## **CIVIL AND ARCHITECTURAL ENGR (CAE)** #### **CAE 100** #### Introduction to Engineering Drawing and Design Introduction to engineering graphics as a problem-solving tool. Basic traditional techniques of orthographic projection, multi-view, pictorial, auxiliary views, dimensioning and tolerance, sectioning, detail drawing. Use of ANSI standards; applications in civil, architectural, and engineering design. Lecture: 1 Lab: 2 Credits: 2 Satisfies: Communications (C) #### **CAE 101** #### Introduction to AutoCAD Drawing and Design A continuation of CAE 100. Use of PC-based CAD (Computer-Aided Drawing and Design) software for presentation and problem solving in civil and architectural engineering applications. Introduction to basic principles of design. Prerequisite(s): CAE 100 Lecture: 1 Lab: 2 Credits: 2 Satisfies: Communications (C) ## CAE 105 Surveying Surveying and related tools and skills needed to design, build, and maintain infrastructure. Study of leveling, traversing, topographic mapping, route surveying, earthwork computation, photogrammetry, and 3D lidar. Practice in the use of auto levels, tapes, total stations, global position systems (GPS), geographic information systems (GIS), and computer-based methods in surveying. Prerequisite(s): CAE 100\*, An asterisk (\*) designates a course which may be taken concurrently. **Lecture:** 2 **Lab:** 3 **Credits:** 3 ## **CAE 110** ## **Professional Practice I** This course is an introduction to the engineering profession. The content and delivery have been designed to challenge the student's perspective of oneself and thus make the student a better engineer. The class focus is on developing the skills to become a professional learner and a successful student, increasing team learning skills, self-reflection, enhancing ethical perception and decision making abilities, and understanding the responsibilities as an engineer. In simple terms, the student will begin to "act as an engineer acts." Lecture: 1 Lab: 0 Credits: 1 #### **CAE 111** ## **Professional Practice II** This course continues the introduction to the engineering profession with further studies of team learning, specializations in engineering, enhancing ethical perception and decision making abilities, and understanding the responsibilities as an engineer. The course also looks deeply at the need for continuous innovation by studying and practicing the entrepreneurial mindset needed to create value for oneself as the student, for one's company, and for society. In simple terms, the student will begin to "act as an engineer acts" and "think like an entrepreneur thinks." Lecture: 1 Lab: 0 Credits: 1 #### **CAE 208** #### Thermal-Fluids Engineering I Basic principles of thermodynamics applied to engineering systems using pure substances and mixtures as working fluids. Direct application of the laws of thermodynamics to analysis of closed and open systems, mass and energy flow. Extensive analysis of isentropic processes in cycles, analysis of gas mixtures and psychometrics in heating and cooling systems. Introduction to fluid mechanics and analysis of fluid statics problems. **Prerequisite(s):** ((CHEM 122 and CHEM 123) or CHEM 124) and (PHYS 123 and CS 104-105 and MATH 251\*), An asterisk (\*) designates a course which may be taken concurrently. Lecture: 3 Lab: 0 Credits: 3 #### **CAE 209** #### Thermal-Fluids Engineering II Complete the development of fluid mechanics and introduce and develop heat and mass transfer analysis techniques. Description and analysis of fluid kinematics, energy and momentum equations applied to internal/external flow in building engineering systems. Development and application of convection, conduction and radiation to one-, two- and three-dimensional systems in steady state and transient regimes of operation as applied to building materials and geometries. Prerequisite(s): MATH 252\* and CAE 208, An asterisk (\*) designates a course which may be taken concurrently. **Lecture:** 3 **Lab:** 0 **Credits:** 3 ## **CAE 221** #### **Engineering Geology** Geology and its relationship to civil engineering; minerals; rocks; soil formation; geologic structure; groundwater hydraulics; frost action in soils, landslides, shoreline erosion, bluff instability; earthquakes; air photo interpretation, soil and rock mechanics in relation to engineering geology; subsurface exploration; dams, reservoirs, tunnels; case-history illustrations. Lecture: 2 Lab: 2 Credits: 3 #### **CAE 286** ## **Theory and Concept of Structural Mechanics** Equilibrium for particles and rigid bodies. Distributed forces, centroids, centers of gravity, and moments of inertia. Free body diagrams. Application to truss structures. Kinetics of particles: Newton's Laws of motion, energy, and momentum. Kinematics of particles. Prerequisite(s): PHYS 123 and MATH 152 Lecture: 3 Lab: 0 Credits: 3 ## **CAE 287** ## **Mechanics of Structural Materials** The concepts of deformation, strain, and stress. Application of free body diagram in shear force and bending moment diagram. Elementary bending theory, normal and shear stresses in beams, and beam deflection. Axially loaded members and Euler buckling theory. Plane stress and strain, Mohr's circle, and torsion of circular sections. Combined loading. Prerequisite(s): CAE 286 or MMAE 200 Lecture: 3 Lab: 0 Credits: 3 ## Fluid Mechanics and Hydraulics Fundamental concepts; fluid statics; properties of fluid in motion; fluid flows through orifices, weirs and venturi meters; laminar and turbulent flow in closed conduits; flow in open channels; turbo machinery; measurement in fluid mechanics and hydraulics. Prerequisite(s): MATH 252 and (CAE 286 or MMAE 200) Lecture: 3 Lab: 0 Credits: 3 #### **CAE 303** ## Structural Design I Design loads, factors of safety; load and resistance factors for steel structures. Experimental and analytical study of steel materials subjected to various states of stress. Failure theories, yield and post-yield criteria are treated. Fatigue and facture mechanics phenomena are related to design practice. The design of tension member, beams, and columns in steel. Prerequisite(s): MMAE 202 or CAE 287 Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) #### **CAE 304** #### Structural Analysis I The analysis of statically determinate trusses and frames. Determination of internal forces and calculation of deflections. Application of the principle of virtual work and energy methods. Column stability. Prerequisite(s): MATH 252 and (MMAE 202 or CAE 287) Lecture: 2 Lab: 2 Credits: 3 ## **CAE 307** #### Structural Design II Design loads, factor of safety, load and resistance factors for concrete structures. Properties of concrete and the proportioning of concrete mixtures. Experimental and analytical study of plain and reinforced concrete subjected to various states of stress. Failure theories and the ultimate strength of plain and reinforced concrete structural components. Design of beams and columns for reinforced concrete members. Detailing of reinforcing bars. Prerequisite(s): CAE 315 and CAE 304 Lecture: 2 Lab: 3 Credits: 3 Satisfies: Communications (C), CAE Design Course (D) ## **CAE 312** ## **Engineering Systems Analysis** Systems concept process, interest rate, present and future worth values, evaluation of alternatives, and elements of microeconomics. Theory of probability, laws of probabilities, random variables and distribution functions, functions of random variables, statistical estimations of data, mean and standard deviation, correlation, and regression analysis. Prerequisite(s): MATH 251 Lecture: 3 Lab: 0 Credits: 3 ## **CAE 315** #### **Materials of Construction** Physical principles of elastic and plastic deformation of construction. Mechanical testing methods including tensile, compressive, toughness, creep and fatigue. Properties of concrete, wood, iron and steel and other construction materials. The emphasis is on concepts from solid mechanics which explain the behavior of materials to the extent needed in the design of load-bearing constructs. Prerequisite(s): MMAE 202 or CAE 287 Lecture: 2 Lab: 3 Credits: 3 Satisfies: Communications (C) ## **CAE 323** ## Introduction to Geotechnical Engineering Physical and mechanical properties of soil; elementary principles of soil identification and testing. Principles of soil permeability and seepage, consolidation, failure theories, earth pressures, and bearing capacity. Laboratory included. Prerequisite(s): (CAE 209 or CAE 302) and (CAE 287 or MMAE 202) Lecture: 2 Lab: 3 Credits: 3 Satisfies: Communications (C) #### **CAE 331** #### **Building Science** Study of the physical interaction of climate (humidity, temperature, wind, sun, rain, snow, etc.) and buildings. Topics include psychrometrics, indoor air quality, indoor thermal comfort, heat transfer, air infiltration, solar insolation, and heating and cooling load calculation. Prerequisite(s): (CAE 208 and CAE 209) or (MMAE 313 and MMAE 320) Lecture: 3 Lab: 0 Credits: 3 ## **CAE 383** #### **Electrical and Electronic Circuits** Introduction to electrical and electronic circuits. AC and DC steady state and transient network analysis. Phasors, AC and Three Phase Power. Diodes, transistors, and operational amplifiers. Prerequisite(s): MATH 252 and PHYS 221 Lecture: 2 Lab: 2 Credits: 3 ## **CAE 401** ## Hydraulics, Hydrology, and Their Applications Collection and distribution of water. Flow of fluids through orifices, weirs, venturi meters. Laminar and turbulent flow in closed conduits. Open channel flow. Model analysis using the principles of dimensional analysis. Rainfall and runoff. Prerequisite(s): MATH 252\*, An asterisk (\*) designates a course which may be taken concurrently. Lecture: 2 Lab: 3 Credits: 3 ## Introduction to Environmental Engineering and Sustainable Design This course provides an overview of how environmental engineers integrate biological, chemical, and physical sciences with engineering design methods to develop solutions to environmental problems. Topics include air pollution, water pollution, solid waste management, fate and transport of contaminants, pollution prevention, environmental regulation, risk assessment, climate science, and sustainability assessment. Focuses on applications and actual design practice. Prerequisite(s): CHEM 124 and MATH 152 Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 408** ## **Bridge and Structural Design** Design of modern bridges, bridge design requirements, LRFD approach, seismic and wind effects, fatigue in bridges, support Prerequisite(s): CAE 431\*, An asterisk (\*) designates a course which may be taken concurrently. **Lecture:** 3 **Lab:** 0 **Credits:** 3 **Satisfies:** CAE Design Course (D) #### **CAE 410** #### Introduction to Wind and Earthquake Engineering Kinematics of Particles, Newton's laws of motion, energy and momentum. Kinematics of rigid bodies. Fundamentals of free, forced, and transient vibration of single and multi-degree of freedom structures. Analysis and design of structures for wind and earthquake loadings. Building code requirements. Instructor's consent may be granted to students who do not meet the prerequisite. Prerequisite(s): CAE 411\*, An asterisk (\*) designates a course which may be taken concurrently. Lecture: 3 Lab: 0 Credits: 3 #### **CAE 411** ## Structural Analysis II The analysis of statically indeterminate frames. Application of classical methods including superposition, slope deflection, and moment distribution. Introduction to the direct stiffness method and computer analysis of structures. Prerequisite(s): CAE 304 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 ## **CAE 412** ## **Traffic Engineering Studies and Design** Basic traffic engineering studies including traffic volume, speed, accident, and parking studies. Capacity and analysis for various traffic facilities. Design of traffic control devices. Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 415** ## **Pavement Design, Construction and Maintenance** Pavement types, stresses in flexible and rigid pavements, vehicle pavement interaction. Mathematical models for pavement systems, sub grade support, design of flexible and rigid pavements. Construction procedure, drainage considerations, environmental effects. Rehabilitation and maintenance of pavements. Prerequisite(s): CAE 323 or Graduate standing Lecture: 3 Lab: 3 Credits: 4 #### **CAE 416** ## **Facility Design of Transportation Systems** Design and analysis of facilities of transportation systems. Integration of select transportation components and their interrelationships. Design of specific facilities: guide ways, terminals, and other elements for railroads, airports, and harbors. Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) #### **CAE 417** ## Railroad Engineering and Design History of railroad industry. Train operation, train make-up, and handling. Design and analysis of railroad track structure, track irregularities, and their representation. Vehicle/track interaction and dynamic problems associated with it. Performance of railway vehicles. Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) #### **CAE 419** ## Introduction to Transportation Engineering and Design Highway functions, design controls and criteria, element of design, cross-section elements, local roads and streets, at-grade intersections, grade separation and interchanges, highway capacity analysis, and introduction to pavement management. Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 421** #### **Risk Assessment Engineering** Description and concept of risk, relationship between the likelihood of loss and the impact of loss, engineering hazards assessment and risk identification and evaluation using fault tree analysis, failure mode and effect analysis, etc., risk analyses applications with practical statistics. Lecture: 3 Lab: 0 Credits: 3 #### **CAE 422** # Sprinklers, Standpipes, Fire Pumps, Special Suppression, and Detection Systems Review and introduction to fluid dynamics applied to sprinklers, standpipes, fire pumps, and special suppression systems; hydraulic design criteria and procedures for sprinklers requirements, standpipes, fire pumps, special suppression systems, and detection and alarm systems using nationally recognized design (National Fire Protection Association) standards, water supply requirement systems and distributions. Prerequisite(s): CAE 209 or CAE 302 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 ## **Introduction to Fire Dynamics** Introduction to fire, physics and chemistry, and mass and heat transfer principles, fire fluid mechanic fundamentals, fundamentals and requirements of the burning of materials (gases, liquids, and solids), fire phenomena in enclosures such as pre-flashover and post-flashover. Prerequisite(s): CAE 209 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 #### **CAE 425** ## Fire Protection and Life Safety in Building Design Fundamentals of building design for fire and life safety. Emphasis on a systematic design approach. Basic considerations of building codes, fire loading, fire resistance, exit design, protective systems, and other fire protection systems. Lecture: 3 Lab: 0 Credits: 3 #### **CAE 430** #### **Probability Concepts in Civil Engineering Design** Introduction to probability, modeling, and identification of nondeterministic problems in civil engineering. Development of stochastic concepts and simulation models and their relevance to design and decision problems in various areas of civil engineering. Prerequisite(s): MATH 252 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## CAE 431 Steel Design Design of steel beams, plate girders, and beam columns. Bolted and welded connections. Design of typical frame systems. **Prerequisite(s):** (CAE 303 and CAE 304 and CAE 315\*) or Graduate standing, An asterisk (\*) designates a course which may be taken concurrently. Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 432** #### **Concrete and Foundation Design** Behavior and design of reinforced concrete members in flexure, shear, and combined flexure and axial compression. Behavior and design of reinforced concrete foundations: topics include anchor bolts, spread footings, pile caps, and retaining walls. Prerequisite(s): CAE 307 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 433** ## **Repair of Existing Building Structures** Building repair and retrofit issues are discussed. Specific requirements of a building for repair and/or reconstruction are emphasized. Methods of assessing building conditions, including forensic structural engineering are covered. Repair and strengthening methods based on types of materials (steel, concrete, masonry, timber), occupancy and function (residential, commercial), and building values are covered along with demonstration case studies and illustrative examples. Prerequisite(s): CAE 432 and CAE 431 Lecture: 3 Lab: 0 Credits: 3 #### **CAE 435** ## **Experimental Analysis of Structures** The analysis of structures (prototypes) with the aid of models constructed from metal, wood, plastics, and other materials. Geometrical, mathematical, demonstration, graphical and direct and indirect models will be treated. Comparisons of experimental results with results from computer models will be made. Similitude and the theory of models will be treated. Individual and group project work will be emphasized. Prerequisite(s): (CAE 304 and CAE 411) or Graduate standing Lecture: 2 Lab: 2 Credits: 3 #### **CAE 436** ## **Design of Masonry and Timber Structures** Design of unreinforced and reinforced masonry structural elements and structures. Serviceability and ultimate capacity design. Seismic response, resistance, and design. Design of wood columns and bending members. Mechanical fasteners and connectors. Instructor's consent may be granted to students who do not meet the prerequisite. Prerequisite(s): CAE 307 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) #### **CAE 437** ## **Homeland Security Concerns in Engineering Systems** Review of blast effects produced by solid phase weapons and their effects on structures and people. Estimation of the risk of threats to security of public and private systems and facilities. Review of simplified structural methods for the analysis and design of structures to meet homeland security concerns and procedures to minimize casualties. Analysis of post-attack fires and how to prevent them. Examination of potential risk to security of infrastructure systems. Development of contingency plans to include evacuation preparedness at time of emergency. Lecture: 3 Lab: 0 Credits: 3 #### **CAE 438** ## **Control of Building Environmental Systems** Introduction to automatic control systems. Control issues related to energy conservation, indoor air quality and thermal comfort in buildings. Classification of HVAC control systems. Control systems hardware: selection & sizing of sensors, actuators & controllers. Practical HVAC control systems; elementary local loop and complete control systems. Case studies. Computer applications. Prerequisite(s): CAE 331 or CAE 513 with min. grade of C or MMAE Lecture: 3 Lab: 0 Credits: 3 ## **CAE 439** ## Introduction to Geographic Information Systems Geographic information system (GIS) technology allows databases which display and query information in new ways. This course will teach general GIS and GPS skills and concepts, useful to students and practitioners in a variety of disciplines. Students will complete a final GIS project relevant to their field of study. This hands-on class will use ESRI's Arc View and Spatial Analyst products, as well as Trimble GeoExplorer GPS units. Lecture: 3 Lab: 0 Credits: 3 ## Measurement and Instrumentation in Architectural Engineering Hands-on experience with energy and indoor air quality measurements in buildings including experimental design, data analysis, and experimental statistics. Measurements and techniques covered include: thermal performance (e.g., thermal conductivity and resistance, heat flux, and temperature); fluid flows and HVAC characteristics (e.g., velocity, pressure, and airflow); energy performance (e.g., current, voltage, and power draw); whole building diagnostics (e.g., blower door and duct blaster); and indoor air quality (e.g., tracer gas techniques for air exchange, particle measurements, and gas measurements). Course combines lectures and field measurements in buildings on campus. Prerequisite(s): CAE 331 Lecture: 3 Lab: 0 Credits: 3 #### **CAE 457** ## **Geotechnical Foundation Design** Methods of subsoil exploration. Study of types and methods of design and construction of foundations for structures, including single and combined footings, mats, piles, caissons, retaining walls, and underpinning. Drainage and stabilization. Prerequisite(s): (CAE 302 and CAE 323) or Graduate standing Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) #### **CAE 461** #### **Plumbing and Fire Protection Design** Study of plumbing systems, water supply, and venting systems. Study of fire protection systems for buildings including pipe sizing, pumps, sprinklers, gravity and pressure vessels, and controls. Prerequisite(s): CAE 302 or CAE 209 or MMAE 313 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 463** #### **Building Enclosure Design** Design of building exteriors, including the control of heat flow, air and moisture penetration, building movements, and deterioration. Study of the principle of rain screen walls and of energy conserving designs. Analytical techniques and building codes are discussed through case studies and design projects. Prerequisite(s): CAE 331 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 464** #### **HVAC Systems Design** Study of the fundamental principles and engineering procedures for the design of heating, ventilating, and air conditioning systems; HVAC system characteristics; system and equipment selection; duct design and layout. Attention is given to energy conservation techniques and computer applications. **Prerequisite(s):** CAE 331 or CAE 513 with min. grade of C or MMAE 313 or MMAE 320 Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 465** ## **Building Energy Conservation Technologies** Identification of the optimal energy performance achievable with various types of buildings and service systems. Reduction of infiltration. Control systems and strategies to achieve optimal energy performance. Effective utilization of daylight, heat pumps, passive and active solar heaters, heat storage and heat pipes in new and old buildings. Prerequisite(s): CAE 331 or CAE 531 Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 466** ## **Building Electrical/Lighting Systems Design** Study of the analysis and design of electrical systems in buildings utilizing the National Electric Code. Topics include AC, DC, single-phase and three-phase circuits, transients, branch circuits, panel boards, system sizing, fault calculations and overcurrent protection design. Also studies the design and specification of emergency power backup and alternative power systems. Prerequisite(s): CAE 383 or (ECE 216 and ECE 215) Lecture: 3 Lab: 0 Credits: 3 #### **CAE 467** ## **Lighting Systems Design** An intensive study of the calculation techniques and qualitative aspects of good luminous design. Topics covered include: photometric quantities and color theory, visual perception, standards, daylight and artificial illumination systems, radiative transfer, fixture and lamp characteristics, control devices, and energy conservation techniques. Design problems, field measurements, computer, and other models will be used to explore major topics. ## Lecture: 3 Lab: 0 Credits: 3 ## **CAE 468** ## **Architectural Design** Architectural Design is the first of a two-part sequence of architectural design and planning for architectural engineers. Students learn the basic theory and practice of the architectural design process from the architect's perspective. Topics include the logical process of architectural design development, integration of code requirement, design approach, and architectural presentation techniques taught through lecture and lab instruction. Lecture: 2 Lab: 2 Credits: 3 #### **CAE 470** ## **Construction Methods and Cost Estimating** The role of estimating in construction contract administration. Types of estimates. Unit costs and production rates; job costs. Preparing bid for complete building project using manual methods and the CSI format; checking quantity take-off and cost estimating in selected divisions using a computer package. Lecture: 3 Lab: 0 Credits: 3 Satisfies: Communications (C), CAE Design Course (D) ## **Construction Planning and Scheduling** Planning, scheduling, and progress control of construction operations. Critical Path Method and PERT. Resource leveling of personnel, equipment, and materials. Financial control/hauling of construction projects. Impact of delay on precedence networks. Construction contract administration. Computer applications. Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) #### **CAE 472** ## **Construction Site Operation** Construction site layout and mobilization. Liabilities of the parties. Methods of construction. Concrete form design and fabrication. Scaffolding, temporary facilities, and equipment. Safety on sites. Introduction to construction productivity. Lecture: 3 Lab: 0 Credits: 3 #### **CAE 473** #### **Construction Contract Administration** Characteristics of the construction industry. Project delivery systems. Duties and liabilities of the parties at the pre-contract stage. Bidding. Contract administration including duties and liabilities of the parties regarding payments, retainage, substantial and final completion, scheduling and time extensions, change orders, changed conditions, suspension of work, contract termination, and resolution of disputes. Contract bonds. Managing the construction company. Labor law and labor relations. Lecture: 3 Lab: 0 Credits: 3 #### **CAE 474** ## Introduction to Building Information Modeling Fundamentals and practical use of information technologies in design; basic concepts of building information modeling (BIM); review of software and technology available for BIM; practical use of BIM in design for creating a site, viewing a model, starting a project, working in the AutoDesk "Revit" Environment, adding basic building elements to a project, conceptual energy analysis, designing a preliminary layout, and presenting a project. Lecture: 3 Lab: 0 Credits: 3 ## **CAE 482** ## **Hydraulic Design of Open Channel Systems** Uniform flow design; backwater profiles in natural streams; gradually varied flow practical problems; spatially varied flow; flow through nonprismatic and nonlinear channels; gradually varied unsteady flow; rapidly varied unsteady flow; flood routing; numerical solutions of open channels. Lecture: 3 Lab: 0 Credits: 3 Satisfies: CAE Design Course (D) ## **CAE 486** ## Soil and Site Improvement Theory of water flow through porous media. Site improvement techniques including grading and drainage, dewatering, reinforcement, and slurry trenches. Soil improvement techniques including replacement, in situ compaction, preloading and subsurface drainage, grouting, freezing, prewetting, and heating. Prerequisite(s): CAE 323 or Graduate standing Lecture: 3 Lab: 0 Credits: 3 ## **CAE 491** ## **Undergraduate Research** Special research problems in civil and architectural engineering under individual supervision of instructor. Seminar presentation is required. (Credit: Variable; maximum 4 credit hours). Prerequisite: Senior standing, minimum GPA of 3.0, and consent of the instructor. Credit: Variable ## **CAE 495** ## **Capstone Senior Design** A group project requiring the integration of multiple engineering disciplines to satisfy client requirements for a real engineering project. Students will be required to demonstrate mastery in the application of numerous engineering disciplines to a project, work as a member of an integrated engineering team, and demonstrate the ability to understand and communicate engineering solutions to a client verbally, visually, and in written form. Course is required to satisfy ABET program objectives. Lecture: 2 Lab: 3 Credits: 3 Satisfies: Communications (C), CAE Design Course (D) #### **CAE 496** #### **Fundamentals of Engineering Preparation** Review of the materials covered in the Fundamentals of Engineering (FE) Examination. Demonstrations of solution methods, practice problems and practice exams, and strategies for preparing for and taking the FE examination. Senior and Graduate students only. Lecture: 0 Lab: 0 Credits: 0 Satisfies: Ethics (E) ## **CAE 497** #### **Special Project** Special design project under individual supervision of instructor. Prerequisite: Senior standing, minimum GPA of 3.0, and consent of instructor. Credit: Variable