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Abstract

The spatial layout of cities is an important feature of urban form, highlighted by urban plan-
ners but overlooked by economists. This paper investigates the causal economic implications of
city shape in India. I measure cities’ geometric properties over time using satellite imagery and
historical maps. I develop an instrument for urban shape based on geographic obstacles encoun-
tered by expanding cities. Compact city shape is associated with faster population growth and
households display positive willingness to pay for more compact layouts. Transit accessibility is
an important channel. Land use regulations can contribute to deteriorating city shape.

JEL: R10, R30

The United Nations (UN) estimates that cities will add more than 2.5 billion people by 2050, with

nearly 90% of this increase occurring in Asia and Africa (UN 2014). This will likely trigger a massive

expansion in urban land (Seto et al. 2011), with India alone predicted to require 18.6 million more

hectares by 2030 (McKinsey 2010). Faced with the challenge of facilitating urban expansion, policy

makers are making decisions on urban planning and infrastructural investments that will have persistent

effects on the spatial configuration of economic activity within and across cities. Understanding how

cities grow and which city forms best promote quality of life and economic growth is thus paramount.

This paper contributes to the debate on how to accommodate urban development by studying the

economic implications of a previously overlooked feature of urban form: city shape. While largely

ignored by the economics literature, the geometry of a city’s footprint has long been emphasized by

urban planners as important for transit accessibility and service delivery. All else being equal, a city
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with a more compact layout is characterized by shorter distances within the city, potentially affect-

ing transit accessibility, public service delivery (such as electricity), and household and firm location

choices. This, in turn, could impact firms’ productivity and households’ quality of life (Cervero 2001;

Bertaud 2004), particularly in the developing world, where levels of service provision are lower and

many city dwellers lack individual means of transportation.

Despite a common perception that developing country cities are expanding rapidly and haphaz-

ardly (Suzuki et al. 2010; UN-Habitat 2016), we have little understanding of how the shape of urban

expansion influences households and firms within and between cities. Among the key empirical chal-

lenges are the lack of data and the endogeneity of city shape, which is in itself an equilibrium outcome.

By leveraging satellite-derived data and plausibly exogenous variation driven by topography, I provide

the first causal estimates of the impacts of city shape on economic outcomes, in the context of Indian

cities. I find that city geometry affects household location choices across urban areas: compact cities

are associated with faster population growth and a negative compensating real wage differential, which

suggests that they offer higher quality of life (Rosen 1979; Roback 1982).

The first contribution of this paper lies in the data and the measurement of the spatial properties

of Indian cities over time. With over 470 urban agglomerations in rapid expansion (Census of India

2011) and the world’s second-largest urban population (UN 2014), India is a particularly important

context for studying urban form. An allegedly chaotic urban growth has been associated with sprawl

and potentially distortive land use regulations (McKinsey 2010), which makes urban form an important

item in the Indian policy debate. However, systematic data on Indian cities and their spatial structures is

not readily available. I assemble a novel panel dataset that covers over 350 Indian cities between 1950

and 2011 and includes detailed information on each city’s spatial properties, microgeography, and city-

level outcomes. I trace the dynamic evolution of urban footprints by combining newly geo-referenced

historical maps (1950s) with satellite imagery of night-time lights (1992-2010).

The second contribution is to quantify city compactness through a shape metric that I then embed in

a standard urban economic model. I employ a shape index used in urban planning, based on the average

distance between any two points in a polygon. Higher values of this index indicate a less compact

urban footprint, and longer within-city distances. As an example, consider the cities of Kolkata and

Bangalore (Figure 1): Kolkata has a distinctive elongated shape, stretching along the North-South axis,

whereas Bangalore, roughly shaped like a pentagon, has a more compact layout. Controlling for city

area, the average linear distance between any two points in the city is 27% longer in Kolkata than it is

in Bangalore.1 This is likely to become more pronounced over time, as I find that large cities have a

tendency to deteriorate in shape as they grow.

The third contribution of this paper concerns the identification strategy. Estimating the causal im-

pact of city shape on economic outcomes is challenging, as the spatial structure of a city at any point

in time is in itself an equilibrium outcome. Urban shape is determined by the interactions of city pop-

ulation growth, natural constraints, and policy choices, such as land use regulations and infrastructural

investments. I propose a novel instrumental variable for urban geometry that combines geography with

1This example is discussed in greater detail in Section 3.
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a mechanical model for city expansion. The underlying idea is that, as cities expand in space and over

time, they face geographic constraints - steep terrain or water bodies - leading to departures from an

ideal circular expansion path. The relative position in space of such constraints allows for a more or

less compact development pattern, and the instrument captures this variation.

The construction of my instrument requires two steps. First, I employ a mechanical model for city

expansion to predict the area that a city should occupy in a given year, based on its projected historical

population growth. Using a predicted expansion path is important since the city’s actual growth path

would be endogenous. Second, I consider the largest contiguous set of developable land pixels within

this predicted radius; these pixels together form a polygon that I denote as “potential footprint”. I then

instrument the shape of the actual city footprint with the shape of the potential footprint.

The resulting instrument varies at the city-year level, allowing me to focus on long differences in

shape between 1950 and 2010 and abstract from time-invariant city characteristics. The identification

effectively relies on changes in shape that a city undergoes over time, as a result of hitting geographic

obstacles. Importantly, my instrument captures variation in the relative position of topographic obsta-

cles, rather than the presence or the extent of particular geographic features, and its explanatory power

is not limited to cities with extremely constrained topographies (e.g., coastal or high-altitude cities).

To frame the empirical question of the economic impacts of city shape, I turn to a simple framework

of spatial equilibrium across cities (Rosen 1979; Roback 1982). As households and firms optimally

choose where to locate, I hypothesize that they account for city shape when evaluating the trade-offs

associated with different locations. Compact cities may offer advantages associated with better service

delivery or with greater accessibility, stemming from the fact that all locations within the city are closer

to one another. If compact shape makes a city operate more efficiently, population will flow to that

city, bidding housing rents up and wages down, until utility is equalized everywhere. This argument

suggests that compact cities should have, in equilibrium, larger populations and lower real wages.

With my instrument in hand, I take these reduced-form predictions to the data. I begin by demon-

strating that more compact cities experience faster population growth. A one standard deviation im-

provement in city compactness, corresponding to a reduction in the average within-city distance of 360

meters, is associated with a 3% population increase. Naïve OLS estimates have the opposite sign, as

they are confounded by the fact that larger and faster-growing cities also tend to have more discon-

nected shapes in equilibrium.

These results are robust to using different methods to delineate urban footprints and alternative

shape indicators, and survive many falsification checks. One of the main threats to the identification is

that the instrument may capture direct effects of local geography on city-level outcomes - for example,

water bodies can have an inherent amenity value or provide productivity advantages. Reassuringly, the

instrument is not correlated with geographic characteristics such as elevation, distance from the coast,

or ruggedness. To further strengthen the identification, I allow for differential responses to city shape

in cities with different geographies or different soil characteristics (such as bedrock depth, presence

of minerals, or crop suitability) and find very similar results. My results are also stable if I exclude

from the sample cities with particular characteristics, including coastal and high-altitude cities, as
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well as fast- or slow-growing ones. Another concern for the identification stems from potential pre-

existing trends that may be correlated with historical population growth rates. I show that the results

are consistent using an alternative version of the instrument, that employs a completely mechanical

model for city expansion and does not rely on projected historical population.

Next, I turn to rent and wage differentials across cities. In the spatial equilibirum framework, poor

accessibility and worse service delivery in non-compact cities may require cross-city compensating

differentials, to the extent that households and firms cannot fully optimize against poor shape at the

within-city level. For example, in a non-compact, low-accessibility city, households may be forced to

live or shop in less preferable locations, if their first-best ones require excessively long trips. Consistent

with this hypothesis, I find that compact cities are characterized by lower real wages. I further pro-

vide a back-of-the-envelope calculation of households’ implied willingness to pay for compact shape,

equivalent to 5% of their income for a one standard deviation improvement in compactness. Along the

same lines, I calculate the implied impact of city shape on firm productivity through the lens of the

model, finding negligible effects. This suggests that firms may be able to offset the negative impacts

of poor shape through margins other than their cross-city location choices.

Turning to mechanisms, I consider the two main channels emphasized by urban planners: service

delivery and transit accessibility. I find no meaningful impacts of city shape on the share of households

connected to tap water or electricity, suggesting that disconnected shape is not standing in the way of

the delivery of utilities. In contrast, several pieces of evidence point to the importance of accessibility.

First, the negative impact of non-compact shape on population is mitigated in cities with a denser and

better-functioning road network or a larger share of households with car access. Second, cities with

worse shapes have a less dense road network, suggesting higher costs of providing infrastructure in

more disconnected cities.

Furthermore, work commuting patterns may be affected by city shape. The impacts of city shape

on realized commutes are a priori ambiguous: households may respond to longer potential distances

by incurring longer commutes but also by giving up certain trips entirely. This is difficult to investigate

empirically due to a lack of commuting surveys, but I indirectly shed light on work commuting patterns

by examining the location of firms within cities. Using street addresses to geo-locate establishments,

I find that firms located in non-compact cities tend to cluster in few employment sub-centers. This

suggests that firms may be able to neutralize the effects of poor city shape and still take advantage of

agglomeration by locating near one another, leaving it to workers to bear the costs of longer commutes.

This is consistent with the interpretation of the compensating differentials discussed above, where

city shape is associated with positive household willingness to pay but with no differences in firm

productivity.

Finally, I consider the role of policy, specifically land use regulations, as one of the determinants

of city shape. I show that more permissive vertical building limits, in the form of higher Floor Area

Ratios (FARs),2 result in less spread-out and more compact cities. For given geography, increasing

2FARs are defined as the maximum allowed ratio between a building’s floor area and the area of the plot on which it sits.
Higher values are associated with taller buildings. The average FAR in the cities in my sample is 2.3.
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FARs by one improves compactness by one standard deviation. This provides new evidence on the

potentially distortive effects of land use regulations in India, highlighting a new margin: making cities

less compact (Brueckner and Sridhar 2012).

Taken together, these results indicate that the spatial configuration of cities has real consequences

for the quality of life of urban dwellers, for their location patterns across cities, and, potentially, for

their welfare. This has important implications for policy makers taking decisions related to urban

planning or infrastructure, particularly in rapidly growing cities, and suggests that the impact of urban

policies on city shape should be accounted for in cost-benefit analyses.

The rest of the paper is organized as follows. Section 2 provides some background on urbanization

in India and reviews the related literature. Section 3 discusses the dataset and descriptive patterns. Sec-

tion 4 outlines the conceptual framework. Section 5 details the empirical strategy and the instrument.

Section 6 presents my main empirical results. Section 7 addresses identification threats. Section 8 in-

terprets the results on wages and rents in terms of compensating differentials and provides willingness-

to-pay estimates. Section 9 presents results on mechanisms and heterogeneous effects, discussing the

interactions between city shape and transit, utilities, and land use regulations. Section 10 concludes.

I. Background and Previous Literature
India represents a relevant and promising setting to study urban spatial structures. With a current urban

population of 460 million (World Bank 2018) growing at a 2.3% yearly rate, India has the second-

largest urban population in the world, after China, and is projected to host 250 million new urban

dwellers by 2030 (McKinsey 2010). Importantly for my empirical strategy, India has a large number

of cities of meaningful size, with over 50 urban agglomerations having more than 1 million inhabitants.

During the period studied in this paper (1950 through 2011), India experienced a massive urban

transition, with the urban population growing from 62 to 377 million according to the Census. This

has been accompanied by a significant physical expansion of urban footprints, at an estimated rate

of 4.84% yearly between 1970 and 2000 (Seto et al. 2011). Urban expansion has typically occurred

beyond urban administrative boundaries (Indian Institute for Human Settlements 2013; World Bank

2013), making it difficult to track in space using official administrative sources.

The more-than-proportional expansion in urban land has been associated with haphazard develop-

ment and poor urban planning. Sprawl, lengthy commutes, and limited urban mobility are often cited

among the perceived harms of rapid urbanization (McKinsey 2010; World Bank 2013). There is also

a concern that existing land use regulations might contribute to distorting urban form (Sridhar 2010;

Glaeser 2011). In particular, sprawl has been linked to vertical limits in the form of restrictive Floor

Area Ratios (Bertaud 2002 and 2004; Sridhar 2010; Glaeser 2011; Brueckner and Sridhar 2012).3

Literature directly related to the geometric layout of cities is scant, but a number of strands are

tangentially connected to this theme. The economics literature on urban spatial structures has mostly

focused on the determinants of city size and of the population density gradient, often assuming that

3Another example is the Urban Land Ceiling and Regulation Act, which has been claimed to hinder intra-urban land
consolidation and restrict the supply of land available for development within cities (Sridhar 2010).
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cities are circular or radially symmetric (see Anas, Arnott, and Small (1998), for a review). The impli-

cations of city geometry are left mostly unexplored.4 A large body of empirical literature investigates

urban sprawl (see Glaeser and Kahn (2004)), typically in the U.S. context, suggesting longer commutes

as one of its potential costs. Although some studies identify sprawl with non-contiguous development

(for instance, Burchfield et al. (2006), in the U.S; Baruah, Henderson, and Peng (2017), in Africa),

which is related to the notion of “compactness” that I investigate, in most analyses the focus is on

decentralization and density, neglecting differences in geometry. I focus on a different set of spatial

properties of urban footprints: conditional on the overall amount of land used, I consider geometric

properties capturing compactness, and view population density as an outcome variable.

The geometry of cities has attracted the attention of the quantitative geography and urban planning

literature, from which I borrow indicators of city shape (Angel, Civco, and Parent 2010). Descriptive

analyses of the morphology of cities and their dynamics have been carried out in the urban geography

literature (see Batty (2008), for a review), which emphasizes the scaling properties of cities. Urban

planners emphasize the link between city shape, intra-urban trip length, and accessibility, claiming

that contiguous, compact, and monocentric urban morphologies are more favorable to transit (Cervero

2001; Bertaud 2004).

In terms of methodology, my work is related to that of Burchfield et al. (2006), who employ

remotely-sensed data to track the extent of sprawl in U.S. cities over time. The data I employ comes

mostly from night-time, as opposed to day-time, imagery, and covers a longer time span.5 Furthermore,

Saiz (2010) examines geographic constraints to city expansion and relates it to the elasticity of housing

supply. I use the same definition of geographic constraints, but I employ them in a novel way to

construct a time-varying instrument for city shape.

Finally, by highlighting the implications of city shape for accessibility, this paper also complements

a growing literature on infrastructure, transit, and urban expansion in developing countries (Storeygard

2016; Baum-Snow et al. 2017) and India in particular (Kreindler 2018; Akbar et al. 2018, 2019).

II. Data

A. Sources and Dataset Construction

I assemble a city-year level dataset covering over 350 cities in the main estimation sample, for a period

ranging from 1950 to 2010. I include data on the geometric properties of urban footprints, topography,

and various city-level economic outcomes - in particular, population, wages and housing rents. This

section discusses my primary data sources. A detailed description of data sources and methods can be

found in Section A in the Appendix.

4One exception is Bento et al. (2005), who incorporate a measure of city shape in their investigation of the link between
urban form and travel demand in U.S. cities. Differently from their approach, I incorporate time variation in urban form and
I treat city shape as endogenous.

5Recently, night-time lights have been employed to detect urban markets in India by Baragwanath-Vogel et al. (forth-
coming).
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Urban footprints

The first step in constructing my dataset is to trace the footprints of Indian cities at different points

in time. I retrieve the boundaries of urban footprints from two sources. The first is a set of historical

maps of India from the U.S. Army Map Service, that I georeferenced and used to trace the boundaries

of urban areas as of 1950 (U.S. Army Map Service 1955-). An example of one such map, showing the

city of Mumbai, is shown in Figure 2. From these maps I am able to trace the footprints of 351 cities.

Second, I employ the DMSP/OLS Night-time Lights dataset, a series of night-time satellite imagery

recording the intensity of Earth-based lights for every year between 1992 and 2010, with a resolution

of approximately 1 square kilometer (National Geophysical Data Center 1992-).6 I use night-time

lights imagery to delineate urban areas by considering spatially contiguous lighted pixels surrounding

a city’s coordinates, with luminosity above a pre-defined threshold of 35. This approach is illustrated

in Figure 3. Employing higher (lower) thresholds results in more (less) restrictive definitions of urban

areas and fewer (more) detected footprints overall, but does not affect the main results, as I show in

Section 6.7 In general, the resulting definition of urban areas is broad, extending beyond administrative

boundaries. Through this procedure I retrieve up to 450 footprints per year.

Although this approach is not immune from measurement error, this is not a major concern in this

setting since both area and shape of urban footprints will be instrumented throughout my analysis.

Among other things, this addresses non-classical measurement error in the extents of urban footprints -

for instance, due to a correlation between income and luminosity. Moreover, the goal is not to provide

absolute estimates of urban land cover, but rather to explain changes. The long difference or fixed

effects panel specifications employed throughout the paper account for differences in the definition of

urban areas in different years (particularly between the U.S. Army maps and the night-time lights).

Combining these two sources, I retrieve footprints for a total of 6,172 city-years. The main estima-

tion sample focuses on 2010-1950 long differences and includes 351 cities.

Shape metrics

Next, I quantify the compactness of urban footprints in each city-year. There are many possible indexes

that measure compactness, defined as the extent to which a polygon’s shape departs from that of a

circle. I employ the disconnection index, an indicator borrowed from the urban planning literature

(Angel, Civco, and Parent 2010). The index is defined as the average Euclidean distance, in kilometers,

between any two points within a polygon, as illustrated in Figure A.1 in the Appendix.8 For a given

footprint area, higher values of the disconnection index are associated with larger distances between

points in the city and a less compact shape. Figure A.2 in the Appendix provides examples of polygons

with varying degrees of disconnection: elongated shapes and polygons with recesses and gaps (similar

6These data have been widely employed in the economics literature, mainly for purposes other than urban mapping,
starting with the seminal work of Henderson, Storeygard, and Weil (2012).

7See Baragwanath-Vogel et al. (forthcoming) for a discussion of the extents of Indian urban areas delineated employing
night-time lights.

8Section A2 in the Appendix provides the mathematical formula. The index is calculated numerically, by sampling pairs
of interior points from a polygon and averaging their distances. The shortest connecting paths used to define distance do not
need to lie within the polygon.
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to urban areas growing around topographic obstacles) are all associated with greater disconnection

relative to circular polygons with similar areas. For robustness, in Section 6 I also consider alternative

indexes of compactness, which tend to be highly correlated with one another.

Importantly, any compactness index based on distances within a polygon is mechanically correlated

with polygon area. In order to disentangle the effect of geometry per se from that of city size, in

all of my specifications I control for the area of the footprint (which in the instrumental variables

specification will be separately instrumented for, as discussed in Section 5). Alternatively, the index

can be normalized, computing a version that is invariant to the area of the polygon. My results are

robust to this alternative approach (discussed in Section 7).

To illustrate how the index maps onto urban shape, Figure 1 displays the footprints of Bangalore

and Kolkata in 2005, where Bangalore’s footprint has been rescaled so that they have the same area.

Among India’s best-known cities, Bangalore and Kolkata have among the most and the least compact

geometries.9 The difference in the rescaled disconnection index indicates that, if Kolkata had the same

compact shape as Bangalore, the average potential distance within the city would be shorter by 4.4

kilometers.10

Outcomes

The outcome data I consider include city population, wages, and rents. Population data at the city

level for the period 1871-2011 is obtained from the Census (Office of the Registrar General & Census

Commissioner, India 1871-2011)11 available at 10-year intervals. Urban footprints, as retrieved from

the night-time lights dataset, do not always have an immediate Census counterpart. The calculation of

footprint-level population totals requires intermediate steps, detailed in Section A3 in the Appendix.

Wages and rents data are not systematically available at the city level for India. I thus employ

coarser, district-level data and use district urban averages as proxies for city-level averages (as in

Chauvin et al. (2017)). The matching between cities and districts is not one to one. I thus provide

results obtained with different matching approaches (including dropping districts that include more

than one city or considering only the top city in each district).

Data on wages are drawn from the Annual Survey of Industries (ASI), waves 1990 and 2010 (Cen-

tral Statistics Office 1990-1991, 2009-2010).12 The ASI consists of a series of repeated cross-sections

covering manufacturing plants in the formal sector.13

9For the interested reader, Table A1 in the Appendix shows a list of the top most and least compact cities among those
with over a million inhabitants. Cities are ranked by their normalized shape index, so that the ranking is not confounded by
city size.

10This comparison is based purely on shape, holding city area constant. Even if Bangalore has a relatively efficient
geometry, the overall spatial extent of the city may well be inefficiently large, as highlighted by Bertaud and Brueckner
(2005).

11See Section A3 in the Appendix for details on which Census tables were used and how they were accessed.
12Using intermediate waves in a panel specification yields similar results.
13This selective coverage may affect my results, to the extent that manufacturing is systematically over- or underrep-

resented in cities with worse shapes. However, I examined the relationship between shape and the industry mix of cities,
employing data from the Economic Census, and found no obvious patterns. The share of manufacturing appears to be
slightly lower in non-compact cities, but this figure is not significantly different from zero, which alleviates the selection
concern discussed above.
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Data on rents are drawn from the National Sample Survey (rounds 2005-2006 and 2007-2008), in

which households are asked about the amount spent on rent and about the floor area of their dwelling

(National Sample Survey Office 2005-2006, 2007-2008).14 Average rents calculated from NSS data

are likely to underestimate the market rental rate, due to rent control provisions in most major cities of

India (Dev 2006). In the Appendix I thus show that my results are similar if I exclude the bottom 25%

of reported rents for each city, where it is a priori more likely to find observations from rent controlled

units.

For robustness, I also employ an alternative source of data on rents: the India Human Development

Survey 2005 and 2012 (Desai et al. 2005, 2012), used amongst others by Chauvin et al. (2017). An

advantage over the NSS data is that respondents report not only rent but also a number of dwelling

characteristics, allowing me to consider the residuals of a hedonic rents regression as an outcome.

Other data

To construct my city shape instrument, I employ high-resolution data on each city’s microgeography.

I consider land pixels as “undevelopable” when they correspond to a water body or have a slope above

15% (as in Saiz (2010)). Data on water bodies and slope are drawn respectively from the MODIS

Raster Water Mask (with a resolution of 250 meters) and the ASTER dataset (30 meters) (Caroll et al.

2009; NASA and METI 2011). Figure 4 illustrates this classification for the Mumbai area.

For my robustness checks, I collect data on many additional city characteristics including topogra-

phy and geology controls. Furthermore, for my analyses of mechanisms and heterogeneous effects, I

assemble data on infrastructure (including current road length from OpenStreetMap (OpenStreetMap

contributors, 2019), firm location within cities (from street addresses in the Economic Census (Office

of the Registrar General, India, 2005)), availability of public services and slum population (from the

Census (Office of the Registrar General & Census Commissioner, India 1981-2011)), and land use

regulations (from Sridhar (2010)). All these data sources are discussed in Section A in the Appendix.

Assembling city-year level data for Indian cities is not a straightforward exercise due to a lack of

city-level sources and poor matching across different datasets. It should further be noted that data at a

more disaggregated level is typically not available for India. In particular, a limitation is that I cannot

systematically observe household location and commuting patterns within cities.

B. Descriptive Statistics

As a preliminary step to the causal investigation of the impacts of city shape, I provide descriptive

evidence on the spatial properties of Indian city footprints. Summary statistics for city area and shape

are provided in Table 1. Recall that shape is measured as the average within-city distance, in kilometers,

with higher values of the index denoting less compact shapes. Panel A reports statistics for the full

panel of years in which the footprints of those cities are observed. Panel B shows averages for years

1950 and 2010 and for the long difference on which most of my analyses are based.

14For those who own, an imputed figure is provided. Results are similar when excluding owners from the sample.
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The average city in my sample is relatively large, with a population of over 600 thousand inhab-

itants, a night-light-based footprint area of 118 square kilometers (about twice the land area of the

borough of Manhattan), and an average within-city distance of 4.7 kilometers as of 2010. As expected,

there is considerable variation in city shape across cities (partly driven by the variation in city area)

and less variation for a given city over time. In 2010, the standard deviation in shape across cities was

4.2 kilometers, while the average within-city standard deviation across the years in the panel is only 1

kilometer. This is not surprising, given the path-dependence of urban form. City shape also appears

to have a skewed distribution, consistent with similar patterns in the distribution of city size and area.

Finally, the average within-city distance in 2010 is nearly five times larger than in 1950. While this

may indicate a deterioration in urban shape over time, it is confounded by the massive expansion in the

land area of urban footprints over the sample period and by differences in the methodologies used to

trace urban areas in different years.

To gain further insight, rather than focusing on the absolute values, in Table A2 I examine correlates

of city shape, in levels and changes. While these correlations are purely descriptive, they help establish

some key stylized facts in the data and motivate my causal estimation strategy. Each row in Table

A2 corresponds to a city attribute and reports OLS coefficients from two independent cross-sectional

regressions: in column 1 I regress city shape in 2010 on the city attribute, controlling for 2010 city

area; column 2 is analogous but the dependent variable is the 2010-1950 long difference in city shape

and I control for 1950 city area. A description of the variables and a more detailed discussion of the

results is provided in Section A4 in the Appendix. Summary statistics for the correlate variables are in

Table A3. Below I highlight the key patterns.

First, there is a clear positive equilibrium correlation between city size and non-compact shape,

which affects the interpretation of naïve OLS regressions of shape on city-level outcomes. Panel A

shows that large cities have worse shapes and tend to become less compact over time. Ranking cities

by their 1951 population, cities in the lower quartile are associated with lower values of the discon-

nection index, whereas those in the top quartile are associated with higher values, both in levels and

in changes. In Section 5 I discuss potential explanations for these patterns: the selection of topo-

graphically privileged locations when a city is originally founded, sprawl as a response to expanding

infrastructure, or difficulties in enforcing urban planning regulations in rapidly-growing cities.

In line with the results in panel A, panel B shows that cities with less compact shapes also have

better access to electricity, tap water, and cars, likely reflecting the fact that larger settlements also have

higher incomes and better public services. At the same time, disconnected cities do not appear to have

a more developed road network, which could stem from the difficulty of providing road infrastructure

in cities with disconnected layouts. Interestingly, the disconnection index is positively correlated with

the average distance to workplace in 2011 (drawn from the Census), also pointing to more difficult

transit in non-compact cities. Section 9 is devoted to further causal exploration of these patterns.

Panel C highlights that city-level geographic features associated with natural advantage (such as

a city’s distance from the coast or crop suitability) are not predictors of city shape. An identification

strategy based on instrumenting city shape with local topography may raise concerns associated with
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confounding effects of local geography through natural advantage. The lack of correlation in panel C

is reassuring and these concerns are further assuaged by the robustness checks discussed in Section 7.

Finally, panel D shows the correlation between city shape and a number of non-predetermined

characteristics capturing initial conditions, such as distance from other cities or colonial origin. State

capitals appear to have experienced a large deterioration in shape, consistent with the correlation be-

tween shape and city size. Moreover, initial shape appears to be a strong predictor of current shape,

suggesting that changes in shape are more informative than levels.

III. Conceptual Framework
In this Section I present a simple economic framework to motivate my empirical analysis, connecting

the economic value of city shape with population, wages, and housing rents. According to the urban

planning view, compact urban layouts offer households and firms advantages in terms of accessibility

and public services, stemming from shorter within-city distances (Cervero 2001; Bertaud 2004). I

embed this idea in a model of spatial equilibrium across cities. In this framework, households and

firms optimally choose in which city to locate and, in equilibrium, they are indifferent across cities

with different attributes. I hypothesize that they may value the “compactness” of a city as they evaluate

the trade-offs associated with locating in different cities. Spatial equilibrium implies that, if compact

shape makes a city operate more efficiently, population will flow into that city, bidding up housing

costs and bidding down labor costs, until utility is equalized everywhere (Henderson 1974). Along

the same lines, if compact cities offer productivity advantages, they will attract firms, which will bid

up labor costs, until profits are equalized. The city-level responses of population and factor prices to

changes in city shape thus allow me to shed light on the value of compact urban layouts for households

and firms by revealed preferences (Rosen 1979; Roback 1982). Below I provide a brief description

of the model (adapted from Glaeser (2008)) to highlight the key reduced-form implications. The full

model is provided in Section B in the Appendix, along with a discussion of caveats and extensions.

Assume identical and perfectly mobile households choosing optimally where to locate among a

menu of cities. Their utility depends on the consumption of a (numéraire) tradeable good C and housing

H, and on a vector of city characteristics θ . Households’ maximization problem reads:

(1) max
C,H

U(C,H,θ) s.t. C =W − phH

where W is labor income and ph is the rental price of housing (both of which are city-specific). Broadly,

θ captures all utility costs and gains of living in a city. For the purposes of my discussion, it is useful to

conceptualize θ as consisting of three components: “public services” θP, “transit accessibility” θT , and

“consumption amenities” θA. All else being equal, better public services (such as electricity or water),

greater accessibility, and better amenities (such as good climate) improve household utility. Denoting

city shape with S, I assume that S can affect θP and θT , in line with the conjectures of urban planners.

The role of “accessibility” in this context deserves some discussion. Subsumed in this cross-city

framework is a complex within-city location and travel problem that households face once they have

chosen a city. This involves simultaneously choosing where to reside, work, shop, and consume leisure
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within the city, what mode of transportation to use, and how many trips to make out of a large menu of

potential trips (Small and Verhoef 2007). A city with poor shape can be thought of as offering a worse

menu of choices than one with good shape, as some of the potential trips offered are longer. Once the

within-city problem is solved, commuting trips are realized in equilibrium. Note that, as a city’s shape

deteriorates and potential distances increase, realized trips may become longer or shorter, as one of the

possible household responses is to give up certain trips entirely or substitute them with shorter ones (for

example, shopping in the neighborhood instead of traveling to a far away mall). Although the within-

city rent gradient may partially offset direct commuting costs (as suggested by spatial equilibrium

within cities à la Alonso (1964)), to the extent that households cannot fully optimize against bad shape

through within-city margins, poor city shape will affect city choice and require cross-city compensating

differentials. These stem from potential non-pecuniary costs associated with living in a poorly-shaped

city, including the disutility from living in less preferable locations so as to avoid long commutes, the

sheer displeasure of sitting in traffic, or the disutility of renouncing a trip to avoid this displeasure.

These “quality of life” costs are parsimoniously captured in the model by allowing S to reduce θT .15

Along the same lines, S may affect θP, capturing the fact that utilities can be more efficiently

delivered through spatial networks in more compact cities. Note that in India public services are

primarily funded by states and local taxes have an extremely limited role (Jaitley 2018), hence θP

plausibly does not appear in the budget constraint.

Spatial equilibrium requires that indirect utility V be equalized across cities, implying:

(2) V (W − phH,H,θ) = υ .

Embedded in (2) is the intuition that, in equilibrium, wages and rents equalize utility differences.

Households implicitly pay for a better θ bundle, including better accessibility or amenities, through a

combination of higher rents ph and lower wages W .

In the production sector, competitive firms optimally choose where to locate and produce the trade-

able good according to production function C = AF(N,K,Z), where A represents a city-specific pro-

ductivity parameter, N is labor, K is traded capital and Z is a fixed supply of non-traded capital. Similar

to households, firms may benefit from compact city shape through better access to services or because

of greater accessibility, which I capture by allowing S to affect A via two components, AP and AT .

Firms also face a within-city problem where they optimize along various margins, including choosing

where to locate within a city. To the extent that they cannot fully optimize against bad shape, S will

affect A and their choice of city. Normalizing the price of traded capital to 1, firms’ profit maximization

problem yields the following zero-profit condition:

(3) π(W,A,Z) = 0.

15Modeling the within-city location and travel problem solved by households is notoriously challenging both theoretically
and in terms of data requirements (Small and Verhoef 2007). In Section C in the Appendix I present a drastically simplified
version of this problem by embedding a monocentric city (Alonso 1964) in a setting with constraints to urban shape. The
reduced-form predictions of the within-city model are consistent with those of the cross-city framework.

Empirically, pinning down the within-city responses to city shape would require more disaggregated data than what is
available for India. However, in Section 9 I offer suggestive evidence on some of these responses, including firm location
and work commutes.
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This embeds the intuition that more productive cities must pay higher wages in equilibrium, as they

attract more firms.

Finally, the model features developers competitively producing housing in each city, building over

a fixed supply of land. Combining the indifference condition of households, firms, and developers, the

model delivers equilibrium population N, wages W , and housing rents ph in a given city as a function

of θ and A:16

(4) Y = f (θ ,A),Y ∈ {N,W, ph} .

To illustrate the reduced-form predictions of the model, assume that non-compact shape S is negatively

affecting households ( ∂θ

∂S < 0) but not firms ( ∂A
∂S = 0). This would be the case if, for example, house-

holds located in non-compact cities faced longer commutes, or were forced to live in a less preferable

location so as to avoid long commutes, while firms were unaffected - because of better access to trans-

portation technology, or because of being centrally located within a city. All else being equal, a city

with less compact shape should then have a smaller population, higher wages, and lower housing rents.

Intuitively, households prefer cities with good shapes, which drives rents up and bids wages down in

those locations.

Suppose, instead, that poor city geometry negatively affects both the utility of households and the

productivity of firms ( ∂θ

∂S < 0, ∂A
∂S < 0). This would be the case if firms have worse access to utilities

or are prevented from taking full advantage of agglomeration spillovers in non-compact cities. The

model’s predictions are similar, except that the effect on wages will be ambiguous, given that now both

firms and households prefer to locate in compact cities.

Motivated by the model, in Section 6 I begin by examining the reduced-form impacts of city shape

on population, wages, and rents. Furthermore, in Section 8 I discuss compensating differentials and

provide estimates of the implied willingness to pay for compact shape. The evidence suggests that S

affects households’ quality of life (via θ ) but does not have a meaningful impact on firm productivity

(A) in equilibrium. In Section 9 I investigate mechanisms, considering accessibility (θT ) and service

delivery (θP), and I find evidence in support of the former channel.

IV. Empirical Strategy
In this Section I propose an empirical strategy to take to the data the reduced-form predictions outlined

above. To fix ideas, consider city population N as an outcome. Denote the shape of city c in year t as

Sc,t , where higher values denote less compact shapes, and let areac,t be the area of the urban footprint.

The equation of interest is:17

(5) log(Nc,t) = a ·Sc,t +b · log(areac,t)+ηc,t .

The main concern in estimating the above relationship is the endogeneity of urban geometry. The

observed spatial structure of a city at a given point in time is the result of the interaction of exoge-

nous factors, such as geography, and factors endogenous to population, such as the city’s growth rate
16See equarions (B.9), (B.10), and (B.11) in the Appendix for closed-form solutions.
17This is the empirical counterpart of reduced-form equation (B.9) derived in the Appendix.
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and policy choices. Examples of policies affecting city shape include master plans, land use regula-

tions, that can promote more or less compact patterns, and investments in road infrastructure, that can

generate distinctive patterns of urban growth along transport corridors. This induces a simultaneous

correlation between city shape and city size. In general, the sign of the OLS bias will be ambigu-

ous, as the selection effects induced by the endogenous determinants of city shape operate in different

directions. Below I provide a qualitative discussion, and in Section D in the Appendix I provide an

analytical derivation.

One endogenous determinant of city shape is local institutional capacity. Areas with stronger

state capacity tend to have better urban planning and enforcement of master plans, and may be more

compact, all else being equal. At the same time, cities with stronger institutional capacity and well-

functioning local governments also tend to be more successful and faster-growing cities. This may

result in fast-growing cities having better shapes, for reasons unrelated to the value of compactness.

This selection effect (denote it as A) would thus tend to generate a negative correlation between non-

compact shape and population.

Another kind of selection effect (denote it as B) is due to the fact that population growth may make

cities less compact. Mechanically, as cities grow, they tend to deteriorate in shape: intuitively, a city is

originally founded in a topographically privileged location, and as it expands over time it will typically

extend into terrain that is less preferable. Furthermore, a city experiencing faster population growth

may be harder to manage from an urban planning perspective, resulting in more chaotic development.

There could also be effects mediated by infrastructural investment: more highways connecting into

large and fast-growing cities could lead to sprawl and non-compact development (echoing Baum-Snow

(2007)). Finally, large cities may have more fragmented governance as they stretch over multiple

administrative units (as Delhi’s urban agglomeration, which covers multiple states). This may result in

uncoordinated urban planning and more difficult enforcement, all leading to less compact development.

All of these effects would tend to generate a positive correlation between non-compact shape and

population. The OLS estimate for the impact of bad shape on city population will thus be a combination

of the causal impact (via utility-equalizing population flows), gross of selection effects of type A and

B discussed above.

A. Instrumental Variable Construction

In order to address these concerns, I employ an instrumental variables approach that exploits both

temporal and cross-sectional variation in city shape. Intuitively, my identification relies on plausibly

exogenous changes in shape that a city undergoes over time, as a result of encountering topographic

obstacles along its expansion path. More specifically, I construct an instrument that isolates the varia-

tion in urban shape driven by topography and mechanically predicted urban growth. Such instrument

varies at the city-year level, incorporating the fact that cities hit different sets of topographic obstacles

at different stages of their growth.

To operationalize this identification strategy, I instrument the actual shape of the observed footprint

at a given point in time with the potential shape the city can have, given the geographic constraints it
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faces at that stage of its predicted growth. Specifically, I consider the largest contiguous patch of

developable land, i.e. land not occupied by a water body nor by steep terrain, within a given predicted

radius around each city. I denote this contiguous patch of developable land as the city’s “potential

footprint”. I compute the shape indicator of the potential footprint and use it as an instrument for

the shape of the actual urban footprint. What gives time variation to this instrument is the fact that

the predicted radius is time-varying, and expands over time based on a mechanical model for city

expansion. Using predicted growth is important as actual growth would be endogenous.

The procedure for constructing the instrument is illustrated in Figure 5 for the city of Mumbai.

Recall that I observe the footprint of a city c in year 1950 (from the U.S. Army maps) and then yearly

between 1992 and 2010 (from the night-time lights dataset). I take as a starting point the minimum

bounding circle of the 1950 city footprint (Figure 5a). To construct the instrument for city shape in

1950, I consider the portion of land that lies within this bounding circle and is developable, i.e., not

occupied by water bodies nor steep terrain. The largest contiguous patch of developable land within

this radius is colored in green in Figure 5b and represents what I define as the “potential footprint” of

the city of Mumbai in 1950. In subsequent years t ∈ {1992,1993...,2010} I consider concentrically

larger radii r̂c,t around the historical footprint, and construct corresponding potential footprints lying

within these predicted radii (Figures 5c and 5d).

The projected radius r̂c,t is obtained by postulating a mechanical model for city expansion in space,

that is based on a projection of the city’s historical (1871-1951) population growth rates. In particular,

r̂c,t answers the following question: if the city’s population continued to grow as it did between 1871

and 1951 and population density remained constant at its 1951 level,18 what would be the area occupied

by the city in year t? More formally, the steps involved are the following:

(i) I project log-linearly the 1871-1951 population of city c (from the Census) in all subsequent

years, obtaining the projected population p̂opc,t , for t ∈ {1992,1993...,2010} .
(ii) Denoting the actual population of city c in year t as popc,t , I pool together the 1950-2010 panel

of cities and estimate the following regression:

(6) log(areac,t) = α · log(p̂opc,t)+β · log
(

popc,1951

areac,1950

)
+ γt + εc,t .

From the regression above, I obtain âreac,t , the predicted area of city c in year t.19

(iii) I compute r̂c,t as the radius of a circle with area âreac,t :

(7) r̂c,t =

√
âreac,t

π
.

The circle with radius r̂c,t from Figures 5c and 5d thus represents the area the city would occupy

if it continued to grow as in 1871-1951, with unchanged density, and if the city expanded freely and

symmetrically in all directions.

The variation in city shape captured by this time-varying instrument is induced by geography inter-

18Area is observed in 1950 and matched to Census population data from 1951 to calculate density in 1951.
19As a robustness check, I also consider an alternative implementation of the instrumental variables approach, that postu-

lates a common rate of expansion for all cities, equivalent to the average rate of expansion across all cities in the sample. This
alternative approach is detailed in the Appendix, Section E, and discussed in Section 7 among the other robustness checks.
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acted with mechanically predicted city growth. This excludes, by construction, the variation resulting

from policy choices. The instrument is also arguably orthogonal to most time-varying confounding

factors - such as rule of law or local politics - that may be correlated with both city shape and the

outcomes of interest. Focusing on variation induced by topography avoids the selection effects of type

A discussed above (more successful cities attracting better planners). Using variation from the me-

chanical model for city expansion, instead of the city’s actual growth, helps avoid selection effects of

type B discussed above (faster growing cities deteriorating in shape).

Note that city area has to be included in the estimating equation (5) to account for the fact that,

mechanically, larger cities are characterized by longer distances. However, including actual area as a

control is problematic: a city’s expansion in land area will reflect population growth, part of which will

be a response to changes in shape. To avoid this simultaneity, I employ projected historical population

as an instrument for city area, mirroring the approach I follow in the construction of the shape instru-

ment. By predicting city area using historical population 1871-1951, I isolate the variation in city area

that is driven by a city’s fundamentals, and exclude the variation induced by recent responses to city

shape.

B. Estimating Equations

With this instrument in hand, I proceed to estimate the following specification:

(8) log(Yc,t) = a ·Sc,t +b · log(areac,t)+µc +ρt +ηc,t

where Yc,t is the outcome of interest, Sc,t is the shape of the actual footprint, areac,t is the area of the

urban footprint, and µc and ρt are city and year fixed effects.

Two regressors are endogenous: the regressor of interest Sc,t and the control variable log(areac,t).

The corresponding instruments are S̃c,t , the shape of the potential footprint, and log(p̂opc,t), the same

projected historical population used in the model for urban expansion (described above).

This leads to the following two first-stage equations:

(9) Sc,t = σ · S̃c,t +δ · log(p̂opc,t)+ωc +ϕt +θc,t

and

(10) log(areac,t) = α · S̃c,t +β · log(p̂opc,t)+λc + γt + εc,t .

Since many of my outcomes are not available on a yearly basis and the year-to-year variation in city

shape is limited, throughout the paper I present most results as long differences, yielding the following

estimating equation:

(11) ∆ log(Yc) = a ·∆Sc +b ·∆ log(areac)+ηc

where the long differences (denoted by ∆) are taken over 2010-1950 unless otherwise indicated. The

corresponding first-stage estimating equations are long difference versions of equations (9) and (10)

above. This approach differences out time-invariant city characteristics.

Finally, a small subset of outcomes are available for a single cross-section, in which case cross-
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sectional versions of (8), (9), and (10) are estimated.

V. Main Results
In this Section I discuss first-stage estimates of the relationship between predicted and actual city shape

and the impact of city shape on population, wages, and rents.

A. First Stage

Table 2 presents results from estimating the two first-stage equations, relating city shape (in odd

columns) and area (in even columns) to the geography-based instrument described above and to pro-

jected historical population. Potential shape, as determined by topographic obstacles, is indeed pre-

dictive of actual city shape, with Angrist-Pischke and Kleibergen-Paap F statistics above conventional

levels (Kleibergen and Paap 2006; Angrist and Pischke 2009). Columns 1 and 2 present results from

the baseline long difference specification employed throughout the paper, where I consider changes in

city shape and area between 2010 and 1950. Columns 3 and 4 report the equivalent specification, but

in panel format, using all of the data from intermediate years as well, which yields very similar results

and a slightly stronger first stage.

This exercise is of inherent interest as it sheds light on the land consumption patterns of Indian

cities as a function of their geography. Interestingly, the area of the actual footprint appears to be

positively affected by the shape of the potential footprint (columns 2 and 4). While this partly reflects

the mechanical correlation between shape and footprint area, it also suggests that the topographic

configurations that make cities less compact may also make them expand more in space. This could

be because topographic constraints induce a leapfrog, more land-consuming development pattern, or

could reflect an inherent difficulty in planning for parsimonious land use in constrained contexts. This

also clarifies that “constrained” cities in this context should not be thought of as land-scarce in absolute

terms, but rather cities where growth has to occur around topographic obstacles.

B. Population

Table 3 reports estimates of the impact of city shape on population, the main outcome of interest. I

estimate long-difference equation (11) by IV in column 1 and OLS in column 2. The results are similar

in the panel version (equation (8)), reported in the Appendix.20

The IV estimates show that, as cities become less compact, conditional on area, their population

growth declines. The magnitudes are best understood in standardized terms. Recall that higher val-

ues of the shape index imply longer distances and less compact geometry. A one-standard deviation

increase in normalized shape for the average-sized city in the panel (which has radius 4.8 kilometers)

corresponds to roughly 360 meters. Holding constant city area, this increase in the average distance
20In Table A4 I show that the first-stage and population results also hold in the full panel of city-years. Columns 1 and 2

show the first-stage using all city-years detected in the night-time lights and not just those in the long-difference sample of
cities present in the U.S. Army maps. Columns 3 through 6 show that the IV and OLS impacts of city shape on population
are very similar using a panel specification, both in the long-difference sample (columns 5 and 6) and in the full sample
(columns 3 and 4).
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between points in the city is associated with a 3.5% decline in population. Through the lens of the

model, this is consistent with households valuing compact city layouts as they choose across cities. To

the extent that households value compact city shape, spatial equilibrium forces coupled with national

population growth will result in population flowing into compact cities at a faster rate.

Conversely, the OLS results in column 2 indicate a positive correlation between city shape and

population growth. This confirms the descriptive patterns highlighted in Section 3: in equilibrium,

faster growing cities are cities that grow into more disconnected shapes. Specifically, the 0.022 OLS

coefficient implies a deterioration in shape of 450 meters for a one percent increase in population, .

The discussion in Section 5 suggests potential channels through which this positive selection effect may

operate: more difficult urban planning or governance, urban growth occurring along transit corridors,

and the mechanical tendency of cities to expand into less favorable terrain.

These results are robust to employing more or less restrictive definitions of urban areas. As dis-

cussed in Section 3, delineating urban areas using night-time lights requires setting a luminosity thresh-

old above which a pixel is considered “urban”. In Table A5 I provide results using a less restrictive

threshold of 30 (columns 1 through 4) and a more restrictive one of 40 (columns 5 through 8). As ex-

pected, the lower threshold detects more urban areas, which end up having larger footprints; conversely,

the higher threshold detects fewer urban areas and delineates smaller footprints. Despite differences in

sample size and in the areas of cities, the estimated impacts of shape on population are very similar to

the baseline ones.

These results are also robust to employing alternative shape indicators. In Tables A6 and A7 I

consider different shape metrics, detailed in Section A2 in the Appendix. Again, I find similar results,

with less compact cities associated with slower population growth.

C. Wages and Rents

Next, I examine the impact of city shape on wages and rents, which in the model provide com-

pensating differentials to households and firms as they allocate across cities. A caveat to the empirical

analyses below is that wages and rents are measured more noisily than population, as discussed in

Section 3 (with further details provided in Section A in the Appendix).

In Table 4, I report the IV and OLS relationship between average wages and city shape, providing

suggestive evidence that non-compact cities are associated with higher wages. The dependent variable

is the 2010-1990 long difference in the log urban average of individual yearly wages in the city’s

district, from the Annual Survey of Industries. The average yearly wage in 2010 was 187 thousand

Rupees, at 2015 purchasing power. As discussed in Section 3, the ASI data are available at the district

level and the matching between districts and cities is not one to one. I thus provide results for three

samples: one including any city that can be matched (columns 1 and 2); one that only includes cities for

which there is a one-to-one mapping with a district (columns 3 and 4); and finally a sample including

only the top city in each district (columns 5 and 6). Since not all districts can be matched, the sample

size is smaller than in the population sample and the first stage is also weaker. The IV estimates tend to

be imprecise, with the shape coefficient being only borderline significant in column 3 and significant
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at the 10% level in column 5, but the qualitative pattern suggests a positive impact of city shape on

wages, both in the OLS and in the IV.

Table 5 reports the same set of specifications for housing rents, providing suggestive evidence of

lower rents in less compact cities. The dependent variable is the 2008-2006 difference of the log yearly

housing rent per square meter, averaged throughout all urban households in the district, from National

Sample Survey data. The average yearly rent per square meter in 2006 was 703 Rupees, at 2015 prices.

The estimates appear only borderline significant in column 3, with a p-value between 0.10 and 0.15.

Again, the lack of precision in the results can partly be attributed to data limitations: measurement

error, an imperfect match between cities and districts, loss of power from smaller sample size (which

also weakens the first stage), and the limited time variation in the data (drawn from two consecutive

rounds of NSS data). However, subject to these caveats, the qualitative pattern that emerges is quite

consistent: the impact of disconnected shape on rents is negative in the IV and close to zero in the

OLS.

These patterns are similar if I exclude from the calculation of average rents the bottom 25% of the

rents distribution in a district, which may be more likely to belong to rent-controlled units (see Table

A8 in the Appendix).

In Table A9 in the Appendix I show similar qualitative results using an alternative source of rents

data, the Indian Human Development Survey (IHDS) (Desai et al. 2005). The correlation between

the IHDS and the NSS data is positive but weak (0.3), reflecting measurement error in both sources.

Nevertheless, the sign of the impact of city shape on rents is still negative in the IV and positive in

the OLS. In column 3 and 4 of Table A9 the dependent variable is a rent residual, obtained from a

hedonic regression of rents on housing attributes provided in the IHDS survey (details are provided in

the Appendix). The qualitative pattern of lower rents in less compact cities is preserved.

Taken together, the finding of higher wages and lower rents in non-compact cities is consistent with

a compensating differential interpretation. In the model, if compact city shape provides advantages in

terms of quality of life or productivity, compact cities will be characterized by higher rents and wages

that may be higher or lower depending on whether households or firms value compact shape the most.

To the extent that households value city shape more than firms, they will bid wages up in compact

cities. I discuss the magnitudes and interpretation of this compensating differential through the lens of

the model in Section 8.

VI. Threats to Identification
In this Section I address the main threats to identification, focusing on population as an outcome vari-

able. I begin by discussing concerns related to direct effects of geography, followed by confounding by

initial conditions or diverging trends. Finally, I discuss an alternative estimation strategy that employs

a single instrument and does not rely on controlling for projected historical population.
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A. Direct effects of geography

The exclusion restriction for the shape instrument requires that potential shape only affects the

outcomes of interest though the constraints that it posits to urban form. One of the major identification

threats is that the instrument may be correlated with geographic characteristics that have direct time-

varying impacts on the outcomes of interest. For example, the topographic constraints that affect

city shape, such as coasts and slopes, may also make cities intrinsically more or less attractive for

households and/or firms. Indeed, the literature documents many channels through which physical

geography affects local development: amongst others, see Combes et al. (2010), Rosenthal and Strange

(2004), and Barr, Tassier, and Trendafilov (2011) on geology, density, and agglomeration; Burchfield

et al. (2006) on local geography and density; Bleakley and Lin (2012) on coastal configurations and

ports; Nunn and Qian (2011) on potato suitability and urbanization; and Nunn and Puga (2012) on

ruggedness and local economic development. In particular, the reader may worry about geographic

features that have inherent consumption amenity value (e.g. coasts or lakes), production amenity value

(e.g. the presence of mineral deposits, or fertile land), or that may impact construction costs (e.g.

terrain ruggedness or bedrock depth).

These direct effects of geography could bias the IV results in different directions. For example,

if the instrument picked up the effect of coasts and the latter were landscape amenities, the estimated

effects of bad shape on population would be biased towards positive values. Conversely, if potential

shape were less compact in areas with particularly deep bedrock, the IV impacts of shape on population

could be biased towards more negative values, as they would be mediated by higher construction costs

in those cities (Barr, Tassier, and Trendafilov 2011).

Below, I show that the IV results are unlikely to be driven by confounding effects of these geo-

graphic characteristics. As a preliminary step, in Table A10, I show that the instrument is uncorrelated

with most of these geographic variables. Each row reports the coefficient from a separate OLS regres-

sion. In column 1 I report pairwise correlations between changes in potential shape 2010-1950 and

a number of predetermined city characteristics, including elevation, distance from the coast, distance

from the nearest river or lake, distance from mineral deposits, terrain ruggedness (capturing slope),

bedrock depth (which the literature has linked to high-rise construction costs, population density and

ultimately agglomeration), and crop suitability (that may be higher near cities with water bodies). For

completeness, in column 2 I provide the same correlations for the projected population instrument

(used to control for city area). A description of the controls is provided in Section A4 and summary

statistics are reported in Table A3 in the Appendix. Reassuringly, changes in potential shape are un-

correlated with most of these characteristics.21

In Table 6, I show that the IV estimates for the impact of city shape on population are robust to

controlling for all of the characteristics listed above. I report the same IV specification as in Table 3,

column 1, augmented with time-invariant geography controls. This amounts to allowing for differential

changes across cities with different geographic characteristics. All point estimates are very similar to

21There is a weak correlation between changes in potential shape and distance from mineral deposits. This is addressed
in Table A11 by showing that the results are robust to excluding cities near mineral deposits.
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the baseline one of -.096, assuaging concerns of confounding.

In Table A11 I provide IV results for different sample cuts. My results are minimally affected by

excluding from the sample coastal and mountainous cities, high-ruggedness cities, cities near rivers or

lakes, cities with minerals, cities with high bedrock depth and cities with high crop suitability. This is

reassuring that the results are not driven by a very peculiar set of compliers: most cities are affected in

their shape by the position of topographic constraints, and not only those with particular topographies.

The lack of correlation between the shape instrument and geographic variables such as elevation

or distance to the coast may appear surprising, since potential shape is calculated based on constraints

stemming from steep slopes and water bodies. Importantly, the instrument’s variation does not stem

from the generic presence of water bodies or steep slopes, nor from the presence of particularly large

obstacles (e.g. a mountain or lake), but rather from the relative position in space of these constraints.

In fact, a city could be very “constrained” in terms of share of land lost to bad topography, but may still

be able to expand in a compact way. For example, suppose all topographic obstacles are concentrated

East of the center of a city. This will not prevent the city from expanding in a relatively compact way

on the West side. On the other hand, if a city is surrounded by obstacles in multiple directions, it will

have to grow around those obstacles generating a less compact pattern. This is the variation that the

instrument is capturing.

B. Initial conditions and pre-existing trends

The estimation of the population response to changes in city shape may be confounded by un-

derlying city-specific trends, potentially driven by fundamentals or initial conditions. Controlling for

projected historical population growth 1871-1951 through the city area instrument partially addresses

these concerns, as it allows changes in city shape to only affect deviations from the city’s long-run

path. However, there is still a concern of changes in cities’ fundamental trends that are not captured by

past projected growth. I address these concerns by showing that my baseline results are very similar

when controlling for a battery of city characteristics and across various sample cuts. I also present

falsification tests using instrument leads and future changes.

In Table A12 I consider potential diverging trends by initial conditions, extending the tests of

Table 6 to include non-predetermined characteristics as controls. The first-stage and IV estimates

are qualitatively similar to the baseline ones. In columns 1 through 3 I control for initial shape at

the beginning of the sample, allowing cities that start out with different constraints to evolve along

different paths. Not surprisingly, in this more demanding specification instruments are weaker, but the

qualitative impacts of city shape are preserved. In columns 4 through 6 I control for direct British

rule, which may be associated with particular city management or urban planning approaches (Baruah,

Henderson, and Peng 2017), and in columns 7 through 9 I include a capital city dummy, motivated by

the strong correlation between capital cities and non-compact shape highlighted in Table A2. Again,

results are very similar.

In Table A13 I present additional sample cuts based on non-predetermined characteristics. In

columns 1 through 9 I consider cities with different population growth patterns and show that the first-
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stage and IV results are very similar when excluding particular sets of cities. In columns 1 though 3

I exclude cities that at any point during the years in the panel have experienced negative population

growth from one year to the other. In columns 4 though 6 I exclude fast-growing cities, defined as

cities whose 2011-1951 growth rate was in the top 10th percentile. In columns 5 and 6 I exclude the

slow-growing cities, defined as the bottom 10% growers. Again, this is reassuring that the compliers

are not a peculiar set of cities. Along the same lines, in columns 10 through 12 I exclude the top 10%

most constrained cities. The definition of “constrained” refers to the share of land within the 2010 city

radius that is lost to topographic constraints.22

To further assuage the concern of underlying pre-trends, in Table 7 I provide a falsification test

regressing changes in outcomes on instrument leads and future instrument changes. Reassuringly, past

changes in population are not predicted by future values of the instrument. Specifically, in column 1

I regress 2001-1951 population changes on 2005 and 2010 instruments; in column 2 I consider 2001-

1991 population changes as a dependent variable instead. In column 3 I regress 1991-1951 population

changes on instruments measured in 1995 and 2000. Finally, in column 4 I regress 1991-1951 changes

in shape on 2010-2001 changes in the instruments. None of the shape coefficients are statistically

different from 0, and many of the point estimates are positive (the opposite sign of the main effects).

Table A14 in the Appendix includes a similar test for rents and wages, which shows no pattern that

would be suggestive of pre-trends correlating with the shape instrument.

C. Single-instrument specification

Employing projected historical population in the construction of the shape instrument and as an

instrument for area may raise identification concerns. The identifying assumption is that projected

historical population predicts actual city area and shape, but does not affect current population and

other outcomes other than through “deep fundamentals” uncorrelated with shape. A violation of the

exclusion restriction may arise if historical population growth 1871-1951 not only predicted current

population and city expansion through fundamentals, but also affected it through shape itself. This

could be the case if city shape also followed a long-run trend and the 1871-1951 population growth

partially responded to it.

These concerns can be assuaged by an alternative identification strategy that does not rely on using

projected historical population at any stage. This alternative approach, detailed in Section E in the

Appendix, involves normalizing both sides of equation (4) by city area. The ensuing estimating equa-

tion has population density as an outcome and normalized city shape as the only explanatory variable,

which is treated as endogenous. The corresponding instrument is a normalized version of potential

shape, based on topographic obstacles encountered along a city’s predicted expansion path. However,

in this alternative version, the city’s predicted expansion path is not based on historical population

growth, but is completely mechanical, based on the average rate of city expansion in the panel.
22This is similar to the measure that Saiz (2010) relates to housing supply elasticity. This robustness check suggests

that the results are not driven by particularly constrained (and thus potentially more supply-inelastic) cities. In future work,
a richer model could characterize the impacts of topographic constraints and shape on housing supply elasticity, to fully
disentangle them from those driven purely by geometry. I discuss this in Section B in the Appendix.
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The results of this estimation are reported in Table 8. Column 1 reports the first stage, showing

that potential normalized shape is a strong predictor of actual normalized shape. Column 2 reports IV

estimates for the impact of normalized shape on population density, showing that population density

declines as normalized shape deteriorates. The magnitudes are consistent with the estimates from the

baseline specification: as normalized shape deteriorates by one standard deviation, population density

declines by approximately one standard deviation.

VII. Compensating Differentials and Willingness to Pay
In this Section I provide an interpretation of the reduced-form results on wages and rents from Section 6

through the lens of the model. In a Rosen-Roback framework, higher real wages in disconnected cities

can be interpreted as the implicit premium that households pay in order to live in cities with more

compact shapes. To calculate households’ willingness to pay for city shape, I begin by expressing

households’ indifference condition (2) as a log-separable function, which can be derived from a Cobb-

Douglas utility function:

(12) log(W )−α log(ph)+ log(θ) = log(υ)

where α is the share of housing in consumption.

Differentiating (12) with respect to S provides a way to quantify the extent to which S affects

indirect utility via θ :

(13)
∂ log(θ)

∂S
= α

∂ log(ph)

∂S
− ∂ log(W )

∂S
.

The marginal willingness to pay for a unit improvement in S equals the difference between the semi-

elasticity of housing prices to S, weighted by the share of housing in consumption α , and the semi-

elasticity of wages. As an empirical counterpart of (13), I estimate the following:

(14) λ̂θ = αB̂P− B̂W

where B̂P and B̂W are estimates of the reduced-form impact of city shape S on, respectively, log rents

and wages. To calibrate α , I compute the share of household expenditure devoted to housing for urban

households, according to the NSS Household Consumer Expenditure Survey data in my sample. This

figure amounts to 0.16.23

Estimates of λ̂θ , obtained from pooling the IV regressions of Tables 4 and 5, are reported at the

bottom of Table 5. The willingness to pay for a one kilometer improvement in city shape ranges

between 0.13 and 0.17 log points, depending on the specification, with p-values between 0.04 and

0.12. In standardized terms, this implies a willingness to pay between 4.7 and 6% for a one standard

deviation improvement in city compactness, corresponding to an increase in the average within-city

distance of approximately 360 meters.24 Note that relying on OLS, as opposed to IV estimates of B̂P

23While this figure may seem low, it is consistent with the evidence from other developing countries (Chauvin et al.
2017). Employing the IHDS data as an alternative source I find a similar number.

24In order to evaluate this magnitude, this figure could be compared to estimates of the value of other amenities. However,
no such estimates are available for India. As a reference, covering 360 additional meters on foot twice a day takes about 9
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and B̂W would yield smaller willingness-to-pay estimates, ranging between 1 and 2%.

A. Discussion

The positive estimated willingness to pay for good shape λ̂θ can be interpreted as evidence that

households view compact shape as affecting their quality of life as they evaluate the trade-offs associ-

ated with different cities. Through a more structural lens, this estimate can also be useful to sign and

bound potential welfare effects of city shape.

First, λθ can be viewed as an upper bound for welfare effects of deteriorating shape, to the extent

that reality is somewhere in between a scenario with infinitely elastic or infinitely inelastic supply of

urban dwellers (Donaldson and Hornbeck 2016). With a fixed total urban population at the country

level, equilibrium indirect utility υ will increase everywhere if θ increases in one city. In the Cobb-

Douglas case, λθ coincides with the welfare impact of a one unit improvement in shape in all cities.

The assumption of a fixed total population is extreme, as many migrants into cities are coming from

the countryside rather than reallocating across cities. The alternative extreme assumption is that of a

perfectly elastic supply of migrants to cities, with indirect utility being pinned down by a reservation

utility in the countryside. In this scenario, any improvement in θ will result in larger city populations

but no welfare change, which provides a lower bound of zero for the welfare effect of city shape.

Furthermore, in a richer model with heterogeneous households, the Rosen-Roback indifference

conditions will hold for the marginal household, but there will be welfare impacts on inframarginal

households. Intuitively, the latter will not be perfectly compensated for bad shape through higher real

wages and their utility will be affected by changes in θ . The welfare impacts on those households will

depend on the relative elasticity of labor and of housing supply, with a lower local elasticity of labor

implying a larger household incidence (Moretti 2011). Analyzing distributional impacts of deteriorat-

ing city shape requires a richer model incorporating landlords and tenants as well as heterogeneous

incomes and/or migration costs and is left for future research.

The calculation of λθ is subject to a number of caveats, that could be addressed in future work.

While the notion of compensating differentials based on rents and wages is very general, the calcula-

tion above relies on Cobb-Douglas functional form, implying homothetic preferences and a constant

housing expenditure share. Which functional form best describes housing expenditure in a developing

country setting is an open question.

Second, the model does not allow for heterogeneous agents to sort into locations based on their

preferences or skills. This particularly affects the interpretation of the estimated impact of shape

on wages. The latter may reflect sorting and differences in the skill composition of the workforce

(Combes, Duranton, and Gobillon 2008), which I cannot control for given the information in the ASI

data.25 The estimated compensating differentials should be thus thought of as an underestimate of true

minutes, or 2% of an 8-hour working day.
25In Section 9 I discuss evidence that compact cities have a larger share of slum dwellers, which may suggest sorting of

lower-skill workers into compact cities. However, the wages of slum dwellers are unlikely to be driving my results, as the
ASI data that I employ only covers the formal sector.
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equalizing differences for those with a strong preference for compact layouts, and an overestimate for

those with weak preferences.

Third, the model assumes that the housing supply elasticity is the same across cities. Allowing for

heterogeneity across cities would affect the magnitude of the response of rents and wages: to the extent

that good shape positively affects household utility, in more inelastic cities the impacts on population

and wages would be attenuated and the impact on rents would be amplified (in absolute terms).

Furthermore, the model implicitly assumes that S only affects θ . A richer model, providing a

micro-foundation for how city shape affects households and firms, may also allow for city shape to

affect other objects, including the elasticity of housing supply.

Finally, the model does not allow for externalities. With congestion, λ̂θ would understate the true

willingness to pay for compact shape, as it would be estimated gross of equilibrium congestion effects.

B. Implied Productivity Impacts

Next, I consider the implied productivity impacts of city shape on firms, dA
dS . Similar to the calcu-

lation for households, I begin by expressing firms’ indifference condition (3) under the assumption of

a Cobb-Douglas production function:

(15) (1− γ) log(W ) = (1−β − γ)(log(Z)− log(N))+ log(A)+κ1

where parameters β and γ represent the shares of labor and tradeable capital in a Cobb-Douglas pro-

duction function.

Totally differentiating (15) with respect to S allows to pin down the effect of S on productivity as:

(16)
∂ log(A)

∂S
= (1−β − γ)

∂ log(N)

∂S
+(1− γ)

∂ log(W )

∂S
.

I estimate the empirical counterpart of the above as

(17) λ̂A = (1−β − γ)B̂N +(1− γ)B̂W ,

where B̂N is the estimated reduced-form impact of shape on population.

Setting β to 0.4 and γ to 0.3 (as in Glaeser (2008)), IV-based estimates of λ̂A range from -0.12%

(under the most conservative point estimates of B̂W ) to 0.8% for a one standard deviation deterioration

in city shape. In the pooled specification, none of the estimates are statistically different from zero

(with p-values ranging from 0.5 to 0.9).26

These estimates appear very small, suggesting that city shape does not affect firms in the cross-

city equilibrium. This does not indicate that a city’s layout is ex ante irrelevant for firms. Rather, the

interpretation is that firms do not require a compensation for poor city geometry through factor prices,

whereas households do. Put differently, in equilibrium, firms may be able to optimize against “bad”

shape, in a way that households cannot. This may be related to the relative location of households and

firms within cities. This hypothesis is explored in Section 9, where I investigate how firms respond to

26Utilizing OLS, as opposed to IV estimates, yields positive and statistically significant impacts of bad shape on produc-
tivity in the 1.1-1.4% range, in line with the OLS pattern of more disconnected cities being the larger and plausibly most
productive cities.
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city shape in their location choices within cities, by looking at the spatial distribution of employment.

VIII. Mechanisms and Heterogeneous Effects
The urban planning literature emphasizes two main channels through which the compactness of city

layouts may affect households and firms: transit (θT and AT in the model) and public service delivery

(θP and AP). Shorter distances improve accessibility and may facilitate the provision of infrastructure,

as well as ease the delivery of services provided through spatial networks, such as water and elec-

tricity (Cervero 2001; Bertaud 2004). In what follows I provide evidence on both channels, showing

that accessibility is plausibly the main mechanism. I also discuss heterogeneous effects of city shape

shedding further light on the way in which disconnected cities operate.

A. Accessibility and Transit

In this Section I begin by discussing the heterogeneous impacts of city shape as a function of a

city’s infrastructure and ease of transit, taking infrastructure as given. I then discuss the equilibrium

relationship between city shape and infrastructural provision. Finally, I provide suggestive evidence

on the location of firms and commutes to work.

Heterogeneity by infrastructure

Recall that my shape indicator is based on Euclidean distances between points in a city, abstracting

from the road network and transport technology. All else being equal, a well-functioning road network

should mitigate the impacts of bad shape: for example, a disconnected city with a fast highway may

ultimately be very accessible.

In Table 9 I show that the negative impacts of shape on population are indeed mitigated in cities

with better-functioning within-city transit. I augment my baseline IV specification with interactions

between shape and a number of transit-related variables that capture how easy commutes are in the city:

road length (columns 1 through 3), indices capturing the functionality of the road network from Akbar

et al. (2018, 2019) (columns 4 and 5),27 and availability of cars (columns 6 through 8). The sources and

construction of each variable are detailed in Section A5 in the Appendix. All interaction terms yield

positive coefficients: while bad shape tends to reduce population growth, the effects are attenuated for

cities where commutes are plausibly easier due to better road infrastructure and motorized means of

transportation.

While these results are highly suggestive, I caution that they can only be interpreted causally if

one takes infrastructure as given. In reality, infrastructure provision is simultaneously determined

with urban shape (as discussed in detail below) and affected by city income, which may confound

the estimation of the interaction terms in Table 9. I mitigate endogeneity concerns through various

approaches: I consider lagged interaction variables (in columns 2 and 7) and employ state-level, instead

of city-level variables (columns 3 and 8). One specific concern is that cities with better infrastructure
27The grid conformity index (column 4) measures the extent to which a city’s current road network is laid out as a

regular grid; it correlates with better vehicular mobility. The proximity index (column 5) is a city-level measure of distance
accessibility capturing how easy it is to reach shopping centers, train stations, restaurants, and other amenities within a city.
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tend to be higher-income, more successful cities. To assuage this source of confounding, in Table A15

I replicate the estimation of Table 9 additionally controlling for the number of banks in 1981 as a proxy

for city income (Office of the Registrar General & Census Commissioner, India 1981). While this is

admittedly an endogenous control, including it does not change the main estimates, suggesting that the

interactions with infrastructure are not solely capturing income differences.

City shape and provision of infrastructure

Below I elaborate on the equilibrium relationship between city shape and infrastructure. Urban infras-

tructure is jointly determined with city shape and the sign of the reduced-form relationship between

the two is a priori ambiguous. On the one hand, infrastructural provision is an endogenous response to

changes in a city’s layout: as built-up areas expand, the road network also tends to expand to service

these areas. At the same time, infrastructure is a co-determinant of a city’s layout: new built-up areas

often arise around transit corridors. This two-way relationship tends to generate a positive correlation

between bad shape and urban road length. On the other hand, topographic obstacles that lead to discon-

nected shape may also increase the costs of providing infrastructure, resulting in a negative correlation

between bad shape and urban road length. Similar arguments can be made regarding road quality.28

In Table A16, panel A, I empirically examine the equilibrium relationship between city shape and

road length. I find that disconnected cities tend to have a shorter road network, conditional on city area,

both in absolute and in per capita terms. In columns 1 through 8 I consider roads in 2019 as measured

from OpenStreetMap (OpenStreetMap contributors 2019). I report estimates from a cross-sectional

version of my benchmark IV and OLS specification, where regressors are defined in 2010 levels. Bad

shape is associated with shorter total length of roads (columns 1 and 2) and motorways (columns 3 and

4). A one standard deviation in normalized shape (approximately 360 additional meters) is associated

with a 6% shorter road network (column 1). The pattern is similar when considering road length

per 2011 population (columns 5 through 8). Although precision varies, these results are qualitatively

similar in the OLS (even columns) and in the IV specifications (odd columns). In columns 9 through

12 I consider a specification in changes, where the dependent variable is the difference between 2019

OpenStreetMap road length and 1981 urban road length from the Census. While weaker, the negative

IV estimates confirm the pattern highlighted thus far. The OLS estimates are positive, in line with the

spurious correlation between city growth and deteriorating shape. Taken together, these results suggest

that as cities expand to become more disconnected, the road network is not keeping up, plausibly due to

higher costs of providing infrastructure in topographically constrained settings. Thus, poor city shape

may hurt accessibility not only directly, but also by making infrastructural provision more costly.

For the interested reader, in panel B of Table A16 I consider indexes related to the internal func-

tioning of city transit from Akbar et al. (2019). Some of the evidence points to moderately worse

mobility in disconnected cities, as measured by within-city transit speeds. In Section A5 in the Ap-

28Bad topography may increase the cost of maintaining or upgrading roads, resulting in lower road quality in cities with
poor shapes. At the same time, planners may choose to compensate for poor accessibility by investing in road quality, for
example increasing the number of lanes of the main city’s artery. Thus, the relationship between city shape and infrastructure
quality is a priori ambiguous.
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pendix I provide details on the construction of these indexes and caveats to the interpretation of the

corresponding regression results.

Commuting and within-city responses to city shape

The evidence provided thus far points to transit accessibility as one of the key channels through which

city shape affects households. The question may then arise on how city shape maps to commuting

behavior. The theoretical prediction is ambiguous: all else being equal, disconnected city shape is

associated with lower accessibility and higher potential costs of travel within the city. However, re-

alized commuting costs may be higher or lower, depending on households’ elasticity of demand for

trips and on the endogenous location of employers and retailers within the city. As a city becomes

more disconnected, households may respond through different margins: one is to incur longer com-

mutes, but others include locating closer to one’s job and giving up some trips entirely. For example,

they may choose to shop in their neighborhood instead of taking a lengthy trip to their preferred mall.

This would result in shorter, rather than longer realized commutes in disconnected cities. Moreover,

firms may respond to deteriorating shape by dispersing throughout the city or forming new business

districts to be closer to their workers or clients: if a city becomes more polycentric as it becomes more

disconnected, commutes should also shorten.29

The lack of systematic data on Indian households’ location patterns and travel behavior limits the

scope for investigating the within-city responses to poor accessibility in a conclusive way. With this

in mind, I provide two pieces of evidence on the endogenous responses of firms and workers to city

shape, examining the location of firms within cities and households’ distance to workplace.

In Table 10, columns 1 and 2, I consider the clustering of firms within cities and show that discon-

nected cities do not have more dispersed employment. Specifically, I use street addresses and reported

employment of productive establishments from the 2005 Economic Census (Office of the Registrar

General, India 2005) to detect employment sub-centers using the approach developed by McMillen

(2001).30 Employment subcenters are identified as locations that have significantly larger employment

density than nearby ones and that have a significant impact on the overall employment density function

in a city. Details on the data and the procedure are provided in the Appendix, in Sections A6 and F,

respectively. I estimate a cross-sectional version of the benchmark OLS and IV specification with the

log number of employment sub-centers as a dependent variable, for year 2005. Subject to the limita-

tions of cross-sectional inference and small sample size, less compact cities have, if anything, fewer

subcenters, a pattern found both in the IV and the OLS.

This is consistent with the interpretation that, as cities grow into more disconnected shapes, firms

continue to cluster in a few locations within a city, plausibly so as to take advantage of agglomeration,

and they leave it to workers to bear the costs of longer commutes.31 This is also in line with the with

29Models of endogenous subcenter formation emphasize firms’ trade-off between a centripetal agglomeration force and
the lower wages that accompany shorter commutes in peripheral locations. See Anas, Arnott, and Small (1998) for a review
of the literature on polycentricity.

30I geo-code the street addresses of productive establishments covered in the 5th Economic Census using Google Maps.
I retrieve consistent coordinates for approximately 240 thousand establishments in about 190 cities.

31In the model, firms compensate workers for these longer commutes with high wages. Firms are able to pay higher
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the findings discussed in Section 8 that poor shape has meaningful impacts for households, but has

negligible impacts on firms in equilibrium.

This interpretation also suggests that disconnected cities should be characterized by longer trips

to work in equilibrium. Absent commuting data at the city level, in columns 3 through 6 of Table 10

I consider a noisy district-level proxy for work commute length derived from the 2011 Census. The

latter provides a breakdown of workers in a district by travel mode and reported distance to work,

by coarse bins (0-1, 2-5, 6-10, 11-20, 21-30, 31-50, and above 50 kilometers). I calculate weighted

average distance to work separately for workers commuting by car and on foot. Additional details on

the construction of this variable are provided in Section A4 in the Appendix. I report a cross-sectional

version of the benchmark IV and OLS specifications, for year 2010. In the OLS (columns 4 and 6),

poor shapes are associated with longer commutes by car and shorter commutes on foot. This could

point to two heterogeneous kinds of responses to deteriorating shape: those with cars endure longer

commutes, whereas those without cars choose locations of work and/or residence that are closer to one

another. Plausibly, many of the workers who report walking to work are employed in local informal

jobs, which may be an alternative to formal employment in inaccessible parts of the city. I caution that

this result is not robust as the corresponding IV estimates (columns 3 and 5) are small and insignificant

(albeit with the same sign). Noisy results are to be expected given the inherent limitations in the data:

the unit of observation is the district (larger than the city) and the distance bins are probably too coarse

to capture differences in commuting length in medium and smaller cities.32

B. Public Services

The second channel through which city shape may affect households and firms is public service

delivery. More compact layouts may reduce the cost of providing services such as water, electric-

ity or sewerage, resulting in higher levels of access. In Table 11 I examine the impact of city shape

on households’ access to electricity and tap water, but I do not find any meaningful effects. Specifi-

cally, I consider the 2011-1991 long difference in the log number and share of households with access

to electricity (panel A) and tap water on premises (panel B). When considering the total number of

households, OLS estimates indicate a positive correlation between disconnected shape and service ac-

cess (columns 2 and 6), plausibly due to the fact that larger cities tend to have worse shape. However,

when examining the share of households with access (columns 3, 4 and 7 and 8), both OLS and IV

estimates are close to zero.

These results appear to run counter the prediction of the urban planning literature and the findings

of Baruah, Henderson, and Peng (2017), who find worse service access in African cities that are more

sprawled. However, one reason may be that service access in urban India is quite high to begin with:

in 1991, the shares of households with access to electricity and tap water were 82% and 70% respec-

tively. Furthermore, the urban planning argument may be more relevant for services delivered along a

wages in more disconnect cities because poorly-shaped cities have smaller population and returns to labor are decreasing
(see Section B in the Appendix).

32Recall that the median value of the disconnection index is 2.6 kilometers.
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centralized grid, while electricity and water access in urban India is also granted through decentralized

means such as small-scale private service providers (Kariuki and Schwartz 2005). These decentralized

solutions may provide a way around the difficulty of servicing the more disconnected parts of a city.

C. Slum Population

Complementary to the investigation of the impact of city shape is the question of which types of

households bear the costs of poor city shape. On the one hand, compact cities may be more favorable

to the poor because they may offer better connectivity to jobs and services. However, lower real wages

in compact cities may reduce the housing floor space that the poor can afford and price them out of the

formal market (Bertaud 2004).

While I cannot systematically observe household income, I examine the share of slum dwellers

from the Census (Office of the Registrar General & Census Commissioner, India, 1981 and 2011). In

Table 12 I show that cities with less compact shapes have overall fewer slum dwellers, both in absolute

terms (columns 1 and 2) and relative to total population (columns 3 and 4). The dependent variables

are 2011-1981 long differences in the log number and share of slum households as identified by the

Census and the regressors are defined as 2010-1950 long differences. Results are similar in the IV

and OLS specifications. Two interpretations are possible. The first is that higher equilibrium rents in

compact cities are forcing more households into sub-standard housing. The second relates to sorting

of poorer migrants into cities with more compact shapes, possibly because of their lack of individual

means of transport and consequent higher sensitivity to commute lengths.33

D. Land Use Regulations and City Shape

Taken together, the evidence presented in this paper suggests that poor city shape affects household

location choices and potentially their quality of life. Given that most cities cannot expand radially due

to their topographies, an important question arises on the role of policy and on what kind of land use

regulations best accommodate city growth. Below I provide evidence on the interactions between land

use regulations, urban growth, and city shape by focusing on a controversial regulatory tool: Floor

Area Ratios (FARs).

FARs are restrictions on building height expressed in terms of the maximum allowed ratio of a

building’s floor area over the area of the plot on which it sits. Higher values allow for taller buildings.

The average value of FARs in my sample is 2.3, a very restrictive figure compared to international

standards. Previous work has linked conservative FARs in Indian cities to suburbanization and sprawl

(Sridhar 2010; Bertaud and Brueckner 2005).

In Table 13, I show that restrictive FARs lead to less compact city shapes. I employ data on FARs

in 55 Indian cities as of 2005, from Sridhar (2010).34 I report the two first-stage equations, linking

33These results may raise concerns related to the interpretation the wages results from Section 6.3: lower wages in more
compact cities may be driven by low-productivity workers disproportionately locating in these cities, consistent with my
findings on slum dwellers. Recall, however, that my wage sample covers the formal sector only and is therefore unlikely to
include a large share of slum workers.

34Given that FARs are updated infrequently, these mid-2000s data are a reasonable proxy for FARs in place throughout
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potential shape and projected historical population to city shape and area, augmented with interactions

between each of the two instruments and FARs. Given the small number of cities, in order to leverage

more time variation in the data, I present a panel version of the two first-stage equations, similar to

columns 3 and 4 in Table 2. The interaction between projected population and FARs has a negative

impact on city shape (column 1) and city area (column 2). This suggests that cities with laxer FARs

may expand less in space (consistent with Sridhar (2010)), and may expand in a more compact fashion

than their projected growth would imply. A one standard deviation increase in FARs (0.6) is associated

with an absolute reduction in the shape index of roughly 1 kilometer for each percent increase in

projected population.

In other words, higher FARs may slow down the deterioration in city shape that fast city growth

entails: if growing and topographically constrained cities are allowed to grow vertically, they will not

expand horizontally as much and will plausibly remain more compact. These findings are particularly

important for the larger cities in India, as they are those with the most pronounced natural tendency to

deteriorate in shape and also those with the most restrictive FARs (Sridhar 2010).

IX. Conclusion
In this paper I examine the causal economic implications of city shape in the context of India, exploiting

variation in urban form driven by topography. Embedding city shape in a classic urban economics

model, I connect the notion of geometric city compactness with that of spatial equilibrium across cities,

and provide novel causal evidence that city compactness affects urbanization patterns. Less compact

urban layouts, conducive to longer within-city distances, are associated with lower quality of life and

potential welfare costs for households, primarily driven by worse accessibility. This is particularly

important for the largest cities in India, that have a tendency to become less compact over time.

As India prepares to accommodate an unprecedented urban growth in the next decades, the chal-

lenges posed by urban expansion are gaining increasing importance. On the one hand, policy makers

are concerned about the perceived harms of haphazard urban expansion, including sprawl and limited

urban mobility (World Bank 2013). On the other hand, existing policies, especially land use regu-

lations, are viewed as potentially distortive of urban form (Glaeser 2011; Sridhar 2010). This paper

contributes to informing the policy debate on both fronts. Although this study focuses on geographic

obstacles (which are mostly given) in order to gain identification, there is a range of policy options

to prevent the deterioration in connectivity that fast city growth entails and to mitigate the negative

impacts on bad shape, for example by improving urban mobility. My findings also suggest that urban

connectivity can be indirectly improved by promoting more compact development through land use

regulations: restrictive FARs, among the most controversial of such regulations, result in less com-

pact footprints. This suggests that any distortive effects on urban morphology should be accounted for

when evaluating the costs of land use regulations. A number of other urban planning practices and

regulations currently in place in Indian cities have been viewed as conducive to sprawl (Bertaud 2002)

and could be explored in future work.35

the sample period.
35Examples include: the Urban Land Ceiling Act, which has been claimed to hinder intra-urban land consolidation; rent
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In future research, it would be interesting to provide a richer theoretical microfoundation for the

effects of city shape on the behavior of households and firms, shedding further light on the channels

through which city shape matters. A richer model could also be used to investigate heterogeneous

distributional effects and to pin down welfare consequences. More disaggregated data at the sub-city

level will be required to empirically investigate these ramifications.
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Observations Mean Median SD Min Max

Area, km2 5028 73.15 24.14 191.93 0.43 3,986
Shape, km 5028 3.58 2.60 3.29 0.35 38.21
Potential shape, km 5028 3.16 2.65 1.88 0.42 20.03
City Population 1135 480,626 133,229 1,546,857 5,822 22,085,130

Panel B. Long difference 

1950 2010 2010-1950

Area, km2 3.743 118.0 114.2
(7.22) (304.15) (298.64)

Shape, km 1.012 4.714 3.703
(0.71) (4.24) (3.81)

Potential shape, km 1.376 3.985 2.608
(0.99) (2.30) (1.78)

City Population 106,807 657,420 550614
(325,337) (1,968,436) (1,703,455)

Notes: this table reports descriptive statistics from the 351 cities in the main estimation sample, in all years for which data is available. City area,
shape, and potential shape are observable in years 1950 and 1992-2010. City population is available for Census years 1951, 1991, 2001, and 2011. 

Table 1: Descriptive statistics

Panel A. 1950, 1992-2010

Notes: this table reports variable averages for the 351 cities in the main estimation
sample for years 1950, 2010, and for the long difference 2010-1950. For city
population, 1950 and 2010 correspond to Census years 1951 and 2011, respectively.
Standard deviations in parentheses.
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(1) (2) (3) (4)
Dependent variable Δ Shape, km Δ Log area Shape, km Log area
Δ Potential shape, km 1.941 0.232

(0.249) (0.0488)
Δ Log projected population -2.226 0.0467

(0.484) (0.131)
Potential shape, km 1.503 0.185

(0.241) (0.0495)
Log projected population -1.354 0.213

(0.278) (0.122)

Observations 351 351 5,028 5,028
AP F stat shape 27.51 27.51 78.36 78.36
AP F stat area 9.14 9.14 13.60 13.60
KP F stat 12.86 12.86 15.97 15.97
City Fixed Effects Y Y
Year Fixed Effects Y Y
Notes: this table reports OLS estimates of the first-stage relationship between city shape and area, and the
instruments discussed in Section 5. Each observation is a city in cols. 1 and 2 and a city-year in cols. 3 and 4. The
dependent variables are the 2010-1950 long differences in city shape, in km, in col.1, and city area, in squared km,
in col. 2; and levels of city shape and city area in cols. 3 and 4. The regressors are the shape of the potential
footprint and log projected historic population, in long differences in cols. 1 and 2, and in levels in cols. 3 and 4.
Shape is defined as the average distance between two points in the city. Cols. 3 and 4 include city and year fixed
effects. AP and KP F stats are the Angrist-Pischke and Kleibergen-Paap F statistics respectively. Robust standard
errors in parentheses (clustered at the city level in cols. 3 and 4). *** p<0.01,** p<0.05,* p<0.1.

Table 2: First stage

Long difference, 2010-1950 Panel 1950, 1992-2010
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(1) (2)
IV OLS

Δ Shape, km -0.0964 0.0222
(0.0439) (0.00721)

Δ Log area 0.851 0.213
(0.238) (0.0338)

Observations 351 351
AP F stat shape 27.51
AP F stat area 9.14
KP F stat 12.86

Table 3: Impact of city shape on population

Dependent variable: Δ Log population, 2011-1951

Notes: this table reports estimates of the impact of city shape on
population. Each observation is a city. The dependent variable is the
2011-1951 long difference in log city population. The regressors are the
2010-1950 long differences in city shape, in km, and log city area.
Estimation is by IV in col. 1 and OLS in col. 2. AP and KP F stats are
the Angrist-Pischke and Kleibergen-Paap F statistics respectively and
are reported in col. 1. Robust standard errors in parentheses.***
p<0.01,** p<0.05,* p<0.1.
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(1) (2) (3) (4) (5) (6)
IV OLS IV OLS IV OLS

Sample
Δ Shape, km 0.0364 0.0336 0.0728 0.0466 0.0562 0.0349

(0.0354) (0.0132) (0.0470) (0.0154) (0.0293) (0.0150)
Δ Log area -1.057 -0.0787 0.0542 -0.0371 -0.418 -0.0668

(0.944) (0.0833) (0.368) (0.130) (0.435) (0.101)

Observations 183 183 80 80 145 145
AP F stat shape 13.86 10.21 10.4
AP F stat area 1.94 3.76 3.10
KP F stat 1.67 1.76 2.28
Avg. yearly wage, 1992 72 72 72 72 72 72
Avg. yearly wage, 2010 187 187 193 193 187 187

(1) (2) (3) (4) (5) (6)
IV OLS IV OLS IV OLS

Sample
Δ Shape, km -0.606 0.000310 -0.486 -0.0172 -0.697 0.0145

(0.521) (0.0472) (0.310) (0.0675) (0.648) (0.0476)
Δ Log area -2.367 -0.0101 -1.245 -0.101 -1.955 -0.0594

(2.145) (0.0902) (1.044) (0.108) (2.094) (0.0970)

Observations 262 262 134 134 215 215
AP F stat shape 9.60 14.77 5.11
AP F stat area 3.00 6.12 2.80
KP F stat 1.67 2.93 1.20
Avg. yearly rent per m2, 2006 703 703 705 705 700 700

Implied willingness to pay -0.133 -0.151  -0.168
0.16 ∙ βRents  - βWages (0.082) (0.072) (0.107)

[0.104] [0.037] [0.115]

Table 4: Impact of city shape on wages

All Only districts with one city Only top city per district

Notes: this table reports estimates of the impact of city shape on wages. Each observation is a city. The dependent variable is the 2010-
1990 long difference in the log urban average yearly wage in the city's district. The regressors are the 2010-1992 long differences in city
shape, in km, and log city area. Estimation is by IV in odd columns and OLS in even columns. In cols. 3 and 4 the sample is restricted to
districts with only one city. In cols. 5 and 6 the sample is restricted to the top cities in their respective districts. AP and KP F stats are the
Angrist-Pischke and Kleibergen-Paap F statistics respectively. Average yearly wages are in thousand 2018 Rupees. Robust standard
errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.

Only districts with one city Only top city per district

Dependent variable: Δ Log wage, 2010-1990

Notes: this table reports estimates of the impact of city shape on housing rents. Each observation is a city. The dependent variable is the
2008-2006 long difference in the log urban average of housing rent per square meter in the city's district. The regressors are the 2008-
2006 long differences in city shape, in km, and log city area. Estimation is by IV in odd columns and OLS in even columns. In cols. 3 and 4
the sample is restricted to districts with only one city. In cols. 5 and 6 the sample is restricted to the top cities in their respective districts.
AP and KP F stats are the Angrist-Pischke and Kleibergen-Paap F statistics respectively. Average yearly rents are in 2018 Rupees. The
implied willingness to pay is calculated as discussed in Section 6 and is based on coefficients from this table and Tables 4. Robust
standard errors in parentheses, p-values in brackets.*** p<0.01,** p<0.05,* p<0.1.

Table 5: Impact of city shape on rents

Dependent variable: Δ Log rent 2008-2006

All 
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(1) (2) (3) (4) (5) (6) (7)
Δ Shape, km -0.0976 -0.0964 -0.103 -0.0923 -0.0993 -0.0872 -0.0888

(0.0453) (0.0426) (0.0472) (0.0428) (0.0445) (0.0395) (0.0391)
Δ Log area 0.857 0.851 0.887 0.839 0.874 0.799 0.798

(0.244) (0.229) (0.258) (0.232) (0.244) (0.215) (0.211)
Control -0.00556 -4.03e-09 -0.00285 0.000845 -0.000397 -0.0223 0.190

(0.0167) (0.000115) (0.00237) (0.000544) (0.000319) (0.0103) (0.123)

Observations 351 351 351 351 351 351 351
AP F stat shape 27.32 29.64 26.71 28 26.62 30.06 32.25
AP F stat area 8.89 9.37 8.41 9.37 8.69 10.34 9.75
KP F stat 12.44 13.63 11.90 12.93 12.11 14.27 15.68

Characteristic Elevation Distance from 
coast

Distance from 
river/lake

Distance from  
mineral deposit Ruggedness Bedrock depth Crop suitability

Dependent variable: Δ Log population, 2011-1951

Table 6: IV impact of city shape on population, robustness to confounding trends

Notes: this table reports the same IV specification as in Table 3, col. 1, augmented with time-invariant controls, described in Section A.4 in the
Appendix. Summary statistics are in Table A3 in the Appendix. Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.
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Dependent variable: Δ Log population, 
2001-1951

Δ Log population, 
2001-1991

Δ Log population, 
1991-1951

Δ Log population, 
1991-1951

(1) (2) (3) (4)
2005 Potential shape, km 0.0237 0.076

(0.129) (0.0494)
2010 Potential shape, km 0.0157 -0.0361

(0.0910) (0.0344)
1995 Potential shape, km 0.0601

(0.196)
2000 Potential shape, km -0.00273

(0.183)
Δ Potential shape, km, 2010-2001 -0.0509

(0.0407)
2005 Log projected population -4.524 -0.561

(0.823) (0.356)
2010 Log projected population 4.387 0.515

(0.806) (0.347)
1995 Log projected population -4.087

(0.848)
2000 Log projected population 3.933

(0.831)
Δ Log projected population, 2010-2001 1.996

(0.417)

Observations 238 238 267 267

Table 7: Falsification test with lagged outcomes, population

Notes: this table presents a falsification test to show that the shape instrument is not correlated with past population growth rates. Each
observation is a city. The dependent variables are long differences of log population and the regressors are levels and long differences of
the instruments. Estimation is by OLS. Robust standard errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.
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(1) (2) (3)
First Stage IV OLS

Dependent variable: Δ Normalized Shape

Δ Potential normalized shape 0.0996
(0.0188)

Δ Normalized shape -171.8 -22.19
(37.32) (7.806)

Observations 351 351 351
AP F stat shape 28.05 28.05
KP F stat 21.07 21.07
Mean dep var in levels, 2010 0.964 6.568
Mean dep var in levels, 1950 1.066 29.872
Notes: this table reports estimates of the impacts of city shape on population, employing the strategy discussed
in Section E in the Appendix. Col. 1 reports the first stage of actual normalized shape on potential normalized
shape. Cols. 2 and 3 report the IV and OLS estimates of the impact of normalized shape on population density,
measured in thousand inhabitants per square km. All variables are expressed as 2010-1950 long differences
(2011-1951 for population). The construction of the instrument is based on a purely mechanical model for city
expansion. Normalized shape is the area-invariant version of the disconnection index (see Section A.2 in the
Appendix). The mean and standard deviation of normalized shape in the panel are respectively 0.96 and 0.08.
AP and KP F stats are the Angrist-Pischke and Kleibergen-Paap F statistics respectively. Robust standard
errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.

Table 8: First stage and impact of city shape on population, single instrument

Δ Population Density
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(1) (2) (3) (4) (5) (6) (7) (8)
Δ Shape, km -0.247 -0.41 -0.173 -0.152 -0.163 -0.316 -0.29 -0.227

(0.115) (0.205) (0.0829) (0.0507) (0.0611) (0.125) (0.114) (0.0971)
Δ Shape X Roads 7.48E-06 0.000167 0.0109 0.249 0.386 0.000356 0.000772 0.000197

(3.44e-06) (7.75e-05) (0.00455) (0.0763) (0.211) (0.000142) (0.000292) (9.46e-05)
Δ Log area 1.192 1.468 0.997 0.864 0.882 1.482 1.421 1.269

(0.462) (0.665) (0.347) (0.216) (0.267) (0.532) (0.492) (0.410)

Observations 336 336 336 123 123 246 246 246
AP F stat interaction 911.41 35.14 328.24 41.95 36.37 504.84 517.16 305.6
AP F stat shape 10.29 4.60 13.07 7.66 8.34 6.31 7.07 7.54
AP F stat area 4.91 3.16 6.57 10.32 12.02 3.38 3.63 4.37
KP F stat 7.95 5.67 9.96 9.79 8.41 6.06 6.39 7.09

Interaction variable Roads 2019 Roads 1981 State roads 1981 Proximity Grid conformity Cars 2011 Cars 2001 State cars 1984
Mean interaction 
variable 695 150 1.517 .001 .132 19 8 105

Table 9: Heterogeneous effects of infrastructure and transit 

Dependent variable: Δ Log population, 2011-1951

Notes: this table reports the same IV specification as in Table 3, col.1, augmented with interactions between city shape and the transit-related variables indicated in each column.
Roads 2019 is the total length of roads in a city's 2010 lit-up shape, as reported in 2019 in Openstreetmap. Roads 1981 is the length of city urban roads in 1981 from the Census. State
roads in 1981 is to the total length of urban roads in a state in 1981. All road length variables are in km. Proximity is an index of distance accessibility, from Akbar et al (2018). Grid
conformity is a measure of the regularity of a city's primary road grid from Akbar et al (2019). Cars 2011 indicates the number of households with a car, from the Census, in thousands.
Cars 2001 is analogous for 2001. State cars 1984 is the number of motor vehicles registered in a state. State variables are drawn from the Ministry of Road Transport and Highways
and normalized by state urban area (in square km). Further details can be found in Section A.5 in the Appendix. AP and KP F stats are the Angrist-Pischke and Kleibergen-Paap F
statistics respectively. Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.
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Dependent variable: 

(1) (2) (3) (4) (5) (6)
IV OLS IV OLS IV OLS

Shape, km 0.00257 0.0143-0.0951
(0.0537)

-0.0644
(0.0165) (0.0181) (0.00470)

-0.0138
(0.00453)

Log area 0.683 0.577 -0.0171 -0.0649 0.115
(0.150) (0.0520) (0.0758) (0.0243)

-0.00314
(0.0193)
0.0781

(0.0824) (0.0230)

Observations 200 200 238 238 238 238
7.47 5.02 5.02

21.77 16.74 16.74
AP F stat shape
AP F stat area
KP F stat 4.82 4.44 4.44

Notes: this table reports cross-sectional estimates of the impact of city shape on the number of employment subcenters in 2005
(cols. 1 and 2) and average reported distance to work in 2011 (cols. 5 through 8). Each observation is a city in cols. 1 and 2 and
a district in cols. 5 through 8. In cols. 1 and 2 the dependent variable is the log number of employment subcenters in a city in
2005, detected using the method described in Section F in the Appendix based on establishment addresses from the Economic
Census. In cols. 5 through 8 the dependent variable is the log weighted average distance to work of workers in a district, from
the 2011 Census. Cols. 5 and 6 consider workers commuting by car and cols. 7 and 8 consider workers commuting on foot. The
regressors are city shape, in km, and log city area, measured in 2005 (cols. 1 and 2) and 2010 (cols. 5 through 6). Estimation is
by IV in odd columns, and OLS in even columns. AP and KP F stats are the Angrist-Pischke and Kleibergen-Paap F statistics
respectively. Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.

Table 10: Employment centers and work trips

Log average distance to work , 2011

Car Walk

Log number subcenters, 2005
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Dependent 
variable:

(1) (2) (3) (4) (5) (6) (7) (8)
IV OLS IV OLS IV OLS IV OLS

Δ Shape, km 0.229 0.0741 0.0268 -0.00279 0.185 0.0815 -0.0167 0.00459
(0.152) (0.0103) (0.0249) (0.00227) (0.113) (0.0156) (0.0380) (0.0122)

Δ Log area 1.685 -0.0948 0.340 0.0398 1.427 -0.176 0.0823 -0.0409
(1.789) (0.0544) (0.311) (0.0160) (1.517) (0.0716) (0.467) (0.0527)

Observations 201 201 201 201 201 201 201 201
AP F stat shape 8.88 8.88 8.88 8.88
AP F stat area 2.49 2.49 2.49 2.49
KP F stat 1.77 1.77 1.77 1.77
Notes: this table reports estimates of the impact of city shape on public services. The specifications reported are similar to those in Table 3.
The dependent variables are the 2011-1991 long differences in the log number (cols.1, 2, 5, and 6) and share (cols. 3, 4, 7, and 8) of
households with service access. Cols. 1 through 4 report results for electricity and cols. 5 through 8 report results for tap water. The
regressors are the 2010-1992 long differences in city shape, in km, and log city area. Estimation is by IV in odd columns and OLS in even
columns. The average shares of households with electricity and tap water in 1991 are, respectively, 0.82 and 0.7. AP and KP F stats are the
Angrist-Pischke and Kleibergen-Paap F statistics respectively. Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.

Table 11: Impact of city shape on public services

A. Electricity B. Tap water

Δ Log number 
households, 2011-1991

Δ Log share 
households, 2011-1991

Δ Log number 
households, 2011-1991

Δ Log share 
households, 2011-1991
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(1) (2) (3) (4)
IV OLS IV OLS

Dependent variable:

Δ Shape, km -0.154 -0.0387 -0.167 -0.0502
(0.0798) (0.0149) (0.0823) (0.0143)

Δ Log area 0.651 0.0378 0.702 -0.0614
(0.760) (0.107) (0.757) (0.103)

Observations 200 200 200 200
AP F stat shape 15.98 15.98
AP F stat area 4.08 4.08
KP F stat 6.17 6.17
Notes: this table reports estimates of the impact of city shape on slum population. The specifications reported are
similar to those in Table 3. The dependent variables are 2011-1981 long differences in the log number (cols.1 and 2)
and share (cols. 3 and 4) of slum households in a city. The regressors are 2010-1950 long differences in city shape,
in km, and log city area. Estimation is by IV in odd columns and OLS in even columns. The average share of slum
households in 1981 is 0.2. AP and KP F stats are the Angrist-Pischke and Kleibergen-Paap F statistics respectively.
Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.

Table 12: Impact of city shape on slum population

Δ Log slum population, 
2011-1981

Δ Log slum population share, 
2011-1981
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Dependent variable Shape, km Log area, km²

(1) (2)
Log projected population 2.995 1.981

(2.755) (0.788)
Log projected population x FAR -1.975 -0.705

(1.023) (0.319)
Potential shape, km 0.158 -0.184

(1.182) (0.232)
Potential shape, km x FAR 0.667 0.137

(0.487) (0.107)

Observations 1,182 1,182
City Fixed Effects Y Y
Year Fixed Effects Y Y

Table 13: Impact of Floor Area Ratios on city shape

Notes: this table reports estimates of the relationship between Floor Area
Ratios (FARs), city shape, and area. Each observation is a city-year. Cols. 1
and 2 are similar to cols. 3 and 4 in Table 2, augmented with interactions
between FARs and each of the instruments. Estimation is by OLS. All
specifications include city and year fixed effects. Standard errors clustered at
the city level in parentheses. *** p<0.01,** p<0.05,* p<0.1. 
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Figure 1: Shape metrics: an example

Figure 2: U.S. Army India Topographic Maps

48



Figure 3: DMS/OLS night-time lights, year 1992

Figure 4: Developable vs. constrained land
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5a 5b

5c 5d

Figure 5: Instrument construction
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Online Appendix
Cities in Bad Shape: Urban Geometry in India

Mariaflavia Harari
March 2020

This Appendix is organized as follows. Section A discusses in detail the data employed in the paper.

Section B presents a formal derivation of the spatial equilibrium model outlined in Section 4 in the

paper. Section C outlines an alternative model of within-city spatial equilibrium to shed light on the

rent gradient in a city with irregular shape. Section D provides an analytical derivation of the bias in

the estimation of the OLS impacts of city shape. Section E discusses an alternative version of the shape

instrument, used in one of the robustness checks, that does not rely on projecting historical population.

Section F describes the procedure used to detect employment sub-centers to obtain the estimates in

Table 10.

A. Data
Below I provide details on the sources and methods employed to assemble my dataset. I start by de-

scribing how I retrieve urban footprints (Section A1) and measure their geometric properties (Section

A2). Next, I discuss population, wages, and rents (Section A3). In Section A4 I discuss the control

variables employed in Table A2 and in the robustness checks in Tables 6, A10, A11, and A12. In Sec-

tion A5 I discuss variables related to infrastructure and transit. In Section A6 I discuss the remaining

data sources - geographic constraints used for the construction of the instrument and variables em-

ployed for heterogeneous effects analyses, including firms’ addresses, slum population, and floor area

ratios.

A1. Urban footprints

The first step in constructing the dataset is to trace the footprints of Indian cities at different points

in time and measure their geometric properties. The boundaries of urban footprints are retrieved from

two sources. The first is the U.S. Army India and Pakistan Topographic Maps, a series of detailed maps

covering the entire Indian subcontinent at a 1:250,000 scale (U.S. Army Map Service 1955-). These

maps consist of individual topographic sheets. I geo-referenced each of these sheets and manually

traced the reported perimeter of urban areas, which are clearly demarcated. These maps are from the

mid-50s, but no specific year of publication is provided. For the purposes of constructing the city-year

panel, I label these data as 1950 and match them with Census data from 1951.

The second source is the DMSP/OLS Night-time Lights dataset (National Geophysical Data Center

1992-). This consists of night-time imagery recorded by satellites from the U.S. Air Force Defense

Meteorological Satellite Program (DMSP) and reports the recorded intensity of Earth-based lights,

measured by a six-bit number (ranging from 0 to 63). This data is reported for every year between

1992 and 2010, with a resolution of 30 arc-seconds (approximately 1 square kilometer). The use of the

DMSP-OLS dataset for delineating urban areas is quite common in urban remote sensing (Henderson et
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al. 2003; Small, Pozzi, and Elvidge 2005; Small and Elvidge 2013). The methodology is the following:

first, I overlap the night-time lights imagery with a point shapefile with the coordinates of Indian

settlement points, taken from the Global Rural-Urban Mapping Project (GRUMP) Settlement Points

dataset (Balk et al. 2006; Center for International Earth Science Information Network et al. 2017). I

then set a luminosity threshold (35 in my baseline approach, as explained below) and consider spatially

contiguous lighted areas surrounding the city coordinates with luminosity above that threshold. This

approach can be replicated for every year covered by the DMSP/OLS dataset.

The choice of luminosity threshold results in a more or less restrictive definition of urban areas,

which will appear larger for lower thresholds.1 To choose luminosity thresholds appropriate for India, I

overlap the 2010 night-time lights imagery with available Google Earth imagery. I find that a luminos-

ity threshold of 35 generates the most plausible mapping for those cities covered by both sources.2 In

my main estimation sample (that includes cities covered in 1950 and 2010), the average city footprint

occupies an area of approximately 73 square kilometers. In Table A5, I show that the first-stage results

and main population IV results are robust to using alternative luminosity thresholds 30 and 40.

Using night-time lights as opposed to alternative satellite-based products, in particular day-time

imagery, is motivated by a number of advantages. Unlike products such as aerial photographs or high-

resolution imagery, night-time lights cover systematically the entire Indian subcontinent, and not only

a selected number of cities. Moreover, they are one of the few sources allowing to detect changes in

urban areas over time, due to their yearly temporal frequency. Finally, unlike multi-spectral satellite

imagery, night-time lights do not require any sophisticated manual pre-processing and cross-validation

using alternative sources.3

It is well known that urban maps based on night-time lights tend to inflate urban boundaries, due

to “blooming” effects (Small, Pozzi, and Elvidge 2005).4 This can only partially be limited by setting

high luminosity thresholds. In my panel, urban footprints as reported for years 1992-2010 thus reflect

a broad definition of urban agglomerations, which typically goes beyond the current administrative

boundaries. This contrasts with urban boundaries reported in the U.S. Army maps, which seem to

reflect a more restrictive definition of urban areas (although no specific documentation is available).

Throughout my analysis, I focus on long differences or include year fixed effects, which amongst other

1Determining where to place the boundary between urban and rural areas always entails some degree of arbitrariness,
and in the urban remote sensing literature there is no clear consensus on how to set such threshold. It is nevertheless
recommended to validate the chosen threshold by comparing the DMSP/OLS-based urban mapping with alternative sources,
such as high-resolution day-time imagery, which in the case of India is available only for a small subset of city-years.

2For years covered by both sources (1990, 1995, 2000), my maps also appear consistent with those from the GRUMP -
Urban Extents Grid dataset, which combines night-time lights with administrative and Census data to produce global urban
maps (Balk et al. 2006; Center for International Earth Science Information Network et al. 2017).

3An extensive portion of the urban remote sensing literature compares the accuracy of this approach in mapping urban
areas with that attainable with alternative satellite-based products, in particular day-time imagery (e.g. Henderson et al. 2003;
Small, Pozzi, and Elvidge 2005). This cross-validation exercise has been carried out also specifically in the context of India
by Joshi et al. (2011) and Roychowdhury, Jones, and Arrowsmith (2009). The conclusion of these studies is that none of
these sources is error-free, and that there is no strong case for preferring day-time over night-time satellite imagery if aerial
photographs are not systematically available for the area to be mapped.

4DMSP-OLS night-time imagery overestimates the actual extent of lit area on the ground, due to a combination of coarse
spatial resolution, overlap between pixels, and minor geolocation errors (Small, Pozzi, and Elvidge 2005).
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things control for these differences in data sources, as well as for different calibrations of the night-time

lights satellites.

The resulting panel dataset of urban footprints is unbalanced for two reasons: first, some settle-

ments become large enough to be detectable only later in the panel; second, some settlements appear

as individual cities for some years in the panel, and then become part of larger urban agglomerations in

later years. The number of cities in the panel ranges from 351 to 457, depending on the year considered.

As a result, the “long-difference” sample used in the baseline specifications includes 351 observations.

In Appendix Table A4, I show that the results continue to hold in the full sample.

The criterion for being included in the analysis is to appear as a contiguous lighted shape in the

night-time lights dataset. This appears to leave out only very small settlements.

A2. Shape metrics

The notion of “compactness” of an urban footprint is borrowed from the urban planning and land-

scape ecology literature (Angel, Civco, and Parent 2009, 2010). Intuitively, the geometric concept of

compactness rests on the idea that the circle is the most compact shape. The extent to which a poly-

gon’s shape departs from that of a circle can be measured through many distinct indexes, all based on

the distribution of points within a polygon.

My benchmark indicator throughout the paper is the disconnection index (corresponding to the

“cohesion” index in Angel, Civco, and Parent (2010)). It is defined as the average Euclidean distance

between all pairs of interior points within a polygon and can be viewed as a proxy for the length

of all potential trips within the city, without restricting one’s attention to those to or from the center.

Higher values of the index denote longer distances within the city and less compact shape. Specifically,

consider n random interior points sampled within a polygon and denote the distance between points j

and i as di j. The index is defined as follows:

S =
∑

n
i=1 ∑

n
j di j

n(n−1)
.

This is illustrated in Figure A.1 for four hypothetical sample points.

I compute the index using the Angel, Civco, and Parent (2009) ArcGIS routines.5 The Shape

Metrics tool considers 20,000 interior points, uniformly distributed throughout the polygon in a grid

pattern. Then, for computational ease, the index is computed for 30 samples of 1000 randomly selected

points within this set and averaged. I compute the index in kilometers.

The disconnection index is mechanically correlated with polygon area. In order to disentangle the

effect of geometry per se from that of city size, two approaches are possible. One is to explicitly control

for the area of the footprint, which I do in the baseline specification throughout the paper. Alternatively,

the index can be normalized, computing a version that is invariant to the area of the polygon. I do so by

computing first the radius of the “Equivalent Area Circle” (EAC), namely a circle with an area equal

to that of the polygon. I then normalize the index of interest by dividing it by the EAC radius.6

5I am thankful to Vit Paszto for help with the ArcGIS shape metrics tool.
6My normalization is slightly different from that proposed by Angel, Civco, and Parent (2009).
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Figure A.1: Calculation of the disconnection index, example from Angel, Civco, and Parent (2009).

Figure A2 reports the disconnection index computed for selected shapes, where S represents the

non-normalized index and nS the normalized version. These examples illustrate departures from the

circular shape that are associated with higher values of the disconnection index. Elongated shapes

(such as v in the figure) and polygons with recesses and gaps (such as iii and iv, similar to urban areas

growing around topographic obstacles) are all associated with greater disconnection.

The shortest connecting paths used in the computation of average distances do not need to lie within

the polygon. In this regard, the index may underestimate distances that account for the placement of

roads. Furthermore, the index is defined for contiguous polygons only: as a result, a built-up area

disconnected from the main urban footprint would not contribute to the index. In this respect, the

index may underestimate the disconnectedness of non-contiguous development.

For robustness, I also compute three additional shape metrics:

(i) The remoteness index (“proximity” in Angel, Civco, and Parent (2010)) is the average distance

between all interior points and the centroid.7 It can be viewed as a proxy for the average length of all

potential trips to the center.

(ii) The spin index is computed as the average of the squared distances between interior points

and the centroid. This is similar to the remoteness index, but gives more weight to the polygon’s

extremities, corresponding to the periphery of the footprint. This index has particularly high values for

7The centroid of a polygon, or center of gravity, is the point that minimizes the sum of squared Euclidean distances
between itself and each vertex.
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footprints that have tendril-like projections.

(iii) The range index captures the maximum distance between two points on the shape perimeter,

representing the longest possible distance between two points within the city.

Figure A.2: Disconnection index for a sample of polygons, adapted from Angel, Civco, and Parent
(2009). S denotes the disconnection index, and nS the normalized version.

Similarly to the benchmark indicator, all the indexes above are measured in kilometers, higher

values denoting a greater departure from circularity and longer within-city distances, and can be nor-

malized by the EAC radius.

Even though these indexes represent independent properties, in practice they tend to be highly

correlated and should be viewed as different proxies for the same broad notion of “compactness”. In

my dataset, the correlation between any two indexes is between 0.82 and 0.97 (except for the correlation

between spin and range that is 0.7). Table A6 and A7 in the Appendix shows that the first-stage and IV

results are robust to employing different indexes.

A3. Outcome variables

Population City-level data for India is difficult to obtain. The only systematic source that collects

data explicitly at the city level is the Census of India, conducted every 10 years. I employ population

data from Census years 1871-2011. As explained in Section 5, historical population (1871-1941) is

used to construct the instrument, whereas population drawn from more recent waves (1951, 1991,

2001, and 2011) is used as an outcome variable. Specifically, I combine the following sources:

• 1871-1951 population data harmonized by Mitra (1980).

• Population totals by urban agglomerations 1981-2011 (Office of the Registrar General & Census

Commissioner, India 1981-2011), assembled by CityPopulation.de.

• Primary Census Abstract 1991 (Office of the Registrar General & Census Commissioner, India

1991a), accessed in CD-ROM format through Harvard University Libraries.

• Primary Census Abstract 2001 (Office of the Registrar General & Census Commissioner, India

2001a), accessed in CD-ROM format through Harvard University Libraries.

• H-series tables 2001 (Office of the Registrar General & Census Commissioner, India 2001b),

accessed in CD-ROM format through Harvard University Libraries.
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• Code List for Land Regions 2001 (State, District, Sub-District, Town, Village) (Office of the

Registrar General & Census Commissioner, India 2001c), accessed through the Census website.

• Village-level amenities data 2001 (Office of the Registrar General & Census Commissioner,

India 2001d), accessed in CD-ROM format through Harvard University Libraries.

• Village and town location codes 2001 (Office of the Registrar General & Census Commissioner,

India 2001e), accessed in CD-ROM format through Harvard University Libraries.

• Tables 3 and 6 2001 (Office of the Registrar General & Census Commissioner, India 2001f and

2001g), accessed through the Census website.

• Primary Census Abstract 2011 (Office of the Registrar General & Census Commissioner, India

2011a), accessed through the Census website.

• List of Villages/Towns 2011 (Office of the Registrar General & Census Commissioner, India

2011b), accessed through the Census website.

Note that “footprints”, as retrieved from the night-time lights dataset, do not always have an imme-

diate Census counterpart in terms of town or urban agglomeration, as they sometimes stretch to include

suburbs and towns treated as separate units by the Census. This is especially problematic for earlier

Census waves. A paradigmatic example is the Delhi conurbation, which as seen from the satellite

expands well beyond the administrative boundaries of the New Delhi National Capital Region. When

assigning population totals to an urban footprint, I sum the population of all Census settlements that are

located within the footprint, thus computing a “footprint” population total. Moreover, in order to as-

semble a consistent panel of city population totals over the years one also has to account for changes in

the definitions of “cities”, “urban agglomerations”, and “outgrowths” across the earlier Census waves.

Mitra (1980) provides harmonized figures for all Census waves up to 1971 and I addressed this issue

in subsequent waves.

Wages and rents For wages and rents, I rely on the National Sample Survey and the Annual Survey

of Industries, which provide, at most, district identifiers (National Sample Survey Office 2007-2008;

Central Statistics Office 2009-2010). I thus follow the approach of Greenstone and Hanna (2014) and

Chauvin et al. (2017): I match cities to districts and use district urban averages as proxies for city-level

averages. It should be noted that the matching is not always perfect, for a number of reasons. First, it

is not always possible to match districts as reported in these sources to Census districts, and through

these to cities, due to redistricting and inconsistent numbering throughout this period. Second, there

are a few cases of large cities that cut across districts (e.g., Hyderabad). Finally, there are a number of

districts which contain more than one city from my sample. I provide results for three samples: one

including any city that can be matched; one that only includes cities for which there is a one to one

mapping with a district; and finally a sample where I only include the top city in each district. The

matching process introduces considerable noise and leads to results that are relatively less precise and
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less robust than those I obtain with city-level outcomes.8 Wages and rents are converted to current

rupees using a GDP deflator (International Monetary Fund 1970-).

Data on wages are taken from the Annual Survey of Industries (Central Statistics Office 1990-

1991, 2009-2010).9 10 These are repeated cross-sections of plant-level data collected by the Ministry

of Programme Planning and Implementation of the Government of India. The ASI covers all regis-

tered manufacturing plants in India with more than fifty workers (one hundred if without power) and

a random one-third sample of registered plants with more than ten workers (twenty if without power)

but less than fifty (or one hundred) workers. As mentioned by Fernandes and Sharma (2012) amongst

others, the ASI data are extremely noisy in some years, which introduces a further source of measure-

ment error. In the main long difference specifications, I employ the 1990 and 2010 waves. Results are

similar using intermediate waves in a panel specification. Data from intermediate waves 1994, 1995,

1998 are also employed for the robustness check in Table A14.

A drawback of the ASI data is that it covers the formal manufacturing sector only.11 This may affect

the interpretation of my results, to the extent that this sector is systematically over- or underrepresented

in cities with worse shapes. I examined the relationship between shape and the industry mix of cities,

employing Economic Census data, and found no obvious patterns. The share of manufacturing appears

to be slightly lower in non-compact cities, but this figure is not significantly different from zero, which

somewhat alleviates the selection concern discussed above.

Unfortunately, there is no systematic source of data for property prices in India across a sufficient

number of cities. I construct a proxy for the rental price of housing drawing on the National Sample

Survey (Household Consumer Expenditure schedule), which asks households about the amount spent

on rent (National Sample Survey Office 2005-2006, 2007-2008).12 In the case of owned houses, an

imputed figure is provided . Rounds 62 (2005-2006), 63 (2006-2007), and 64 (2007-2008) are the only

ones for which the urban data is representative at the district level and which report total dwelling floor

area as well. In my baseline specification I focus on rounds 62 and 64 and take a long difference, but

results are similar using all three waves in the panel version.

I construct a measure of rent per square meter based on total rent amount and floor area. These

8To facilitate the harmonization of districts across Census waves, I draw upon the 2011 Administrative Atlas of In-
dia, available from the Census website (Office of the Registrar General & Census Commissioner, India 2011c; Kumar and
Somanathan 2009).

9The data is confidential, but may be obtained with Data Use Agreements with the Indian Ministry of Statistics and
Programme Implementation. Researchers interested in accessing the data must obtain CD-ROMS which can be obtained
by contacting Deputy Director General, Computer Centre, East Block-10, R K Puram, New Delhi at ddg.cc-mospi@gov.in.
Also see: http://mospi.gov.in/support-queries.

10To facilitate the matching of ASI districts to Census districts, I draw upon the ASI directories provided by Adhvaryu,
Chari, and Sharma (2013).

11An alternative source of wages data is the National Sample Survey, Employment and Unemployment schedule. This
provides individual-level data that cover both formal and informal sector. However, it is problematic to match these data to
cities. For most waves, the data are representative at the NSS region level, which typically encompasses multiple districts.

12The data is confidential, but may be obtained with Data Use Agreements with the Indian Ministry of Statistics and
Programme Implementation. Researchers interested in accessing the data must obtain CD-ROMS which can be obtained
from the Deputy Director General, Computer Center, M/O Statistics and PI, East Block No. 10 R.K. Puram, New Delhi-
110066 by remitting the price along with packaging and postal charges. Also see: http://mospi.gov.in/support-queries.
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figures are likely to be underestimating the market rental rate, due to the presence of rent control

provisions in most major cities of India (Dev 2006). While I cannot observe which figures refer to

rent-controlled housing, as an attempt to cope with this problem, I also construct an alternative proxy

for housing rents which focuses on the upper half of the distribution of rents per meter. This is a priori

less likely to include observations from rent-controlled housing.

For robustness, I also consider an alternative source, used by Chauvin et al. (2017): the India Hu-

man Development Survey (IHDS), comprising two rounds (2005 and 2012) (Desai et al. 2005, 2012).

The IHDS is a nationally representative household survey including 971 urban neighborhoods across

India. It reports monthly expenditures on housing rents as well as housing characteristics (other than

dwelling size), including: number of rooms, house type (house with no shared walls, house with shared

walls, flat, chawl, slum housing, or other), housing surrounded by sewage, predominant wall type

(grass/thatch, mud/unburnt bricks, plastic, wood, burned bricks, GI sheets or other metal, stone, or ce-

ment/concrete), predominant roof type (grass/thatch/mud/wood, tile, slate, plastic, GI metal/asbestos,

cement, brick, or stone concrete), and predominant floor type (mud, wood/bamboo, brick, stone, ce-

ment, tiles/mosaic, or others). This is an advantage over the NSS data as I can run a hedonic regression

of rents on the above characteristics and consider the residuals. At most, district identifiers are pro-

vided, and not all districts can be matched to Census ones. As a result, only about 260 cities can be

matched to an IHDS district.

A4. Correlates of city shape and controls

Below I discuss the results and the sources of the city-level variables employed in Table A2 in this

Appendix. Many of these variables are also employed throughout the paper in a number of robustness

checks. Summary statistics are provided in Table A3. Unless otherwise specified, all the distance

variables are in kilometers and are calculated from the Central Business District (CBD) of each city

(based on the centroid of the 1950 footprint).

Table A2 shows the correlation between city shape, in levels and changes, and a number of city-

level attributes. Each row presents the OLS coefficients of two distinct regressions: in column 1 I

regress city shape in 2010 on the relevant city attribute, controlling for 1950 city area; column 2 is

similar, but the dependent variable is the 1950-2010 long difference in city shape and I control for city

area in 1950.

In Panel A, I rank cities by their 1951 population and assign quartile dummies to each. The bottom

three quartiles are all associated with more compact shapes whereas the top quartile is associated with

less compact shape. This pattern holds both in levels (column 1) and in changes (column 2). In Section

5 I argue that the correlation between bad shape and city size is spurious and driven by the tendency of

cities to deteriorate in shape as they expand.

In Panel B, I consider the channels highlighted by the urban planning literature: access to public

services and urban transit. Specifically, I consider the share of households with connections to electric-

ity, with tap water on premises, and with cars, from the 2011 houselisting and housing Census tables

(Office of the Registrar General & Census Commissioner, India 2011d) which are accessible from the
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census website.13 Less compact cities are associated with a larger share of households connected to

public services. This runs counter the predictions of the urban planning literature, arguing that compact

cities provide better service access. However, any potential causal effects are likely to be confounded

by the fact that less compact cities tend to be the largest and highest-income cities in the sample. This

can also explain the correlation between non-compact shape and the share of households with cars.

Next, I consider the length of the urban road network. I overlap 2019 road maps from Open-

StreetMap (OpenStreetMap contributors 2019) on 2010 city outlines as defined by the nightlights,

following the approach of Akbar et al. (2019). OpenStreetMap is a collaborative worldwide mapping

project. A caveat in employing these data is that the degree of accuracy and comprehensiveness may

vary across cities, raising concerns of measurement error. Despite disconnected cities being larger and

more developed, they do not appear to have a denser road network. In levels, higher values of the

disconnection index are associated with a shorter urban road network. In changes, the sign becomes

negative, but the effect size is small: holding city area constant, as the average within-city trip in-

creases by one kilometer, the road network expands by one meter. This suggests that the provision of

infrastructure in non-compact cities may indeed be more difficult, as urban planners suggest.

Interestingly, non-compact shape is positively correlated, both in levels and in changes, with the

average distance to workplace in 2011. This variable is calculated based on district-level Census data,

accessible from the Census website (Table B-28), on the number of urban workers residing at different

reported distances from their workplaces, by coarse bins (0-1, 2-5, 6-10, 11-20, 21-30, 31-50, or above

50 kilometers) (Office of the Registrar General & Census Commissioner, India 2011e). I calculate a

district-level average distance to work by averaging the mean distance within each bin,14 weighted by

the share of workers. I then match each city to a district.15 This should be viewed as a noisy proxy for

commuting distance within the city, as the distance bins are coarse and include large distances relative

to the average city size. The correlation with city shape (in levels) is positive, suggesting that less

compact cities may be associated with longer commutes. Furthermore, the positive correlation with

changes in shape indicates that cities with long commutes are cities that became less compact than

they were. This is plausible for a city that starts out as monocentric and compact, and grows into a

less compact shape over time, with commutes to the center becoming longer over time. Conversely,

commutes may not be as long in a city that has always been non-compact and perhaps more polycentric.

These patterns are explored further in Section 9 in the paper.

In Panel C, I consider pre-determined city characteristics related to geography and geology:

• Elevation is measured in the CBD, based on data from the Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer (ASTER) Global Digital Elevation Model (NASA and METI

2011). Mountainous cities are defined as having elevation above 700 meters.

13A number of variables employed in the paper are drawn from the Census town-level tables. It should be noted that these
tables cover Census towns only, excluding small settlements that may fall within a city’s lit-up footprint.

14I consider 60 kilometers for the “above 50 kilometers" bin.
15I show results for all cities, but results are similar when excluding districts with multiple cities or when considering

only the main city in each district.
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• Distance from the coast is based on the Global Self-consistent Hierarchical High-resolution

Shorelines (GSHHS) dataset (Wessel and Smith, 2013).

• Distance from the nearest river or lake is measured combining large rivers from the Natural Earth

2.0.0 dataset (Patterson and Kelso 2012) and lakes from the WWF Global Lakes and Wetlands

Database, Level 2 (World Wildlife Fund and the Center for Environmental Systems Research

2004). The river/lake dummy is equal to 1 for cities whose CBD lies within 5 kilometers of a

river or lake.

• Distance from nearest mineral deposit is calculated based on the location of mineral deposits

recorded in the Mineral Resources Data System dataset, assembled by the U.S. Geological Sur-

vey (U.S. Geological Survey 2005). A city is considered with a mineral deposit if there is a

deposit within 50 kilometers of the CBD.

• Ruggedness (in meters) is drawn from the G-Econ gridded dataset (Chen and Nordhaus 2016)

and is measured at the 1 degree (approximately 100 kilometers) level. It is calculated based on

the average absolute change in elevation between adjacent 10 Arc-minutes cells included in each

1 degree cell. Higher values imply more variation in elevation and greater terrain ruggedness. I

match each city CBD to the corresponding 100-km grid cell and assign the corresponding value.

• Bedrock depth (in meters) is drawn from the SoilGrids dataset (Hengl et al. 2014), a global

gridded dataset at a 1 km resolution. I take the average bedrock depth within 100 kilometers of

a city’s CBD.

• Crop suitability (in tonnes per hectare per year) is calculated based on the potential yields (for

low-input, rainfed production) of the top 5 most suitable crops in India (dryland rice, wetland

rice, maize, millet, sorghum), drawn from the FAO’s Global Agro-Ecological Zones (GAEZ)

dataset (FAO/IIASA 2010). The raw data is available at a resolution of 5 arc minutes (approxi-

mately 10 kilometers). Yields are averaged within 100 kilometers of the CBD.

Elevation, distance from the coast, distance from water bodies, and terrain ruggedness capture the

presence of geographic constraints to city expansion. However, the raw correlation with city shape

is insignificant, except for ruggedness which is associated with less compact cities. This suggests

that what affects city shape is not the generic presence of particular geographic features and one may

have to account for the exact position of geographic constraints - which motivates the way in which I

construct my instrument. Similarly, I find no meaningful correlation with bedrock depth, that has been

associated in the literature with higher construction costs for high-rises (Barr, Tassier, and Trendafilov

2011). Crop suitability and the distance from mineral deposits, which may affect the city’s productivity,

are also not significant.

Finally, in Panel D I consider other, non-predetermined city characteristics. The British direct

rule dummy identifies cities in districts that were formerly part of British India, based on Iyer (2010).

Distance from state headquarters, from district headquarters, and from the nearest city with more than
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100,000 inhabitants are drawn from the 2011 Census Town Amenities tables (Office of the Registrar

General & Census Commissioner, India 2011f), available from the Census website. As expected,

shape is persistent in time, as highlighted by the positive coefficient for initial shape. More remote

cities, further away from state or district headquarters, tend to be more compact, but the correlation

is weak. Cities that were under direct British rule are on average less compact, consistent with the

findings of Baruah, Henderson, and Peng (2017) on British colonial cities being more sprawled, but

this correlation is only borderline significant. Conversely, there is a strong tendency of state capitals to

deteriorate in shape, probably because they are also the largest cities.

A5. Infrastructure and transit

Below I discuss the data related to transit and infrastructure employed in Tables 9, A15, and A16.16

Current road network I measure the current length of the road network by overlapping digital

roadmaps from 2019 OpenStreetMap (OpenStreetMap contributors 2019) with 2010 city outlines as

defined from the night-time lights. In Table A16 I also consider motorways, defined as the subset of

road segments labeled by OpenStreetMap as “motorways” or “trunks”, corresponding to dual-carriage

roads similar to freeways in the U.S. (Akbar et al. 2019).

Indices by Akbar et al. (2018, 2019) In Tables 9, A15, and A16 I consider indices developed for In-

dian cities by Akbar et al. (2018, 2019).17 The authors provide estimates of the unit cost of commuting

in Indian cities using transit times predicted by Google Maps in 2016, and aggregate these estimates

into city-level indices of vehicular mobility. Their methodology is primarily based on feeding into

Google Maps origin-destination pairs and collecting information on the duration and length of these

artificial trips. In addition, they also create indices related to the spatial properties of the road network

in a city, defined overlapping 2016 OpenStreetMap with city outlines defined using a combination of

night-time lights and other satellite-based products.

The proximity index (Akbar et al. 2018) is a measure of distance-based accessibility. It is based on

the road distance between random points in the city and a number of amenities (shopping centers, train

stations etc.), selected by Google Maps within a pre-specified radius. Higher values indicate greater

accessibility and shorter trips.

The grid conformity index (Akbar et al. 2019) measures the extent to which the city’s 2016 road

network is laid out as a regular grid. It measures the proportion of edges in a city’s road network that

conform to the dominant grid orientation, by being perpendicular or parallel to the modal edge bearing.

Higher values indicate more regular grids and correlate with better vehicular mobility.

The mobility index (Akbar et al. 2019) is their benchmark index of vehicular mobility and is based

on the speed of simulated trips. This index abstracts from city shape as the length of the simulated

trips is pre-specified by the authors. Factors affecting this index include road density, road quality, and

traffic congestion.

16The data on work commutes employed in Table 10 is discussed in Section A4 above.
17I am thankful to the authors for granting me access to their data.
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Note that, a priori, there is no clear mapping between city shape and the Akbar et al. (2018, 2019)

indices, as the latter depend on the internal functioning of the road network and traffic patterns, and

not on the city’s layout. In Table A16, panel B, I provide IV and OLS estimates for the relationship

between city shape and the three indices discussed above, subject to the caveat of very weak instru-

ments. Poor city shape is associated with lower mobility, both in the OLS and the IV. This may stem

from disconnected cities having a less functional road network, as highlighted in Table A16, panel A.

However, the magnitudes are small: according to the most conservative point estimate, for a one stan-

dard deviation deterioration in city shape, mobility declines by 1.2%. Results are more mixed when

considering proximity. In the IV, bad shape is associated with lower proximity, but the coefficient is

small and insignificant at conventional levels. The corresponding OLS is positive and significant, per-

haps reflecting the fact that in the OLS bad shape correlates with city size, and large cities tend to have

more amenities to begin with.

Interaction variables in Tables 9 and A15 Below I discuss the variables employed in the interaction

specifications of Table 9 and A15. These tables present the same IV specifications, but Table A15

additionally controls for a proxy for city income (the number of banks in 1981) from the Census Town

Directory (Office of the Registrar General & Census Commissioner, India 1981).

In columns 1 through 3 I interact city shape with urban road length. In column 1 I consider the

total length of urban roads in a city, obtained from OpenStreetMap as discussed above. In column

2 I consider the total length of city urban roads, from the 1981 Census Town Directory (Office of

the Registrar General & Census Commissioner, India 1981). In column 3 I consider the total length

of urban roads in a state as of 1981, from the Ministry of Road Transport and Highways (Transport

Research Wing 1971-2020a), accessed through the Centre for Monitoring Indian Economy’s (CMIE)

website. This figure is normalized by the total urban land area in a state, in square kilometers, as

provided by the Centre for Industrial and Economic Research’s Industrial Databooks (CIER 1990).

In columns 4 and 5 I consider the proximity and grid conformity index from Akbar et al. (2018,

2019), discussed above.

In columns 6 through 8 I interact city shape with proxies for the availability of motor vehicles.

In column 6 (7) I consider the number of city households with access to cars, reported in the 2011

(2001) Census. Specifically, the 2001 figure is drawn from Table H-13 (Office of the Registrar General

& Census Commissioner, India 2001h) and the 2011 figure is drawn from Table Hh-14 (Office of the

Registrar General & Census Commissioner, India 2011d), both accessible from the Census website.

In column 8 I consider the total number of registered cars in a state in 1984, from the Ministry of

Road Transport and Highways (Transport Research Wing 1971-2020b), accessed through the Centre

for Monitoring India Economy. Year 1984 is the earliest year for which this figure is available for most

states. This figure is normalized by the total urban land area in a state in 1981, in square kilometers, as

provided by the Centre for Industrial and Economic Research’s Industrial Databooks (CIER 1990).
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A6. Other variables

Geographic constraints For the purposes of constructing the city shape instrument, I code geo-

graphic constraints to urban expansion as follows. Following Saiz (2010), I consider land pixels as

“undevelopable” when they are either occupied by a water body, or characterized by a slope above

15%. I draw upon two high-resolution sources: the Advanced Spaceborne Thermal Emission and Re-

flection Radiometer (ASTER) Global Digital Elevation Model (NASA and METI 2011), with a resolu-

tion of 30 meters, and the Global MODIS Raster Water Mask (Carroll et al. 2009), with a resolution of

250 meters. I combine these two raster datasets to classify pixels as “developable” or “undevelopable”.

Figure 4 in the paper illustrates this classification for the Mumbai area.

Firm location and employment subcenters Data on the spatial distribution of employment in year

2005 is derived from the urban Directories of Establishments, pertaining to the 5th Economic Cen-

sus (Office of the Registrar General, India 2005). For this round, establishments with more than 10

employees were required to provide an additional “address slip”, containing a complete address of

the establishment, year of initial operation, and employment class. I geo-referenced all the addresses

corresponding to cities in my sample through Google Maps API, retrieving consistent coordinates for

approximately 240 thousand establishments in about 190 footprints.18

I utilize these data to compute the number of employment subcenters in each city, following the

two-stage, non-parametric approach described in McMillen (2001). Of the various methodologies pro-

posed in the literature, this is particularly suitable for my context as it can be fully automated and

replicated for a large number of cities. This procedure identifies employment subcenters as locations

that have significantly larger employment density than nearby ones, and that have a significant impact

on the overall employment density function in a city. This procedure is outlined in Section F of this

Appendix. The number of employment subcenters calculated for year 2005 ranges from 1, for purely

monocentric cities, to 9, for large cities such as Delhi and Mumbai. Consistent with results obtained in

the U.S. context by McMillen and Smith (2003), larger cities tend to have more employment subcen-

ters.

Slum population Data on slums is drawn from the 1981 and 2011 Census, which provide slum

population counts for selected cities. Specifically, the 1981 data is drawn from the Ministry of Urban

Affairs (1981-2001), accessed through the Indiastat website. The 2011 data is drawn from the Primary

Census Abstract for Slums, Town level (Office of the Registrar General & Census Commissioner, India

2011g), accessed through the Census website.

The Census defines slums as follows: all areas notified as “slum” by state or local Government;

and any compact area with population above 300 characterized by “poorly built congested tenements,

in unhygienic environment, usually with inadequate infrastructure and lacking in proper sanitary and

drinking water facilities”. Such areas are identified by Census Operations staff.

18Results are similar to excluding firms whose address can only be approximately located by Google Maps.
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Floor Area Ratios Data on the maximum permitted Floor Area Ratios for a small cross-section

of Indian cities (55 cities in my sample)19 is taken from Sridhar (2010), who collected them from

individual urban local bodies as of the mid-2000s. FARs are expressed as ratios of the total floor area

of a building over the area of the plot on which it sits. I consider the average of residential and non-

residential FARs (but results are similar focusing on residential FARs only). For a detailed discussion

of FARs in India, see Sridhar (2010) and Bertaud and Brueckner (2005).

While in this paper I take FARs as given, the question might arise on their determinants. Regressing

FAR values on urban shape and area, I found weak evidence of FARs being more restrictive in larger

cities, consistent with one of the stated objectives of regulators - curbing densities in growing cities.

Electrical connections and tap water Data on the availability of electrical connections and tap water

on premises is drawn from the 1991 and 2011 Census. Specifically, the 1991 figure is drawn from the

Primary Census Abstract H series tables (Office of the Registrar General & Census Commissioner,

India 1991b), accessed in CD-ROM format through Harvard University Libraries. The 2011 figure

is drawn from Tables Hh-14 (Office of the Registrar General & Census Commissioner, India 2011d)

and Tables HH-11 (Office of the Registrar General & Census Commissioner, India 2011h), accessed

through the Census website.

B. A Simple Model of Spatial Equilibrium across Cities
I motivate the empirical analysis of the impacts of city shape drawing on a model of spatial equilibrium

across cities (Rosen 1979; Roback 1982). I embed city shape in this framework by hypothesizing

that households and firms may value city compactness when evaluating the trade-offs associated with

different cities. In order to deliver the intuition and provide estimable equations, I focus on a simple

version of the model, with Cobb-Douglas functional forms, following the exposition in Glaeser (2008).

I then discuss caveats and extensions to be addressed in future research.

Model setup

The model features homogeneous households, firms, and developers.

Households have Cobb-Douglas utility U(C,H,θ) = θC1−αHα over a numéraire good C, housing

H, and a city-specific “quality of life” parameter θ . The latter captures any utility cost or benefit

associated with living in a particular city that requires compensation through factor prices. It is useful

to conceptualize θ as consisting of three components: “public services” θP, “transit accessibility” θT ,

and “consumption amenities” θA. All else being equal, better public services (such as electricity or

water), greater accessibility, and better amenities (such as good climate) improve household utility.

Denoting city shape with S, I assume that S can affect θP and θT , in line with the conjectures of

urban planners. Households supply labor inelastically, receiving a city-specific wage W . Solving their

19Sridhar (2010) collects data for about 100 cities, but many of those cities are part of larger urban agglomerations, and
do not appear as individual footprints in my panel, or are too small to be detected by night-time lights.
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utility-maximization problem, for a given city, yields the following indirect utility:

(B.1) log(W )−α log(ph)+ log(θ) = log(υ).

where ph is the rental price of housing.

Spatial equilibrium requires that indirect utility υ be equalized across cities, otherwise workers

would move.20 This condition delivers the key intuition that households, in equilibrium, implicitly pay

for better quality of life, as captured by θ , through lower wages (W ) or through higher housing prices

(ph).

In the production sector, firms competitively produce a traded good Y , using labor N, traded cap-

ital K (which trades at price 1), a fixed supply of non-traded capital Z21, and a bundle of city-specific

production amenities A. Their production function is Y (N,K,Z,A) =ANβ KγZ1−β−γ . Similar to house-

holds, firms may benefit from compact city shape through better access to services or because of greater

accessibility, which I capture by allowing S to affect A via two components, AP and AT . Normalizing

the price of traded capital to 1, the zero-profit condition for firms delivers the following labor demand

curve:

(B.2) (1− γ) log(W ) = (1−β − γ)(log(Z)− log(N))+ log(A)+κ1.

Finally, developers competitively produce housing H, using land l and “building height” h. In each

city there is a fixed supply of land L, determined by planners.22 Denoting the price of land with pl , the

developers’ cost function reads C(H) = c0hδ l− pll, with δ > 1.

By combining housing supply, obtained from the developers’ maximization problem, with housing

demand, resulting from the households’ problem, one obtains the following housing market equilib-

rium condition:

(B.3) (δ −1) log(H) = log(ph)− log(c0δ )− (δ −1) log(N)+(δ −1) log(L).

Equilibrium

The system of equations given by the three optimality conditions (B.1), (B.2), and (B.3) can be solved

for the three endogenous variables N, W , and ph as functions of the city-specific productivity parameter

A and consumption amenities θ . Denoting with F, G, D, and K constant functions of the model’s deep

parameters, this yields the following:

(B.4) log(N) = FN log(A)+GN log(θ)+DN log(L)+KN

20The notion of spatial equilibrium across cities presumes that households are choosing across various locations. While
mobility in India is lower than in other developing countries (Munshi and Rosenzweig 2016), the observed pattern of migra-
tion to urban areas is compatible with this element of choice: as per the 2001 Census, about 38% of rural to urban internal
migrants move to a location outside their district of origin, presumably choosing a city rather than simply moving to the
closest available urban area.

21This is to ensure decreasing returns at the city level, which, in turn, is required to have a finite city size. Alternatively,
one could assume congestion in amenities or decreasing returns in housing production.

22In this framework, the amount of land to be developed is assumed to be given in the short run. It can be argued that, in
reality, this is an endogenous outcome of factors such as regulation, city growth, and geographic constraints. In my empirical
analysis I incorporate city area as a control variable and I instrument it using historical population, thus abstracting from
these issues.
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(B.5) log(W ) = FW log(A)+GW log(θ)+DW log(L)+KW

(B.6) log(ph) = FP log(A)+GP log(θ)+DP log(L)+KP

where FN ,FW ,FP > 0; GN ,GP > 0; and GW < 0.

Population, wages, and rents are all increasing functions of the city-specific productivity parameter

A. Intuitively, higher A allows firms to pay higher wages, which attracts households and bids up rents.

Similarly, population and rents are increasing in the “quality of life" parameter θ : better amenities

attract households and bid up rents. Wages are decreasing in θ because firms prefer cities with higher

production amenities, whereas households prefer cities with higher consumption amenities, and factor

prices - W and ph - strike the balance between these conflicting location preferences.

Reduced-form predictions

Consider now an exogenous shifter of urban geometry S, higher values denoting less compact shapes.

I hypothesize that S may be part of the A or θ bundle as follows:

(B.7) log(A) = κA +λAS

(B.8) log(θ) = κθ +λθ S.

Plugging (B.7) and (B.8) into (B.4), (B.5), (B.6) yields the following reduced-form equations:

(B.9) log(N) = BNS+DN log(L)+KN

(B.10) log(W ) = BW S+DW log(L)+KW

(B.11) log(ph) = BPS+DP log(L)+KP.

Suppose that non-compact shape S decreases households’ indirect utility in equilibrium, but does

not directly affect firms’ productivity (λA=0, λθ <0). This would be the case if, for example, households

located in non-compact cities faced longer commutes, or were forced to live in a less preferable location

so as to avoid long commutes, while firms’ transportation costs were unaffected - possibly because of

better access to transportation technology, or because of being centrally located within a city. In this

case, the model predicts that BN < 0, BW > 0, BP < 0. A city with poorer shape should have, all else

equal, smaller population, higher wages, and lower housing rents. Intuitively, households prefer cities

with good shapes, which drives rents up and bids wages down in these locations.

Suppose, instead, that poor city geometry enters both θ and A, i.e. in equilibrium it is associated

with both lower household indirect utility and lower firm productivity (λA<0, λθ <0). This would be the

case if the costs of longer commutes were borne by households but also by firms. This would imply

BN < 0, BW ≷ 0, BP < 0. The model’s predictions are similar, except that the effect on wages will be

ambiguous, given that now both firms and households prefer to locate in compact cities. As both firms

and households compete to locate in compact cities, the net effect on W depends on whether firms or

households value low S relatively more (on the margin). If S affects households more than firms, then

BW > 0.
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Denote with B̂N , B̂W , and B̂P the reduced-form estimates for the impact of S on, respectively,

log(N), log(W ), and log(ph). These estimates, in conjunction with plausible values for parameters

α,β , and γ , can be used to back out λθ and λA, representing respectively the marginal willingness

to pay for S and the marginal productivity impact of S. Totally differentiating the indirect utility of

households (B.1) with respect to S yields:

(B.12)
∂ log(θ)

∂S
= α

∂ log(ph)

∂S
− ∂ log(W )

∂S
suggesting that λθ can be estimated as

(B.13) λ̂θ = αB̂P− B̂W .

Totally differentiating the zero-profit condition (B.2) with respect to S yields:

(B.14)
∂ log(A)

∂S
= (1−β − γ)

∂ log(N)

∂S
+(1− γ)

∂ log(W )

∂S
suggesting that λA can be estimated as

(B.15) λ̂A = (1−β − γ)B̂N +(1− γ)B̂W .

Equations (B.9), (B.10), and (B.11) are taken to the data in Section 6 in the paper. Estimates of λA

and λθ are provided in Section 8.

Discussion and extensions

The framework outlined above makes a number of simplifying assumptions and modelling choices. In

what follows I discuss limitations of the current framework and extensions for future research.

The model features homogeneous and perfectly mobile households. As such, it has little to say

about welfare consequences of bad shape, as all agents are marginal and indifferent in equilibrium.

With indirect utility pinned down by utility in a reservation location, there are no welfare gains from

improving shape, as higher rents accrue to landlords. In order to be able to make welfare and distri-

butional statements, one would require a richer model incorporating landlords and tenants as well as

heterogeneity in idiosyncratic location preferences or migration costs.

However, the willingness to pay parameter λθ can be viewed as an upper bound for welfare effects

of deteriorating shape, to the extent that reality is somewhere in between the case with infinitely elastic

or infinitely inelastic supply of urban dwellers. With a fixed total urban population at the country level,

equilibrium indirect utility υ will unambiguously increase everywhere if amenities improve in one city.

In the Cobb-Douglas case, logυ increases proportionally to the average of log θ across cities, so that λθ

coincides with the welfare impact of a one unit improvement in shape in all cities. The assumption of a

fixed total population is extreme, as many migrants into cities are coming from the countryside rather

than reallocating across cities. The alternative extreme assumption is that of a perfectly elastic supply

of migrants to cities, with indirect utility being pinned down by a reservation utility in the countryside,

which delivers the prediction that any improvement in amenities will result in larger urban populations

but no welfare change. This provides a lower bound of zero for the welfare effect.

In a richer model with heterogeneous households, there will be welfare impacts on inframarginal

households, as the Rosen-Roback conditions continue to hold for the marginal household. As discussed
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in Moretti (2011), the welfare impacts on inframarginal agents will depend on the relative elasticity

of labor and of housing supply. A lower local elasticity of labor implies a larger incidence on house-

holds, with the elasticity of local labor supply being ultimately governed by households’ idiosyncratic

preferences for locations.

With its assumption of homogeneous agents, the model also rules out sorting. The estimated com-

pensating differentials should be thus thought of as an underestimate of true equalizing differences for

those with a strong preference for compact layouts, and an overestimate for those with weak prefer-

ences.

In the model, any cost and benefit of city shape that requires cross-city compensating differentials

will be part of the θ and A bundles. However, the model is agnostic on the specific channels. City

shape may reduce utility because of worse service delivery in disconnected cities or because of worse

accessibility. The latter includes direct costs of commuting but also “indirect” costs stemming from

traffic congestion, other externalities (such as the disutility from traffic noise or pollution), or other

utility costs borne to cope with bad shape - for example, households may give up certain trips or may

choose to live, work, or shop in less preferred locations in order to avoid lengthy commutes. Modelling

these channels is challenging and distinguishing these different costs in the data would require much

more granular data at the sub-city level than what is available for India.

The costs of bad shape that are directly related to accessibility could be accounted for more ex-

plicitly by nesting a within-city model in the cross-city framework. In such a framework, some of the

costs associated with longer distances could be offset at the sub-city level by the local rent gradient.

In Section C in this Appendix I provide a sketch of such a model. In a monocentric, open city with

topographic constraints, households directly pay for commuting costs (that are linear in distance) out

of their budgets. The predictions for rents and population are consistent with my empirical findings.

The housing sector in the model features constant housing supply elasticity (1/(δ − 1)) across

cities. Allowing for heterogeneity in housing supply elasticity across cities would not change the pre-

dicted sign of the relationship between θ , A, and the endogenous variables. However, the magnitudes

would be affected: to the extent that good shape affects households’ indirect utility in equilibrium, in

more inelastic cities the impacts on population and wages would be attenuated and the impact on rents

would be amplified (in absolute terms). The current framework could be extended allowing housing

supply elasticity to be jointly determined with city shape via geography, echoing the insights of Saiz

(2010). This would provide a richer characterization of the relationship between shape and supply elas-

ticity, but empirically disentangling the supply elasticity impact would require additional orthogonal

sources of variation.

While the notion of compensating differentials based on rents and wages and the model’s reduced-

form predictions are very general, the calculation of λθ and λA rely on particular functional forms.

This framework uses standard Cobb-Douglas functional form assumptions, which imply homothetic

preferences and a constant housing expenditure share. The latter assumption is in line with a large

literature (e.g. Ahlfeldt et al. (2015)) and finds empirical support in the U.S. (Davis and Ortalo-Magné

2011). Whether this is plausible for developing countries is less clear and could be addressed in future
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work. A priori, it is also unclear whether the marginal willingness to pay for “good shape” should be

the same across income levels. Poorer households without access to individual means of transportation

may be the ones affected the most by bad shape, in line with my findings on slum dwellers making a

larger share of the population in compact cities.

Finally, the model does not allow for externalities. In the presence of congestion in consumption,

λ̂θ would be capturing the equilibrium effect of shape, gross of congestion, providing a lower bound

for λθ . Similarly, in the presence of agglomeration in production, production amenities will affect

productivity both directly, through λA, and indirectly, through their effect on city size N. If compact

cities have larger populations, this will make them more productive through agglomeration, which

will amplify the direct productivity impact of compactness. In this case, estimates of the productivity

impact of shape will be an upper bound for λA.

C. Spatial Equilibrium within the City and Topographic Constraints
In this Section I provide a framework that embeds irregular city shape in a model of spatial equilibrium

within, rather than across cities. I present a simple version of a monocentric city model, augmented

with topographic obstacles. This allows me to focus on the implications of city shape for the distri-

bution of households within a city and for commuting. While data availability constraints prevent me

from taking this model to the data, the cross-city implications of this model are consistent with my

reduced-form results. The within-city model predicts that, for given transportation costs, constrained

cities are characterized by a lower population, and by average rents that may be lower or higher de-

pending on the location and the magnitude of the constraint.

Model setup

I draw on a simple version of the monocentric city model (Alonso 1964; Mills 1967; Muth 1969;

Brueckner 1987) in which city inhabitants all commute to the CBD. I consider an “open city” version

of this model, in which the population of each city is endogenously determined in a way that ensures

spatial equilibrium across cities. Each individual earns a wage w and consumes L units of land, both

of which are fixed across locations. City dwellers face linear commuting costs τd, where d is the

distance from the CBD at which they choose to live. The rental cost per unit of land at a distance d

from the CBD is r(d), which is endogenously determined in the model. The utility function of city

dwellers is U(C,L) where consumption C is equal to wage income net of housing and commuting costs

or W − τd−r(d)L. For a given city choice, inhabitants choose at which distance from the CBD to live

by solving the following maximization problem:

(C.1) max
d

U(w− τd− r(d)L,L)

which yields the Alonso-Muth condition as the first-order condition:

(C.2) r′(d) =−τ

L
,

The rent function in the city is thus

(C.3) r(d) = r(0)− τ

L
d
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Figure C.1: Population in a linear city with a constraint

with rents declining with distance in a way that offsets the increase in transportation costs. Utility is

equalized at any distance from the CBD.

Equilibrium in the constrained city

Now let us make some assumptions on the geometry of the city, and consider the case of a city with

topographic or planning constraints. For the sake of simplicity and to provide closed-form solutions, I

consider a linear city, in which people live on one dimension along a line. The intuitions and qualitative

predictions of the model carry over to a two-dimensional city (as in the standard Alonso-Mills-Muth

framework).

In the benchmark model without topographic constraints, individuals can locate on any point along

the line; as a result, the distance-minimizing city structure is one in which inhabitants are symmetrically

distributed along the line on either side of the CBD. In contrast, a constrained city is one in which

certain locations are undevelopable. I model this by assuming that, on one side of the CBD, locations

at distances between α1 and α2 from the CBD are unavailable, with 0 < α1 < α2.23 This layout is

illustrated in Figure C.1. The plane in which the city is located is represented as the solid black line.

Locations along the line are expressed as distances from the CBD, the position of which is normalized

at 0. The constraint is represented by the hatched rectangle. For a given city population, the distance-

minimizing city structure in the constrained city may become asymmetric, with a smaller fraction of

the population locating on the constrained side of the line. The distribution of inhabitants under this

city structure is depicted as the dashed red line in Figure C.1. The edge of the city on either side of the

CBD is placed at some distance d̄, that will be endogenously determined in the model.24

Below, I solve for the equilibrium population and rents in the constrained city. The first step is to

solve the model for a city population of size N, which will be then endogenized. Assuming that N is

sufficiently large relative to the size of the topographic obstacle,25 the population in the constrained city

will distribute itself around the CBD as in Figure C.1. On both sides of the CBD, the furthest occupied

location will be at distance d̄. The constrained side of the line, however, offers only d̄−(α2−α1) units

of inhabitable land. N residents using L units of land each will require NL units of land in total, that

are distributed across the two sides of the CBD.

23The model’s intuitions also apply to a city with multiple constraints.
24The benchmark, unconstrained city can be viewed as a special case of the constrained city for which α1 = α2 (i.e. the

obstacle has size 0).
25Specifically, NL has to be greater than (α1 +α2), otherwise the constraint will never be reached. This condition will be

met provided that the city pays a high enough wage relative to transportation costs.
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We thus have NL = d̄ + d̄− (α2−α1), implying:

(C.4) d =
NL+(α2−α1)

2
.

In contrast, in the unconstrained city we would have NL = 2d, as residents distribute themselves

symmetrically on each side of the CBD, all the way to the edge of the city at distance d.

Next, consider the rent function r(d). Assume that rents at the city edge d̄ are equal to r, the

opportunity cost of land. By setting r(d̄) = r in (C.3) one can obtain r(0) = r+ τ

L d̄, which implies:

(C.5) r(d) = r+
τ

L
d̄− τ

L
d.

Plugging (C.4) in (C.5) yields:

(C.6) r(d) = r+
τN
2

+
τ (α2−α1)

2L
− τ

L
d.

In the open-city framework, N is determined by utility-equalizing population flows across cities.

Denoting the reservation utility as U , spatial equilibrium across cities implies U (w− τd− r(d)L, L) =

U . Plugging (C.6) into the utility function, this condition becomes:

(C.7) U
(

w− rL− τNL
2
− τ (α2−α1)

2
, L
)
=U .

Let us now consider average rents in the constrained city. In order to derive simple closed-form

solutions for N and r(d), further assume that income net of commuting and housing costs in the reser-

vation location is equal to C:

(C.8) w− rL− τNL
2
− τ (α2−α1)

2
=C.

From (C.8) one can pin down the equilibrium N:

(C.9) N =
2(w− rL−C)

τL
− (α2−α1)

L
.

Plugging (C.9) into (C.4) yields:

(C.10) d =
(w− rL−C)

τ

which does not depend on the size or on the position of the topographic obstacles. Plugging the

equilibrium d into (C.5) yields:

(C.11) r(d) = r+
w− rL−C

L
− τ

L
d.

Comparative statics

Below I discuss the model’s prediction for the equilibrium population and rents in a constrained versus

unconstrained city. I show that population is unambiguously lower in constrained cities - a prediction

which is borne in my data. On the other hand, whether rents are higher or lower in constrained cities

depends on the position of the constraint, making it ultimately an empirical question.

From (C.7) and (C.9) it is apparent that the city’s population N is smaller, the larger the size of

the constraint (α2−α1). Intuitively, a city with topographic constraints is one in which, for a given

maximum distance from the CBD, there are fewer locations available, and in equilibrium it will host a
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Figure C.2: Rents distribution in a linear city with a constraint

smaller population.

I next show that, all else being equal, average rents in the constrained city may be lower or higher

than in the unconstrained city. Consider two cities that are identical in all parameters of the model,

except for the fact that one is constrained and the other is unconstrained. The distribution of rents as

a function of distance from the CBD in the constrained city is represented by the solid line in Figure

C.2. The solid line plus the dashed line segment, taken together, represent rents in the unconstrained

city.

Note that both cities have the same rent gradient r(d) and the same equilibrium d̄, but the con-

strained city is missing a portion of the distribution of rents, corresponding to the dashed segment. The

hatched area in Figure C.2 corresponds to total rents in the constrained city; the hatched plus the solid

area correspond to total rents in the unconstrained city. Rents per unit of land will be higher or lower in

the constrained city depending on the size and position of the constraint. Intuitively, if the topographic

obstacle precludes development close to the CBD, where rents would be high, average rents will be

lower than in the unconstrained city. If the topographic obstacle precludes development far from the

CBD, where rents would be low, average rents will be higher than in an unconstrained city. This intu-

ition applies also to cases with multiple constraints that may introduce gaps in the rent distribution at

different points.

This can be shown algebraically by computing average rents in the two cities, which can be easily

done by calculating the areas of the relevant triangles and rectangles in Figure C.2. Total rents in the

unconstrained city, denoted as RU , can be calculated as:

(C.12) RU =
2d [r(0)− r]

2
=

(w− rL−C)2

τL
.
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Denoting the equilibrium population in the unconstrained city with NU , the average rent per unit of

occupied land in the unconstrained city is:

(C.13)
RU

LNU
=

RU τ

2(w− rL−C)
=

w− rL−C
2L

.

Total rents in the constrained city, denoted as RC, are equal to total rents in the unconstrained city

minus the area of the solid trapezoid in Figure C.2, which we can denote as A:

(C.14) RC = RU −A = RU − (α2−α1)

[(
r(0)− τ

L
α2− r

)
+

τ

L (α2−α1)

2

]
.

Denoting the equilibrium population in the constrained city with NC, the average rent per unit of

land in the constrained city is thus:

(C.15)
RC

LNC
=

RU −A

L
(

NU − (α2−α1)
L

) .
Average rents in the constrained city are lower than in the unconstrained city when (C.15) is smaller

than (C.13), or equivalently when:

(C.16) α2−α1 <
LNU

RU
A.

Plugging in the expressions for NU , RU and A, this inequality simplifies to:

(C.17) α1 +α2 <
w− rL−C

τ
.

Whether a constrained city has lower average rents than an unconstrained city depends on the

size of the constraint (α2−α1) and the position of the constraint α1. All else being equal, when the

obstacle is close to the CBD (α1 is small), the condition above is more likely to be satisfied; intuitively,

topography is preventing development in a location that would be a high-rent one due to its proximity to

the center. Furthermore, for a given topography, the condition above is more likely to be satisfied when

wages are higher or transportation costs are lower. High wages and low transportation costs attract a

larger population and make the city more spread out (leading to a larger d̄); as a result, locations at

distance α1 from the CBD become relatively more central and demand a higher rent.

Note that the analysis above holds transportation costs constant across constrained and uncon-

strained cities. In a richer model, one could assume that transportation costs per unit distance are

higher in cities that have irregular layouts due to topographic constraints. A standard comparative

statics result in the open-city version of the monocentric city model is that cities with higher trans-

portation costs have lower rents and smaller populations (Brueckner 1987), which would further align

the theoretical predictions with my empirical findings.

D. Signing the OLS Bias
In this Section I follow up on the discussion in Section 5 in the paper and illustrate analytically that the

OLS bias from estimating the impact of city shape on population and other outcomes has an ambiguous

sign. I also discuss under what conditions the bias for the impact of shape on population is positive.

Denoting city population with N and city shape with S, consider the following version of the
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estimating equation, where for simplicity I have dropped subscripts and additional regressors:

(D.1) logN = α1S+u1

In what follows, I show analytically that cov(S,u1) 6= 0. City shape is the result of an interaction of

exogenous determinants (such as topographic obstacles) and endogenous determinants. While the en-

dogenous determinants are manifold, to fix ideas, consider two factors: local institutional capacity and

highways connecting cities. With good local institutional capacity, urban planners can encourage com-

pact development through well-enforced master plans and land use regulations. Highways connecting

into a city can affect urban form by encouraging urban development along transit corridors, which has

been associated with sprawl (Baum-Snow 2007) and potentially deteriorates urban shape. In Section

5 in the paper I discuss more factors that affect city shape and that would generate selection effects

similar to those highlighted here. Denoting (exogenous) geographic predictors of city shape as S̃, local

institutional capacity as Inst, and road infrastructure as In f ra, S can be written as a function of its

determinants:

(D.2) S = β S̃+δ1Inst +δ2In f ra+η

Assume that β > 0 (potential shape predicts actual shape), δ1 < 0 (better institutional capacity makes

cities more compact), and δ2 > 0 (highways cause sprawl). Further assume that cov(Inst,η)= cov(In f ra,η)=

cov(S,η) = 0.

The endogeneity problem associated with Inst and In f ra stems from the fact that city size N affects

both local institutional capacity and highways. Larger cities have both greater institutional capacity and

more infrastructural investment. We thus have:

(D.3) Inst = γ1logN +ξ1

(D.4) In f ra = γ2logN +ξ2

where γ1 > 0 and γ2 > 0 and cov(logN,ξ1) = cov(logN,ξ2) = 0.

Plugging (D.3) and (D.4) into (D.2) one obtains:

(D.5) S = β S̃+α2logN + η̃

where α2 = δ1γ1 +δ2γ2 and η̃ = δ1ξ1 +δ2ξ2 +η .

In equilibrium, city shape is a function of exogenous geographic predictors plus a term that depends

endogenously on population. The sign of α2 is ambiguous because δ1 < 0 and δ2 > 0. If the effect of

highways is stronger than that of institutional capacity, α2 will be positive. The descriptive patterns in

Table A2 as well as the OLS impacts in Table3 indicate a positive correlation between city size N and

shape S, suggesting that empirically α2 is positive.

Solving the system of equations given by (D.5) and (D.1) one obtains:

(D.6) S =
β

1−α2α1
S̃+

α2u1

1−α2α1
+

η̃

1−α2α1
.

Going back to estimating equation (D.1), one can now compute the covariance between the error
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term u1 and S as follows:

(D.7) cov(S,u1) = cov
(

α2

1−α2α1
u1,u1

)
= σ

2
u1
(

α2

1−α2α1
).

In general, (D.7) has an ambiguous sign. As a result, the OLS bias in estimating the impact of S

in (D.1) could be positive or negative. However, if α2 > 0 (the equilibrium correlation between shape

and population is positive) and α1 < 0 (the structural effect of shape on population is negative), then

( α2
1−α2α1

) will be unambiguously positive and the OLS estimate will be biased towards positive values.

This is indeed what the estimates show, with negative IV impacts and positive OLS impacts of city

shape on population growth.

E. Single-Instrument Approach
In this Section I outline an alternative implementation of my instrumental variables strategy, which I

employ in the robustness check presented in Table 8 and discussed in Section 7.

Recall from Section 5 in the paper that in the benchmark estimation I consider city shape and area

as two endogenous regressors, and I employ as instrumental variables “potential” city shape and pro-

jected historical population. Potential shape is calculated based on the relative position of topographic

obstacles encountered as a city grows along a predicted expansion path, which in turn depends on the

city’s own projected population growth. Below I present an alternative strategy that does not rely on

projected historical population. Relative to the baseline approach, this entails two differences: first, the

instrument is constructed using a completely mechanical model for city expansion that postulates the

same rate of expansion for all cities. Second, city area is not directly controlled for in the estimating

equations, but instead both right- and left-hand side variables are normalized by area.

The first step is to determine r̂c,t , i.e. the predicted city radius within which the potential footprint

is constructed. Under this alternative approach I do so by postulating that cities expand at the same

rate, equivalent to the average expansion rate across all cities in the sample. Specifically, the steps

involved are the following:

(i) Denoting the area of city c’s actual footprint in year t as areac,t , I pool together the 1951-2010

panel of cities and estimate the following regression:

(E.1) log(areac,t) = θc + γt + εc,t

where θc and γt denote city and year fixed effects.

(ii) From the regression above, I obtain âreac,t , and corresponding r̂c,t =

√
âreac,t

π
.

The second modification relative to the baseline approach is in the estimating equations. Instead

of controlling for city area explicitly, this approach relies on normalizing both right- and left-hand side

variables by city area, regressing population density on the normalized version of the shape index.

Define population density26 as

dc,t =
popc,t

areac,t

26Note that this does not coincide with population density as defined by the Census, which reflects administrative bound-
aries.
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and denote the normalized version of shape as nS.

The alternative estimating equation becomes:

(E.2) dc,t = a ·nSc,t +µc +ρt +ηc,t

which includes the endogenous regressor nSc,t . This is a counterpart of equation (8) in the paper.

The corresponding first-stage equation is

(E.3) nSc,t = β · ñSc,t +λc + γt + εc,t .

where ñSc,t is namely the normalized shape index computed for the potential footprint.

F. Nonparametric Employment Subcenter Identification (McMillen 2001)

In order to compute the number of employment subcenters in each city, used as the dependent variable

in Table 10, I employ the two-stage, non-parametric approach described in McMillen (2001). This

procedure identifies employment subcenters as locations that have significantly larger employment

density than nearby ones, and that have a significant impact on the overall employment density function

in a city. The data on firms’ location used as input in this procedure is discussed in Section A6 above.

The procedure outlined below is performed separately for each city in the 2005 sample. As units of

observation within each city, I consider grid cells of 0.01 degree latitude by 0.01 degree longitude, with

an area of approximately one square kilometer. I calculate a proxy for employment density in each cell,

by considering establishments from the 2005 Economic Census located in that cell and summing their

reported number of employees.27 In order to define the CBD using a uniform criterion for all cities, I

consider the centroid of the 1951 footprint. Results are similar using the 2005 centroid as an alternative

definition.

In the first stage of this procedure, “candidate” subcenters are identified as those grid cells with

significant positive residuals in a smoothed employment density function. Let yi be the log employment

density in grid cell i; denote its distance from the CBD with x and the error term with εi, I estimate:

(F.1) yi = f (x)+ εi

using locally weighted regression, employing a tricube kernel and a 50% window size. This flexible

specification allows for local variations in the density gradient, which are likely to occur in cities with

topographic obstacles. Denoting with ŷi the estimate of y for cell i, and with σ̂i the corresponding

standard error, candidate subcenters are grid cells such that (yi− ŷi)/ σ̂i > 1.96.

The second stage of the procedure selects those locations, among candidate subcenters, that have

significant explanatory power in a semiparametric employment density function estimation. Let Di j be

the distance between cell i and candidate subcenter j, and denote with DCBDi the distance between

27The Directory of Establishments provides establishment-level employment only by broad categories, indicating whether
the number of employees falls in the 10-50, 51-100, or 101-500 range, or is larger than 500. In order to assign an employment
figure to each establishment, I consider the lower bound of the category.
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cell i and the CBD. With S candidate subcenters, denoting the error term with ui, the semi-parametric

regression takes the following form:

(F.2) yi = g(DCBDi)+
S

∑
j=1

δ
1
j (D ji)

−1 +δ
2
j (−D ji)+ui.

In the specification above, employment density depends non-parametrically on the distance to the

CBD, and parametrically on subcenter proximity, measured both in levels and in inverse form. This

parametric specification allows us to conduct convenient hypothesis tests on the coefficients of interest

δ 1
j and δ 2

j . (F.2) is estimated omitting cells i corresponding to one of the candidate subcenters or to the

CBD. I approximate g(.) using cubic splines.

If j is indeed an employment subcenter, the variables (D j)
−1and/or (−D j) should have a positive

and statistically significant impact on employment density y. One concern with estimating (F.2) is that,

with a large number of candidate subcenters, the distance variables Di j can be highly multicollinear.

To cope with this problem, a stepwise procedure is used to select which subcenter distance variables to

include in the regression. In the first step, all distance variables are included. At each step, the variable

corresponding to the lowest t-statistic is dropped from the regression, and the process is repeated until

all subcenter distance variables in the regression have a positive coefficient, significant at the 20% level.

The final list of subcenters includes the sites with positive coefficients on either (D j)
−1 or (−D j).
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Rank City Shape (normalized)

Top 10 most compact cities

1 Rajkot, Gujarat 0.924
2 Kannur, Kerala 0.934
3 Bhopal, Madhya Pradesh 0.943
4 Lucknow, Uttar Pradesh 0.943
5 Meerut, Uttar Pradesh 0.943
6 Thrissur, Kerala 0.945
7 Nashik, Maharashtra 0.948
8 Jaipur, Rajasthan 0.948
9 Jabalpur, Madhya Pradesh 0.952

10 Gwalior, Madhya Pradesh 0.956

Top 10 least compact cities

1 Asansol, West Bengal 1.625
2 Jharia-Dhanbad, Jharkhand 1.180
3 Kolkata, West Bengal 1.128
4 Ludhiana, Punjab 1.124
5 Surat, Gujarat 1.111
6 Aurangabad, Maharashtra 1.108
7 Visakhapatnam, Ahndra Pradesh 1.108
8 Patna, Bihar 1.100
9 Amritsar, Punjab 1.100

10 Chennai, Tamil Nadu 1.081

Table A1: List of most and least compact cities

Note: Sample of cities with million-plus population in 2011, ranked by 
normalized shape in 2010. The normalized shape index has a mean of 0.96 
and a standard deviation of 0.07 in 2010.
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(1) (2)
Dependent variable: Shape, 2010 Δ Shape, 2010-1950 Obs.

Quartile I -1.188*** -1.152*** 351
(0.195) (0.255)

II -0.789*** -0.885*** 351
(0.192) (0.250)

III -0.109 -0.491* 351
(0.194) (0.297)

IV 2.514*** 3.075*** 351
(0.403) (0.538)

Share households with electricity, 2011 7.150*** 13.50*** 351
(2.080) (2.876)

Share households with tap water, 2011 1.892*** 4.092*** 351
(0.576) (0.800)

Share households with cars, 2011 10.72*** 17.92*** 351
(2.295) (3.248)

Urban road length, km, 2019 -0.00136*** 0.00100*** 351
(0.000477) (0.000182)

District avg. distance to work, km, 2011 0.176* 0.567*** 208
(0.101) (0.201)

Elevation, 100 m -0.0200 0.0151 351
(0.0326) (0.0569)

Distance from the coast, km 0.000136 0.000508 351
(0.000324) (0.000501)

Distance from nearest river or lake, km 5.73e-05 0.00649 351
(0.00510) (0.00816)

Distance from nearest mineral deposit, km -0.000623 -0.00336 351
(0.00133) (0.00244)

Ruggedness, m 0.00143** 0.00207* 351
(0.000709) (0.00116)

Bedrock depth, m -0.0230 0.00629 351
(0.0220) (0.0392)

Crop suitability, tons per hectare 0.120 -0.406 351
(0.274) (0.423)

Shape in 1950, km 0.818** -0.228 351
(0.324) (0.808)

Distance from state headquarters, km -0.000623 -0.00147* 351
(0.000562) (0.000813)

Distance from district headquarters, km -0.00988* -0.00676 351
(0.00533) (0.00776)

Distance from nearest city, km -0.00342 -0.00513 351
(0.00210) (0.00375)

British direct rule 0.226 0.0105 351
(0.156) (0.287)

State Capital 0.957 4.103*** 351
(1.068) (1.123)

Control Area 2010 Area 1950

Panel B: Public services and accessibility

Panel D: Non-pre-determined characteristics

Table A2: Descriptive correlations

Panel A: 1951 city size quartiles

Panel C: Pre-determined characteristics

Notes: this table reports pairwise correlations between levels and changes in shape and city attributes. Each row reports a coefficient from
an OLS regression of shape in 2010 (col. 1) and the 2010-1950 difference in shape (col. 2) on the attribute indicated in each row,
controlling respectively for city area in 2010 (col.1) and in 1950 (col. 2). A description of the variables is provided in Section A.4 in the
Appendix. Summary statistics are in Table A3. Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.
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Obs. Mean St. Dev. Min Max

Elevation, m 351 262.20 230.88 0 1590

Distance from the coast, km 351 400.41 334.06 0.14 1315.88

Distance from nearest river or lake, km 351 15.09 16.47 0.01 102.69

Distance from nearest mineral deposit, km 351 77.21 62.18 0.05 315.18

Ruggedness, m 351 102.39 132.38 0 1000.00

Bedrock depth, m 351 5.74 3.98 1.36 19.77

Crop suitability, tons per hectare 351 1.43 0.33 0.00 1.93

Initial shape, km 351 1.01 0.71 0.35 5.82

British direct rule dummy 351 0.66

State capital dummy 351 0.05

Distance from state headquarters, km 351 296.56 190.41 0 998.00

Distance from district headquarters, km 351 15.53 28.25 0 138.00

Distance from nearest city, km 351 40.68 41.75 0 342.00

Share households with electricity, 2011 351 0.94 0.06 0.65 1
Share households with tap water, 2011 351 0.56 0.21 0.06 0.94
Share households with cars, 2011 351 0.08 0.05 0.01 0.29
Urban road length, km, 2019 351 773 2613 3.2 35148

Average distance to work, km, 2011 208 5.73 1.26 2.99 11.34

Table A3: Additional summary statistics

Notes: this table provides summary statistics for the city-level variables employed in Table A2 and in the robustness
checks. These variables are described in Section A.4 in the Appendix.
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(1) (2) (3) (4) (5) (6)
IV OLS IV OLS

Dependent variable: Shape, km Log area

Potential shape, km 1.397*** 0.151***
(0.228) (0.0451)

Log projected population -1.188*** 0.297**
(0.269) (0.117)

Shape, km -0.0975** 0.0250*** -0.107** 0.0247***
(0.0387) (0.00788) (0.0442) (0.00792)

Log area 0.783*** 0.165*** 0.827*** 0.168***
(0.182) (0.0309) (0.211) (0.0331)

Observations 6,173 6,173 1,325 1,325 1,135 1,135
AP F stat shape 87.81 87.81 69.36 57.34
AP F stat area 17.84 17.84 14.12 11.36
KP F stat 21.13 21.13 16.37 13.29
City FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Sample Full Full Full Full Long diff Long diff

Log population

Notes: this table presents the main results in panel format. Each observation is a city-year. Cols. 1 and 2 are
similar to cols. 3 and 4 in Table 2, but employ the full panel of cities. Cols. 3 and 4 present the panel version of
cols. 1 and 2 of Table 3, estimated using the full panel of cities. Cols. 5 and 6 repeat the same specifications, but
for the panel of 351 cities employed in the main long-differences specification. Cols. 1 and 2 show the first stage,
estimated over years 1950 and 1992 through 2010. Cols. 3 through 6 show the IV (odd cols.) and OLS (even cols.)
estimates of the impact of city shape (in km) and log city area on log population, using data from Census years
1951, 1991, 2001, and 2011. Angrist-Pischke and Kleibergen-Paap F statistics are reported. All specifications
include city and year fixed effects. Standard errors clustered at the city level in parentheses. *** p<0.01,** p<0.05,*
p<0.1.

Table A4: First stage and impact of city shape on population, panel results

First Stage
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(1) (2) (3) (4) (5) (6) (7) (8)
IV OLS IV OLS

Dependent variable: Δ Shape, km Δ Log area Δ Log 
population

Δ Log 
population Δ Shape, km Δ Log area Δ Log 

population
Δ Log 

population

Δ Potential shape, km 1.947*** 0.214*** 1.806*** 0.240***
(0.191) (0.0471) (0.221) (0.0523)

Δ Log projected population -1.940*** 0.118 -1.985*** 0.0664
(0.469) (0.123) (0.455) (0.144)

Δ Shape, km -0.0901** 0.0271*** -0.125** 0.0199**
(0.0377) (0.00862) (0.0543) (0.00857)

Δ Log area 0.839*** 0.197*** 0.909*** 0.226***
(0.225) (0.0349) (0.255) (0.0431)

Observations 374 374 374 374 320 320 320 320
AP F stat shape 33.42 33.42 33.42 26.34 26.34 26.34
AP F stat area 10.83 10.83 10.83 8.42 8.42 8.42
KP F stat 16.49 16.49 16.49 11.77 11.77 11.77
Luminosity threshold 30 30 30 30 40 40 40 40
Mean dep var in levels, 2010 5.01 123.00 568,361 568,361 4.40 106.23 708,939 708,939
Mean dep var in levels, 1950 0.98 3.49 98,122 98,122 1.02 3.85 113,205 113,205

Table A5: Robustness to alternative luminosity thresholds

First Stage First Stage

Notes: this table presents estimates of the first stage and the impact of shape on population, obtained using different definitions of urban footprints. Cols.1, 2, 5,
and 6 report the first stage (analogous to cols. 1 and 2 in Table 2). Cols. 3 and 7 (4 and 8) report the IV (OLS) impact of city shape on population (similar to Table
3). The dependent variables and regressors are all defined as long differences 2010-1950 (2011-1951 for population). The luminosity threshold used to define
urban areas is 30 in cols. 1 through 4 and 40 in cols. 5 through 8 (the baseline in the paper is 35). Angrist-Pischke and Kleibergen-Paap F statistics are reported.
Robust standard errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.
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Shape metric

(1) (2) (3) (4) (5) (6)

Dependent variable: Δ Shape, km Δ Log area Δ Shape, km 2 Δ Log area Δ Shape, km Δ Log area

Δ Potential shape 1.110*** 0.178*** 1.128*** 0.00266 2.698*** 0.0998***
(0.165) (0.0432) (0.321) (0.00189) (0.368) (0.0226)

Δ Log projected 
population -0.533* 0.232** -1.032 0.464*** -7.567*** 0.0443

(0.276) (0.116) (6.823) (0.106) (1.558) (0.130)

Observations 351 351 351 351 351 351
AP F stat shape 26.74 26.74 27.44 27.44 30.26 30.26
AP F stat area 9.19 9.19 19.57 19.57 10.13 10.13
KP F stat 11.7 11.7 16.62 16.62 13.64 13.64
Avg. shape 1950 0.75 1.06 2.95
Avg. shape 2010 3.45 25.72 13.57

Dependent variable: 
Shape metric

(1) (2) (3) (4) (5) (6)

IV OLS IV OLS IV OLS

Δ Shape -0.118** 0.0306*** -0.00129 0.000891*** -0.0277** 0.00675***
(0.0557) (0.00997) (0.000810) (0.000264) (0.0125) (0.00220)

Δ Log area 0.817*** 0.212*** 0.587*** 0.243*** 0.812*** 0.216***
(0.226) (0.0339) (0.128) (0.0294) (0.222) (0.0329)

Observations 351 351 351 351 351 351
AP F stat shape 26.74 27.44 30.26
AP F stat area 9.19 19.57 10.13
KP F stat 11.7 16.62 13.64

Notes: this table presents estimates of the relationship between city shape and population for alternative shape metrics. Odd (even) cols. are
analogous to col. 1 (2) in Table 3. The corresponding first stage is reported in Table A6. The regressors are defined as long differences 2010-
1950. The unit of the shape metrics is km, except for the spin index that is in square km. Angrist-Pischke and Kleibergen-Paap F statistics
are reported. Robust standard errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.

Table A7: Impact of city shape on population, robustness to alternative shape indicators
Δ Log population, 2011-1951

A. Remoteness B. Spin C. Range

Notes: this table presents estimates of the first stage for alternative shape metrics. Odd (even) cols. are analogous to col. 1 (2) in Table 2.
The dependent variables and regressors are all defined as long differences 2010-1950. The unit of the shape metrics is km, except for the
spin index that is in square km. The shape indexes are discussed in Section A.2 in the Appendix. Remoteness (cols. 1 and 2) is the average
distance to the centroid. Spin (cols. 3 and 4) is the average squared length of distances to the centroid. Range (cols. 5 and 6) is the
maximum distance between two points on the outline of the city. Angrist-Pischke and Kleibergen-Paap F statistics are reported. Robust
standard errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.

Table A6: First stage, alternative shape indicators
A. Remoteness B. Spin C. Range
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Dependent 
variable:

(1) (2) (3) (4) (5) (6)
IV OLS IV OLS IV OLS

Δ Shape, km -0.663 0.00421 -0.532 -0.00729 -0.769 0.0188
(0.557) (0.0487) (0.333) (0.0692) (0.704) (0.0493)

Δ Log area -2.535 -0.0125 -1.354 -0.103 -2.138 -0.0574
(2.300) (0.0927) (1.131) (0.112) (2.282) (0.100)

Observations 262 262 134 134 215 215
AP F stat shape 9.60 14.77 5.11
AP F stat area 3.00 6.12 2.80
KP F stat 1.67 2.93 1.20

(1) (2) (3) (4)
IV OLS IV OLS

Δ Shape, km -0.0624 0.0121 -0.0382 0.0250
(0.0761) (0.0164) (0.0789) (0.0190)

Δ Log area -0.292 0.203* -0.279 0.193+
(0.736) (0.116) (0.766) (0.128)

Observations 111 111 111 111
AP F stat shape 6.85 6.85
AP F stat area 4.11 4.11
KP F stat 2.25 2.25
Source IHDS IHDS IHDS IHDS
Notes: this table is analogous to Table 5, cols.1 and 2, but uses rents from a different
source. Each observation is a district. In cols. 1 and 2 the dependent variable is the
2010-2005 long difference in log monthly total rents, averaged at the district level, from
the IHDS dataset. In cols. 3 and 4 the dependent variable is the long difference in the
log average rent residual, from a hedonic regression of rent on housing characteristics
discussed in Section A in the Appendix. Robust standard errors in parentheses. ***
p<0.01,** p<0.05,* p<0.1.

Δ Log rent 2008-2006, excluding bottom 25%

All districts Only districts with one city Only top city per district

Notes: this table is analogous to Table 5, but the district averages of rents exclude the bottom 25% of the rents
distribution. Robust standard errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.

Dependent 
variable: Δ Log rent 2010-2005

Δ Log rent residual  

Table A8: Impact of city shape on rents, robustness 

Table A9: Impact of city shape on rents, IHDS data

 2010-2005
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(1) (2)

Dependent variable: Δ Potential shape, km,
 2010-1950

Δ Log projected population, 
2010-1950

Elevation, 100 m -0.0245 0.0127
(0.0396) (0.0121)

Distance from the coast, km -0.000303 -0.000242***
(0.000262) (9.16e-05)

Distance from nearest river or lake, km -0.00307 0.00340
(0.00473) (0.00212)

Distance from nearest mineral deposit, km -0.00301* -0.000135
(0.00169) (0.000675)

Ruggedness, m 0.000699 0.000368*
(0.000507) (0.000221)

Bedrock depth, m 0.00455 -0.0113*
(0.0232) (0.00633)

Crop suitability 0.299 0.247*
(0.306) (0.135)

Observations 351 351

Table A10: Pairwise correlations between instruments and city characteristics

Notes: this table reports estimates of the relationship between the instruments and time-invariant city characteristics.
Each row reports a coefficient from an OLS regression of the 2010-1950 long differences in potential shape (col. 1) and
log projected population (col. 2) on the controls indicated in each row. The controls are described in Section A.4 in the
Appendix. Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.
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(1) (2) (3) (4) (5) (6) (7)

Δ Shape, km -0.104** -0.0999** -0.155* -0.175** -0.0857** -0.0932** -0.0854**
(0.0475) (0.0486) (0.0800) (0.0748) (0.0412) (0.0422) (0.0408)

Δ Log area 0.856*** 0.863*** 1.103*** 0.961*** 0.804*** 0.818*** 0.812***
(0.246) (0.265) (0.415) (0.321) (0.234) (0.220) (0.233)

Observations 337 334 242 204 318 316 316
AP F stat shape 29.02 24.16 8.91 9.22 27.33 28.51 27.27
AP F stat area 8.72 7.76 4.13 4.03 9.14 10.13 8.62
KP F stat 12.36 10.92 6.97 9.96 12.18 14.09 12.10

Excluded cities Mountainous Coastal River/lake Mineral Top 90% 
ruggedness

Top 90% 
bedrock depth

Top 90% crop 
suitability

Table A11: IV impact of city shape on population, robustness to sample cuts
Dependent variable: Δ Log population, 2011-1951

Notes: this table reports the same IV specification as in Table 3, col.1, for various sample cuts discussed in Section 7. A description of the
controls is provided in Section A.4 in the Appendix. Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.
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Characteristic:
(1) (2) (3) (4) (5) (6) (7) (8) (9)

IV IV IV

Dependent variable: Δ Shape, km Δ Log area Δ Log 
population Δ Shape, km Δ Log area Δ Log 

population Δ Shape, km Δ Log area Δ Log 
population

Δ Potential shape, km 1.566*** 0.319*** 1.943*** 0.239*** 1.700*** 0.222***
(0.203) (0.0480) (0.250) (0.0490) (0.186) (0.0489)

Δ Log projected 
population -1.542*** -0.112 -2.228*** 0.0389 -2.025*** 0.0555

(0.439) (0.127) (0.486) (0.132) (0.396) (0.132)
Δ Shape, km -0.271** -0.0963** -0.111***

(0.116) (0.0446) (0.0418)
Δ Log area 1.337*** 0.851*** 0.814***

(0.456) (0.238) (0.224)
Control 1.764*** -0.409*** 1.060** -0.0654 -0.221** -0.0109 6.228*** 0.271 0.940***

(0.435) (0.111) (0.468) (0.259) (0.0904) (0.0915) (1.173) (0.209) (0.285)

Observations 351 351 351 351 351 351 351 351 351

AP F stat shape 6.09 6.09 6.09 26.33 26.33 26.33 33.92 33.92 33.92
AP F stat area 3.96 3.96 3.96 8.85 8.85 8.85 9.55 9.55 9.55
KP F stat 10.02 10.02 10.02 12.78 12.78 12.78 14.38 14.38 14.38

  

Notes: this table extends the robustness checks of Table 6, showing estimates of the first stage and of the impact of shape on population, controlling for initial shape (cols. 1 through
3), a British direct rule dummy (cols. 4 through 6), and a state capital dummy (cols. 7 through 9). Cols.1, 2, 4, 5, 7, and 8 report the first stage (analogous to cols. 1 and 2 in Table 2).
Cols. 3, 6, and 9 report the IV impact of city shape on population (similar to Table 3, col.1). The dependent variables and regressors are all defined as long differences 2010-1950
(2011-1951 for population). Angrist-Pischke and Kleibergen-Paap F statistics are reported. Robust standard errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.

Table A12: Robustness to confounding trends, non-predetermined characteristics

First Stage First Stage First Stage

A. Initial shape B. British direct rule C. State capital

42



Excluded cities:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

IV IV IV IV

Dependent variable: Δ Shape Δ Log area Δ Log 
population Δ Shape Δ Log area Δ Log 

population Δ Shape Δ Log area Δ Log 
population Δ Shape Δ Log area Δ Log 

population

Δ Potential shape, km 1.945*** 0.238*** 1.669*** 0.232*** 1.931*** 0.225*** 1.861*** 0.239***
(0.250) (0.0495) (0.171) (0.0542) (0.250) (0.0484) (0.257) (0.0553)

Δ Log projected population -2.255*** 0.00689 -2.214*** -0.0382 -2.242*** 0.0118 -2.214*** 0.00894

(0.507) (0.135) (0.412) (0.147) (0.511) (0.134) (0.492) (0.149)
Δ Shape, km -0.126** -0.0728* -0.124** -0.125**

(0.0510) (0.0426) (0.0503) (0.0567)
Δ Log area 1.034*** 0.578** 1.028*** 0.969***

(0.265) (0.227) (0.275) (0.268)

Observations 336 336 336 316 316 316 316 316 316 316 316 316
AP F stat shape 21.25 21.25 21.25 25.12 25.12 25.12 21.12 21.12 21.12 22.52 22.52 22.52
AP F stat area 7.17 7.17 7.17 6.13 6.13 6.13 6.64 6.64 6.64 6.83 6.83 6.83
KP F stat 10.49 10.49 10.49 9.38 9.38 9.38 9.74 9.74 9.74 9.84 9.84 9.84

Table A13: Robustness to sample cuts, non-predetermined characteristics

Notes: this table extends the robustness checks of Table A11, showing estimates of the first stage and of the impact of shape on population, excluding particular sets of cities, discussed in Section
7. Cols.1, 2, 4, 5, 7, 8, 10, and 11 report the first stage (analogous to cols. 1 and 2 in Table 2). Cols. 3, 6, 9, and 12 report the IV impact of city shape on population (similar to col. 1 in Table 3). The
dependent variables and regressors are all defined as long differences 2010-1950 (2011-1951 for population). Angrist-Pischke and Kleibergen-Paap F statistics are reported. Robust standard
errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.

D. ConstrainedC. Slow growingB. Fast growingA. Shrinking

First Stage First Stage First Stage First Stage
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Table A14: Falsification test with lagged outcomes, wages and rents

Dependent variable Δ Log rents,
 2008-2006

Δ Log rents, 
2008-2006

Δ Log wages,
 1995-1992

Δ Log wages,
 1998-1994

Δ Log wages,
 1995-1992

Δ Log wages, 
1998-1994

(1) (2) (3) (4) (5) (6)
Potential shape, km, 2000 -0.000151

(0.210)
Potential shape, km, 2005 -0.0549

(0.217)
Potential shape, km, 2007 -0.221*

(0.125)
Potential shape, km, 2008 -0.0117

(0.166)
Potential shape, km, 2010 -0.00202 0.120

(0.132) (0.0988)
Δ Potential shape, km, 2005-2000 0.00863

(0.196)
Δ Potential shape, km, 2010-2005 -0.0465

(0.0339)
Δ Potential shape, km, 2010-2009 0.0139

(0.0697)
Projected population, 2000 -0.304

(0.691)
Projected population, 2005 0.379

(0.669)
Projected population, 2007 0.0337

(0.910)
Projected population, 2008 3.771**

(1.709)
Projected population, 2010 -3.731** 0.0464

(1.701) (0.914)
Δ Projected population, 2005-2000 0.290

(0.490)
Δ Projected population, 2010-2005 0.500

(0.553)
Δ Projected population, 2010-2009 -6.622*

(3.409)

Observations 303 303 168 191 168 191

Notes: this table presents a falsification test similar to that of Table 7, to show that the instrument is not correlated with past changes in rents and wages. 
The dependent variables are defined including all districts. Robust standard errors in parentheses. *** p<0.01,** p<0.05,* p<0.1.
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(1) (2) (3) (4) (5) (6) (7) (8)
-0.248** -0.432** -0.193** -0.224** -0.195** -0.315** -0.296** -0.252**
(0.115) (0.219) (0.0925) (0.0886) (0.0822) (0.125) (0.117) (0.111)

7.48e-06** 0.000170** 0.0108** 0.321*** 0.407* 0.000356** 0.000775*** 0.000190*
(3.44e-06) (8.07e-05) (0.00474) (0.121) (0.227) (0.000141) (0.000296) (0.000103)

Δ Shape, km

Δ Shape ∙ Transit 

Δ Log area 1.195*** 1.517** 1.044*** 1.050*** 0.973*** 1.480*** 1.437*** 1.338***
(0.459) (0.699) (0.369) (0.329) (0.327) (0.521) (0.493) (0.445)

Observations 336 336 336 123 123 246 246 246
AP F stat interaction 1079.77 35.7 358.48 37.59 31.18 644.28 693.9 328.63
AP F stat shape 11.04 5.04 11.6 5.61 6.60 6.98 7.62 7.38
AP F stat area 5.13 3.18 6.93 9.55 12.39 3.63 3.84 4.35
KP F stat 8.19 5.57 9.74 8.66 8.06 6.36 6.61 6.95

Interaction variable Roads 2019 Roads 1981 State roads 1981 Proximity Grid roads Cars 2011 Cars 2001 State cars 1984

Table A15: Heterogeneous effects of transit, robustness
Dependent variable: Δ Log population, 2011-1951

Notes: this table reports the same specifications of Table 9, but additionally controls for the number of banks in 1981.  Robust standard errors in parentheses.*** p<0.01,** p<0.05,* 
p<0.1.
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
IV OLS IV OLS IV OLS IV OLS IV OLS IV OLS

Dependent
variable:
Shape, km -0.161** -0.0138 -0.707* -0.490*** -0.0683 -0.0923*** -0.615* -0.568***

(0.0728) (0.0133) (0.364) (0.171) (0.0507) (0.0202) (0.343) (0.178)
Log area 1.823*** 1.215*** 5.047*** 4.416*** 0.419** 0.639*** 3.642** 3.840***

(0.237) (0.0497) (1.553) (0.838) (0.188) (0.0745) (1.503) (0.856)
Δ Shape, km -0.0236 0.0815*** -0.0180 0.0659**

(0.0529) (0.0296) (0.0536) (0.0298)
Δ Log area 0.626 0.397*** 0.377 0.277***

(0.398) (0.0917) (0.456) (0.102)

Observations 351 351 351 351 351 351 351 351 335 335 335 335
AP F stat shape 8.44 8.44 8.44 8.44 32.68 32.68
AP F stat area 25.08 25.08 25.08 25.08 11.32 11.32
KP F stat 6.73 6.73 6.73 6.73 15.69 15.69

Panel B: Akbar et al. (2019)

(1) (2) (3) (4) (5) (6)
IV OLS IV OLS IV OLS

Dependent 
variable:
Shape, km 0.0149** 0.00519** -0.0352* -0.0165*** -0.0172 0.0158***

(0.00639) (0.00251) (0.0202) (0.00461) (0.0210) (0.00468)
Log area -0.0940** -0.0325** 0.130 0.0529** 0.174 -0.0310

(0.0369) (0.0131) (0.0969) (0.0238) (0.117) (0.0296)

Observations 128 128 128 128 128 128
AP F stat shape 1.78 1.78 1.78
AP F stat area 4.38 4.38 4.38
KP F stat 2.76 2.76 2.76

Grid conformity Mobility Proximity

Notes: this table reports estimates of the impact of city shape on infrastructure-related variables described in Section 9 and Section A.5 in the Appendix. In all cols. other than cols. 9 through 12, the
regressors are city shape, in km, and log city area, measured in 2010. Panel A, cols. 1 through 8 considers the length of roads (motorways) in a city's 2010 lit-up shape, as reported in 2019 in
Openstreetmap. In cols. 5 through 8 the dependent variable is the log of road length normalized by city population ins 2011. In cols. 9 through 12 the dependent variable is the log difference of 2019
Openstreetmap roads and 1981 city roads (from the Census) and the regressor s are 2010-1950 changes in city shape and log city area. Panel B considers indexes from Akbar et al. (2019), measured in
2016. Grid conformity (cols. 1 and 2) is a measure the regularity of a city's primary road grid. Mobility (col. 3 and 4) is a speed-based index of vehicular mobility. Proximity (cols. 5 and 6) is an index of
distance accessibility from Akbar et al (2018). Means of the dependent variables are reported in Table 9. Estimation is by IV in odd columns, and OLS in even columns. Angrist-Pischke and Kleibergen-
Paap F statistics are reported. Robust standard errors in parentheses.*** p<0.01,** p<0.05,* p<0.1.

per capitaLog roads Log motorways Log roads Log motorways

Panel A: Roads

Table A16: Impact of city shape on infrastructure and transit

per capita per capitaΔ Log roads Δ Log roads
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