manual Page 27

 () () () (1)

In the case where:

 ()
 ()

 () ()

The differential equation for the above Mass-Spring system can then be written as follows

 ()

 ()

 () () (2)

B is called the friction coefficient and K is called the spring constant.

The linear differential equation of second order (2) describes the relationship between the

displacement and the applied force. The differential equation can then be used to study the

time behavior of x(t) under various changes of the applied force. In reality, the spring force

and/or the friction force can have a more complicated expression or could be represented by a

graph or data table. For instance, a nonlinear spring can be designed (see figure 4.2) such that

 ()
 () Where r > 1.

Figure 4.2: MAG nonlinear spring (www.tokyo-model.com.hk/ecshop/goods.php?id=2241)

In such case, (1) becomes

 ()

 ()

 () () (3)

Equation (3) represents another possible model that describes the dynamic behavior of the

mass-damper system under external force. Model (2) is said to be a linear model whereas (3)

is said to be nonlinear. To decide if a system is linear or nonlinear two properties have to be

verified homogeneity and superposition.

Assignment: use homogeneity and superposition properties to show that model (1) is linear

whereas model (3) is nonlinear.

Solving the differential equation using MATLAB:

The objectives behind modeling the mass-damper system can be many and may include

 Understanding the dynamics of such system

http://www.tokyo-model.com.hk/ecshop/goods.php?id=2241

28 Laboratory Experiment 2: Mathematical Modeling of Physical Systems

CISE 302 Lab Manual Page 28

 Studying the effect of each parameter on the system such as mass M, the friction

coefficient B, and the elastic characteristic Fs(x).

 Designing a new component such as damper or spring.

 Reproducing a problem in order to suggest a solution.

The solution of the difference equations (1), (2), or (3) leads to finding x(t) subject to certain

initial conditions.

MATLAB can help solve linear or nonlinear ordinary differential equations (ODE). To show

how you can solve ODE using MATLAB we will proceed in two steps. We first see how can

we solve first order ODE and second how can we solve equation (2) or (3).

Speed Cruise Control example:

Assume the spring force () which means that K=0. Equation (2) becomes

 ()

 ()

 () (4)

Or

 ()

 () (5)

Equation (5) is a first order linear ODE.

Using MATLAB solver ode45 we can write do the following:

1_ create a MATLAB-function cruise_speed.m

function dvdt=cruise_speed(t, v)

%flow rate

M=750; %(Kg)

B=30; %(Nsec/m)

Fa=300; %N

% dv/dt=Fa/M-B/M v

dvdt=Fa/M-B/M*v;

2_ create a new MATLAB m-file and write

v0= 0; %(initial speed)

[t,v]=ode45('cruise_speed', [0 125],v0);

plot(t,v); grid on;

title('cruise speed time response to a constant traction force Fa(t) ')

29 Laboratory Experiment 2: Mathematical Modeling of Physical Systems

CISE 302 Lab Manual Page 29

 There are many other MATLAB ODE solvers such as ode23, ode45, ode113, ode15s, etc…

The function dsolve will result in a symbolic solution. Do ‘doc dsolve’ to know more. In

MATLAB write

>>dsolve(‘Dv=Fa/M-B/M*v’, ‘v(0)=0’)

Note that using MATLAB ODE solvers are able to solve linear or nonlinear ODE’s. We will

see in part II of this experiment another approach to solve a linear ODE differently. Higher

order systems can also be solved similarly.

Mass-Spring System Example:

Assume the spring force ()
 (). The mass-spring damper is now equivalent to

 ()

 ()

 () ()

The second order differential equation has to be decomposed in a set of first order differential

equations as follows

Variables New

variable

Differential equation

x(t) X1

dx(t)/dt X2

 ()

 ()

In vector form, let [

] ;

 [

] then the system can be written as

 [

 ()

 ()

]

The ode45 solver can be now be used:

1_ create a MATLAB-function mass_spring.m

Function dXdt=mass_spring(t, X)

%flow rate

M=750; %(Kg)

B=30; %(Nsec/m)

Fa=300; %N

K=15; %(N/m)

r=1;

% dX/dt

30 Laboratory Experiment 2: Mathematical Modeling of Physical Systems

CISE 302 Lab Manual Page 30

Mass dis-

placement y(t)
Mass

M

Spring

Constant k Forcing

Function f(t)

k

Friction

Constant b

dXdt(1,1)=X(2);

dXdt(2,1)=-B/M*X(2)-K/M*X(1)^r+Fa/M;

2_ in MATLAB write

>> X0=[0; 0]; %(initial speed and position)

>> options = odeset('RelTol',[1e-4 1e-4],'AbsTol',[1e-5 1e-5],'Stats','on');

>>[t,X]=ode45('mass_spring', [0 200],X0);

Exercise 1

1. Plot the position and the speed in separate graphs.

2. Change the value of r to 2 and 3.

3. Superpose the results and compare with the linear case r=1 and plot all three cases in the

same plot window. Please use different figures for velocity and displacement.

Exercise 2

Consider the mechanical system depicted in the

figure. The input is given by (), and the output is

given by (). Determine the differential equation

governing the system and using MATLAB, write a

m-file and plot the system response such that

forcing function f(t)=1. Let , and

 . Show that the peak amplitude of the output

is about 1.8.

31 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 31

CISE 302

Linear Control Systems

Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

Objectives: The objective of this exercise is to use graphical user interface diagrams to

model the physical systems for the purpose of design and analysis of control systems. We

will learn how MATLAB/SIMULINK helps in solving such models.

List of Equipment/Software

Following equipment/software is required:

 MATLAB/SIMULINK

Category Soft-Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 MATLAB scripts, SIMULINK diagrams and their results for all the assignments and

exercises should be properly reported.

Overview:

This lab introduces powerful graphical user interface (GUI), Simulink of Matlab. This

software is used for solving the modeling equations and obtaining the response of a system to

different inputs. Both linear and nonlinear differential equations can be solved numerically

with high precision and speed, allowing system responses to be calculated and displayed for

many input functions. To provide an interface between a system’s modeling equations and

the digital computer, block diagrams drawn from the system’s differential equations are used.

A block diagram is an interconnection of blocks representing basic mathematical operations

in such a way that the overall diagram is equivalent to the system’s mathematical model. The

lines interconnecting the blocks represent the variables describing the system behavior. These

may be inputs, outputs, state variables, or other related variables. The blocks represent

operations or functions that use one or more of these variables to calculate other variables.

Block diagrams can represent modeling equations in both input-output and state variable

form.

We use MATLAB with its companion package Simulink, which provides a graphical user

interface (GUI) for building system models and executing the simulation. These models are

constructed by drawing block diagrams representing the algebraic and differential equations

that describe the system behavior. The operations that we generally use in block diagrams are

summation, gain, and integration. Other blocks, including nonlinear elements such as

32 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 32

multiplication, square root, exponential, logarithmic, and other functions, are available.

Provisions are also included for supplying input functions, using a signal generator block,

constants etc and for displaying results, using a scope block.

An important feature of a numerical simulation is the ease with which parameters can be

varied and the results observed directly. MATLAB is used in a supporting role to initialize

parameter values and to produce plots of the system response. Also MATLAB is used for

multiple runs for varying system parameters. Only a small subset of the functions of

MATLAB will be considered during these labs.

SIMULINK

Simulink provides access to an extensive set of blocks that accomplish a wide range of

functions useful for the simulation and analysis of dynamic systems. The blocks are grouped

into libraries, by general classes of functions.

 Mathematical functions such as summers and gains are in the Math library.

 Integrators are in the Continuous library.

 Constants, common input functions, and clock can all be found in the Sources library.

 Scope, To Workspace blocks can be found in the Sinks library.

Simulink is a graphical interface that allows the user to create programs that are actually run

in MATLAB. When these programs run, they create arrays of the variables defined in

Simulink that can be made available to MATLAB for analysis and/or plotting. The variables

to be used in MATLAB must be identified by Simulink using a “To Workspace” block,

which is found in the Sinks library. (When using this block, open its dialog box and specify

that the save format should be Matrix, rather than the default, which is called Structure.) The

Sinks library also contains a Scope, which allows variables to be displayed as the simulated

system responds to an input. This is most useful when studying responses to repetitive inputs.

Simulink uses blocks to write a program. Blocks are arranged in various libraries according

to their functions. Properties of the blocks and the values can be changed in the associated

dialog boxes. Some of the blocks are given below.

SUM (Math library)

A dialog box obtained by double-clicking on the SUM block performs the configuration of

the SUM block, allowing any number of inputs and the sign of each. The sum block can be

represented in two ways in Simulink, by a circle or by a rectangle. Both choices are shown

Figure 1: Two Simulink blocks for a summer representing y = x 1+ x2 – x3

X1

X2

X3

X1

X2

X3

33 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 33

GAIN (Math library)

A gain block is shown by a triangular symbol, with the gain expression written inside if it

will fit. If not, the symbol - k - is used. The value used in each gain block is established in a

dialog box that appears if the user double-clicks on its block.

Figure 2: Simulink block for a gain of K.

INTEGRATOR (Continuous library)

The block for an integrator as shown below looks unusual. The quantity 1/s comes from the

Laplace transform expression for integration. When double-clicked on the symbol for an

integrator, a dialog box appears allowing the initial condition for that integrator to be

specified. It may be implicit, and not shown on the block, as in Figure (a). Alternatively, a

second input to the block can be displayed to supply the initial condition explicitly, as in part

(b) of Figure 3. Initial conditions may be specific numerical values, literal variables, or

algebraic expressions.

Figure3: Two forms of the Simulink block for an integrator.

(a) Implicit initial condition. (b) Explicit initial condition.

CONSTANTS (Source library)

Constants are created by the Constant block, which closely resembles Figure 4. Double-

clicking on the symbol opens a dialog box to establish the constant’s value. It can be a

number or an algebraic expression using constants whose values are defined in the workspace

and are therefore known to MATLAB.

Figure 4: A constant block

34 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 34

STEP (Source library)

A Simulink block is provided for a Step input, a signal that changes (usually from zero) to a

specified new, constant level at a specified time. These levels and time can be specified

through the dialog box, obtained by double-clicking on the Step block.

Figure 5: A step block

SIGNAL GENERATOR (Source library)

One source of repetitive signals in Simulink is called the Signal Generator. Double-clicking

on the Signal Generator block opens a dialog box, where a sine wave, a square wave, a ramp

(sawtooth), or a random waveform can be chosen. In addition, the amplitude and frequency

of the signal may be specified. The signals produced have a mean value of zero. The

repetition frequency can be given in Hertz (Hz), which is the same as cycles per second, or in

radians/second.

Figure 6: A signal generator block

SCOPE (Sinks library)

The system response can be examined graphically, as the simulation runs, using the Scope

block in the sinks library. This name is derived from the electronic instrument, oscilloscope,

which performs a similar function with electronic signals. Any of the variables in a Simulink

diagram can be connected to the Scope block, and when the simulation is started, that

variable is displayed. It is possible to include several Scope blocks. Also it is possible to

display several signals in the same scope block using a MTJX block in the signals & systems

library. The Scope normally chooses its scales automatically to best display the data.

Figure 7: A scope block with MUX block

Two additional blocks will be needed if we wish to use MATLAB to plot the responses

versus time. These are the Clock and the To Workspace blocks.

35 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 35

CLOCK (Sources library)

The clock produces the variable “time” that is associated with the integrators as MATLAB

calculates a numerical (digital) solution to a model of a continuous system. The result is a

string of sample values of each of the output variables. These samples are not necessarily at

uniform time increments, so it is necessary to have the variable “time” that contains the time

corresponding to each sample point. Then MATLAB can make plots versus “time.” The

clock output could be given any arbitrary name; we use “t” in most of the cases.

Figure 8: A clock block

To Workspace (Sinks library)

The To Workspace block is used to return the results of a simulation to the MATLAB

workspace, where they can be analyzed and/or plotted. Any variable in a Simulink diagram

can be connected to a ToWorkspace block. In our exercises, all of the state variables and the

input variables are usually returned to the workspace. In addition, the result of any output

equation that may be simulated would usually be sent to the workspace. In the block

parameters drop down window, change the save format to ‘array’.

Figure 9: A To Workspace block

In the Simulink diagram, the appearance of a block can be changed by changing the

foreground or background colours, or by drop shadow or other options available in the format

drop down menu. The available options can be reached in the Simulink window by

highlighting the block, then clicking the right mouse button. The Show Drop Shadow option

is on the format drop-down menu.

Simulink provides scores of other blocks with different functions.

You are encouraged to browse the Simulink libraries and consult the online Help facility

provided with MATLAB.

GENERAL INSTRUCTIONS FOR WRITING A SIMULINK PROGRAM

To create a simulation in Simulink, follow the steps:

 Start MATLAB.

 Start Simulink.

36 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 36

 Open the libraries that contain the blocks you will need. These usually will include

the Sources, Sinks, Math and Continuous libraries, and possibly others.

 Open a new Simulink window.

 Drag the needed blocks from their library folders to that window. The Math library,

for example, contains the Gain and Sum blocks.

 Arrange these blocks in an orderly way corresponding to the equations to be solved.

 Interconnect the blocks by dragging the cursor from the output of one block to the

input of another block. Interconnecting branches can be made by right-clicking on an

existing branch.

 Double-click on any block having parameters that must be established, and set these

parameters. For example, the gain of all Gain blocks must be set. The number and

signs of the inputs to a Sum block must be established. The parameters of any source

blocks should also be set in this way.

 It is necessary to specify a stop time for the solution. This is done by clicking on the

Simulation > Parameters entry on the Simulink toolbar.

At the Simulation > Parameters entry, several parameters can be selected in this dialog box,

but the default values of all of them should be adequate for almost all of the exercises. If the

response before time zero is needed, it can be obtained by setting the Start time to a negative

value. It may be necessary in some problems to reduce the maximum integration step size

used by the numerical algorithm. If the plots of the results of a simulation appear “choppy” or

composed of straight-line segments when they should be smooth, reducing the max step size

permitted can solve this problem.

Mass-Spring System Model

Consider the Mass-Spring system used in the previous exercise as shown in the figure. Where

Fs(x) is the spring force, Ff(̇) is the friction coefficient, x(t) is the displacement and Fa(t) is

the applied force:

The differential equation for the above Mass-Spring system can then be written as follows

 ()

 ()

 () () (1)

For Non-linear such case, (1) becomes

 ()

 ()

 () () (2)

Fs(x)

M

Ff(𝑣)

Fa(t)

x(t)

M Fa(t)

Ff(𝑣)

Fs(x)

37 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 37

Exercise 1: Modeling of a second order system

Construct a Simulink diagram to calculate the response of the Mass-Spring system. The input

force increases from 0 to 8 N at t = 1 s. The parameter values are M = 2 kg, K= 16 N/m, and

B =4 N.s/m.

Steps:

 Draw the free body diagram.

 Write the modeling equation from the free body diagram

 Solve the equations for the highest derivative of the output.

 Draw a block diagram to represent this equation.

 Draw the corresponding Simulink diagram.

 Use Step block to provide the input fa(t).

 In the Step block, set the initial and final values and the time at which the step occurs.

 Use the “To Workspace” blocks for t, fa(t), x, and v in order to allow MATLAB to

plot the desired responses. Set the save format to array in block parameters.

 Select the duration of the simulation to be 10 seconds from the Simulation >

Parameters entry on the toolbar

Given below is a file that will set up the MATLAB workspace by establishing the values of

the parameters needed for the Simulink simulation of the given model.

M-file for parameter values

% This file is named exl_parameter.m.

% Everything after a % sign on a line is a comment that

% is ignored by M This file establishes the

% parameter values for exl_model.mdl.

%

M2; %kg

K= 16; %N/m

B=4; % Ns/m

Simulink block diagram

1

s

x'

1

s

x

v

To Workspace2

x

To Workspace1

t

To Workspace

Scope

1/M

Gain2

K/M

Gain1

B/M

Gain

Fa
Clock

Add

38 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 38

Plotting the outputs in MATLAB:

The file to create the plots of the output is given below. Create the file and save it by the

name given below.

M-file to produce the plot

% This file is named exl_plot.m.

% It makes a plot of the data produced by exl_model.mdl.

plot(t,x); grid % Plots x for the case with B=4.

xlabel(’Time (s)’);

ylabel (‘Displacement (m) ')

A semicolon in a physical line ends the logical line, and anything after it is treated as if it

were on a new physical line. A semicolon at the end of a line that generates output to the

command window suppresses the printing of that output.

Program Execution:

Follow the following steps to execute these files:

 Enter the command exl_parameter in the command window. This will load the

parameter values of the model.

 Open the Simulink model exl_model.mdl and start the simulation by clicking on the

toolbar entry Simulation> Start.

 Enter the command exl_plot in the command window to make the plot.

Making Subplots in MATLAB:

When two or more variables are being studied simultaneously, it is frequently desirable to

plot them one above the other on separate axes, as can be done for displacement and velocity

in. This is accomplished with the subplot command. The following M-file uses this command

to produce both plots of displacement and velocity.

M-file to make subplots

% This file is named exl_plot2.m.

% It makes both plots, displacement and velocity.

% Execute exlparameter.m first.

subplot(2,l,1);

plot(t,x); grid % Plots x for the case with B=4. xlabel (‘Time (s) ‘) ;

ylabel (‘Displacement (m) ‘); subplot(2,1,2);

plot(t,v); grid % Plots v for the case with B=4. xlabel(’Time (s)’);

ylabel(’Velocity (m per s)’);

39 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 39

Exercise 2: Simulation with system parameter variation

The effect of changing B is to alter the amount of overshoot or undershoot. These are related

to a term called the damping ratio. Simulate and compare the results of the variations in B in

exercise 1. Take values of B = 4, 8, 12, 25 N-s/m.

Steps:

Perform the following steps. Use the same input force as in Exercise 1.

 Begin the simulation with B = 4 N-s/m, but with the input applied at t = 0

 Plot the result.

 Rerun it with B = 8 N.s/m.

 Hold the first plot active, by the command hold on

 Reissue the plot command plot(t,x), the second plot will superimpose on the first.

 Repeat for B = 12 N-s/m and for B = 25 N-s/m

 Release the plot by the command hold off

 Show your result.

Running SIMULINK from MATLAB command prompt

If a complex plot is desired, in which several runs are needed with different parameters, this

can using the command called “sim”. “sim” command will run the Simulink model file from

the Matlab command prompt. For multiple runs with several plot it can be accomplished by

executing ex1_model (to load parameters) followed by given M-file. Entering the command

ex1_plots in the command window results in multiple runs with varying values if B and will

plot the results.

M-file to use “sim” function and produce multiple runs and their plots

% This file is named ex2_plots.m.

% It plots the data produced by exl_model.mdl for

% several values of B. Execute exl_parameter.m first.

sim(’exl_model’) % Has the same effect as clicking on

 % Start on the toolbar.

plot(t,x) % Plots the initial run with B=4

hold on % Plots later results on the same axes % as the first.

B = 8; % New value of B; other parameter values % stay the same.

sim(‘exl_model’) % Rerun the simulation with new B value.

plot(t,x) % Plots new x on original axes.

B 12; sim(’exl_model’);plot(t,x)

B = 25; sim(’exl_model’) ;plot(t,x)

hold off

40 Laboratory Experiment 3: Modeling of Physical Systems using SIMULINK

CISE 302 Lab Manual Page 40

Exercise 3: System response from the stored energy with zero input

Find the response of the above system when there is no input for t ≥0, but when the initial

value of the displacement x(0) is zero and the initial velocity v(0) is 1 m/s.

Steps:

In the previous program

 Set the size of the input step to zero

 Set the initial condition on Integrator for velocity to 1.0.

 Plot the results by running m-files.

Exercise 4: Cruise System

As we know in the cruise system, the spring force () which means that K=0.

Equation (2) becomes

 ()

 ()

 () (3)

Or

 ()

 () (4)

Find the velocity response of the above system by constructing a Simulink block diagram

and calling the block diagram from Matlab m-file. Use M=750, B=30 and a constant force Fa

= 300. Plot the response of the system such that it runs for 125 seconds.

41 Laboratory Experiment 4: Linear Time-invariant Systems and Representation

CISE 302 Lab Manual Page 41

CISE 302

Linear Control Systems

Laboratory Experiment 4: Linear Time-invariant Systems and

Representation

Objectives: This experiment has following two objectives:

1. Continued with the learning of Mathematical Modeling from previous experiment, we

now start focusing the linear systems. We will learn commands in MATLAB that

would be used to represent such systems in terms of transfer function or pole-zero-

gain representations.

2. We will also learn how to make preliminary analysis of such systems using plots of

poles and zeros locations as well as time response due to impulse, step and arbitrary

inputs.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

Category Soft-Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 MATLAB scripts and their results should be reported properly.

Mass-Spring System Model

The spring force is assumed to be either linear or can be approximated by a linear function

Fs(x)= Kx, B is the friction coefficient, x(t) is the displacement and Fa(t) is the applied force:

Fs(x)

M

Ff(𝑣)

Fa(t)

x(t)

M Fa(t)

Ff(𝑣)

Fs(x)

42 Laboratory Experiment 4: Linear Time-invariant Systems and Representation

CISE 302 Lab Manual Page 42

The differential equation for the above Mass-Spring system can be derived as follows

 ()

 ()

 () ()

Transfer Function:

Applying the Laplace transformation while assuming the initial conditions are zeros, we get

() () ()

Then the transfer function representation of the system is given by

 ()

 ()

()

Linear Time-Invariant Systems in MATLAB:

Control System Toolbox in MATLAB offers extensive tools to manipulate and analyze linear

time-invariant (LTI) models. It supports both continuous- and discrete-time systems. Systems

can be single-input/single-output (SISO) or multiple-input/multiple-output (MIMO). You can

specify LTI models as:

Transfer functions (TF), for example,

 ()

Note: All LTI models are represented as a ratio of polynomial functions

Examples of Creating LTI Models

Building LTI models with Control System Toolbox is straightforward. The following sections

show simple examples. Note that all LTI models, i.e. TF, ZPK and SS are also MATLAB

objects.

Example of Creating Transfer Function Models

You can create transfer function (TF) models by specifying numerator and denominator

coefficients. For example,

>>num = [1 0];

>>den = [1 2 1];

>>sys = tf(num,den)

Transfer function:

 s

s^2 + 2 s + 1

A useful trick is to create the Laplace variable, s. That way, you can specify polynomials

using s as the polynomial variable.

>>s=tf('s');

>>sys= s/(s^2 + 2*s + 1)

43 Laboratory Experiment 4: Linear Time-invariant Systems and Representation

CISE 302 Lab Manual Page 43

Transfer function:

 s

s^2 + 2 s + 1

This is identical to the previous transfer function.

Example of Creating Zero-Pole-Gain Models

To create zero-pole-gain (ZPK) models, you must specify each of the three components in

vector format. For example,

>>sys = zpk([0],[-1 -1],[1])

Zero/pole/gain:

s

(s+1)^2

produces the same transfer function built in the TF example, but the representation is now

ZPK. This example shows a more complicated ZPK model.

>>sys=zpk([1 0], [-1 -3 -.28],[.776])

Zero/pole/gain:

 0.776 s (s-1)

(s+1) (s+3) (s+0.28)

Plotting poles and zeros of a system:

pzmap

Compute pole-zero map of LTI models

pzmap(sys)

pzmap(sys1,sys2,...,sysN)

[p,z] = pzmap(sys)

Description:

pzmap(sys) plots the pole-zero map of the

continuous- or discrete-time LTI model sys. For

SISO systems, pzmap plots the transfer function

poles and zeros. The poles are plotted as x's and the

zeros are plotted as o's.

pzmap(sys1,sys2,...,sysN) plots the pole-zero map

of several LTI models on a single figure. The LTI

models can have different numbers of inputs and

outputs. When invoked with left-hand arguments,

44 Laboratory Experiment 4: Linear Time-invariant Systems and Representation

CISE 302 Lab Manual Page 44

[p,z] = pzmap(sys) returns the system poles and zeros in the column vectors p and z. No plot

is drawn on the screen. You can use the functions sgrid or zgrid to plot lines of constant

damping ratio and natural frequency in the s- or z- plane.

Example

Plot the poles and zeros of the continuous-time system.

 ()

>>H = tf([2 5 1],[1 2 3]); sgrid

>>pzmap(H)

Simulation of Linear systems to different

inputs

impulse, step and lsim

You can simulate the LTI systems to inputs like

impulse, step and other standard inputs and see the

plot of the response in the figure window.

MATLAB command ‘impulse’ calculates the unit

impulse response of the system, ‘step’ calculates

the unit step response of the system and ‘lsim’

simulates the (time) response of continuous or

discrete linear systems to arbitrary inputs. When

invoked without left-hand arguments, all three

commands plots the response on the screen. For example:

To obtain an impulse response

>> H = tf([2 5 1],[1 2 3]);

>>impulse(H)

To obtain a step response type

>>step(H)

Time-interval specification:

To contain the response of the system you can also

specify the time interval to simulate the system to.

For example,

>> t = 0:0.01:10;

>> impulse(H,t)

Or

>> step(H,t)

Simulation to Arbitrary Inputs:

To simulates the (time) response of continuous or

discrete linear systems to arbitrary inputs use

45 Laboratory Experiment 4: Linear Time-invariant Systems and Representation

CISE 302 Lab Manual Page 45

‘lsim’. When invoked without left-hand arguments, ‘lsim’ plots the response on the screen.

lsim(sys,u,t) produces a plot of the time response of the LTI model sys to the input time

history ‘t’,’u’. The vector ‘t’ specifies the time samples for the simulation and consists of

regularly spaced time samples.

T = 0:dt:Tfinal

The matrix u must have as many rows as time

samples (length(t)) and as many columns as system

inputs. Each row u(I, specifies the input value(s)

at the time sample t(i).

Simulate and plot the response of the system

 ()

to a square wave with period of four seconds.

First generate the square wave with gensig. Sample every 0.1 second during 10 seconds:

>>[u,t] = gensig(‘square’,4,10,0.1);

Then simulate with lsim.

>> H = tf([2 5 1],[1 2 3])

Transfer function:

2 s^2 + 5 s + 1

 s^2 + 2 s + 3

>> lsim(H,u,t)

46 Laboratory Experiment 4: Linear Time-invariant Systems and Representation

CISE 302 Lab Manual Page 46

Exercise 1:

Consider the transfer function

 ()

Using MATLAB plot the pole zero map of the above system

Exercise 2:

a. Obtain the unit impulse response for the following system

 ()

 ()

b. Obtain the unit step response for the following system

 ()

 ()

c. Explain why the results in a. and b. are same?

Exercise 3:

A system has a transfer function

 ()

 ()

(⁄)()

Plot the response of the system when R(s) is a unit impulse and unit step for the

parameter z=3, 6 and 12.

Exercise 4:

Consider the differential equation ̈ ̇ where () ̇() and

 () is a unit step. Determine the solution analytically and verify by co-plotting the

analytical solution and the step response obtained with ‘step’ function.

47 Lab Experiment 5: Block Diagram Reduction

CISE 302 Lab Manual Page 47

CISE 302

Linear Control Systems

Lab Experiment 5: Block Diagram Reduction

Objective: The objective of this exercise will be to learn commands in MATLAB that

would be used to reduce linear systems block diagram using series, parallel and feedback

configuration.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

Category Soft-Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 MATLAB scripts and their results for examples, exercises and Dorf (text book)

related material of this lab should be reported properly.

Series configuration: If the two blocks are connected as shown below then the blocks are

said to be in series. It would like multiplying two transfer functions. The MATLAB

command for the such configuration is “series”.

The series command is implemented as shown below:

Example 1: Given the transfer functions of individual blocks generate the system transfer

function of the block combinations.

48 Lab Experiment 5: Block Diagram Reduction

CISE 302 Lab Manual Page 48

The result is as shown below:

Parallel configuration: If the two blocks are connected as shown below then the blocks

are said to be in parallel. It would like adding two transfer functions.

The MATLAB command for implementing a parallel configuration is “parallel” as shown

below:

Example 2: For the previous systems defined, modify the MATLAB commands to obtain the

overall transfer function when the two blocks are in parallel.

Feedback configuration: If the blocks are connected as shown below then the blocks are

said to be in feedback. Notice that in the feedback there is no transfer function H(s) defined.

When not specified, H(s) is unity. Such a system is said to be a unity feedback system.

The MATLAB command for implementing a feedback system is “feedback” as shown below:

49 Lab Experiment 5: Block Diagram Reduction

CISE 302 Lab Manual Page 49

When H(s) is non-unity or specified, such a system is said to be a non-unity feedback system

as shown below:

A non-unity feedback system is implemented in MATLAB using the same “feedback”

command as shown:

Example 3: Given a unity feedback system as shown in the figure, obtain the overall transfer

function using MATLAB:

The result is as shown below:

50 Lab Experiment 5: Block Diagram Reduction

CISE 302 Lab Manual Page 50

Example 4: Given a non-unity feedback system as shown in the figure, obtain the overall

transfer function using MATLAB:

The result is as shown below:

Poles and Zeros of System: To obtain the poles and zeros of the system use the MATLAB

command “pole” and “zero” respectively as shown in example 5. You can also use MATLAB

command “pzmap” to obtain the same.

Example 5: Given a system transfer function plot the location of the system zeros and poles

using the MATLAB pole-zero map command.

For example:

51 Lab Experiment 5: Block Diagram Reduction

CISE 302 Lab Manual Page 51

Exercise 1: For the following multi-loop feedback system, get closed loop transfer function

and the corresponding pole-zero map of the system.

Given
)10(

1
1




s
G ;

)1(

1
2




s
G ;

)44(

1
2

2

3





ss

s
G ;

)6(

1
4






s

s
G ;

)2(

1
1






s

s
H ; 22 H

; 13 H

(Reference: Page 113, Chapter 2, Text: Dorf.)

MATLAB solution:

Instruction: Please refer to Section 2.6 and Section 2.2 in Text by Dorf.

Exercise 2: Consider the feedback system depicted in the figure below

a. Compute the closed-loop transfer function using the ‘series’ and ‘feedback’ functions

b. Obtain the closed-loop system unit step response with the ‘step’ function and verify

that final value of the output is 2/5.

52 Lab Experiment 5: Block Diagram Reduction

CISE 302 Lab Manual Page 52

Reference: Please see Section 2.5 of Text by Dorf for Exercise 3.

Exercise 3: A satellite single-axis altitude control system can be represented by the block

diagram in the figure given. The variables ‘k’, ‘a’ and ‘b’ are controller parameters, and ‘J’ is

the spacecraft moment of inertia. Suppose the nominal moment of inertia is ‘J’ = 10.8E8, and

the controller parameters are k=10.8E8, a=1, and b=8.

a. Develop an m-file script to compute the closed-loop transfer function

 () () ().
b. Compute and plot the step response to a 10

o
 step input.

c. The exact moment of inertia is generally unknown and may change slowly with time.

Compare the step response performance of the spacecraft when J is reduced by 20%

and 50%. Discuss your results.

Reference: Please see Section 2.9 of Text by Dorf for Exercise 4.

Exercise 4: Consider the feedback control system given in figure, where

 ()

 and ()

.

a. Using an m-file script, determine the close-loop transfer function.

b. Obtain the pole-zero map using the ‘pzmap’ function. Where are the closed-loop

system poles and zeros?

c. Are there any pole-zero cancellations? If so, use the ‘minreal’ function to cancel

common poles and zeros in the closed-loop transfer function.

d. Why is it important to cancel common poles and zeros in the transfer function?

Exercise 5: Do problem CP2.6 from your text

s

Controller

s

s

Plant

-

+ R(s) Y(s)

k(s a)

s b

Controller

Js

Spacecraft

-

+

G(s)

-

+ R(s)
Y(s)

H(s)

θ(s)

Actual Altitude

θd(s)

Desired Altitude

53 Lab Experiment 6: Performance of First order and second order systems

CISE 302 Lab Manual Page 53

CISE 302

Linear Control Systems

Lab Experiment 6: Performance of First order and second order systems

Objective: The objective of this exercise will be to study the performance characteristics of

first and second order systems using MATLAB.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

Category Soft-Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 MATLAB scripts and their results for Exercise 1 & 2 should be reported properly.

Overview First Order Systems:

An electrical RC-circuit is the simplest example of a first order system. It comprises of a

resistor and capacitor connected in series to a voltage supply as shown below on Figure 1.

Figure 1: RC Circuit

If the capacitor is initially uncharged at zero voltage when the circuit is switched on, it starts

to charge due to the current ‘i' through the resistor until the voltage across it reaches the

supply voltage. As soon as this happens, the current stops flowing or decays to zero, and the

circuit becomes like an open circuit. However, if the supply voltage is removed, and the

circuit is closed, the capacitor will discharge the energy it stored again through the resistor.

The time it takes the capacitor to charge depends on the time constant of the system, which is

defined as the time taken by the voltage across the capacitor to rise to approximately 63% of

the supply voltage. For a given RC-circuit, this time constant is . Hence its magnitude

depends on the values of the circuit components.

+

 -

R

C
E(t) Vc(t)

54 Lab Experiment 6: Performance of First order and second order systems

CISE 302 Lab Manual Page 54

The RC circuit will always behave in this way, no matter what the values of the components.

That is, the voltage across the capacitor will never increase indefinitely. In this respect we

will say that the system is passive and because of this property it is stable.

For the RC-circuit as shown in Fig. 1, the equation governing its behavior is given by

 ()

 ()

 where () (1)

where () is the voltage across the capacitor, R is the resistance and C is the capacitance.

The constant is the time constant of the system and is defined as the time required by

the system output i.e. () to rise to 63% of its final value (which is E). Hence the above

equation (1) can be expressed in terms of the time constant as:

 ()

 () where () (1)

Obtaining the transfer function of the above differential equation, we get

 ()

 ()

 (2)

where τ is time constant of the system and the system is known as the first order system. The

performance measures of a first order system are its time constant and its steady state.

Exercise 1:

a) Given the values of R and C, obtain the unit step response of the first order system.

a. R=2KΩ and C=0.01F

b. R=2.5KΩ and C=0.003F

b) Verify in each case that the calculated time constant () and the one measured

from the figure as 63% of the final value are same.

c) Obtain the steady state value of the system.

Overview Second Order Systems:

Consider the following Mass-Spring system shown in the Figure 2. Where K is the spring

constant, B is the friction coefficient, x(t) is the displacement and F(t) is the applied force:

Figure 2. Mass-Spring system

The differential equation for the above Mass-Spring system can be derived as follows

 ()

 ()

 () ()

K

M

B

F(t)

x(t)

55 Lab Experiment 6: Performance of First order and second order systems

CISE 302 Lab Manual Page 55

Applying the Laplace transformation we get

() () ()

provided that, all the initial conditions are zeros. Then the transfer function representation of

the system is given by

 ()

 ()

()

The above system is known as a second order system.

The generalized notation for a second order system described above can be written as

2

2 2
() ()

2

n

n n

Y s R s
s s



 


 

With the step input applied to the system, we obtain

2

2 2
()

(2)

n

n n

Y s
s s s



 


 

for which the transient output, as obtained from the Laplace transform table (Table 2.3,

Textbook), is

2 1

2

1
() 1 sin(1 cos ())

1

nt

ny t e t   


    


where 0 < ζ < 1. The transient response of the system changes for different values of damping

ratio, ζ. Standard performance measures for a second order feedback system are defined in

terms of step response of a system. Where, the response of the second order system is shown

below.

56 Lab Experiment 6: Performance of First order and second order systems

CISE 302 Lab Manual Page 56

The performance measures could be described as follows:

Rise Time: The time for a system to respond to a step input and attains a response equal to a

percentage of the magnitude of the input. The 0-100% rise time, Tr, measures the time to

100% of the magnitude of the input. Alternatively, Tr1, measures the time from 10% to 90%

of the response to the step input.

Peak Time: The time for a system to respond to a step input and rise to peak response.

Overshoot: The amount by which the system output response proceeds beyond the desired

response. It is calculated as

P.O.= 100%tpM f

f








where MPt is the peak value of the time response, and fv is the final value of the response.

Settling Time: The time required for the system’s output to settle within a certain percentage

of the input amplitude (which is usually taken as 2%). Then, settling time, Ts, is calculated as

4
s

n

T




Exercise 2: Effect of damping ratio ζ on performance measures. For a single-loop second

order feedback system given below

Find the step response of the system for values of ωn = 1 and ζ = 0.1, 0.4, 0.7, 1.0 and 2.0.

Plot all the results in the same figure window and fill the following table.

ζ Rise time Peak Time % Overshoot Settling time Steady state value

0.1

0.4

0.7

1.0

2.0

 R(s)
E(s)

Y(s)
+

-

57 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 57

CISE 302

Linear Control Systems

Lab Experiment 7: DC Motor Characteristics

Objective: The objective of the experiment is to show how a permanent magnet D.C.

motor may be controlled by varying the magnitude and direction of its armature current and

recognize the torque/speed characteristic of the D.C. Motor

List of Equipment/Software

Following equipment/software is required:

 MATLAB

 LabVIEW

 DC Servo System (feedback equipment)

a. OU150A Op Amp Unit

b. AU150B Attenuator Unit

c. PA150C Pre-Amplifier Unit

d. SA150D Servo Amplifier

e. PS150E Power Supply

f. DCM150F DC Motor

g. IP150H Input Potentiometer

h. OP150K Output Potentiometer

i. GT150X Reduction Gear Tacho

j. DC Voltmeter

Category Software-Hardware Experiment

Note: This lab exercise may take two weeks.

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 Clearly show the model development and the Simulink model.

 Show the parameter identification graphs and calculations properly.

 Connection diagram of the hardware experimental part.

 Report the results in the table and graphical way with summarized learning outcomes.

Introduction:

58 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 58

This experiment will illustrate the characteristics of the D.C. motor used in the Modular

Servo and show how it can be controlled by the Servo Amplifier.

The motor is a permanent magnet type and has a single armature winding. Current flow

through the armature is controlled by power amplifiers as in figure so that rotation in both

directions is possible by using one, or both of the inputs. In most of the later assignments the

necessary input signals are provided by a specialized Pre-Amplifier Unit PA150C, which

connected to Inputs 1 and 2 on SA150D

Figure: Armature Control

Figure: DC motor armature-controlled rotational actuator

As the motor accelerates the armature generates an increasing 'back-emf' Va tending to

oppose the driving voltage Vin. The armature current is thus roughly proportional to (Vin -

Va). If the speed drops (due to loading) Va reduces, the current increases and thus so does the

motor torque. This tends to oppose the speed drop. This mode of control is called 'armature-

control' and gives a speed proportional to Vin as in figure.

Model of the armature-controlled DC motor:

The model of the armature-controlled DC motor has been developed in many text books in

particular (Dorf and Bishop, 2008).

Assignment: Read (Dorf and Bishop, 2008) page 62-65

The final block diagram is as follows:

59 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 59

Model Simulation using Simulink:

Prerequisite to this section is a mathematical understanding of the elctro-mechanical model

of a DC motor. Student should be able to understand how electrical terms (voltage, current,

emf) interact with mechanical terms (speed, position) via electro-magnetic circuit

(inductance). The students should be able to understand and derive the mathematical model

of a DC motor.

The motor torque, T, is related to the armature current, i, by a constant factor Kt. The back

emf, e, is related to the rotational velocity by the following equations:

iKT t

dt

d
Ke e




In SI units (which we will use), Kt (armature constant) is equal to Ke (motor constant).

1. Building the Model

This system will be modeled by summing the torques acting on the rotor inertia and

integrating the acceleration to give the velocity, and integrating velocity to get position. Also,

Kirchoff's laws will be applied to the armature circuit.

Open Simulink and open a new model window. First, we will model the integrals of the

rotational acceleration and of the rate of change of armature current.

   


dt

d

dt

d
2

2

i
dt

di


60 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 60

 Insert an Integrator block (from the Linear block library) and draw lines to and from

its input and output terminals.

 Label the input line "d2/dt2(theta)" and the output line "d/dt(theta)" as shown below.

To add such a label, double click in the empty space just above the line.

 Insert another Integrator block attached to the output of the previous one and draw a

line from its output terminal.

 Label the output line "theta".

 Insert a third Integrator block above the first one and draw lines to and from its input

and output terminals.

 Label the input line "d/dt(i)" and the output line "i".

Next, we will start to model both Newton's law and Kirchoff's law. These laws applied to the

motor system give the following equations:

 (

)

 (

)

The angular acceleration is equal to 1/J multiplied by the sum of two terms (one pos., one

neg.). Similarly, the derivative of current is equal to 1/L multiplied by the sum of three terms

(one pos., two neg.).

 Insert two Gain blocks, (from the Linear block library) one attached to each of the

leftmost integrators.

 Edit the gain block corresponding to angular acceleration by double-clicking it and

changing its value to "1/J".

 Change the label of this Gain block to "inertia" by clicking on the word "Gain"

underneath the block.

61 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 61

 Similarly, edit the other Gain's value to "1/L" and it's label to Inductance.

 Insert two Sum blocks (from the Linear block library), one attached by a line to each

of the Gain blocks.

 Edit the signs of the Sum block corresponding to rotation to "+-" since one term is

positive and one is negative.

 Edit the signs of the other Sum block to "-+-" to represent the signs of the terms in

Kirchoff's equation.

Now, we will add in the torques which are represented in Newton's equation. First, we will

add in the damping torque.

 Insert a gain block below the inertia block, select it by single-clicking on it, and select

Flip from the Format menu (or type Ctrl-F) to flip it left-to-right.

 Set the gain value to "b" and rename this block to "damping".

 Tap a line (hold Ctrl while drawing) off the first rotational integrator's output

(d/dt(theta)) and connect it to the input of the damping gain block.

 Draw a line from the damping gain output to the negative input of the rotational Sum

block.

Next, we will add in the torque from the armature.

 Insert a gain block attached to the positive input of the rotational Sum block with a

line.

 Edit it's value to "K" to represent the motor constant and Label it "Kt".

 Continue drawing the line leading from the current integrator and connect it to the Kt

gain block.

62 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 62

Now, we will add in the voltage terms which are represented in Kirchoff's equation. First, we

will add in the voltage drop across the coil resistance.

 Insert a gain block above the inductance block, and flip it left-to-right.

 Set the gain value to "R" and rename this block to "Resistance".

 Tap a line (hold Ctrl while drawing) off the current integrator's output and connect it

to the input of the resistance gain block.

 Draw a line from the resistance gain output to the upper negative input of the current

equation Sum block.

Next, we will add in the back emf from the motor.

 Insert a gain block attached to the other negative input of the current Sum block with

a line.

 Edit it's value to "K" to represent the motor constant and Label it "Ke".

 Tap a line off the first rotational integrator's output (d/dt(theta)) and connect it to the

Ke gain block.

63 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 63

The third voltage term in the Kirchoff equation is the control input, V. We will apply a step

input.

 Insert a Step block (from the Sources block library) and connect it with a line to the

positive input of the current Sum block.

 To view the output speed, insert a Scope (from the Sinks block library) connected to

the output of the second rotational integrator (theta).

 To provide a appropriate unit step input at t=0, double-click the Step block and set the

Step Time to "0".

2. DC motor nominal values

64 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 64

 moment of inertia of the rotor (J) = 3.2284E-6 kg.m^2/s^2

 damping ratio of the mechanical system (b) = 3.5077E-6 Nms

 electromotive force constant (K=Ke=Kt) = 0.0274 Nm/Amp

 electric resistance (R) = 4 ohm

 electric inductance (L) = 2.75E-6 H

 input (V): Source Voltage

 output (theta): position of shaft

Assumption: The rotor and shaft are assumed to be rigid

The physical parameters must now be set. Run the following commands at the MATLAB

prompt:

J=3.2284E-6;

b=3.5077E-6;

K=0.0274;

R=4;

L=2.75E-6;

Run the simulation (Ctrl-t or Start on the Simulation menu).

3. Simulation:

To simulate this system, first, an appropriate simulation time must be set. Select Parameters

from the Simulation menu and enter "0.2" in the Stop Time field. 0.2 seconds is long enough

to view the open-loop response. Also in the Parameters dialog box, it is helpful to change the

Solver Options method. Click on the field which currently contains "ode45 (Dormand-

Prince)". Select the option "ode15s (stiff/NDF)". Since the time scales in this example are

very small, this stiff system integration method is much more efficient than the default

integration method.

65 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 65

Step input:

- Use step input from 0 volts to 2 volts and observe the response.

- Save the response to workspace variable to further compare with the

experimental DC motor (DCM 150F).

- Now Step the input voltage from 2 volts to 4 volts. Save the response to

further compare with experimental motor.

- This is the simulation section for the Exercise 2 – Step input.

Sine wave input:

- Remove the Step Input and connect a Function Generator from the

Simulink-Library to the input of the motor model in Simulink.

- Select Sinusoidal function in the function generator.

- Fix the amplitude of the sine wave to 2.

- Take several responses by varying the frequency of the sinusoidal wave

keeping the amplitude fixed.

- Save the input and output of the DC motor model to further compare with

experimental motor response.

- This is the simulation section for the Exercise 2 – Sine input

Parameter Identification:

Purpose: Modeling in Simulink requires system parameters of DC motor. If the parameters

of the DC motor system are unknown, students should use this section to determine the

system parameters of the DC motor system. The motor is attached to a tachometer, flywheel,

and a load (magnetic load disk). Data should be acquired for the unloaded spin up of the

motor, as well as the response of the system upon the application of a load. The data from the

experimental setup can be collected using USB DAQ from National Instruments and

LABVIEW software.

66 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 66

Derivations

To measure the constants km and R, we can use equations following equations,

mm ke 

R

ee
i ma
a




Divide by ae ,

Hint: The last equation resembles with the well known cmxy  equation of a line.

Since we have measured values for ae , ai , and  , we can plot
a

a

i

e
versus

ai


to determine the

slope and intercept, which reveals the constant values of mk and R .

To derive B , ft , and wk we use the equation

faim BJik  


For steady state 0


 , so we have

fm B  

If we plot the graph of m and  , and plot a best fit line, we can get the corresponding values

of B and f .

Once we know m , we can find ik using

 aim ik


a

m

a

a

eR

k

Re

i


1

Re

i

eR

k

a

a

a

m 1


Re

i

eR

iRk

a

a

a

am 1




R
iRk

eR

am

a 


ama iRke  

Rk
ii

e
m

aa

a 


67 Lab Experiment 7: DC Motor Characteristics

CISE 302 Lab Manual Page 67

Note that k is the slope of the te vs  graph.

Summarize the system parameters for the DC motor in corresponding graphs and tables. Use

these parameters in the Simulink Model simulation and validate the Simulation results with

the experimental set up.

Viscous Friction vs. Coulomb Friction

We can estimate the speed at which the viscous friction is greater than the coulomb friction,

that is, when fTB  . The speed can be calculated by dividing fT by B .

The approximate tachometer voltage corresponding to this speed can be determined by using

the best fit equation for the relationship between te and .

After determining the best fit equation for te and , we can plug in the value of  calculated

above to get an expected tachometer voltage te .

Note that the voltage estimated may be greater than the tachometer voltage determined by the

experimental setup in lab. This case, we can assume that the Coulomb friction in the motor

system dominates.

Calculating J from the Motor Spinup Data

Applying a step input of to the motor and acquiring data samples, we can obtain a curve for

the tachometer voltage vs. time. Given the form of the first order response of the system to an

input, we can further fit the data with an appropriate exponential to determine the time

constant.

)1(
1

.)(.
1

)(

)(
)(at

t

a

t e
a

Kte
as

K

ssE

sE
sFunctionTransfer 




Where,

JR

kkBR
a im




1
, and

JR

kk
K i 

Using the above equations and the best fit constants for the motor spin up obtained above, we

can calculate the value of J .

Figures to be plotted:

1. te (volts) versus)/(srad : To determine k .

2.
a

a

i

e
(volts/ampere = ohms) versus

ai


(rad/(sec*Amp)): To determine constants mk and

.R

3. mT (N*m) versus  (rad/s): To determine B and fT .

Table of values: Tfm kTkRBk

68 Lab Experiment 8: Validation of DC Motor Characteristics

CISE 302 Lab Manual Page 68

CISE 302

Linear Control Systems

Lab Experiment 8: Validation of DC Motor Characteristics

Objective: The objective of the experiment is to validate the learning outcomes of the last

experiment (Exp. 6) for the characteristic of the D.C. Motor.

List of Equipment/Software

Following equipment/software is required:

 LabVIEW

 DC Servo System (feedback equipment)

a. OU150A Op Amp Unit

b. AU150B Attenuator Unit

c. PA150C Pre-Amplifier Unit

d. SA150D Servo Amplifier

e. PS150E Power Supply

f. DCM150F DC Motor

g. IP150H Input Potentiometer

h. OP150K Output Potentiometer

i. GT150X Reduction Gear Tacho

j. DC Voltmeter

Category Software-Hardware Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 Show the parameter identification graphs and calculations properly.

 Connection diagram of the hardware experimental part.

 Report the results in the table and graphical way with summarized learning outcomes.

Model validation:

Preliminary Procedure:

 Attach the AU150B, SA150D and PS150E, to the baseplate by means of the magnetic

bases.

 Fit the eddy-current brake disc to the motor shaft.

 Now attach the DCM150F to the baseplate by means of the magnetic fixings and fix

the plug into the SA150D.

69 Lab Experiment 8: Validation of DC Motor Characteristics

CISE 302 Lab Manual Page 69

 Attach the GT150X to the baseplate by means of the magnetic fixings and position it,

so that it is connected to the motor shaft by means of the flexible coupling.

 Attach the LU150L to the baseplate by means of the magnetic fixings and position it

so that when the cursor is on position 10 the eddy-current disc lies midway in the gap

with its edge flush with the back of the magnet.

 Fix the plug from the SA150D into the PS150E

 Connect the Power Supply to the mains supply line, DO NOT switch on yet.

Procedure:

 Connect the equipment as shown in the figure.

 The system provides a tacho-generator coupled to the motor. For use in later

assignments, it will be necessary to calibrate this generator by finding the factor Kg,

which are the volts generated per thousand rev/min of motor shaft.

 Use the switch on the top of the GT150X to display the tacho volts or speed as

required.

Figure: Connections for DC Motor

Exercise 1:

1. Set the magnetic brake to the unloaded position and turn the potentiometer till there is

a reading of 1V on the voltmeter.

2. Repeat this reading with a 2V output. Then repeat for 3V, 4V and 5V.

Now record the speed. Tabulate your results in a copy of the table given below.

Tacho-generator

Volts

Speed

r/min

70 Lab Experiment 8: Validation of DC Motor Characteristics

CISE 302 Lab Manual Page 70

3. Plot a graph of your results, as in figure below, of Speed against Tacho-generator

volts.

Figure: Speed vs Tacho-generator volts

The calibration factor Kg = Vg/N-r/min. It should be about 2.OV to 3.OV per 1000 r/min.

Exercise 2: Compare model and real system

 Step the input voltage from 0V to 2 V and compare the output with MATLAB

response.

 While the system is stable and the input is at 2 V, Step the input voltage from 2V

to 4V. Record the input and output and compare the output with the same

experiment in MATLAB.

 Connect a frequency generator to the input voltage and fix the input to 2*sin(wt)

where Record the output and compare it to MATLAB response.

Nonlinear characteristics

The difference between the MATLAB model and the real system can be explained by the

presence of a nonlinear dynamic that was ignored during modeling. Indeed, Due to brush

friction, a certain minimum input signal is needed to start the motor rotating. Above figure

shows how the speed varies with load torque. The first experiment will be to obtain the

characteristics of the motor.

71 Lab Experiment 8: Validation of DC Motor Characteristics

CISE 302 Lab Manual Page 71

Figure: Armature control characteristics

Exercise 3: determination of the nonlinear DC motor characteristics

 Reduce the input voltage till the motor is just turning then measure with your voltmeter

the voltages between OV and potentiometer slider and the tacho-generator output.

Then tabulate as in fig 3.3.6. Increase the input voltage in one-volt steps, take readings

of the input voltage and tachogenerator voltage up to approximately 2000 r/min which

is the maximum speed of the motor.

 Plot the input voltages against speed, your results should be similar to the figure which

shows plot of speed vs voltage.

Vin

Volts

Vg

Volts

Speed

rpm

 Calculate the slope (input volts per thousand r/min).

Exercise 4: Effect of the load

 To measure the torque/speed characteristics, fix the brake so that it passes over the

disc smoothly while the motor is running.

 Set the brake at position 0 and increase the input voltage until the motor rotates at

close to its maximum speed.

 Then set the brake at position 10 and if necessary reduce the input voltage so that the

ammeter on the PS150E is just below 2 amps; note the value of the input voltage.

72 Lab Experiment 8: Validation of DC Motor Characteristics

CISE 302 Lab Manual Page 72

Take tacho-generator readings over the range of the brake down to zero position,

tabulating your results.

Brake

Position

Vg

Volts

Speed

Rpm

 Now reset the brake back to maximum position and reduce the signal input voltage so

that the motor is slowly rotating. Note the actual value of the input voltage.

 Take readings over the brake range tabulating the further results.

Brake

Position

Vg

Volts

Speed

rpm

 Plot the two sets of results, as in figure of Speed against Torque (brake position) for

the two input voltage values.

 Below figure shows the approximate brake position/g.cm characteristics of the motor

at 1000 r/min. For other speeds, the torque will be proportional to the speed.

73 Lab Experiment 8: Validation of DC Motor Characteristics

CISE 302 Lab Manual Page 73

Figure: Approximate brake characteristics at 1000 r/min

With armature control the negative feedback of the back emf will oppose the input signal and

so tend to maintain a steady motor current; this results in a more constant speed over the

torque range. As a result the torque/speed curve becomes more similar to that produced by a

shunt wound motor. The armature-controlled shunt-wound motor is extensively used in

control systems.

74 Lab Experiment 9: Effect of Feedback on disturbance & Control System Design

CISE 302 Lab Manual Page 74

CISE 302

Linear Control Systems

Lab Experiment 9: Effect of Feedback on disturbance & Control System

Design

Objective: The objective of this exercise will be to study the effect of feedback on the

response of the system to step input and step disturbance taking the practical example of

English Channel boring machine and design a control system taking in account performance

measurement.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

Category Soft - Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 The Simulink model.

 MATLAB scripts and results for Exercise 1 & 2.

Overview:
The construction of the tunnel under the English Channel from France to the Great Britain

began in December 1987. The first connection of the boring tunnels from each country was

achieved in November 1990. The tunnel is 23.5 miles long and bored 200 feet below sea

level. Costing $14 billion, it was completed in 1992 making it possible for a train to travel

from London to Paris in three hours.

The machine operated from both ends of the channel, bored towards the middle. To link up

accurately in the middle of the channel, a laser guidance system kept the machines precisely

aligned. A model of the boring machine control is shown in the figure, where Y(s) is the

actual angle of direction of travel of the boring machine and R(s) is the desired angle. The

effect of load on the machine is represented by the disturbance, Td(s).

 Figure: A block diagram model of a boring machine control system

K s

Gc(s)
Controller

s(s)

G(s)
Plant

-

+ R(s)

Desired
Angle

Y(s)

Angle +

+
Td(s)

75 Lab Experiment 9: Effect of Feedback on disturbance & Control System Design

CISE 302 Lab Manual Page 75

Exercise 1:

a) Get the transfer function from R(s) to Y(s)

b) Get the transfer function from D(s) to Y(s)

c) Generate the system response; for K= 10, 20, 50, 100; due to a unit step input - r(t)

d) Generate the system response; for K= 10, 20, 50, 100; due to a unit step disturbance -

d(t)

e) For each case find the percentage overshoot(%O.S.), rise time, settling time, steady

state of y(t)

f) Compare the results of the two cases

g) Investigate the effect of changing the controller gain on the influence of the

disturbance on the system output

M-files for two cases of K=20 and K=100 are shown below

76 Lab Experiment 9: Effect of Feedback on disturbance & Control System Design

CISE 302 Lab Manual Page 76

Due to unit step – r(s)

% Response to a Unit Step Input R(s)=1/s

for K=20 and K=100

%

numg=[1];deng=[1 1

0];sysg=tf(numg,deng);

K1=100;K2=20;

num1=[11 K1];num2=[11 K2];den=[0 1];

sys1=tf(num1,den);sys2=tf(num2,den);

%

sysa=series(sys1,sysg);sysb=series(sys2,sys

d);

sysc=feedback(sysa,[1]);sysd=feedback(sys

b,[1]);

%

t=[0:0.01:2.0];

[y1,t]=step(sysc,t);[y2,t]=step(sysd,t);

subplot(211);plot(t,y1);title(‘Step Response

for K=100’);

xlabel(‘Time (seconds)’);ylabel(‘y(t)’);grid

on;

subplot(212);plot(t,y2);title(‘Step Response

for K=20’);

xlabel(‘Time (seconds)’);ylabel(‘y(t)’);grid

on;

Due to unit disturbance – Td(s)

% Response to a Disturbance Input D(s)=1/s

for K=20 and K=100

%

numg=[1];deng=[1 1

0];sysg=tf(numg,deng);

K1=100;K2=20;

num1=[11 K1];num2=[11 K2];den=[0 1];

sys1=tf(num1,den);sys2=tf(num2,den);

%

sysa=feedback(sysg,sys1);sysa=minreal(sys

a);

sysb=feedback(sysg,sys2);sysb=minreal(sys

b);

%

t=[0:0.01:2.5];

[y1,t]=step(sysa,t);[y2,t]=step(sysb,t);

subplot(211);plot(t,y1);title(‘Disturbance

Response for K=100’);

xlabel(‘Time (seconds)’);ylabel(‘y(t)’);grid

on;

subplot(212);plot(t,y2);title(‘Disturbance

Response for K=20’);

label(‘Time (seconds)’);ylabel(‘y(t)’);grid

on;

Exercise 2: Design of a Second order feedback system based on performances.

For the motor system given below, we need to design feedback such that the overshoot is limited

and there is less oscillatory nature in the response based on the specifications provided in the

table. Assume no disturbance (D(s)=0).

Table: Specifications for the Transient

Response

Performance Measure

Desired Value

Ka 5

𝑠(𝑠)

R(s)

-

+

+

-
Y(s)

Amplifier

Motor

Constant Load
D(s)

Create
subplots with x

and y axis
labels

Closed loop
transfer

functions

Choose time interval

77 Lab Experiment 9: Effect of Feedback on disturbance & Control System Design

CISE 302 Lab Manual Page 77

Percent overshoot Less than 8%

Settling time Less than

400ms

Use MATLAB, to find the system performance for different values of Ka and find which value of

the gain Ka satisfies the design condition specified. Use the following table.

Ka 20 30 50 60 80

Percent

Overshoot

Settling

time

78 Lab Experiment 10: Effect of Feedback on disturbance & Control System Design of Tank
Level System

CISE 302 Lab Manual Page 78

CISE 302

Linear Control Systems

Lab Experiment 10: Effect of Feedback on disturbance & Control System

Design of Tank Level System

Objective: The objective of this exercise will be to study the effect of feedback on the

response of the system to step input and step disturbance on the Two Tank System.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

 LabVIEW

 NI USB 6009 Data Acquisition Card

 Two Tank System (CE 105)

Category Software Hardware Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 LabVIEW programming files (Block diagram and Front Panel)

 Graphical representation of data collected for several cases of disturbance (leakage via

valve at bottom). (Instructors should provide the data collection VI file)

 Controller performance and parameters for each case of disturbance.

Overview:

A model of the tank system and the controller is shown in the figure, where Y(s) is the actual

level of the tank and R(s) is the desired level. The effect of disturbance to the tank system is

represented by the disturbance, Td(s). The Td(s) is the leakage that can be generated from the

hand valve at the bottom of the tank system.

79 Lab Experiment 10: Effect of Feedback on disturbance & Control System Design of Tank
Level System

CISE 302 Lab Manual Page 79

Figure: A block diagram model of a two tank level control system

NOTE: Instructors should manage to complete the hardware/software setup for the students to

take reading and implement the controller.

Exercise:

a) Launch the data collection LabVIEW file and make the proper connections to the Two

Tank System. This experiment uses only one tank of the system.

b) The disturbance to the tank is the hand-valve in the bottom of the first tank.

c) Collect the data for the FIVE cases of leakage valve (valve at bottom).

d) From the theory and understanding from last experiment (Exp 7), identify and prepare the

transfer function and respective controllers for the specifications discussed during last

experiment.

e) Generate the system response; for K= 10, 20, 50, 100; due to the five cases of leakage

disturbance - d(t)

f) For each case find the percentage overshoot(%O.S.), rise time, settling time, steady state

of y(t)

g) Compare the results of all the cases

h) Investigate the effect of changing the controller gain on the influence of the disturbance

on the system output

Gc(s)
Controller

G(s)
Plant

-

+ R(s)

Desired
Level

Y(s)

Height

(Level of

tank)

+

+
Leakage Td(s)

80 Lab Experiment 11: Introduction to PID controller

CISE 302 Lab Manual Page 80

CISE 302

Linear Control Systems

Lab Experiment 11: Introduction to PID controller

Objective: Study the three term (PID) controller and its effects on the feedback loop response.

Investigate the characteristics of the each of proportional (P), the integral (I), and the derivative

(D) controls, and how to use them to obtain a desired response.

List of Equipment/Software

Following equipment/software is required:

 MATLAB

 LabVIEW

Category Soft - Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 LabVIEW programming files (Block diagram and Front Panel)

 Controller design and parameters for each of the given exercises.

Introduction: Consider the following unity feedback system:

Plant: A system to be controlled.

Controller: Provides excitation for the plant; Designed to control the overall system behavior.

The three-term controller: The transfer function of the PID controller looks like the following:

Controller Plant
R e u Y +

-

81 Lab Experiment 11: Introduction to PID controller

CISE 302 Lab Manual Page 81

KP = Proportional gain

KI = Integral gain

KD = Derivative gain

First, let's take a look at how the PID controller works in a closed-loop system using the

schematic shown above. The variable (e) represents the tracking error, the difference between the

desired input value (R) and the actual output (Y). This error signal (e) will be sent to the PID

controller, and the controller computes both the derivative and the integral of this error signal.

The signal (u) just past the controller is now equal to the proportional gain (KP) times the

magnitude of the error plus the integral gain (KI) times the integral of the error plus the

derivative gain (KD) times the derivative of the error.

 () ∫ ()
 ()

This signal (u) will be sent to the plant, and the new output (Y) will be obtained. This new output

(Y) will be sent back to the sensor again to find the new error signal (e). The controller takes this

new error signal and computes its derivatives and its internal again. The process goes on and on.

Example Problem:

Suppose we have a simple mass, spring, and damper problem.

The modeling equation of this system is

 ̈ ̇

Taking the Laplace transform of the modeling equation (1), we get

 () () () ()

The transfer function between the displacement X(s) and the input F(s) then becomes

82 Lab Experiment 11: Introduction to PID controller

CISE 302 Lab Manual Page 82

 ()

 ()

Let

 M = 1kg

 b = 10 N.s/m

 k = 20 N/m

 F(s) = 1

Plug these values into the above transfer function

 ()

 ()

The goal of this problem is to show you how each of Kp, Ki and Kd contributes to obtain

 Fast rise time

 Minimum overshoot

 No steady-state error

Open-loop step response: Let's first view the open-loop step response.

num=1;

den=[1 10 20];

plant=tf(num,den);

step(plant)

MATLAB command window should give you the plot shown below.

http://www.library.cmu.edu/ctms/ctms/extras/step.htm

83 Lab Experiment 11: Introduction to PID controller

CISE 302 Lab Manual Page 83

The DC gain of the plant transfer function is 1/20, so 0.05 is the final value of the output to a unit

step input. This corresponds to the steady-state error of 0.95, quite large indeed. Furthermore, the

rise time is about one second, and the settling time is about 1.5 seconds. Let's design a controller

that will reduce the rise time, reduce the settling time, and eliminates the steady-state error.

Proportional control:

The closed-loop transfer function of the above system with a proportional controller is:

 ()

 ()

 ()

Let the proportional gain (KP) equal 300:

Kp=300;

contr=Kp;

sys_cl=feedback(contr*plant,1);

t=0:0.01:2;

step(sys_cl,t)

MATLAB command window should give you the following plot.

P Controller
KP

𝑠 𝑠

Plant
R e u Y +

-

http://www.library.cmu.edu/ctms/ctms/extras/step.htm

84 Lab Experiment 11: Introduction to PID controller

CISE 302 Lab Manual Page 84

Note: The MATLAB function called feedback was used to obtain a closed-loop transfer function

directly from the open-loop transfer function (instead of computing closed-loop transfer function

by hand). The above plot shows that the proportional controller reduced both the rise time and

the steady-state error, increased the overshoot, and decreased the settling time by small amount.

Proportional-Derivative control:

The closed-loop transfer function of the given system with a PD controller is:

 ()

 ()

 () ()

Let KP equal 300 as before and let KD equal 10.

Kp=300;

Kd=10;

contr=tf([Kd Kp],1);

sys_cl=feedback(contr*plant,1);

t=0:0.01:2;

step(sys_cl,t)

MATLAB command window should give you the following plot.

PD Controller
KP+KDs

𝑠 𝑠

Plant
R e u Y +

-

http://www.library.cmu.edu/ctms/ctms/extras/step.htm

85 Lab Experiment 11: Introduction to PID controller

CISE 302 Lab Manual Page 85

This plot shows that the derivative controller reduced both the overshoot and the settling time,

and had a small effect on the rise time and the steady-state error.

Proportional-Integral control:

Before going into a PID control, let's take a look at a PI control. For the given system, the

closed-loop transfer function with a PI control is:

 ()

 ()

 ()

Let's reduce the KP to 30, and let KI equal 70.

Kp=30;

Ki=70;

contr=tf([Kp Ki],[1 0]);

sys_cl=feedback(contr*plant,1);

t=0:0.01:2;

step(sys_cl,t)

MATLAB command window gives the following plot.

PI Controller
KP+KI/s

𝑠 𝑠

Plant
R e u Y +

-

http://www.library.cmu.edu/ctms/ctms/extras/step.htm

86 Lab Experiment 11: Introduction to PID controller

CISE 302 Lab Manual Page 86

We have reduced the proportional gain (Kp) because the integral controller also reduces the rise

time and increases the overshoot as the proportional controller does (double effect). The above

response shows that the integral controller eliminated the steady-state error.

Proportional-Integral-Derivative control:

Now, let's take a look at a PID controller. The closed-loop transfer function of the given system

with a PID controller is:

 ()

 ()

 ()
 ()

After several trial and error runs, the gains Kp=350, Ki=300, and Kd=50 provided the desired

response. To confirm, enter the following commands to an m-file and run it in the command

window. You should get the following step response.

Kp=350;

Ki=300;

Kd=50;

contr=tf([Kd Kp Ki],[1 0]);

sys_cl=feedback(contr*plant,1);

t=0:0.01:2;

step(sys_cl,t)

PID Controller
KP+KI/s+ KDs

𝑠 𝑠

Plant
R e u Y +

-

http://www.library.cmu.edu/ctms/ctms/extras/step.htm

87 Lab Experiment 11: Introduction to PID controller

CISE 302 Lab Manual Page 87

Now, we have obtained a closed-loop system with no overshoot, fast rise time, and no steady-

state error.

The characteristics of P, I, and D controllers:

The proportional controller (KP) will have the effect of reducing the rise time and will reduce,

but never eliminate, the steady state error. An integral controller (KI) will have the effect of

eliminating the steady state error, but it may make the transient response worse. A derivative

control (KD) will have the effect of increasing the stability of the system, reducing the overshoot

and improving the transient response.

Effect of each controller KP, KI and KD on the closed-loop system are summarized below

CL Response Rise Time Overshoot Settling Time S-S Error

KP Decrease Increase Small Change Decrease

KI Decrease Increase Increases Eliminate

KD Small Change Decreases Decreases Small Change

Note that these corrections may not be accurate, because KP, KI, and KD are dependent of each

other. In fact, changing one of these variables can change the effect of the other two. For this

reason the table should only be used as a reference when you are determining the values for KP,

KI, and KD.

Exersice:

Consider a process given below to be controlled by a PID controller,

)5.48(

400
)(




ss
sGp

a) Obtain the unit step response of Gp(s).

b) Try PI controllers with (Kp=2, 10, 100), and Ki=Kp/10. Investigate the unit step

response in each case, compare the results and comment.

c) Let Kp=100, Ki=10, and add a derivative term with (Kd=0.1, 0.9, 2). Investigate the unit

step response in each case, compare the results and comment.

Based on your results in parts b) and c) above what do you conclude as a suitable PID controller

for this process and give your justification.

88 Lab Experiment 12: Open Loop and Closed Loop position control of DC Motor

CISE 302 Lab Manual Page 88

CISE 302

Linear Control Systems

Lab Experiment 12: Open Loop and Closed Loop position control of DC

Motor

Objective: To familiarize the servo motor system and experience the open and closed loop

control of servo system to be used in an automatic position control system.

List of Equipment/Software

Following equipment/software is required:

 LabVIEW

 DC Servo System (feedback equipment)

a. OU150A Op Amp Unit

b. AU150B Attenuator Unit

c. PA150C Pre-Amplifier Unit

d. SA150D Servo Amplifier

e. PS150E Power Supply

f. DCM150F DC Motor

g. IP150H Input Potentiometer

h. OP150K Output Potentiometer

i. GT150X Reduction Gear Tacho

j. DC Voltmeter

Category Software-Hardware Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 Connection diagram of the hardware experimental part.

 Report the procedure and troubleshooting during the experiment.

 Show results for the open loop and closed loop position control via graphs and tables.

 Report the LabVIEW program components i.e., Front Panel and Block Diagram.

Procedure (Open loop position control):

89 Lab Experiment 12: Open Loop and Closed Loop position control of DC Motor

CISE 302 Lab Manual Page 89

1. Attach the AU150B, SA150D and DCM150F to the baseplate by means of the magnetic

fixings.

2. Fix the plugs from the servo amplifier into the power supply.

3. Fix the plug from the motor unit into the servo amplifier.

4. Attach the GT150X to the baseplate by means of the magnetic fixing and position it so

that it is connected to the motor shaft by means of the flexible coupling.

5. Set up for open loop as shown in Fig. 1.

6. Use a push-on coupling to link a low-speed shaft of the GT150X to the output

potentiometer shaft.

7. Starting with AU150B the potentiometer knob at the fully counter-clockwise position

gradually turn it till the motor just rotates and record:

8. Scale position at which the motor just rotates:(1)

9. Direction in which the output rotary potentiometer moves: (2)

10. Return the output rotary potentiometer cursor to zero by turning the GT150X high-speed

shaft.

11. Decide on a position in the direction (2), you wish the potentiometer shaft to turn to and

then turn the AU150B potentiometer knob to position (1). As the cursor nears the

required angle, reduce this input signal so that the cursor comes to rest nearly at the

required point.

The open loop system will have you as a feedback. Such a system could be shown as in the

figure.

90 Lab Experiment 12: Open Loop and Closed Loop position control of DC Motor

CISE 302 Lab Manual Page 90

Figure 1: Open loop System (with you as feedback)

91 Lab Experiment 12: Open Loop and Closed Loop position control of DC Motor

CISE 302 Lab Manual Page 91

Procedure (Closed loop position control):

1. Set the apparatus as shown in Fig.2 for closed loop control.

2. This shall utilize the error signal output VO of the operational amplifier to drive the

output potentiometer via the pre-amplifier and motor.

3. The upper potentiometer on the AU150B can now be used as a gain control and should

initially be set to zero before switching on the power.

4. Adjust the PA150C `zero set' so that the motor does not rotate.

5. Now set the IP150H to some arbitrary angle and increase the gain control setting.

6. The output potentiometer cursor should rotate to an angle nearly equal to that of the input

potentiometer cursor.

Trouble-shooting:

 Output potentiometer (or the motor) is oscillating:

Make sure that the upper potentiometer on the AU150B is all down to zero (i.e.

the gain is equal to zero) and then rotate the zero set knob on pre-amplifier

PA150C so that the motor stop rotating or oscillating.

After increasing the gain (i.e. make the upper potentiometer on the AU150B other

than zero) the motor behaves in the same way then change the order of connection

from pre-amplifier to servo-amplifier (i.e. if the output “3” and “4” of pre-

amplifier PA150C is connected to input “1” and “2” of the servo-amplifier

SA150D respectively then change it such that the output “3” and “4” of pre-

amplifier PA150C is connected to input “2” and “1” of the servo-amplifier

SA150D respectively or vice-versa)

 Output potentiometer is not following input potentiometer: in such cases there

is misalignment. Please hold the outer disc of input potentiometer IP150H firmly

and rotate its knob making sure that the disc does not rotate. Doing this make sure

that the input potentiometer “0” angle matches with the output potentiometer “0”

angle.

92 Lab Experiment 12: Open Loop and Closed Loop position control of DC Motor

CISE 302 Lab Manual Page 92

Figure 2: Closed Loop Position control of DC Motor.

Double-click the icon which says “motor” () on the desktop to start the program to

capture the signal. And click the “run” button which is the first button on the toolbox below the

file menu. The program should be as shown below.

93 Lab Experiment 12: Open Loop and Closed Loop position control of DC Motor

CISE 302 Lab Manual Page 93

Identify from the setup the equipment which should be place in the following block diagram

Plant equipment

SA150D,__________,
_________________,
__________,OP150K

__

IP150H Y(s) +

-

Controller
equipment

PA150C

94 Lab Experiment 13: Simple Speed Control of DC Motor

CISE 302 Lab Manual Page 94

CISE 302

Linear Control Systems

Lab Experiment 13: Simple Speed Control of DC Motor

Objective: Observe how the Simple Speed control system is constructed and appreciate the

importance of Tacho-generator in closed-loop speed control system.

List of Equipment/Software

Following equipment/software is required:

 LabVIEW

 DC Servo System (feedback equipment)

a. OU150A Op Amp Unit

b. AU150B Attenuator Unit

c. PA150C Pre-Amplifier Unit

d. SA150D Servo Amplifier

e. PS150E Power Supply

f. DCM150F DC Motor

g. IP150H Input Potentiometer

h. OP150K Output Potentiometer

i. GT150X Reduction Gear Tacho

j. DC Voltmeter

Category Software-Hardware Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 Connection diagram of the hardware experimental part.

 Report the procedure and troubleshooting during the experiment.

 Show results for the open loop and closed loop speed control via graphs and tables.

Introduction:
In the last experiments we saw how simple position control could be constructed. In today's

assignment we shall see how simple speed control of motor could be done. In the experiment

involving the DC Motor Characteristics we saw how the signal inputs into SA150D could vary

the speed of the motor. This means that without any load you can set the motor to run at

specified speed determining the value of the input signal. What kind of speed control was it?

95 Lab Experiment 13: Simple Speed Control of DC Motor

CISE 302 Lab Manual Page 95

Now if we look at the torque/speed characteristics in the experiment, we can say that if load is

placed on the motor the speed of the motor will change to some extent. With open-loop system

the results show that there can be a reasonable speed control when operating without or with a

fixed load but the system would be very unsuitable where the load was varying.

With closed load, we will show improvement in speed control with respect to varying load. That

is, the actual speed will be compared to the required speed. This produces an error signal to

actuate the servo amplifier output so that the motor maintains a more constant speed.

Exercise 1: Simple feedback speed-control without load.

In this exercise we will simply feedback a signal proportional to the speed, using the Tacho-

generator. We then compare it with a reference signal of opposite polarity, so that the sum will

produce an input signal into the servo amplifier of the required value. As comparator, we will use

an operational amplifier.

On the OA150A set the 'feedback selector' to 100KΩ resistor

96 Lab Experiment 13: Simple Speed Control of DC Motor

CISE 302 Lab Manual Page 96

Before connecting the Tacho-generator to an input of the OA150A, increase the 'reference'

voltage so that the motor revolves and on your voltmeter determine which the Tacho’s positive

output is. The correct side can then be connected to OA150A input and the other side to 0V.

Reset the reference voltage to zero and then gradually increase it so that you can take readings

over the motor speed range of upto approximately 2000 r/min for the reference, tacho-generator

and error voltages.

Record your results in the following table

Plot the error voltage against speed.

Speed
Reference

Voltage

Tacho-generator

voltage

Error

Voltage

200

400

600

800

1000

1200

1400

1600

1800

2000

97 Lab Experiment 13: Simple Speed Control of DC Motor

CISE 302 Lab Manual Page 97

Exercise 2: Effect of Load on Speed

To find the effect of the load on speed we can user the magnetic brake as a load. The change in

speed for a change in load will give us the regulation. Ensure that the eddy current brake disc is

fitted to the motor. Also ensure that the load unit can be fully engaged without fouling either the

motor mount or the eddy current disc.

The exercise is concerned to show how an increase in the forward path gain will cause a given

fall in speed to cause a larger increase in the value of the error V0, so that for any change in load

the speed drop or 'droop' will decrease with increase gain as shown in the figure.

For a gain control we can use the circuit given above, which has a gain of -1/α.

98 Lab Experiment 13: Simple Speed Control of DC Motor

CISE 302 Lab Manual Page 98

On the OA150A set the 'feedback selector' switch to 'external feedback'. On the LU150L swing

the magnets clear. Initially set the gain to unity, that is to position 10 of the upper potentiometer

and adjust the reference volts till the motor runs at 1000 r/min. Then take readings of the

reference voltage, Vin, Error voltage, Ve and the Tacho-generator voltage, using the voltmeter,

over the range of brake positions 0 – 10 and then tabulate your results in the following table. Be

careful that you do not exceed the 2A limiting current. Repeat the readings for a gain of 5,

which is to set the gain potentiometer to position 1. Re-adjust the reference potentiometer to give

no-load motor speed of 1000 r/min.

99 Lab Experiment 13: Simple Speed Control of DC Motor

CISE 302 Lab Manual Page 99

For gain of 1 For gain of 5

Brake

Position

Reference

(Vin)

volts

Tacho-

generator

volts

Error

(Ve)

volts

Speed

r/min

1

2

3

4

5

6

7

8

9

10

Brake

Position

Reference

(Vin)

volts

Tacho-

generator

volts

Error

(Ve)

volts

Speed

r/min

1

2

3

4

5

6

7

8

9

10

Plot your results in the form of graphs of error voltage against brake setting and speed for

gain values of 1 and 5.

Exercise 3: Reversible speed control

In the last part of the experiment we will assemble a simple reversible speed control system.

From your reading you have seen that a high gain decreases the minimum reference signal

needed for the motor to respond so this exercise we will use high gain.

The inputs into the SA150D can drive the motor in opposite directions but both inputs require

positive voltages. As the output of the OA 150A varies from positive to negative it is

necessary to use the PA150C pre-amplifier unit that is so designed that a negative input gives

a positive voltage on output and a negative input gives a positive voltage on the other output

with a gain of about 25.

100 Lab Experiment 13: Simple Speed Control of DC Motor

CISE 302 Lab Manual Page 100

Replace the OA150A with PA150C. Setup as shown in the above figure, adjusting the

reference to zero output before coupling to the pre-amplifier. Set the pre-amplifier to 'ac

compensation', this will reduce the effect of ripple on the tacho-generator signal, which

causes instability.

Set the potentiometer on AU150B to 5.

With no load on the motor, now find that you can invert the sign of the reference signal so

that you can reverse the direction of the motor rotation, by slowly turning the reference

potentiometer knob to either side of the center position 5. Record the reference voltage that

just causes the motor to rotate.

Minimum signal needed for motor response

Forward Reverse

Set the speed of rotation in one direction to 1000 r/min and then take readings over the brake

position 0-10, and record them in the following table. To measure the error voltages place the

voltmeter across both the PA150C outputs.

Then reverse direction and repeat the readings.

101 Lab Experiment 14: PID Controller Design for Two Tank System

CISE 302 Lab Manual Page 101

Practical Aspects:

So important has the tacho-generator been considered in the speed control, that it has very

often been made an integral part of the motor.

Examples of speed control can be seen in every branch of industry and transport. They have

become particularly important in continuous processes such as in the control of sheet-metal

thickness in hot rolling mills, in generators and most industrial motors. In guidance systems,

automatic pilots, lifts and overhead hoists both reverse speed and positional control may be

used.

Forward

Brake

Position

Tacho-

generator

volts

Reference

Voltage

(Vin)

Error

Voltage

(Ve)

Speed

r/min

1

2

3

4

5

6

7

8

9

10

Reverse

Brake

Position

Tacho-

generator

volts

Reference

Voltage

(Vin)

Error

Voltage

(Ve)

Speed

r/min

1

2

3

4

5

6

7

8

9

10

CISE 302

Linear Control Systems

Lab Experiment 14: PID Controller Design for Two Tank System

102 Lab Experiment 14: PID Controller Design for Two Tank System

CISE 302 Lab Manual Page 102

Objective: To familiarize the Two Tank System and experience the PID controller design

to control the level of the tank system.

List of Equipment/Software

Following equipment/software is required:

 LabVIEW

 NI USB 6009 Data Acquisition Card

 Two Tank System

Category Software-Hardware Experiment

Deliverables

A complete lab report including the following:

 Summarized learning outcomes.

 Show the PID block diagram and the controller parameters with the process graphs.

 Report the LabVIEW program components i.e., Front Panel and Block Diagram.

The USB DAQ

Interfacing the Two tank

In this exercise, two-tank system is introduced. The two tank system is as shown in the

figure. It has a water pump which takes in 0..10 voltages and pumps in water with speeds

depending at the voltage supplied. Two outputs which are the speed of flow and the level of

water in the tank are shown visually. There are speed and level sensors that provide voltages

between 0 and 10 voltages to indicate speed and voltage. The yellow filled area shows the

flow of water from pump to tank to reservoir through valves. The flow from tank to reservoir

can be controlled using the value. At “0” indicator the valve is “fully closed” and at “5” it is

“fully opened”.

The Two Tank System

103 Lab Experiment 14: PID Controller Design for Two Tank System

CISE 302 Lab Manual Page 103

This exercise will interface the tanks output to analog inputs to measure the tank level and

speed of flow and use the analog voltage output of the USB 6009 to voltage input of the tank

to run the pump motor. Use your knowledge of previous experiments to send a constant

voltage out of the USB card and receive the two analog signals.

To conduct this experiment, we will have to first connect the 2-Tank system to LabVIEW

through the NI DAQ card. The steps are as follows:

1. Connect the sensor of the tank system (top-most pin) to any Analog Input (AI) pin of

the DAQ card.

2. Next connect the motor (2
nd

 last/above ground) to an Analog Output (AO) pin.

3. Connect the ground of the tank (bottom most) pin to a ground of the DAQ.

Now the hardware wire connections are complete and we can start building the VI:

1. Use two sets of “DAQ Assistant” to capture the analog signal of level at the channel.

And use one “DAQ Assistant” to send a signal from USB 6009 to the tank.

2. Use a Knob to select the voltage being sent from the USB 6009 to Tank. “Knob” can

be found at “Controls” >> “Num Ctrls” >> “Knob”

3. Use the tank level indicator from “Controls” >> “Numerical Ind” >> “Tank” to

display the output of tank level.

4. Use the “Flat sequence” in the block diagram from “Functions”>> “Structures” >>

“Flat Sequence” to send the analog out signal first from computer to two tank and

then read the two analog inputs signals from two tank to computer.

5. Add frames on the flat sequence by right clicking on the border of the flat sequence

and selecting “Add frame after” from the menu.

Note: Connect all the wiring and use a while loop and stop button to run the VI.

Part – I: Design of Proportional Control in the PID Controller

Proportional Controller (part of the PID controller) is a common feedback loop

component in industrial control systems. The controller takes a measured value from a

process or other apparatus and compares it with a reference setpoint value. The difference (or

"error" signal) is then used to adjust some input to the process in order to bring the process'

measured value back to its desired setpoint. Basically, when the controller reads a sensor, it

subtracts this measurement from the "setpoint" to determine the "error". It then uses the error

to calculate a correction to the process's input variable (the "action") so that this correction

will remove the error from the process's output measurement.

It is used mainly to handle the immediate error, which is multiplied by a constant P (for

"proportional"), and added to the controlled quantity. P is only valid in the band over which a

controller's output is proportional to the error of the system. This is known as the Propotional

Band, often abbreviated as Pb. A controller setting of 100% proportional band means that a

100% change of the error signal (setpoint – process variable) will result in 100% change of

http://en.wikipedia.org/wiki/Feedback_loop
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/Industrial_process
http://en.wikipedia.org/wiki/Setpoint

104 Lab Experiment 14: PID Controller Design for Two Tank System

CISE 302 Lab Manual Page 104

the output, which is a gain of 1.0. A 20% proportional band indicates that 20% change in

error gives a 100% output change, which is a gain of 5.

 Pb = 100/gain OR

With proportional band, the controller output is proportional to the error or a change in

measurement (depending on the controller). So,

(controller output) = (error)*100/(proportional band)

This theory will be implemented on the 2-Tank system in this experiment. The controller will

be designed in a VI while the hardware connections remain the same- as shown below:

1. Connect the sensor of the tank system (top-most pin) to any Analog Input (AI) pin of

the DAQ card.

2. Connect the +5 In and GND In pins of the Amplifier to the 5V and ground terminals

of the Power supply.

3. Connect the negative input of the amplifier you are using, A- In or B- In, to ground

and connect the positive inputs, A+ In or B+ In, to an Analog Output (AO) pin of the

DAQ.

4. Next connect the motor (2
nd

 last/above ground) to the Amplifier Output i.e. A Out or

B Out.

5. Connect the ground of the Amplifier to the ground of the DAQ.

6. Connect the ground of the tank (bottom most) pin to a ground of the DAQ.

Note: Make sure that ALL devices are connected to a common ground.

The VI will be build as follows:

1. Click “New VI” button to create a new blank LabVIEW program.

2. In the Block diagram, go to “Functions” >> Programming>> “Structures” >>

“Flat Sequence” and place it in the window. Next add 4 frames to it by right clicking

on the border of the frame and selecting Add Frame After (or Before).

3. Keep the 1
st
 two frames and the last frame the same as they were for On-Off Control

viz.

 The 1
st
 frame to set the sampling time to 100ms- using Wait Until Next ms

Multiple and Numeric Constant.

 The 2
nd

 frame to receive the sensor signal from the Tank, scale it properly and

display it on the front panel in a graph as well as tank format- using DAQ

Assistant, Waveform Chart, Tank and other numeric icons.

 The last frame to manually terminate the execution of the program through a stop

button on the front panel and make sure the motor is turned off at the end- using

DAQ Assistant, Case Structure and Numeric Constant. (The entire Flat

Sequence must be included in the while loop and the Stop button terminal must be

connected to the stop button of the while loop)

4. Calculate the Error by subtracting (“Functions” >> Programming>> “Numeric” >>

“Subtract”) the sensor value or level from the desired set point. The set point can be

given in the form of a Numeric Constant in the Block diagram or through Vertical

pointer slides, Numeric controls, etc. on the Front panel. This can be done in the 2
nd

 or

3
rd

 frame.

105 Lab Experiment 14: PID Controller Design for Two Tank System

CISE 302 Lab Manual Page 105

5. On the front panel, add a Control Knob from the Numeric palette. This will be used to

control the Proportional gain Kp. In the 3
rd

 frame of the Block diagram sequence,

multiply the error with the gain- connect the error and gain terminal to a

multiplication block.

6. In the same frame check the above product (input to controller) and if it is greater than

1 send one to the Tank system- using DAQ. If it is lesser than 0 send the tank 0. If it is

between 0 and 1, send the control input as it is. The comparison can be done using

“Greater Or Equal?” and “Lesser Or Equal?” functions along with a Case Structure

having another Case Structure inside (as in the On-Off Control). Here the control

input is connected to the Case Selector.

7. After all the wiring is complete switch to Front Panel and press the RUN button to

execute the VI.

106 Lab Experiment 14: PID Controller Design for Two Tank System

CISE 302 Lab Manual Page 106

107 Lab Experiment 14: PID Controller Design for Two Tank System

CISE 302 Lab Manual Page 107

Part – II: Design of Integral Part in the PID Controller

The next step in PID control is the inclusion of the Integral component – It is needed to learn

from the past. The error is integrated (added up) over a period of time, and then multiplied by

a constant Ki (making an average), and added to the controlled quantity. A simple

proportional system either oscillates, moving back and forth around the setpoint because

there's nothing to remove the error when it overshoots, or oscillates and/or stabilizes at a too

low or too high value. By adding a proportion of the average error to the process input, the

average difference between the process output and the setpoint is continually reduced.

Therefore, eventually, a well-tuned PID loop's process output will settle down at the setpoint.

As an example, a system that has a tendency for a lower value (heater in a cold environment),

a simple proportional system would oscillate and/or stabilize at a too low value because when

zero error is reached P is also zero thereby halting the system until it again is too low. Larger

Ki implies steady state errors are eliminated quicker. The tradeoff is larger overshoot: any

negative error integrated during transient response must be integrated away by positive error

before we reach steady state. The integral component is always used with the proportional

one and is so referred to as PI controller.

This theory will be implemented on the 2-Tank system in this experiment. The controller will

be designed in a VI while the hardware connections remain the same- as shown below:

1. Connect the sensor of the tank system (top-most pin) to any Analog Input (AI) pin of

the DAQ card.

2. Connect the +5 In and GND In pins of the Amplifier to the 5V and ground terminals

of the Power supply.

3. Connect the negative input of the amplifier you are using, A- In or B- In, to ground

and connect the positive inputs, A+ In or B+ In, to an Analog Output (AO) pin of the

DAQ.

4. Next connect the motor (2
nd

 last/above ground) to the Amplifier Output i.e. A Out or

B Out.

5. Connect the ground of the Amplifier to the ground of the DAQ.

6. Connect the ground of the tank (bottom most) pin to a ground of the DAQ.

Note: Make sure that ALL devices are connected to a common ground.

The VI will be build as follows:

1. Click “New VI” button to create a new blank LabVIEW program.

2. In the Block diagram, go to “Functions” >> Programming>> “Structures” >>

“Flat Sequence” and place it in the window. Next add 4 frames to it by right clicking

on the border of the frame and selecting Add Frame After (or Before).

3. Keep the 1
st
 two frames and the last frame the same as they were for On-Off Control

viz.

1. The 1
st
 frame to set the sampling time to 100ms- using Wait Until Next ms Multiple

and Numeric Constant.

2. The 2
nd

 frame to receive the sensor signal from the Tank, scale it properly and display

it on the front panel in a graph as well as tank format- using DAQ Assistant,

Waveform Chart, Tank and other numeric icons.

108 Lab Experiment 14: PID Controller Design for Two Tank System

CISE 302 Lab Manual Page 108

3. The last frame to manually terminate the execution of the program through a stop

button on the front panel and make sure the motor is turned off at the end- using DAQ

Assistant, Case Structure and Numeric Constant.

4. (The entire Flat Sequence must be included in the while loop and the Stop button

terminal must be connected to the stop button of the while loop)

5. Calculate the Error by subtracting (“Functions” >> Programming>> “Numeric” >>

“Subtract”) the sensor value or level from the desired set point. The set point can be

given in the form of a Numeric Constant in the Block diagram or through Vertical

pointer slides, Numeric controls, etc. on the Front panel. This can be done in the 2
nd

 or

3
rd

 frame.

6. On the front panel, add 2 Control Knobs from the Numeric palette. This will be used

to control the Proportional gain Kp and the Integral Gain KI.

7. In the 3
rd

 frame of the Block diagram sequence, check if the error is less than zero. If

it is, then send the tank 0.If not go to the next step. The comparison can be made

using the Case Structure and the “Lesser Or Equal?” function.

8. Multiply the error with the gain by connecting the error and gain terminal to a

multiplication block. Also, integrate the error by sending it to the Integral block

(“Functions” >> Mathematics>> Integ & diff >>Time Domain Math- select

Integral in this block) and then multiply the integrated error with the Integral gain as

was done with the Proportional gain. Next, add the 2 products together (use

compound arithmetic or 2 add functions). Send the sum to the Tank through the DAQ

Assistant.

9. In the same frame check the above product (input to controller) and if it is greater than

1 send one to the Tank system- using DAQ. If it is lesser than 0 send the tank 0. If it is

between 0 and 1, send the control input as it is. The comparison can be done using

“Greater Or Equal?” and “Lesser Or Equal?” functions along with a Case Structure

having another Case Structure inside (as in the On-Off Control). Here the control

input is connected to the Case Selector.

10. In the 2-Tank system open the exit valve a little to see the proper effect of the PI

Control. The valve can be opened to the number 2 position or another one depending

on the speed of the motor.

11. After all the wiring is complete switch to Front Panel and press the RUN button to

execute the VI.

