

CIVL 4162/6162 (Traffic Engineering)

Lesson Objective

Define microscopic traffic stream parameters

 Establish the relationship between traffic stream parameters

Calculate and compute parameters with given data

Remainder

- Macroscopic traffic flow parameters
 - Volume
 - Rate of flow
 - AADT
 - AAWT
 - ADT
 - AWT
 - Speed
 - Density

Traffic Flow Basics-Summary (1)

Flow	Density
veh/hr	veh/mi
Measured over time at a fixed point	Measured over space at a fixed time
How many vehicles are getting somewhere?	How crowded is the roadway?
Can measure with a point detector	Can measure with an aerial photo
q	k

Traffic Flow Basics-Summary (1)

Individual vehicle	Traffic stream
Speed [L/T]	
	Flow [V/T]
	Density [V/L]

Traffic Flow Basics-Summary (3)

Classify the quantities

Individual vehicle	Traffic stream	
Speed [L/T]		0.0
	Flow [V/T]	
	Density [V/L]	

Brackets describe units... L = Length, T = time, V = vehicles

Traffic Flow Basics-Summary (4) Let's try to fill in the rest of the table.

Individual vehicle	Traffic stream
Speed [L/T]	
Time Headway [T]	Flow [V/T]
	Density [V/L]

Traffic Flow Basics-Time Headway

The **time headway** is the time between two vehicles passing a point.

Traffic Flow Basics-Space Headway

On a space-time diagram, it is the **horizontal distance** between two adjacent trajectories

Traffic Flow Basics-Summary (5)

Let's try to fill in the rest of the table.

Individual vehicle	Traffic stream
Speed [L/T]	
Time Headway [T]	Flow [V/T]
Space Headway [L]	Density [V/L]

Traffic Flow Basics-Space Headway (1)

The **space headway** is the distance between two vehicles.

Traffic Flow Basics-Space Headway (2)

On a space-time diagram, it is the **vertical distance** between two adjacent trajectories

Traffic Flow Basics-Summary

Let's try to fill in the rest of the table.

Individual vehicle	Traffic stream	
Speed [L/T]	Average Speed [L/T]	
Time Headway [T]	Flow [V/T]	
Space Headway [L]	Density [V/L]	

Basic Equation for Uninterrupted Flow:

```
q = ku \ (v = SD \ in \ your \ book)
where:
```

 $q = flow \ rate, vph \ or \ veh/h/ln$

k = density, veh/mi or veh/mi/ln

u = *space mean speed*, *mph*

Figure 5.4 Relationships among Speed, Flow, and Density (*Source*: Used with permission of Transportation Research Board, National Research Council, from *Highway Capacity Manual*, 3rd Edition, *Special Report 209*, pp. 1-7, Washington DC, 1994.)

Three Parameters of Traffic Flow

- Macroscopic:
 - Speed (V)
 - Density (K)
 - Flow (Q)Q= KV

Spacing

- Spacing is defined as the distance between successive vehicles in a traffic lane; measured from common reference
 - Front bumper or
 - Front wheels
- Average spacing in a traffic lane is related to density $d_a = \frac{5,280}{k}$

Where, k = density in veh/mile/lane $d_a = Average \ spacing \ between \ vehicles \ in \ ft$

Headway

- Headway is defined as the time interval between successive vehicles as they pass along a lane
- Also measured between common point of reference

$$h_a = \frac{3,600}{q}$$

Where, q = traffic volume in veh/hour/lane $h_a = Average\ headwayin\ the\ lane\ in\ sec$

Example

- Traffic in an interstate at 7:15 AM is observed to have spacing of 250 feet; and average headway of 3 sec. Estimate
 - Volume
 - Density
 - Speed

Solution

Step1: Calculate flow

$$q = \frac{3,600}{h_0} = \frac{3,600}{3} = 1,200 \text{ veh/hour/lane}$$

$$k = \frac{5,280}{d_a} = \frac{5,280}{250} = 21.12 \text{ veh/miile/lane}$$

$$q = uk => u = q/k = 1200/21.12 = 56.81$$
 miles/hour

Example

A study of freeway flow at a particular site has resulted in a calibrated speed-density relationship as follows: (Note the difference in notation)

S = 57.5(1-0.008D)

For this relationship, determine:

- a. Free-flow speed
- b. Jam density
- c. Speed-flow relationship
- d. Flow-density relationship
- e. Capacity

