Traffic Flow Characteristics

CIVL 4162/6162
(Traffic Engineering)

Lesson Objective

- Define microscopic traffic stream parameters
- Establish the relationship between traffic stream parameters
- Calculate and compute parameters with given data

Remainder

- Macroscopic traffic flow parameters
- Volume
- Rate of flow
- AADT
- AAWT
- ADT
- AWT
- Speed
- Density

Traffic Flow Basics-Summary (1)

Flow
veh/hr
Measured over time at a fixed point

How many vehicles are getting somewhere?
Can measure with a point detector
q

Density

veh/mi
Measured over space at a fixed time

How crowded is the roadway?

Can measure with an aerial photo
k

Traffic Flow Basics-Summary (1)

Individual vehicle Traffic stream

Speed [L/T]

Flow [V/T]

Density [V/L]

Traffic Flow Basics-Summary (3) Classify the quantities

Individual vehicle
 Traffic stream

Speed [L/T]
Flow [V/T]

Density [V/L]

Brackets describe units... L = Length, $\mathrm{T}=$ time, $\mathrm{V}=$ vehicles

Traffic Flow Basics-Summary (4) Let's try to fill in the rest of the table.

Individual vehicle Traffic stream

Speed [L/T]

Time Headway [T] Flow [V/T]

Density [V/L]

Traffic Flow Basics-Time Headway

The time headway is the time between two vehicles passing a point.

Traffic Flow Basics-Space Headway

 On a space-time diagram, it is the horizontal distance between two adjacent trajectories

Traffic Flow Basics-Summary (5)

 Let's try to fill in the rest of the table.
Individual vehicle Traffic stream

Speed [L/T]
Time Headway [T] Flow [V/T]

Space Headway [L] Density [V/L]

Dreamers. Thinkers. Doers.

Traffic Flow Basics-Space Headway (1)

The space headway is the distance between two vehicles.

Time (t)

mex mex MEMPHIS

Traffic Flow Basics-Space Headway (2)

On a space-time diagram, it is the vertical distance between two adjacent trajectories

Traffic Flow Basics-Summary

 Let's try to fill in the rest of the table.
Individual vehicle
 Traffic stream

Speed [L/T]
Average Speed [L/T]

Time Headway [T]
Flow [V/T]
Space Headway [L] Density [V/L]

mex

Basic Equation for Uninterrupted Flow:

$q=k u(v=S D$ in your book) where:
$q=$ flow rate, vph or veh/h/ln $k=$ density, veh/mi or veh/mi/ln $u=$ space mean speed, mph

Figure 5.4 Relationships among Speed, Flow, and Density (Source: Used with permission of Transportation Research Board, National Research Council, from Highway Capacity Manual, 3rd Edition, Special Report 209, pp. 1-7, Washington DC, 1994.)

Three Parameters of Traffic Flow

- Macroscopic:

Speed (V)
Density (K)
Flow (Q)

$$
\mathrm{Q}=\mathrm{KV}
$$

Spacing

- Spacing is defined as the distance between successive vehicles in a traffic lane; measured from common reference
- Front bumper or
- Front wheels
- Average spacing in a traffic lane is related to density

$$
d_{a}=\frac{5,280}{k}
$$

Where,
$\mathrm{k}=$ density in veh/mile/lane
$d_{a}=$ Average spacing between vehicles in ft

Headway

- Headway is defined as the time interval between successive vehicles as they pass along a lane
- Also measured between common point of reference

$$
h_{a}=\frac{3,600}{q}
$$

Where,
$\mathrm{q}=$ traffic volume in veh/hour/lane
$h_{a}=$ Average headwayin the lane in sec

Example

- Traffic in an interstate at 7:15 AM is observed to have spacing of 250 feet; and average headway of 3 sec . Estimate
- Volume
- Density
- Speed

Solution

Step1: Calculate flow
$\mathrm{q}=\frac{3,600}{h_{a}}=\frac{3,600}{3}=1,200 \mathrm{veh} / \mathrm{hour} / \mathrm{lane}$
Step-2: Calculate density
$\mathrm{k}=\frac{5,280}{d_{a}}=\frac{5,280}{250}=21.12 \mathrm{veh} / \mathrm{miile} / l a n e$
Step-3: Calculate Speed
$q=u k=>u=q / k=1200 / 21.12=56.81$ miles $/$ hour

Example

A study of freeway flow at a particular site has resulted in a calibrated speed-density relationship as follows: (Note the difference in notation)
$S=57.5(1-0.008 D)$

For this relationship, determine:
a. Free-flow speed
b. Jam density
c. Speed-flow relationship
d. Flow-density relationship
e. Capacity

