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THE HAUSDORFF MOMENT PROBLEM UNDER FINITE ADDITIVITY

ENRIQUE MIRANDA, GERT DE COOMAN, AND ERIK QUAEGHEBEUR

ABSTRACT. We investigate to what extent finitely additive probability measures on the
unit interval are determined by their moment sequence. We do this by studying the lower
envelope of all finitely additive probability measures with a given moment sequence. Our
investigation leads to several elegant expressions for this lower envelope, and it allows us to
conclude that the information provided by the moments is equivalent to the one given by
the associated lower and upper distribution functions.

1. INTRODUCTION

To what extent does a sequence of moments determine a probability measure? This
problem has a well-known answer when we are talking about probability measures that are
σ -additive. We believe the corresponding problem for probability measures that are only
finitely additive has received much less attention. This paper tries to remedy that situation
somewhat by studying the particular case of finitely additive probability measures on the
real unit interval [0,1] (or equivalently, after an appropriate transformation, on any compact
real interval).

The question refers to the moment problem. Classically, there are three of these: the
Hamburger moment problem for probability measures on R; the Stieltjes moment problem
for probability measures on [0,+∞); and the Hausdorff moment problem for probability
measures on compact real intervals, which is the one we consider here.

Let us first look at the moment problem for σ -additive probability measures. Consider a
sequence m of real numbers mk, k ≥ 0. It turns out (see, for instance, [13, Section VII.3] for
an excellent exposition) that there then is a σ -additive probability measure Pσ

m defined on
the Borel sets of [0,1] such that∫

[0,1]
xk dPσ

m = mk, k ≥ 0,

if and only if m0 = 1 (normalisation) and the sequence m is completely monotone. This
means that for all n,k ≥ 0

(−1)n
∆

nmk ≥ 0,

where the differences ∆nmk are defined recursively through ∆nmk = ∆n−1mk+1−∆n−1mk
for n≥ 1 and ∆0mk = mk. The crucial step towards the proof of this important result was
taken by Hausdorff [14; 15]. We shall call this necessary and sufficient condition on the
moment sequence the Hausdorff moment condition, and any moment sequence that satisfies
it a Hausdorff moment sequence. The existence of a σ -additive probability measure Pσ

m
with a given sequence of moments m implies its uniqueness, by virtue of the F. Riesz
Representation Theorem.1

Key words and phrases. Hausdorff moment problem, coherent lower prevision, lower distribution function,
complete monotonicity.

1This is because the set of polynomials on [0,1] is uniformly dense in the set of continuous functions on [0,1], so
a Hausdorff moment sequence corresponds to a unique positive linear functional on the set of continuous functions
on [0,1]. The F. Riesz Representation Theorem in its more modern form (see, for instance, [13, Section V.1])
allows us to extend this functional uniquely (under σ -additivity) to all Borel-measurable functions. More details
are also given in Section 3.
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When we let go of σ -additivity, uniqueness is no longer guaranteed. In general, there
will be an infinite (closed and convex) set M (m) of finitely additive probabilities that
correspond to a given Hausdorff moment sequence m. One of the objectives of this paper
is to study this set more closely. We shall see that it is very convenient to do so using
the mathematical machinery behind Walley’s [24] theory of coherent lower previsions, for
which we introduce the basics in Section 2.

In Section 3 we formulate the problem under study using the language of coherent lower
previsions. The fundamental step we take, is not to consider the finitely additive probabilities
in M (m) themselves, but to study their lower envelope Em, which generally turns out to
be a non-linear (but super-additive, normed, positive and positively homogeneous) real
functional on the set L ([0,1]) of all bounded functions on [0,1]. A functional with these
properties is called a coherent lower prevision in Walley’s theory. We show that, perhaps
surprisingly, this functional is σ -additive on the lattice of open sets (see Propositions 9
and 10).

The decision to study Em, rather than the elements of M (m), may seem to lead us away
from the actual problem at hand, but that is only an illusion. Indeed, by their very nature,
and contrary to the sigma-additive case, finitely additive probabilities on an infinite set
that extend ‘something’ are usually inconstructibles, meaning that they cannot actually be
constructed, but that their existence may be inferred from the Hahn–Banach Theorem (or
even stronger, the Axiom of Choice); see [22] for more details. It was one of Walley’s
achievements to show that we can efficiently and constructively deal with them not by
looking at the members of M (m) individually, but by working with their lower envelope,
which in his language is called the natural extension of the ‘something’ they extend.2 Not
only can this lower envelope always be constructed explicitly, but it is the closest we can
get in a constructive manner to the finitely additive probabilities themselves. In the present
case, we shall see that a finitely additive probability has the moment sequence m if and only
if it dominates Em on all (indicators of) events. In this precise sense, the natural extension
Em of the moment sequence m completely determines the solution to the Hausdorff moment
problem for finitely additive probabilities. Much of what we shall do in this paper is to give
useful formulae and methods for calculating Em.

Why do we devote so much attention to a problem that may appear perhaps, to some
readers, to be of limited and only technical interest? First of all, the problem is more general
than its formulation in terms of moments may seem to suggest: what we do here, is to infer
as much as we can in a ‘constructive’ manner about all the positive linear functionals that
extend a given positive linear functional defined on the set C ([0,1]) of all continuous real
functions on a compact real interval [0,1]. Obviously, this is because specifying a Hausdorff
moment sequence is equivalent to specifying a positive linear functional on C ([0,1]) (also
see Theorem 1, normalisation obviously isn’t an issue here). By appropriate transformations,
these results can even be extended from [0,1] to arbitrary compact real intervals.

Secondly, when extending linear functionals to larger domains, it is current practice in
many mathematical fields (and most notably in probability and measure theory) to restrict
attention to those domains where the functional still has a unique linear extension, or in
other words, to concentrate on linear functionals only. While this attitude may have perfectly
respectable historical antecedents, we want to show here, by working out the details in a
number of specific examples, that it is unfortunate and perhaps even unproductive, because
it tends to hide very interesting mathematical structure that quite often becomes apparent
only when leaving the linear ambit. Let us mention two examples that are explained in
much more detail further on.

2This natural extension is quite closely related to the Minkowski functional that appears in the more usual
formulations of the Hahn–Banach theorem. Not surprisingly, it also makes its appearance, although in a different
guise, as the lower bound in de Finetti’s Fundamental Theorem of Probability [11, Sections 3.10–12].
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In integration theory, it is quite common to define an integral by first looking at lower
and upper integrals, and then to conveniently forget about them by zooming in on integrable
functions. These are the functions for which the lower and upper integral coincide, and
for which an integral can therefore be uniquely defined. Often, it is only this integral that
is considered to be of any interest or even to have any meaning, and much effort is then
devoted to studying its properties. But, as we have argued in general in earlier papers [6; 8],
the lower and upper integrals are of considerable interest in themselves as well. They quite
often have mathematical properties that are worthy of consideration per se, but which in
addition allow us to derive results about integrals and integrability in a straightforward
manner. This is often much harder to do when limiting the attention to integrals alone.

Another case in point are the linear extensions of a Hausdorff moment sequence m.
We know that these are not unique, so following standard practice, we could restrict our
attention to the set of m-integrable bounded functions, i.e., those bounded functions on
which all linear extensions of the moment sequence coincide. We could then study the
properties of the resulting linear functional Em on this set. Instead, what we do further on,
is to study the non-linear functional Em, for which we can show easily that it is completely
monotone (see Theorem 13). It can therefore be written as a Choquet functional (and
ultimately as a Riemann integral). This allows us find simple and elegant expressions for
Em (Theorems 13 and 14). It also allows us to characterise in a straightforward manner
those bounded functions that are m-integrable (Theorem 13). We believe this would have
been much harder to do by limiting our attention to the linear restriction Em of Em alone.

2. A SHORT INTRODUCTION TO COHERENT LOWER PREVISIONS

Let us give a short introduction to those concepts from the theory of coherent lower
previsions that we shall use in this paper. We refer to Walley’s book [24] for their behavioural
interpretation, and for a much more complete introduction and treatment.

Consider a non-empty set Ω. Then a gamble on Ω is a bounded real-valued function on
Ω. We denote the set of all gambles on Ω by L (Ω).

A lower prevision P is a real-valued map defined on some subset K of L (Ω). If
the domain K of P only contains indicators IA of events A, then P is also called a lower
probability. We also write P(IA) as P(A), the lower probability of the event A. The conjugate
upper prevision P of P is defined on −K by P( f ) :=−P(− f ) for every − f in K . If the
domain of P contains indicators only, then P is also called an upper probability.

A lower prevision P defined on the set L (Ω) of all gambles is called coherent if it
is super-additive: P( f +g)≥ P( f )+P(g), positively homogeneous: P(λ f ) = λP( f ) for
all λ ≥ 0, and positive: P( f ) ≥ inf f ; here f and g are any gambles on Ω. A lower
prevision P on an arbitrary domain K is then called coherent if it can be extended to some
coherent lower prevision on all gambles. This is the case if and only if sup [∑n

i=1 fi−m f0]≥
∑

n
i=1 P( fi)−mP( f0) for any n,m≥ 0 and f0, f1, . . . , fn in K . A coherent lower prevision

is monotone: f ≤ g⇒ P( f )≤ P(g), and uniformly continuous: if a sequence of gambles
fn,n≥ 0 converges uniformly to another gamble f , then P( fn)→ P( f ).

A linear prevision P on L (Ω) is a coherent lower prevision that is moreover self-
conjugate: P(− f ) =−P( f ). In other words, a linear prevision is a positive and normalised
(P(1) = 1) linear functional (we also use 1 as the constant function with value 1). A
functional defined on an arbitrary subset K of L (Ω) is called a linear prevision if it can
be extended to a linear prevision on L (Ω). This is the case if and only if sup[∑n

i=1 fi−
∑

m
j=1 g j]≥ ∑

n
i=1 P( fi)−∑

m
j=1 P(g j) for any n,m≥ 0 and f1, . . . , fn, g1, . . . , gm in K . We

let P(Ω) denote the set of all linear previsions on L (Ω).
The restriction Q of a linear prevision P on L (Ω) to the set ℘(Ω) of all events is

a finitely additive probability (also called a probability charge). Linear previsions are
completely determined by the values they assume on events; they are simply expectations
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with respect to finitely additive probabilities. This can be expressed using a Dunford integral
(see, for instance, [1]): for any gamble h in L (Ω) we have P(h) = (D)

∫
hdQ.

The natural extension EP to L (Ω) of a coherent lower prevision P defined on K , is the
point-wise smallest coherent lower prevision that extends P to all gambles. It is equal to the
lower envelope of the set M (P) of all linear previsions that point-wise dominate P on its
domain K : for any gamble f in L (Ω)

EP( f ) = min
Q∈M (P)

Q( f ).

Moreover, M (EP) = M (P). Indeed, if P is a coherent lower prevision on L (Ω) and P is
its conjugate upper prevision, then for any gamble f and for any a ∈ [P( f ),P( f )] there is a
linear prevision P ∈M (P) such that P( f ) = a.

The procedure of natural extension is transitive: if we consider E1 the point-wise smallest
coherent lower prevision on some domain K1 ⊇K that dominates P on K (i.e., the natural
extension of P to K1) and then the natural extension E2 of E1 to all gambles, then E2 is also
the natural extension of P to L (Ω). Moreover, M (E2) = M (E1) = M (P). In particular,
if P is a linear prevision on a negation invariant domain K that has a unique extension P1
to some larger negation invariant domain K1, then a linear prevision on all gambles will
dominate (agree with) P on K if and only if it dominates (agrees with) P1 on K1.

Next, we turn to the notion of n-monotonicity. A thorough study of the properties of
n-monotone coherent lower previsions can be found in earlier papers [5; 6; 7]. A lower
prevision defined on a lattice K of gambles (a set of gambles closed under pointwise
minima ∧ and maxima ∨) is called n-monotone if, for all 1≤ p≤ n, and all f , f1,. . . , fp in
K it holds that

∑
I⊆{1,...,p}

(−1)|I|P

(
f ∧
∧
i∈I

fi

)
≥ 0.

A lower prevision is completely monotone when it is n-monotone for any n≥ 1. This is for
instance the case for linear previsions.

We can easily characterise the natural extension of a completely monotone coherent
lower prevision P. If it is defined on a lattice of events A that includes /0 and Ω, its natural
extension to all events is again completely monotone, and coincides with its inner set
function P∗, where

P∗(A) = sup{P(B) : B ∈A ,B⊆ A} .

Moreover, given a completely monotone coherent lower prevision P defined on a linear
lattice of gambles K that contains all constant gambles, its natural extension E to all
gambles coincides with its inner extension P∗, where

P∗( f ) = sup{P(g) : g ∈K ,g≤ f} ,

and E is again completely monotone.
A completely monotone coherent lower prevision P on all gambles satisfies a number

of interesting properties. First, it is comonotone additive: we have P( f +g) = P( f )+P(g)
for any two gambles f and g that are comonotone, meaning that if f (ω) < f (ϖ) then also
g(ω)≤ g(ϖ) for all ω and ϖ in Ω. Secondly, it is completely determined by the values it
assumes on events: it is actually equal to the Choquet functional associated with the set
function (a completely monotone coherent lower probability) that is the restriction of P to
events. And thirdly, the class of P-integrable gambles, that is, those gambles h satisfying
P(h) = P(h) is a uniformly closed linear lattice that contains all constant gambles. In
particular, the class of P-integrable events is a field. Interestingly, a gamble h is P-integrable
if and only if its cut sets { f ≥ t} := {x ∈ [0,1] : f (x)≥ t} are P-integrable for all but a
countable number of t.
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3. FORMULATION AND INITIAL SOLUTION OF THE PROBLEM

We are now ready to formulate the Hausdorff moment problem using the language
established in the previous section.

Consider a sequence m of real numbers mk, k ≥ 0, and the subset Vp([0,1]) of the set
V ([0,1]) of all polynomials on the unit interval given by

Vp([0,1]) :=
{

pk : k ≥ 0
}

,

where pk(x) = xk for all x ∈ [0,1] and k ≥ 0. We define a functional Pm on this set by letting
Pm(pk) := mk for k ≥ 0. This functional can be uniquely extended to a linear functional P̂m
on the set V ([0,1]) of all polynomials. This is done as follows:

P̂m(
n

∑
k=0

ak pk) =
n

∑
k=0

akPm(pk) =
n

∑
k=0

akmk

for all n≥ 0 and ak ∈ R.
We can then ask whether there is some finitely additive probability, or equivalently, some

linear prevision Q with moment sequence m, i.e., such that Q(pk) = mk = Pm(pk) for all
k ≥ 0. This Q would extend the functional Pm (or equivalently, the functional P̂m) to the set
L ([0,1]) of all gambles on [0,1].

The following theorem provides an answer to this question by summarising a number of
results from the literature. We give the proof, which is quite simple, in order to make the
paper more self-contained.

Theorem 1. The following statements are equivalent.
1. The functional Pm on Vp([0,1]) is a linear prevision.
2. The functional Pm can be extended to a linear prevision Q on L ([0,1]).
3. The functional Pm can be extended uniquely to a linear prevision on V ([0,1]), or

equivalently, on the set C ([0,1]) of all continuous3 gambles on [0,1]. This unique
extension to V ([0,1]) is then actually P̂m. We shall also denote by P̂m the unique
extension to C ([0,1]).

4. For all polynomials p = ∑
n
k=0 ak pk in V ([0,1]), it holds that

min p≤ P̂m(p) =
n

∑
k=0

akmk ≤max p.

5. P̂m(1) = m0 = 1 and for all non-negative polynomials p = ∑
n
k=0 ak pk ≥ 0 in V ([0,1]), it

holds that

P̂m(p) =
n

∑
k=0

akmk ≥ 0,

or, in other words, the linear functional P̂m is positive and normed on V ([0,1]) ([23]).
6. The moment sequence m satisfies the Hausdorff moment condition [14; 15]: m0 = 1 and

m is completely monotone, meaning that (−1)n∆nmk ≥ 0 for all k ≥ 0 and n≥ 0.

Proof. A real functional on some domain is a linear prevision if and only if it can be
extended to a linear prevision on all gambles. By also observing the following, we see at
once that the first three statements are equivalent. Let Q be any extension of Pm to a linear
prevision on all gambles on [0,1]. Then for any polynomial p = ∑

n
k=0 ak pk in V ([0,1]),

it follows from the linearity of Q that Q(p) = ∑
n
k=0 akQ(pk) = ∑

n
k=0 akmk = P̂m(p), since

Q and Pm coincide on Vp([0,1]). So Q coincides with P̂m on V ([0,1]). By virtue of the
Stone–Weierstraß Theorem, every continuous function h on [0,1] is a uniform limit of some
sequence of polynomials pn on [0,1]. Then, since any linear prevision Q on L ([0,1]) is
in particular uniformly continuous, we see that Q(h) = limn→∞ Q(pn) = limn→∞ P̂m(pn),

3We shall always assume that [0,1] is endowed with the Euclidean topology, i.e., with the relativisation to [0,1]
of the Euclidean topology on the set of real numbers R.
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where the last equality follows from the previously established fact that Q and P̂m must
coincide on polynomials. This shows that (i) the value of Q(h) must be independent of the
actual choice of the sequence pn → h, and (ii) that all Q have the same value on h.

We now give a circular proof for the equivalence of these statements with the rest. To see
that the third statement implies the fourth, recall that P̂m is a linear prevision on V ([0,1]),
and therefore satisfies min p≤ P̂m(p)≤max p for any p in V ([0,1]). We see at once that
the fourth statement implies the fifth. We now prove that the fifth statement implies the sixth.
We already know that m0 = 1, so consider, for any non-negative integers k and n, the non-
negative polynomial q(x) = xk(1− x)n. It follows from the Binomial Theorem that q(x) =
∑

n
`=0(−1)`

(n
`

)
xk+` and therefore the assumption implies that ∑

n
`=0(−1)`

(n
`

)
mk+` = P̂m(q)≥

0. Now observe that the left-hand side of the above equality is equal to (−1)n∆nmk. We
complete the proof by showing that the last statement implies the third. Recall that P̂m is the
only linear functional that extends Pm from Vp([0,1]) to V ([0,1]). So in order to prove that
P̂m is a linear prevision, it remains to show that P̂m satisfies P̂m(p)≥min p for all polynomials
p in V ([0,1]). But we have by assumption that P̂m(min p) = P̂m(1)min p = m0 min p =
min p, so P̂m(p) = P̂m(p−min p)+ P̂m(min p) = P̂m(p−min p)+ min p so we only have
to prove that P̂m is positive.4 Consider any non-negative polynomial p, and the associated
Bernstein polynomial Bn,p of degree n, given by Bn,p(x) = ∑

n
k=0 p( k

n )
(n

k

)
xk(1− x)n−k for

all x ∈ [0,1]. Since we have seen above that P̂m(xk(1−x)n−k) = (−1)n−k∆n−kmk, it follows
from the Hausdorff moment condition that P̂m(Bn,p) = ∑

n
k=0 p( k

n )
(n

k

)
(−1)n−k∆n−kmk ≥ 0,

since also p(k/n)≥ 0. By Lemma 2, P̂m(p) = limn→∞ P̂m(Bn,p)≥ 0, which completes the
proof. �

Lemma 2. For any polynomial p in V ([0,1]), the sequence P̂m(Bn,p) converges to P̂m(p).5

Proof. Consider any polynomial p = ∑
r
j=0 a jx j of degree r≥ 0. Let us define the difference

operator ∆h p(x) = [p(x + h)− p(x)]/h, and let ∆k
h be the composition of ∆h with itself k

times. Then ∆k
h p(x) := h−k

∑
k
`=0
(k
`

)
(−1)k−` p(x+h`) for any x ∈ [0,1) and h > 0 such that

x+hk ≤ 1, and in particular ∆0
h p(x) = p(x) for any x ∈ [0,1].

Using a general reciprocity relation involving differences (see Feller’s book [13, Sec-
tion VII.1, Eq. (1.8)]), we can write

Bn,p(x) =
n

∑
k=0

p(
k
n
)
(

n
k

)
xk(1− x)n−k =

n

∑
k=0

(
n
k

)
1
nk ∆

k
1
n

p(0)xk =
n

∑
k=0

(n)k

nk ∆
k
1
n

p(0)
xk

k!
,

where (n)k := n!/(n− k)! = n(n−1) . . .(n− k +1).
Now use induction to show that

k

∑
`=0

` j
(

k
`

)
(−1)k−` =

{
0 if j < k
k! if j = k.

From this, we can deduce that

∆
k
1
n

p(0) =

{
0 if r < k
akk!+∑

r
j=k+1

a j
n j−k ∑

k
`=0
(k
`

)
(−1)k−`` j if r ≥ k,

(1)

and consequently

P̂m(Bn,p) =
n

∑
k=0

(n)k

nk ∆
k
1
n

p(0)
mk

k!
=

r

∑
k=0

(n)k

nk
mk

k!
∆

k
1
n

p(0).

4An alternative proof runs as follows. In his 1921 paper [14, Satz III on pp. 98–99], Hausdorff shows using a
beautifully simple argument that any non-negative polynomial on [0,1] can be written as a non-negative linear
combination of Bernstein basis polynomials xk(1− x)`. Since by assumption, P̂m assumes a non-negative value on
these basis polynomials (see above), it follows by linearity that P̂m assumes a non-negative value on all non-negative
polynomials.

5The essence of this lemma can be found in Feller’s book [13, Section VII.3].
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Now, using Equation (1) we can prove that for 0 ≤ k ≤ r, ∆k
1
n

p(0) converges uniformly

to k!ak. Since (n)k/nk converges uniformly to 1, we find limn→∞ P̂m(Bn,p) = ∑
r
k=0 akmk =

P̂m(p). This implies our claim. �

It is trivial that if there exists a σ -additive probability Pσ
m with a given sequence of

moments m, there is also a linear prevision with these moments, because Pσ
m has a linear

extension to all gambles. Interestingly, this proposition tells us that the converse is also
true: the Hausdorff moment problem has a solution (as a linear prevision) if and only if the
Hausdorff moment condition is satisfied.

Let us assume from now on that the moment sequence m satisfies the Hausdorff moment
condition, implying that there are linear previsions with moment sequence m. If we invoke
the F. Riesz Representation Theorem in the form mentioned by Feller (see for instance
[13, Section V.1]), we see that the linear prevision P̂m on the set C ([0,1]) of all continuous
gambles on [0,1] can be extended uniquely to a σ -additive probability measure Pσ

m on the
Borel sets of [0,1], and that there is a unique (right-continuous) distribution function Fσ

m on
[0,1] such that for all continuous gambles h

Eσ
m(h) = (L)

∫
hdPσ

m = (LS)
∫

hdFσ
m = P̂m(h).

In this expression, the first integral is the Lebesgue integral associated with the probability
measure Pσ

m , and the second integral the Lebesgue–Stieltjes integral associated with the
distribution function Fσ

m . Also, Fσ
m (x) = Pσ

m ([0,x]) for all x in [0,1], and the expectation
operator Eσ

m , as well as both integrals are actually defined for all Borel-measurable functions
on [0,1].

In this sense, the moments determine a unique σ -additive probability measure on the
Borel sets. But the solution is not as clear-cut if we look for the finitely additive probabilities
on all events, or, equivalently, the linear previsions on all gambles, that correspond to the
given moments. These are given by the set

M (m) := M (P̂m) =
{

Q ∈ P([0,1]) : (∀h ∈ C ([0,1]))(Q(h)≥ P̂m(h))
}

of all linear previsions Q that dominate, or equivalently, coincide with, P̂m on continuous
gambles.

For any gamble h on [0,1], it follows that the linear previsions that solve the moment
problem can (and will) assume any value in the real interval [Em(h),Em(h)], where

Em(h) := inf{Q(h) : Q ∈M (m)} and Em(h) := sup{Q(h) : Q ∈M (m)} .

The functional Em on L ([0,1]) is called the natural extension of P̂m, or, because of the
transitivity of natural extension, of Pm. We shall also call it the natural extension of the
moment sequence m. It is the point-wise smallest coherent lower prevision that coincides
with P̂m on C ([0,1]), or equivalently that coincides with Pm on Vp([0,1]). The functional
Em is its conjugate upper prevision and satisfies Em(h) =−Em(−h) for all gambles h on
[0,1].

By definition, Em is the smallest coherent lower prevision for which Em(pk) = Em(pk) =
mk, k ≥ 0, i.e., that has (precise) moment sequence m, and a linear prevision dominates Em
if and only if it dominates, and therefore coincides with, P̂m (or Pm). In other words, we get

M (Em) = M (P̂m) = M (Pm) = M (m).

So we see that the coherent lower prevision Em completely determines the solution to the
Hausdorff moment problem for linear previsions: a linear prevision P has a sequence of
moments m if and only if it dominates Em.

In particular, the gambles h on [0,1] where the lower and upper natural extensions
coincide, i.e., for which Em(h) = Em(h), are precisely those gambles to which Pm has a
unique extension as a linear prevision. We shall call such gambles m-integrable. One of the
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goals in this paper is to study these m-integrable gambles. Another, closely related, goal is
to study the functional Em.

In particular, we can associate with Em and its conjugate Em a lower distribution function
Fm and an upper distribution function Fm on [0,1], given by

Fm(x) := Em([0,x]) and Fm(x) := Em([0,x])

for all x ∈ [0,1]. Then we can ask ourselves: what are the properties of these functions,
what is their relationship to Fσ

m , and to what extent do they determine the functional Em?
We answer these questions in the following section.

In order to be able to place the discussion of later sections in the right perspective, it is
useful, at this point, to make a small historical digression, and to try and reconstruct exactly
how Hausdorff and F. Riesz contributed to the solution of what we now call the Hausdorff
moment problem. In a famous series of papers [14; 15] published in 1921, Hausdorff
showed that for a sequence m of real numbers mk, k ≥ 0, there is a non-decreasing function
α on [0,1] such that for the associated Riemann–Stieltjes integral

(RS)
∫ 1

0
xk dα(x) = mk, k ≥ 0,

if and only if the sequence m is completely monotone. Some twelve years before that,
F. Riesz had shown in his Representation Theorem ([20], see also [21, Section 50]) that
a functional L on the linear space C ([0,1]) of continuous functions on [0,1] is a positive
continuous linear functional6 (with respect to the supremum-norm topology) if and only if it
can be represented as a Riemann–Stieltjes integral (RS)

∫ 1
0 ·dα(x) on C ([0,1]) with respect

to some non-decreasing function α , meaning that

L(h) = (RS)
∫ 1

0
h(x)dα(x) (2)

for all continuous gambles h on [0,1].
Since the Stone–Weierstraß theorem tells us that the set V ([0,1]) of polynomials on [0,1]

is uniformly dense in the set C ([0,1]) of continuous functions, the combination of both
results, taking into account issues of normalisation, shows that there is another statement
that is equivalent to each of the six statements in Theorem 1, namely:

7. There is a non-decreasing function α on [0,1] satisfying α(0) = 0 and α(1) = 1
such that P̂m(h) = (RS)

∫ 1
0 h(x)dα(x) for all continuous gambles h on [0,1].

Since it is a property of Riemann–Stieltjes integrals that an identity such as Equation (2)
determines α uniquely, except in its points of discontinuity,7 we see that there will be a
unique right-continuous (distribution function) α that corresponds to a given Hausdorff
moment sequence m, and this unique α can be used to construct the unique σ -additive
probability measure with moment sequence m, using standard measure-theoretic methods.
But we already observe at this point that there will usually be an infinity of distribution
functions α that are not right-continuous and still generate P̂m, and that the Riemann–
Stieltjes integral somehow will have an important part in describing the finitely additive
probabilities with a given moment sequence. Indeed, with each solution α of Equation (2)
there will correspond an extension of P̂m as a linear prevision on the set of all gambles
that are Riemann–Stieltjes integrable with respect to α . But this set of integrable gambles
will usually only be a proper subset of L ([0,1]), and we want to look at extensions of the

6Actually, Riesz proved his Representation Theorem for continuous linear functionals L and functions α of
bounded variation, which can generally be written as a differences of two non-decreasing functions. Similarly,
Hausdorff proved his result for what he calls a “C-Folge”, which is the difference of completely monotone
sequences, and functions α of bounded variation. Our formulation here is equivalent.

7And up to an additive (integration) constant, which is fixed here because of the normalisation constraints
α(1) = 1 and α(0) = 0. See, for instance, [21, Section 51].
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moment sequence to all gambles. That is why we do not take up the subject of Riemann–
Stieltjes integrals and distribution functions here,8 but take a completely different route.

4. THE NATURAL EXTENSION Em AND m-INTEGRABLE GAMBLES

Since C ([0,1]) is a linear subspace of L ([0,1]) that contains all constant gambles, we
may apply a basic result [24, Corollary 3.1.8] in the theory of coherent lower previsions to
obtain the following expressions: for any gamble h on [0,1],9

Em(h) = sup
{

P̂m(g) : g ∈ C ([0,1]),g≤ h
}

Em(h) = inf
{

P̂m(g) : g ∈ C ([0,1]),h≤ g
}

.
(3)

We use these expressions to prove a number of interesting properties of Em and Em, and
the lower and upper distribution functions Fm and Fm. We collect these properties in
Propositions 3 through 11.

4.1. Basic properties of Em, Fm and Fm.

Proposition 3. Consider a Hausdorff moment sequence m. Then the following statements
hold.
1. 0≤ Fm ≤ Fσ

m ≤ Fm ≤ 1.
2. Fm and Fm are non-decreasing functions.
3. Fm(0) = 0 and Fm(1) = Fm(1) = 1.

Proof. The first statement follows from the definition of Fm and Fm, and from (i) 0 ≤
I[0,x] ≤ 1; (ii) the fact that the lower prevision Em is coherent, which implies that it is
monotone, satisfies Em(0) = Em(0) = 0 and Em(1) = Em(1) = 1 and Em ≤ Em; and (iii)
that Pσ

m ∈ M (m) = M (Em). The second statement follows from the fact that Em and
Em are coherent and therefore monotone. The third statement can be proven as follows.
First of all I[0,1] = 1 and Em(1) = Em(1) = 1 by coherence of Em. Secondly, consider
that Fm(0) = Em(I{0}) and that for any continuous h on [0,1], h≤ I{0} implies that h≤ 0.
Since P̂m is a linear prevision, it follows that P̂m(h) ≤ 0. Equation (3) then tells us that
Em(I{0}) = 0. �

Much more interesting properties can be proven for Fm and Fm. But first, let us introduce
some additional notation. For any function h on [0,1] and any x ∈ [0,1] let h(x−) :=
limt→x,t<x h(x) denote the left limit of h in x (if it exists) when x > 0, and let h(0−) := h(0).
Similarly, let h(x+) := limt→x,t>x h(x) denote the right limit of h in x (if it exists) when
x < 1, and let h(1+) := h(1).

It follows from the first two statements in Proposition 3 that the left and right limits of
Fm and Fm exist everywhere.10 Let us denote the set of all points of discontinuity of Fm by
DFm := {x ∈ [0,1] : Fm(x+) 6= Fm(x−)} and the set of points where Fm is not continuous
by DFm

=
{

x ∈ [0,1] : Fm(x−) 6= Fm(x+)
}

. Let Dm := DFm ∪DFm
denote their union. It

follows from the non-decreasing character of Fm and Fm [Proposition 3] that DFm , DFm
and Dm are countable subsets of [0,1].

Lemma 4. Consider a Hausdorff moment sequence m. Then for all x ∈ [0,1], Fm(x+)≥
Fm(x). As a consequence, if x /∈Dm then Fm(x) = Fm(x).

8We address the relation between finitely additive measures, distribution functions and moment sequences in a
companion paper [19].

9We can also consider similar expressions where the approximation is made by polynomials, i.e., elements of
V ([0,1]). This is because P̂m has a unique extension as a linear prevision from V ([0,1]) to C ([0,1]), as we have
proven in Theorem 1.

10This is because the limits of bounded non-decreasing or non-increasing sequences always exist.
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Proof. The inequality holds trivially for x = 1, so let us any consider x ∈ [0,1). Let
0 < ε < 1− x, and define the gamble fε on [0,1] by

fε(t) =


1+ ε

2 if t ∈ [0,x]
1+ ε

2 + x−t
ε

if t ∈ [x,x+ ε]
ε

2 if t ∈ [x+ ε,1].

This is a continuous gamble satisfying fε > I[0,x] and fε − ε < I[0,x+ε]. Hence, it follows
from Equation (3) and the fact that P̂m is a linear prevision on C ([0,1]) that

Fm(x) = Em([0,x])≤ P̂m( fε) = P̂m( fε − ε)+ ε ≤ Em([0,x+ ε])+ ε = Fm(x+ ε)+ ε.

If we now let ε → 0, we obtain the desired inequality.
The second part follows from the definition of Dm and Proposition 3. �

Proposition 5. Consider a Hausdorff moment sequence m. Then the following statements
hold.

1. For any x ∈ [0,1], Fm(x+) = Fm(x) = Fm(x+), so Fm is right-continuous on [0,1].
2. For any x ∈ (0,1), Fm(x−) = Fm(x) = Fm(x−), so Fm is left-continuous on [0,1).
3. Fm(0−) = Fm(0) = 0≤ Fm(0−) = Fm(0).
4. Fm(1−) = Fm(1−)≤ Fm(1) = Fm(1) = 1.
5. Fσ

m = Fm.
6. DFm ∩ (0,1] = DFm

∩ (0,1], whence Dm = DFm .
7. The following statements are equivalent for all x∈ (0,1): (i) x 6∈Dm; (ii) Fm(x) = Fm(x);

and (iii) Fσ
m is continuous in x.

8. Fm(0) = Fm(0) ⇔ 0 /∈Dm ⇒ Fσ
m is (right-)continuous in 0.

9. Fσ
m is (left-)continuous in 1 ⇔ 1 /∈Dm ⇒ Fm(1) = Fm(1).

Proof. Let us begin with the first statement. Consider x ∈ [0,1]. By virtue of Proposition 3
and Lemma 4, it suffices to prove that Fm(x) = Fm(x+). The equality holds by definition for
x = 1. Consider then x∈ [0,1). Then by Equation (3), for any ε > 0 there is some continuous
gamble hε ≥ I[0,x] such that P̂m(hε) < Fm(x)+ ε . Given η > 0, we have hε(x)+η ≥ 1+η ,
so by continuity of hε there is some 0 < δεη < 1− x such that hε(t)+η ≥ 1 for all x≤ t ≤
x + δεη . This tells us that hε + η ≥ I[0,x+δεη ] and therefore Fm(x + δεη) ≤ P̂m(hε + η) =
P̂m(hε)+η < Fm(x)+ ε +η . From the non-decreasing character of Fm [Proposition 3] it
then follows that Fm(x+)≤Fm(x+δεη) < Fm(x)+ε +η . Since this holds for any ε,η > 0,
we deduce that Fm(x+)≤ Fm(x). The converse inequality follows from the non-decreasing
character of Fm.

We now turn to the second statement. Take x ∈ (0,1]. Then, Fm(x−) = supt<x Fm(t) =
supt<x,t /∈Dm

Fm(t) = supt<x,t /∈Dm
Fm(t) = Fm(x−), where the second and fourth equalities

hold because Dm is countable and the third follows from Lemma 4. On the other hand, a
reasoning similar to the one in the first statement allows us to deduce that Fm(x−) = Fm(x)
when x ∈ (0,1).

The third statement follows from the definition of Fm(0−) and Fm(0−) and Proposi-
tion 3.

For the fourth statement, taking into account Proposition 3, it suffices to show that
Fm(1−) = Fm(1−). The proof of this fact has already been given above as an extra in the
proof of statement 2.

The fifth statement follows from the first, Proposition 3 and the right-continuity of Fσ
m .

The first part of the sixth statement is a consequence of the first, second and fourth
statements. For the second part, note that Fm(0−) = Fm(0) = Fm(0+) from the first and
third statements, so 0 does not belong to DFm

. Hence, Dm = (Dm∩ (0,1])∪ (Dm∩{0}) =
(DFm ∩ (0,1])∪ (DFm ∩{0}) = DFm .
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Let us now prove the seventh statement. The equivalence between (i) and (ii) follows
from the first two statements. On the other hand, the equivalence between (ii) and (iii)
follows from the second and the fifth statements.

The equivalence in the eighth statement follows from the first and third statements.
The implication is trivial: Fσ

m is always continuous in 0 because it is right-continuous
everywhere.

Finally, the equivalence in the ninth statement follows from the fourth and fifth statements.
For the implication, note that we always have Fm(1) = Fm(1) = 1. �

We see that, if m is a sequence satisfying the Hausdorff moment condition, the distribution
function Fσ

m of the unique σ -additive probability Pσ
m with these moments is equal to the

upper distribution function Fm. This also allows us to determine Fm and Fm directly
from the moment sequence m. Indeed, it is established in the literature [13, Section VII.3,
Eq. (3.11)] that

Fσ
m (x) = lim

n→∞
∑

k≤nx

(
n
k

)
(−1)n−k

∆
n−kmk

in all points of (left-)continuity x of Fσ
m . Since we know that Fσ

m is right-continuous, this
completely determines Fσ

m , and therefore also Fm and Fm through Proposition 5. The
following example adds further detail to the picture drawn in this proposition.

Example 1. Let us consider the moment sequence m given by mk = 1 for k ≥ 0. It satisfies
the Hausdorff moment conditions since all non-trivial differences are zero. Observe that
the σ -additive probability measure all of whose probability mass is concentrated in 1
is the unique σ -additive probability measure with this moment sequence. As a result,
Em({1}) = 1. It follows from conjugacy that Em([0,1)) = 1−Em({1}) = 0, and as a
consequence Fm(1−) = supt<1 Fm(t) = 0. Hence, the inequality in the fourth statement of
Proposition 5 may be strict. Moreover, 1 belongs to Dm even though Fm(1) = Fm(1) = 1.
Hence, the converse implication in the ninth statement of Proposition 5 need not hold.

Similarly, let us consider the moment sequence m given by m0 = 1 and mk = 0 for k > 0.
It also satisfies the Hausdorff moment condition, and the σ -additive probability measure all
of whose probability mass is concentrated in 0 is the unique σ -additive probability measure
with this moment sequence. As a consequence, we see that Fm(0) = 1 > Fm(0) = 0. Hence,
the inequality in the third statement of Proposition 5 may be strict, and the sixth statement
cannot be extended to DFm = DFm

. On the other hand, the distribution function Fσ
m of the

σ -additive probability measure with these moments is constant on [0,1] (equal to one), and
therefore continuous on [0,1], but still 0 ∈Dm. This shows that the converse implication in
the eighth statement of Proposition 5 need not hold. �

Let us now draw inspiration from the expressions in Equation (3) and define, for any
gamble h on [0,1], the gambles h↓ and h↑ on [0,1] as follows: for all x in [0,1],

h↑(x) = sup{g(x) : g ∈ C ([0,1]),g≤ h} ,

h↓(x) = inf{g(x) : g ∈ C ([0,1]),h≤ g} .

Observe that in particular for any A⊆ [0,1], (IA)↑ = Iint(A) and (IA)↓ = Icl(A), where int(A)
is the topological interior of A, and cl(A) its topological closure. The gamble h↑ is lower
semi-continuous11 (it is a point-wise supremum of continuous functions), and h↓ is upper
semi-continuous. Moreover, these gambles satisfy the following:

11A gamble f on [0,1] is lower semi-continuous if its strict cut sets { f > t} are open for all real t. It is upper
semi-continuous if its cut sets { f ≥ t} are closed for all real t, or equivalently, if − f is lower semi-continuous. A
gamble is continuous if and only if it is both lower and upper semi-continuous. For more details, see, for instance,
[22, Section 15.22].
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Proposition 6. Consider a Hausdorff moment sequence m. Then for any gamble h on [0,1]
we have that Em(h) = Em(h↑) and Em(h) = Em(h↓). In particular, for any event A⊆ [0,1],
Em(A) = Em(int(A)) and Em(A) = Em(cl(A)).

Proof. Simply observe that for any g ∈ C ([0,1]) such that g≤ h, it holds that g≤ h↑ ≤ h.
The monotonicity [coherence] of Em then implies that P̂m(g) = Em(g)≤ Em(h↑)≤ Em(h).
Taking the supremum of the left-hand side of this inequality yields Em(h) ≤ Em(h↑) ≤
Em(h), taking into account Equation (3). Then also Em(A) = Em(IA) = Em((IA)↑) =
Em(Iint(A)) = Em(int(A)). The equalities involving Em can be proven in a completely
similar way, or using conjugacy. �

So in order to know the values of Em on events, it is sufficient to know its values on all
open subsets of [0,1]. Let us denote by T the class of these open subsets.12

Now consider, for any set A its topological interior int(A). Let, for any x ∈ int(A), I(x)
be the maximal interval that contains x and is included in int(A). Since int(A) is open,
we know that I(x) ∈ T and that it has (strictly) positive length. Moreover, let us define
I (A) = {I(x) : x ∈ int(A)} as the collection of all maximal intervals of int(A). All these
maximal intervals are furthermore pairwise-disjoint (otherwise they would not be maximal),
so they can only be countable in number. Moreover, int(A) =

⋃
I∈I (A) I, so we see that if

we know the values that Em takes on countable unions of disjoint open intervals, we know
the value of Em for any event.

The important result in Proposition 9 below tells us that it even suffices to know the
values of Em on finite unions of disjoint open intervals. In order to prove this, we first need
to establish a couple of simple lemmas.

Lemma 7. Let D be a subset of [0,1] and let g be a continuous gamble on [0,1] such that
g≤ ID. Then there is some non-negative continuous gamble f on [0,1] such that g≤ f ≤ ID.

Proof. Indeed, let the function f on [0,1] be such that f (x) = max{g(x),0} for all x ∈ [0,1],
then f is continuous, non-negative and it dominates g. Moreover, since ID dominates both 0
and g, we deduce that f ≤ ID. �

Lemma 8. Let C and D be two disjoint open subsets of [0,1] and let f be a continuous
gamble on [0,1] such that 0 ≤ f ≤ IC∪D. Then fC := f IC and fD := f ID are continuous
gambles on [0,1] and fC + fD = f .

Proof. First of all, it is clear that IC∪D = IC + ID since C and D are disjoint. Therefore
fC + fD = f IC∪D. If x ∈ (C∪D)c [superscript c denotes complement] then f (x) = 0 by
assumption, so f = f IC∪D. This tells us that fC + fD = f . Now, fC = min{ f , IC} is the
minimum of two lower semi-continuous functions, which is again lower semi-continuous.
In a similar way, we see that fD is lower semi-continuous, so − fD is upper semi-continuous,
and because the sum of two upper semi-continuous functions is upper semi-continuous,
we see that fC = f +(− fD) is upper semi-continuous as well, and therefore continuous.
Similarly for fD. �

Proposition 9. Let m be a Hausdorff moment sequence. Let B be a countable union of
disjoint open subsets of [0,1], Bn,n≥ 0. Then Em(B) = supn≥0 Em(

⋃n
k=0 Bk).

Proof. Consider ε > 0, then it follows from Equation (3) that there is some continuous
gamble gε on [0,1] satisfying gε ≤ IB and Em(B)− P̂m(gε) < ε

2 . By Lemma 7, there is some
continuous non-negative gamble fε on [0,1] satisfying gε ≤ fε ≤ IB and therefore, using
the monotonicity of P̂m, Em(B)− P̂m( fε) < ε

2 . Let us define fε,n := fε I⋃n
k=0 Bk

for any n≥ 0.
The sequence fε,n, n≥ 0 satisfies the following properties.

12By an open interval we shall mean a subinterval of [0,1] that is open in the relativisation to [0,1] of the
Euclidean topology on the reals R, or in other words, that is the intersection of [0,1] with some open interval of R.
Thus for x and y in [0,1], (x,y) is an open interval, but so are [0,1], [0,x) and (y,1].
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(i) It converges point-wise to fε : if x ∈ B, there is some n such that x ∈ Bn, whence
fε,`(x) = fε(x) for all `≥ n. On the other hand, if x /∈ B, we have fε(x) = 0, and then
fε,`(x) = fε(x) = 0 for any `≥ 0.

(ii) It is non-decreasing: fε,n ≤ fε,n+1 for any n≥ 0.
(iii) fε,n is continuous for any n. This follows at once from Lemma 8 if we let f = fε ,

C =
⋃n

k=0 Bk (an open set), D =
⋃

k>n Bk (an open set), so C∪D = B, 0≤ f ≤ IB and
fε,n = fC.

Applying Dini’s Convergence Theorem (see for instance [22, Section 17.7]), we conclude
that the sequence fε,n, n ≥ 0 converges uniformly to fε . Since the linear prevision P̂m

is uniformly continuous and monotone, it follows that limn→∞ P̂m( fε,n) = supn P̂m( fε,n) =
P̂m( fε), and as a consequence there is some nε ≥ 0 such that P̂m( fε)− P̂m( fε,n) < ε

2 for
all n ≥ nε . Since fε,n ≤ I⋃n

k=0 Bk
for all n ≥ 0, we deduce from the monotonicity [due to

coherence] of Em that P̂m( fε,n) = Em( fε,n) ≤ Em(
⋃n

k=0 Bk) for all n ≥ 0, and so for all
n≥ nε we have that

Em(B)−Em(
n⋃

k=0

Bk) = Em(B)− P̂m( fε)+ P̂m( fε)− P̂m( fε,n)

+ P̂m( fε,n)−Em(
n⋃

k=0

Bk) <
ε

2
+

ε

2
+0 = ε.

This means that Em(B) = supn≥0 Em(
⋃n

k=0 Bk). �

We can go still one step further if we recognise that Em is additive on finite unions of
disjoint open sets, so that Em is actually ‘σ -additive’ on countable unions of disjoint open
sets.

Proposition 10. Consider a Hausdorff moment sequence m. Then for any disjoint B1, . . . ,
Bn in T , Em(

⋃n
k=1 Bk) = ∑

n
k=1 Em(Bk) .

Proof. First of all, Em(
⋃n

k=1 Bk)≥ ∑
n
k=1 Em(Bk) because Em is super-additive [since it is

coherent]. To prove the converse inequality, consider any continuous gamble g≤ I⋃n
k=1 Bk

on [0,1]. By Lemma 7 there is some non-negative continuous gamble f on [0,1] such that
g ≤ f ≤ I⋃n

k=1 Bk
. Then by repeatedly applying Lemma 8, we find that f = ∑

n
k=1 f IBk and

that f IBk is continuous and dominated by IBk for k = 1, . . . ,n. Therefore P̂m(g)≤ P̂m( f ) =
∑

n
k=1 P̂m( f IBk) = ∑

n
k=1 Em( f IBk) ≤ ∑

n
k=1 Em(Bk) [since P̂m is monotone and additive on

C ([0,1]), and Em is monotone], and consequently Em(
⋃n

k=1 Bk)≤ ∑
n
k=1 Em(Bk), also using

Equation (3). �

Summarising, we find that for any subset A of [0,1],

Em(A) = Em(int(A)) = ∑
I∈I (A)

Em(I),

so Em is completely determined on events if we know its values on all open intervals. The
following proposition establishes amongst other things that these values on open intervals
are determined by the lower and upper distribution functions Fm and Fm.

Proposition 11. Consider a Hausdorff moment sequence m. Then the following statements
hold.
1. Em([0,x]) = Em([0,x)) = Fm(x) for all x ∈ [0,1), and Em([0,1)) = Fm(1−).
2. Em((0,x]) = Em((0,x)) = Fm(x−)−Fm(0) for all x ∈ (0,1).
3. Em([x,y]) = Fm(y)−Fm(x−) for any 0≤ x≤ y≤ 1, and

Em([x,y]) = Em((x,y)) = Em([x,y)) = Em((x,y]) for any 0≤ x < y≤ 1.
4. Em((x,y)) = Fm(y−)−Fm(x) for any 0≤ x < y≤ 1, and

Em([x,y]) = Em((x,y)) = Em([x,y)) = Em((x,y]) for all 0 < x≤ y < 1.
5. Em((x,1]) = 1−Fm(x) for any x ∈ [0,1], and Em((x,1]) = Em([x,1]) for any x ∈ (0,1].
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6. Em((x,1)) = Fm(1−)−Fm(x) for any x ∈ [0,1), and
Em([x,1)) = Em((x,1)) for any x ∈ (0,1].

7. Em({x}) = 0 for any x ∈ [0,1].
8. Em([0,1]) = 1.

Proof. We begin with the first statement. The first equality is a consequence of Proposition 6,
and the fact that int([0,x]) = [0,x) for any x ∈ [0,1). The second equality follows from
the definition of Fm. For the second part, note that Em([0,1))≥ supx<1 Fm(x) = Fm(1−).
Conversely consider a continuous gamble g that satisfies g≤ I[0,1). Since g(1)≤ 0, we have
for any ε > 0 that g(1)− ε < 0, and since the gamble g− ε is continuous, there is some
δ > 0 such that g(x)− ε ≤ 0 for any 1−δ ≤ x≤ 1. Hence g− ε ≤ I[0,1−δ ] and therefore

P̂m(g)− ε = P̂m(g− ε)≤ Em([0,1−δ ]) = Fm(1−δ )≤ Fm(1−).

It follows that P̂m(g)≤ Fm(1−), and Equation (3) now implies that Em([0,1))≤ Fm(1−).
Let us now prove the third statement. Consider x≤ y in [0,1]. Then

Em([x,y]) = 1−Em([0,x)∪ (y,1]) = 1−Em([0,x))−Em((y,1])

= Em([0,y])−Em([0,x)) = Fm(y)−Fm(x−),

where we used conjugacy, Propositions 5 and 10 and the first statement. The other equalities
in this statement follow from Proposition 6.

We turn to the fourth statement. From Proposition 6 we have the equalities Em([x,y]) =
Em((x,y]) = Em([x,y)) = Em((x,y)) for x≤ y in (0,1). Consider then x < y in [0,1]. Since
I(x,y) = I[0,y)− I[0,x] if follows from the super-additivity [due to coherence] of Em that

Em((x,y)) = Em(I(x,y))≥ Em(I[0,y))+Em(−I[0,x])

= Em(I[0,y))−Em(I[0,x])

= Em([0,y))−Em([0,x]) = Fm(y−)−Fm(x), (4)

where the last equality follows from the first statement. Now let f be any continuous
gamble on [0,1] dominated by I(x,y). Then since f (x) ≤ 0 and f (y) ≤ 0, we have for any
ε > 0 that f (x)− ε < 0 and f (y)− ε < 0. Since the gamble f − ε is continuous, there is
some 0 < δ < y−x

2 such that f (t)− ε ≤ 0 for any t outside the non-empty open interval
(x+δ ,y−δ ), so f − ε ≤ I(x+δ ,y−δ ). So we get

P̂m( f )− ε = P̂m( f − ε)≤ Em((x+δ ,y−δ ))

≤ Em((x+δ ,y−δ ))

= Fm(y−δ )−Fm(x+δ )

≤ Fm(y−)−Fm(x+) = Fm(y−)−Fm(x),

where we have used Equation (3), the third statement, the non-decreasing character of Fm
and Fm [Proposition 3], and Proposition 5. This implies that P̂m( f )≤ Fm(y−)−Fm(x), so
Em((x,y)) ≤ Fm(y−)−Fm(x) by Equation (3). Combined with Equation (4), this yields
the desired equality.

The first equality in the second statement follows from Proposition 6. The second follows
from the fourth statement.

The first part of the fifth statement follows by conjugacy, and the second part from
Proposition 6.

The sixth statement follows from the fourth statement and Proposition 6.
The seventh statement follows from Proposition 6, and the last statement has been proven

in Proposition 3. �

In what follows, it will be useful to be able to characterise which intervals I are m-
integrable, meaning that Em(I) = Em(I). The following proposition gives a surprisingly
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simple characterisation: the m-integrability of an interval I is completely determined by
whether its endpoints belong to Dm.

Proposition 12. Consider a Hausdorff moment sequence m. Let I be a non-empty interval
in [0,1]. We have the following possibilities.

1. If 0 ∈ I and 1 ∈ I (whence I = [0,1]), then I is m-integrable.
2. If 0 ∈ I and 1 /∈ I, then I is m-integrable if and only if sup I /∈Dm.
3. If 0 /∈ I and 1 ∈ I, then I is m-integrable if and only if inf I /∈Dm.
4. If 0 /∈ I and 1 /∈ I, then I is m-integrable if and only if inf I /∈Dm and sup I /∈Dm.

Proof. The first statement is obvious. For the second, assume that I = [0,x) for x ∈ (0,1],
or I = [0,x] for x ∈ [0,1). Then the first and third statements in Proposition 11 imply that I
is m-integrable if and only if Fm(x) = Fm(x−), which by virtue of Proposition 5 holds if
and only if x /∈Dm.

Let us now turn to the third statement. Assume that I = (x,1] for x∈ [0,1), or I = [x,1] for
x ∈ (0,1]. Then the third and fifth statements of Proposition 11 imply that I is m-integrable
if and only if Fm(x) = Fm(x−), which again is equivalent to x /∈Dm.

Finally, if 0,1 /∈ I, the second, third, fourth, sixth and seventh statements in Proposi-
tion 11 allow us to deduce that I is m-integrable if and only if Fm(sup I) = Fm(sup I−) and
Fm(inf I) = Fm(inf I−). This again holds if and only if inf I,sup I /∈Dm. �

We have seen in Example 1 that the set Dm may be non-empty (or, equivalently, that not
all intervals are always m-integrable). Hence, the linear prevision that solves the Hausdorff
moment problem may not be unique. Let us show next that there is actually never a unique
linear prevision that solves the Hausdorff moment problem.

Remark 1 (The non-uniqueness of finitely additive probability measures with a given
moment sequence). Consider the set Q∩ [0,1] of all rational numbers between zero and
one, then int(Q∩ [0,1]) = /0 and cl(Q∩ [0,1]) = [0,1], so we infer from Proposition 6 that
Em(Q∩ [0,1]) = Em( /0) = 0 and Em(Q∩ [0,1]) = Em([0,1]) = 1. So for any 0 ≤ a ≤ 1
there is some linear prevision Q that solves the Hausdorff moment problem for which
Q(Q∩ [0,1]) = a, and this holds for any moment sequence m that satisfies the Hausdorff
moment condition! This shows that there is always either none or an uncountable infinity of
linear previsions that produce a given sequence of moments mk, k ≥ 0.

We have said before that whenever there is a linear prevision with a particular sequence
of moments mk, there also is a unique σ -additive probability Pσ

m with these moments. We
now see that, although the σ -additive probability will be unique, this will never be the case
for probabilities that are only finitely additive. To put it differently, a linear prevision on
L ([0,1]) is never completely determined by its moments. We will comment further on this
fact in the Conclusion. �

4.2. The complete monotonicity of Em and its immediate consequences. The values of
Em on events are completely determined by the values that Em assumes on open intervals,
and therefore, by Proposition 11, by its lower and upper distribution functions. There are
two further questions we should still like to look at in the rest of this section.
1. Are the values of Em on events also completely determined by Fm and Fm in their

points of continuity, or in other words, by Fσ
m in its points of continuity? By virtue

of Propositions 11 and 12, this comes down to Em being determined by its values on
m-integrable open intervals.

2. Can we say something similar about the values that Em assumes on gambles, and not
just events?

We shall answer both questions positively in Theorem 14 further on.
But before we can address these issues, we need to prepare ourselves a bit better. In

order to answer the first question, it will help us to consider the set of all m-integrable open
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intervals. By Proposition 12 this is the set

{[0,1]}∪{[0,x) : x 6∈Dm}∪{(y,1] : y /∈Dm}∪{(x,y) : x,y /∈Dm} .

This set is closed under intersections, so the lattice of events Om generated by all m-
integrable open intervals is the set made up of all finite unions of disjoint m-integrable open
intervals. Let us denote by P̃m the restriction of Em to Om. Then we know by Proposition 10
that P̃m is additive on this lattice of events. Moreover, any non-trivial element O of Om has
the form

O = [0,x1)∪ (x2,x3)∪·· ·∪ (x2n−2,x2n−1)∪ (x2n,1]
where 0≤ x1 ≤ x2 < x3 ≤ ·· · ≤ x2n−2 < x2n−1 ≤ x2n ≤ 1, xk 6∈Dm, and

P̃m(O) = Fm(x1)+
n−1

∑
k=1

[Fm(x2k+1−)−Fm(x2k)]+1−Fm(x2n) (5)

= Em(O) = Em(O).

Note that since xk /∈Dm for all k, we have Fm(x2k−1−) = Fm(x2k−1), and we could also
replace Fm by Fm or vice versa in this equation.

In order to answer the second question, we point out that there exists, besides Equation (3),
another representation of the natural extension Em to gambles, that is more informative,
and provides additional insight about its nature. This representation derives from the
fact that Em is the natural extension of the linear prevision P̂m, which is in particular a
completely monotone lower prevision. Moreover, the domain C ([0,1]) of P̂m is a linear
lattice of gambles on [0,1] that contains all constant gambles. Hence, we can apply the
results mentioned in Section 2 about this type of previsions. Let Lm denote the class of
m-integrable gambles

Lm :=
{

h ∈L ([0,1]) : Em(h) = Em(h)
}

,

and let
Am :=

{
A⊆ [0,1] : Em(A) = Em(A)

}
= {A⊆ [0,1] : IA ∈Lm}

denote the class of m-integrable events, i.e., those events with m-integrable indicators. Then
we have the following:

Theorem 13. Consider a Hausdorff moment sequence m. Then the following statements
hold.
1. Em is the natural extension of its restriction to events, which is a completely monotone

coherent lower probability.
2. Em is a completely monotone and comonotone additive coherent lower prevision on

L ([0,1]), and for all gambles h on [0,1],

Em(h) = (C)
∫

hdEm := infh+(R)
∫ suph

infh
Em({h≥ t})dt

= infh+(R)
∫ suph

infh
Em({h > t})dt,

where the first integral is the Choquet integral associated with the restriction of Em to
events, and the second and third integrals are Riemann integrals.

3. Lm is a uniformly closed linear lattice that contains all constant gambles.
4. Am is a field of subsets of [0,1] that includes Om.
5. A gamble f is m-integrable if and only if its cut sets { f ≥ t}, or equivalently, its strict

cut sets { f > t}, are m-integrable for all but a countable number of real numbers t.

We show next that Em is completely determined by the values it assumes on Om.

Theorem 14. Consider a Hausdorff moment sequence m. Let P̃m denote the restriction
of Em to the lattice of events Om generated by the m-integrable open intervals. Then the
following statements hold.
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1. The natural extension of P̃m to all events is the inner set function P̃m,∗ of P̃m. It is a
completely monotone coherent lower probability.

2. For any A⊆ [0,1], Em(A) = P̃m,∗(A).
3. Em is the natural extension of P̃m to all gambles and consequently Em(h) = (C)

∫
hdP̃m,∗

for any gamble h on [0,1].

Proof. Observe that P̃m is a completely monotone coherent lower probability defined on
a lattice of events Om that contains /0 and [0,1]; this is because it is a restriction of the
completely monotone and coherent lower prevision Em. Hence, the natural extension of P̃m
to all events is its inner set function P̃m,∗, and this inner set function is completely monotone
as well. This proves the first statement.

To prove the second statement, first recall that P̃m,∗ is the natural extension of P̃m, so it is
the smallest coherent lower probability that coincides with P̃m on Om. Since Em coincides
with P̃m on Om and is coherent, it must therefore dominate P̃m,∗ on all events. To prove that,
conversely, P̃m,∗ dominates Em on events, consider any A⊆ [0,1]. Then by definition

P̃m,∗(A) = sup
{

P̃m(O) : O ∈Om,O⊆ A
}

.

But since for any open subset O of [0,1], we have O⊆ A if and only if O⊆ int(A), we find
that P̃m,∗(A) = P̃m,∗(int(A)). Since the same holds for Em [Proposition 6], we may assume
without loss of generality that A is open. We have already argued that this implies that A is
a countable union

⋃
k≥0 Ok of disjoint open intervals Ok. We now show that P̃m,∗ dominates

Em on open intervals. Indeed, given x < y in (0,1),

Em((x,y)) = Fm(y−)−Fm(x) = sup
x<t<z<y;t,z/∈Dm

Fm(z)−Fm(t)

= sup
x<t<z<y;t,z/∈Dm

P̃m((t,z))≤ P̃m,∗((x,y)),

using Propositions 5 and 11 and Equation (5), as well as the fact that Dm is countable.
Similarly, we can show that Em([0,x))≤ P̃m,∗([0,x)) and that Em((y,1])≤ P̃m,∗((y,1]) for
any x,y ∈ [0,1]. Note also that Em([0,1]) = 1 = P̃m([0,1]) trivially.

Hence, by Propositions 9 and 10,

Em(A) = sup
n≥0

Em(
n⋃

k=0

Ok) = sup
n≥0

n

∑
k=0

Em(Ok)

≤ sup
n≥0

n

∑
k=0

P̃m,∗(Ok)≤ sup
n≥0

P̃m,∗(
n⋃

k=0

Ok)≤ P̃m,∗(A),

also taking into account that P̃m,∗ is super-additive and monotone [because it is a coherent
lower probability, as a restriction of the coherent lower prevision Em]. This completes the
proof of the second statement. The third statement now follows from Theorem 13 and the
transitivity of natural extension (see Section 2). �

5. SOME REMARKS ON THE HAUSDORFF LOWER MOMENT PROBLEM

Before ending this paper, we devote some attention to a more general type of ‘lower’
moment problem. Indeed, it may be interesting to consider the moment problem for some
particular types of coherent lower previsions that are not necessarily linear previsions. This
means that we consider a sequence m of real numbers, and study under which conditions
there is some coherent lower prevision P on L ([0,1]) with lower moments mk, i.e., satisfy-
ing P(pk) = mk for all k ≥ 0. We should warn the reader here that in the present case the
moments will no longer be precise, that is, the upper moments P(pk) need not be equal to
(may strictly dominate) the lower moments P(pk) = mk.

Of course, if the lower moment sequence m satisfies the Hausdorff moment condition,
then we know from Theorem 1 that there is a linear prevision P with this moment sequence,



18 ENRIQUE MIRANDA, GERT DE COOMAN, AND ERIK QUAEGHEBEUR

and therefore in particular also a coherent lower prevision. However, the converse is not
true, as the following simple counterexample shows.

Example 2. Let P1 be the linear prevision given by P1({0.5}) = P1({0.9}) = 0.5. Then its
first four moments are given by m1

0 = 1, m1
1 = 0.7, m1

2 = 0.53 and m1
3 = 0.427. Consider

on the other hand the linear prevision P2 determined by P2({0.25}) = P2({1}) = 0.5. Its
first four moments are m2

0 = 1, m2
1 = 0.625, m2

2 = 0.53125 and m2
3 = 0.5078125. Now let

P be the lower envelope of {P1,P2}. This is a coherent lower prevision, and its first four
lower moments are m0 = 1, m1 = 0.625, m2 = 0.53 and m3 = 0.427. To see that there is no
linear prevision with these first four moments, it suffices to check that there is no completely
monotone sequence starting with {m0,m1,m2,m3}. This follows at once if we note that
(−1)2∆2m1 = m1−2m2 +m3 = 0.625−1.06+0.427 =−0.08 < 0. �

Hence, the moment problem for coherent lower previsions is more general than the one
for linear previsions. It is therefore quite remarkable that both problems are equivalent
when we consider the additional assumption of 2-monotonicity.

Proposition 15. Given a lower moment sequence m, there is a 2-monotone coherent lower
prevision P on L ([0,1]) satisfying P(xk) = mk for all k ≥ 0 if and only if there is a linear
prevision on L ([0,1]) with these moments, i.e., if and only if m satisfies the Hausdorff
moment condition.

Proof. The ‘if’ part is trivial, since any linear prevision is in particular a 2-monotone
coherent lower prevision. To prove the ‘only if’ part, assume that P is coherent, 2-monotone
and satisfies P(pk) = mk for all k. We already know from coherence that m0 = P(p0) =
P(1) = 1. It therefore remains to show that m is completely monotone. To this end,
we first show that given k1,k2 ≥ 0, there is some linear prevision Q in M (P) such that
Q(pk) = P(pk) = mk for all k1 ≤ k≤ k1 +k2. Indeed, the gambles in

{
pk : k1 ≤ k ≤ k1 + k2

}
are all comonotone with each other. Moreover, since a coherent 2-monotone lower prevision
is also comonotone additive, we get

P(
k1+k2

∑
k=k1

pk) =
k1+k2

∑
k=k1

P(pk).

On the other hand, since P is coherent, there is some linear prevision Q in M (P) such that

P(
k1+k2

∑
k=k1

pk) = Q(
k1+k2

∑
k=k1

pk) =
k1+k2

∑
k=k1

Q(pk),

where the second equality follows from the additivity of Q. Now each of the terms Q(pk)
in the second sum dominates the corresponding term P(pk) in the first sum, and since the
sums are equal, so are all the corresponding terms: Q(pk) = P(pk) = mk, which proves our
claim.

Now, since Q is a linear prevision, its moments Q(pk) must satisfy the Hausdorff moment
condition because of Theorem 1. Hence in particular (−1)k2∆k2 Q(pk1)≥ 0. But since in
this difference there only appear moments Q(pk) with k1 ≤ k ≤ k1 + k2, it follows from the
considerations above that (−1)k2∆k2 mk1 ≥ 0. Since we can do this for any k1,k2 ≥ 0, we
deduce that the moment sequence m is completely monotone. �

6. CONCLUSION

The sequence of moments of a σ -additive probability measure Pσ on the Borel sets
of [0,1] completely determines this measure: we cannot find two different σ -additive
probabilities with the same sequence of moments. We have shown in this paper that this
is not the case when we consider probabilities which are merely finitely additive: indeed,
the sequence of moments of a finitely additive probability P will be shared by an infinity of
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different finitely additive probabilities. Among their restrictions to the Borel sets of [0,1],
only one will be σ -additive, namely Pσ .

We have also proven that this class of finitely additive probabilities on [0,1] with a given
sequence of moments is characterised in particular by the values they take on events, or,
even more precisely, by the values they take on integrable open intervals. The integrability
of these intervals can be easily determined by looking at the discontinuity points of the
associated upper and lower distribution functions, or equivalently, of Fσ .

The fact that the lower and upper envelopes of the finitely additive probabilities with a
given sequence of moments are respectively completely monotone and completely alter-
nating allow us to relate this set of linear previsions to specific types of (lower and upper)
integrals: for instance, the lower and upper previsions it induces are the Choquet integrals
with respect to their restrictions to events.

There is an interesting connection between our results and de Finetti’s [9] work on ex-
changeable sequences. In fact, his Representation Theorem, stripped to its bare essentials,13

states that given an exchangeable sequence of events, there is a representing positive linear
functional R (i.e., linear or coherent prevision) on the set V ([0,1]) of polynomial gambles
on [0,1] (actually, on the set of Bernstein basis polynomials Bn,p) such that the probability
of p successes in n observations is

P(Sn = p) = R(Bn,p)

for all natural numbers n and 0 ≤ p ≤ n. Of course, the linear prevision R is completely
determined by its raw moments mn = R(Bn,0), and it can be extended to a unique linear
prevision on the set C ([0,1]) of continuous gambles on [0,1]. In later discussions of this
result, several authors (see, for instance, [13; 16; 17]) use the F. Riesz representation
theorem in some form to extend this linear prevision uniquely to a σ -additive probability
measure on the Borel sets of [0,1], which allows them to claim that exchangeability is
equivalent to being conditionally independent and identically distributed (see for instance
[17, Theorem 1.1]), and to use this extension to prove various limit theorems (such as the
strong law of large numbers, or the Hewitt–Savage zero-one law). Of course, de Finetti
would have strongly disagreed with this claim, because he refused to consider σ -additivity as
normative, or as anything more than a mathematical convenience.14 This is why the (weak,
but especially the strong) limit laws he proves for exchangeable sequences, are expressed
only in finitary terms, using ‘strong convergence’ rather than ‘almost sure convergence’.15

As a consequence, the prevision of any gamble h that is not m-integrable (and therefore a
fortiori discontinuous) on [0,1] is essentially undetermined, and the most we can say, in
accordance with de Finetti’s Fundamental Theorem of Probability, is that it can assume any
value between Em(h) and Em(h). In this sense, if we let go of the σ -additivity requirement,
the natural extension Em is actually the representing lower prevision.
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