CLASS-10(X)

MATHEMATICS

CASE STUDY BASED QUESTIONS

(BASED ON NEW QUESTION PAPER PATTERN) BASIC AND STANDARD

2020-21

Be Mathaholic
Easy Learning
BY SHIVANI KOTWAL

CASE STUDY BASED QUESTIONS-X-2020-21

Chapter-1 -Real Numbers

BY-SHIVANI KOTWAL

Chapter-2 -Polynomials

2	Observe the graph $y=f(x)$ of a polynomial carefully and answer the following questions:-	
i)	The number of zeroes of the polynomial $y=f(x)$ are ? a) 2 b) 3 c) 4 d) 1	1
ii)	The curve $y=f(x)$ represents a \qquad polynomial ? a) Quadratic b)linear c) biquadratic d) cubic	1
iii)	The coordinates where the curve intersects the x-axis are- a) $(2,0),(-2,0)$ b) $(2,0),(-2,0),(-1,3)$ c) $(2,0),(-2,0),(0,0)$ d) $(2,0),(-2,0),(1,-3)$	1

BY-SHIVANI KOTWAL

Chapter-2 -Polynomials

| 3 | Observe the graphs $y=f(x)$ and $y=g(x)$ of a polynomial carefully
 and answer the following questions:- | |
| :--- | :--- | :--- | :--- |

BY-SHIVANI KOTWAL

Chapter-2 -Polynomials

4		

Chapter-5-Arithmetic Progression

5	In a lemon race ,a bucket is placed at a starting point, which is 6 m away from the first lemon and other lemons are placed 4 m apart from each other in a straight line. There are 10 lemons in a line. Riya starts from the bucket, picks up the nearest lemon ,runs back with it, drops it in the bucket, runs back to pic the next lemon, runs to the bucket to drop it in and continues until all the lemons are in the bucket. Now answer the following questions given below-:	
i)	The lemons are placed in a straight line depicts which part of sequence? a)Geometric b) Arithmetic c) Linear d) Harmonic	1
ii)	The total distance covered by Riya is - a) 370 m b) 480 m c) 460 m d) 400 m	1
iii)	The formula to find ' n ' term of the Arithmetic sequence (Progression) is a) $a_{n}=a-(n-1) d$ b) $a_{n}=a(n-1) d$ c) $a_{n}=a+(n-1) d$ d) $S_{n}=\frac{n}{2}(2 a+(n-1) d)$	1
iv)	The difference between the terms of arithmetic sequence is called as- a) Common ratio b) Common Difference c) Common term d) None of these	1

BY-SHIVANI KOTWAL

Chapter-5-Arithmetic Progression

6	Figure shows playing cards stacked together in a following manner 56 cards are stacked in this manner. 14 cards are in the bottom row, 12 in the next row ,10 in the row next to it and so on. Based on the observation answer the questions below-	
i)	The total number of rows in which the cards are stacked - a) 7 b) 6 c) 8 d) 9	1
ii)	The number of cards in the top row is- a) 4 b) 6 c) 1 d)2	1
iii)	The mathematical concept applied in solving the above problem is- a)Linear equations b) Probability c) Arithmetic progression d) Coordinate geometry	1

Chapter -6-Triangles

7	Observe the below given figures carefully and answer the questions-	
i)	Which among the above shown figures are congruent figures? b) A and C b) E and F	d) B and F
ii)	Tick the correct statement- a) All similar figures are congruent. b) All congruent figures are similar c) The criterian for similarity and congruency is same. d) Similar figures have same size and shape.	
If a line divides any two sides of the triangle in the same ratio,then the line is parallel to the third side.The statement depicts which theorem- b) Thales Theorem a)Pythagorus c) Converse of Thales theorem	1	
d)Converse of Pythagorus theorem.		

BY-SHIVANI KOTWAL

Chapter 7-Coordinate Geometry

8	A City school is organizing Annual sports event in a rectangular shaped ground ABCD The tracks are being marked with a gap of I m each in the form of straight lines. 120 flower pots are placed with a distance of 1 m each along AD. Shruti runs $\frac{1}{3} r d$ of the distance in the second line along AD and post her flag. Saanvi runs $\frac{1}{5} r d$ the distance AD in the eighth line and posts her flag.	
i)	The distance between the two flags is- a) $2 \sqrt{73}$ b) $3 \sqrt{73}$ c) $\sqrt{273}$ d) $\sqrt{73}$	1
ii)	If Reena has to post the flag exactly halfway between the line segment joining the two flags, the coordinates where she should post her flag are- a) $(2,40)$ b) $(2,30)$ c) $(5,32)$ d) $(10,64)$	1
iii)	The coordinates where Shruti posts her flag are- a) $(2,40)$ b) $(40,2)$ c) $(2,30)$ d) $(3,40)$	1
iv)	The coordinates where Saanvi posts her flag are- a) $(3,40)$ b) $(24,8)$ c) $(5,32)$ d) $(8,24)$	1

Chapter -12 -Area related to Plane Figures

9	The Figure shown below is a depiction of a house forming some mathematical polygons called a TANGRAM . The tangram is a dissection puzzle consisting of seven flat polygons, called tans, which are put together to form shapes. It is a simple set of seven geometric shapes made up of five triangles (two small triangles, one medium triangle, and two large triangles), a square, and a parallelogram. When the pieces are arranged together they suggest an amazing variety of forms, embodying many numerical and geometric concepts. Answer the below given questions	
i)	Given two triangles (blue and yellow) as congruent triangles and the base and height of the parallelogram as 8 cm and 6 cm , the area of the combined figure (house) is- a) 525 sq.cm b) $300 \mathrm{sq} . \mathrm{cm}$ c) $325 \mathrm{sq} . \mathrm{cm}$ d) $400 \mathrm{sq} . \mathrm{cm}$	1
ii)	The area of parallelogram is given by- a) $\frac{1}{2} b \times h$ b) $\frac{1}{2} b\left(h_{1}+h_{2}\right)$ c) a^{2} d) $b \times h$	1

10	A mathematical model of a farmhouse is framed.The base ABCD is a square.The beams that supports the roof are the edges of a rectangular prism EFGHKLMN.Point E is the midpoint of $A T, F$ is the midpoint of $B T$ similarly G and H denotes the midpoint of CT and DT.The edges of the pyramid are of length 12 cm .	
i)	What is the length of FG , where FG is one of the horizontal edges of the block- a) 12 m b) 24 m c) 6 m d) 10 m	1
ii)	The area of the triangular faces is- a) $36 \sqrt{3} \mathrm{~m}^{2}$ b) $72 \sqrt{3} m^{2}$ c) $108 \sqrt{3} m^{2}$ d) $100 \sqrt{3} m^{2}$	1
iii)	The length of the diagonal drawn on the square base is - a) $12 \sqrt{2} \mathrm{~m}$ b) $10 \sqrt{2} m$ c) 288 m d) 144 m	

BY-SHIVANI KOTWAL

Chapter -13-Surface Area and Volumes

11	Observe the figure and answer the questions-:	
i)	Name the shape of the figure shown above ? a)Cube b) Cuboid c) Square d) Sphere	1
ii)	The length of the diagonal if each edge measures 6 cm is a) $3 \sqrt{3}$ b) $3 \sqrt{6}$ c) $\sqrt{12}$ d) $6 \sqrt{3}$	1
iii)	Volume of the solid figure if the length of the edge is 7 cm is- a) $256 \mathrm{cu} . \mathrm{cm}$ b) $196 \mathrm{cu} . \mathrm{cm}$ c) $343 \mathrm{cu} . \mathrm{cm}$ d) $434 \mathrm{cu} . \mathrm{cm}$	1

BY-SHIVANI KOTWAL

12	The Great Stupa at Sanchi is one of the oldest stone structures in India, and an important monument of Indian Architecture. It was originally commissioned by the emperor Ashoka in the 3rd century BCE. Its nucleus was a simple hemispherical brick structure built over the relics of the Buddha. It Is a perfect example of combination of solid figures. A big hemispherical dome with a cuboidal structure mounted on it.	
i)	Calculate the volume of the hemispherical dome if the height of the dome is 21 m (Take $\pi=\frac{22}{7}$) a) $19404 \mathrm{cu} . \mathrm{m}$ b)2000 cu .m c) $15000 \mathrm{cu} . \mathrm{m}$ d) $19000 \mathrm{cu} . \mathrm{m}$	1
ii)	The formula to find the Volume of Sphere is- a) $\frac{2}{3} \pi r^{3}$ b) $\frac{4}{3} \pi r^{3}$ c) $4 \pi r^{2}$ d) $2 \pi r^{2}$	1
iii)	The cloth require to cover the hemispherical dome if the radius of its base is 14 m is (Take $\pi=\frac{22}{7}$), a) $1222 \mathrm{sq} . \mathrm{m}$ b) 1232 sq m c) $1200 \mathrm{sq} \cdot \mathrm{m}$ d) $1400 \mathrm{sq} \cdot \mathrm{m}$	1
iv)	The total surface area of the combined figure i.e. hemispherical dome with radius 14 m and cuboidal shaped top with dimensions $8 \mathrm{~m} \times 6 \mathrm{~m} \times 4 \mathrm{~m}$ is- a) 1200 sq . b) 1232 sq. m c) $1392 \mathrm{sq} . \mathrm{m}$ d) $1932 \mathrm{sq} . \mathrm{m}$	1

Chapter-14-Statistics

| 13 | A 100 m Race was organized in a school sports meet. The time was
 recorded with the help of a stopwatch. | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Chapter-15-Probability

BY-SHIVANI KOTWAL

15	An helicopter is found missing in a rectangular region in the area shown below	
i)	The probability that the helicopter crashed inside the lake is- a) $\frac{1}{2}$ b) $\frac{5}{27}$ c) $\frac{27}{5}$ d) $\frac{7}{25}$	1
ii)	The Probability of an event always lie between- a) $0<P(E)<1$ b) $1<P(E)<0$ c) $0 \leq P(E) \leq 1$ d) $P(E)=1$	1
iii)	The Probability of an event can never be- a)Negative b) positive c) lies between 0 and 1 d) None of these	1

CBSE SAMPLE PAPER CASE STUDY BASED QUESTIONS-X

(BASIC)

i)	How much cloth material will be required to cover 2 big domes each of radius 2.5 metres? (Take $\pi=22 / 7$) a) $75 \mathrm{~m}^{2}$ b) $78.57 \mathrm{~m}^{2}$ c) $87.47 \mathrm{~m}^{2}$ d) $25.8 \mathrm{~m}^{2}$ b)	1
ii)	Write the formula to find the volume of a cylindrical pillar. a) $\Pi r^{2} h$ b) $\Pi \mathrm{rl}$ c) $\Pi r(I+r)$ d) $2 \Pi r$	1
iii)	Find the lateral surface area of two pillars if height of the pillar is 7 m and radius of the base is 1.4 m . a) $112.3 \mathrm{~cm}^{2}$ b) $123.2 \mathrm{~m}^{2}$ c) $90 \mathrm{~m}^{2}$ d) $345.2 \mathrm{~cm}^{2}$	1
iv)	How much is the volume of a hemisphere if the radius of the base is 3.5 m ? a) $85.9 \mathrm{~m}^{3}$ b) $80 \mathrm{~m}^{3}$ c) $98 \mathrm{~m}^{3}$ d) $89.83 \mathrm{~m}^{3}$	1

| v) | What is the ratio of sum of volumes of two hemispheres of radius 1 cm each to
 the volume of a sphere of radius $2 \mathrm{~cm} ?$
 a) $1: 1$ b) $1: 8$ c) $8: 1$ d) $1: 16$ |
| :---: | :--- | :--- |

2 Class X students of a secondary school in Krishnagar have been allotted a rectangular plot of a land for gardening activity. Saplings of Gulmohar are planted on the boundary at a distance of 1 m from each other. There is a triangular grassy lawn in the plot as shown in the fig. The students are to sow seeds of flowering plants on the remaining area of the plot.

Considering A as origin, answer question (i) to (v)
\(\left.\begin{array}{|c|lll|l|}\hline i) \& Considering A as the origin, what are the coordinates of A? \& 1

\hline a)(0,1) \& b)(1,0) \& c)(0,0) \& d)(-1,-1)\end{array}\right]\)| a)a) $(4,6)$ b) $(6,4)$ c) $(4,5)$ d) $(5,4)$ |
| :--- |

| iii) | What are the coordinates of $R ?$ | 1 |
| :--- | :--- | :--- | :--- |
| | a) $(6,5)$ b) $(5,6)$ c) $(6,0)$ d) $(7,4)$ | |

| iv) | What are the coordinates of $D ?$ 1
 a) $(16,0)$ b) $(0,0)$ c) $(0,16)$ d) $(16,1)$ 1
 v) What are the coordinate of P if D is taken as the origin?
 a) $(12,2)$ b) $(-12,6)$ c) $(12,3)$ d) $(6,10)$ |
| :---: | :--- | :--- | :--- | :--- |

3

| i) | Rahul tied the sticks at what angles to each other?
 a) 30° b) 60° c) $90^{\circ}$$\quad$d) 60° | |
| :---: | :--- | :--- | :--- | :--- |
| ii) | Which is the correct similarity criteria applicable for smaller triangles at the
 upper part of this kite? | 1 |
| a) RHS b) SAS c) SSA d) AAS | | |
| iii) | Sides of two similar triangles are in the ratio $4: 9$. Corresponding medians of
 these triangles are in the ratio, | 1 |

\(\left.\left.$$
\begin{array}{|c|ll|l|}\hline \text { iv) } & \begin{array}{l}\text { In a triangle, if square of one side is equal to the sum of the squares of the } \\
\text { other two sides, then the angle opposite the first side is a right angle. This } \\
\text { theorem is called as, }\end{array} & 1 \\
\begin{array}{lll}\text { a) Pythagoras theorem } & \text { b) Thales theorem } \\
\text { c) Converse of Thales theorem } & \text { d) Converse of Pythagoras theorem }\end{array} & \begin{array}{lll}\text { a) } 48 \mathrm{~cm}^{2} & \text { b) } 14 \mathrm{~cm}^{2} & \text { c) } 24 \mathrm{~cm}^{2}\end{array} & \text { d) } 96 \mathrm{~cm}^{2}\end{array}
$$\right] \begin{array}{l}What is the area of the kite, formed by two perpendicular sticks of length 6 \mathrm{~cm}

and 8 \mathrm{~cm} ?\end{array}\right]\)| v) |
| :--- |

$4 \begin{aligned} & \text { Due to heavy storm an electric wire got bent as shown in the figure. It followed } \\ & \text { a mathematical shape. Answer the following questions below. }\end{aligned}$
\(\left.\begin{array}{|l|ll|l|}\hline i) \& \begin{array}{lll}Name the shape in which the wire is bent \& 1

a) Spiral \& b) ellipse \& c) linear\end{array} \quad d) Parabola \& \& 1\end{array}\right]\)| a) 2 | b) 3 | d) 1 | d) 0 |
| :--- | :--- | :--- | :--- |

iv)	What will be the expression of the polynomial?	1	
a) $x^{2}+2 x-3$ b) $x^{2}-2 x+3$ c) $x^{2}-2 x-3$ d) $x^{2}+2 x+3$	a) 6 b) -18 c) 18	d) 0	$-1 ?$

STANDARD

(CASE STUDY BASED QUESTIONS FROM SAMPLE PAPER)
$1 \begin{aligned} & \text { Case Study based-1 } \\ & \text { sun ROOM }\end{aligned}$

The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using

- Four clear glass panels, trapezium in shape, all the same size
- One tinted glass panel, half a regular octagon in shape

Y

Fron view
x
o
Scale $1 \mathrm{~cm}=1 \mathrm{~m}$

(a)	Refer to Top View Find the mid-point of the segment joining the points $J(6,17)$ and $I(9,16)$. (i) $(33 / 2,15 / 2)$ (ii) $(3 / 2,1 / 2)$ (iii)(15/2,33/2) (iv) $(1 / 2,3 / 2)$	1

(b)	Refer to Top View The distance of the point P from the y-axis is (i) 4 (ii) 15 (iii) 19 (iv) 25	1

(c)	Refer to Front View The distance between the points A and S is (i) 4 (ii) 8 (iii) 16 (iv)20	1
(d)	Refer to Front View Find the co-ordinates of the point which divides the line segment joining the points A and B in the ratio $1: 3$ internally. (i) $(8.5,2.0)$ (ii) $(2.0,9.5)$ (iii) $(3.0,7.5)$ (iv) $(2.0,8.5)$	1
(e)	Refer to Front View If a point (x,y) is equidistant from the Q(9,8) and $S(17,8)$, then (i) $x+y=13$ (ii) $x-13=0$ (iii) $y-13=0$ (iv) $x-y=13$	1

2 Case Study Based- 2
 SCALE FACTOR AND SIMILARITY SCALE FACTOR

A scale drawing of an object is the same shape as the object but a different size.
The scale of a drawing is a comparison of the length used on a drawing to the length it represents. The scale is written as a ratio.
SIMILAR FIGURES
The ratio of two corresponding sides in similar figures is called the scale factor.

Scale factor $=\frac{\text { length in image }}{\text { corresponding length in object }}$

If one shape can become another using Resizing then the shapes are Similar

(b)	What will effect the similarity of any two polygons? (i) They are flipped horizontally (ii)They are dilated by a scale factor (iii)They are translated down (iv)They are not the mirror image of one another	1

(c)	If two similar triangles have a scale factor of $\mathrm{a}: \mathrm{b}$. Which statement regarding the two triangles is true? (i)The ratio of their perimeters is $3 \mathrm{a}: \mathrm{b}$ (ii)Their altitudes have a ratio $\mathrm{a}: \mathrm{b}$ (iii)Their medians have a ratio $\frac{a}{2}: \mathrm{b}$ (iv)Their angle bisectors have a ratio $\mathrm{a}^{2}: \mathrm{b}^{2}$	1

(d)	The shadow of a stick 5 m long is 2 m . At the same time the shadow of a tree 12.5 m high is	

(e)	Below you see a student's mathematical model of a farmhouse roof with measurements. The attic floor, ABCD in the model, is a square. The beams that support the roof are the edges of a rectangular prism, EFGHKLMN. is the middle of AT, F is the middle of BT, G is the middle of CT, and H is the middle of DT. All the edges of the pyramid in the model have length of 12 m.	1

Shape Of Cross Slope:

(c)	Graph of a quadratic polynomial is a (i) straight line (ii) circle (iii)parabola (iv)ellipse	
(d)	The representation of Highway Underpass whose one zero is 6 and sum of the zeroes is 0 , is (i) $\mathbf{2}^{2}-6 \mathrm{x}+2$ (ii) $\mathrm{x}^{2}-36$ (iii) $\mathrm{x}^{2}-6$ (iv) $\mathrm{x}^{2}-3$	
(e)	The number of zeroes that polynomial $\mathrm{f}(\mathrm{x})=(\mathrm{x}-2)^{2}+4$ can have is: (i) 1 (ii) 2 (iii) 0 (iv) 3	

ANSWERS

1
2-
3-
4-
5-
6-
7-
8-
9-

- $)$ a
v)a
i)a
ii) d
ii) b
iii)c
iv)b
ii) c
iii)a
iv)d
iii)b
iii)c
iii)c
iv)d
iii)b
iii)c iv)b
ii) $d \quad$ iii)c
in) a iv)d

$10-$	i)c	ii) c	iii)a	
$11-$	i)a	ii)d	iii)c	
$12-$	i)a	ii) b	iii)b	iv)c
$13-$	i)d	ii) b	iii)c	iv)d
$14-$	i)d	ii) a	iii)c	iv)d
$15-$	i)b	ii) c	iii)a	

CBSE CASE STUDY BASED (BASIC)

1-	i)b	ii) a	iii)b	iv)d	v)b
2-	i)c	ii) a	iii)a	iv)a	v)b
3-	i)c	ii) b	iii)b	iv)d	v)a
4-	i)d	ii) a	iii)b	iv)c	v)d

CBSE CASE STUDY BASED (STANDARD)
1- a)iii
b) i
c) iii
d) iv
e)ii
2- a)iii
b)iv
c) ii
d) iv
e) iii
3- a)ii
b) i
c) iii
d) ii
e) iii

LIKE SHARE AND SUBSCRIBE MY CHANNEL BE MATHAHOLIC BY-SHIVANI KOTWAL

