CLASS 12:PHYSICS FORMULA BOOK

ELECTRIC CHARGES AND FIELDS

- Coulomb's law : $F=\frac{k q_{1} q_{2}}{r^{2}}=\frac{1}{4 \pi \varepsilon} \frac{q_{1} q_{2}}{r^{2}}$
- Relative permittivity or dielectric constant:

$$
\varepsilon_{r} \text { or } K=\frac{\varepsilon}{\varepsilon_{0}}
$$

- Electric field intensity at a point distant r from a point charge q is $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}$
- Electric dipole momentm, $\frac{t}{p}=\stackrel{q}{2} \alpha$
- Electric field intensity on axial line (end on position) of the electric dipole
(i) At the point r from the centre of the electric dipole, $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 p r}{\left(r^{2}-a^{2}\right)^{2}}$.
(ii) At very large distance i.e., $(r \gg a)$, $E=\frac{2 p}{4 \pi \varepsilon_{0} r^{3}}$
- Electric field intensity on equatorial line (board on position) of electric dipole
(i) At the point at a distance r from the centre of electric dipole, $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{\left(r^{2}+a^{2}\right)^{3 / 2}}$.
(ii) At very large distance i.e., $r \gg a$,

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{3}} .
$$

- Electric field intensity at any point due to an electric dipole $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{p}{r^{3}} \sqrt{1+3 \cos ^{2} \theta}$
․ Electric field intensity due to a charged ring
(i) At a point on its axis at distance r from its centre, $E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q r}{\left(r^{2}+a^{2}\right)^{3 / 2}}$
(ii) At very large distance i.e. $r \gg a E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}$
- Torque on an electric dipole placed in a uniform electric field: $\vec{\tau}=\vec{p} \times \vec{E}$ or $\tau=p E \sin \theta$
- Potential energy of an electric dipole in a uniform electric field is $U=-p E\left(\cos \theta_{2}-\cos \theta_{1}\right)$
where $\theta_{1} \& \theta_{1}$ are initial angle and final angle between 喆 and 志.
- Electric flux $\phi=\vec{E} \cdot d \vec{S}$

Gauss's law : $\oint s \cdot d^{t}=\frac{q}{\varepsilon_{0}}$
Electric field due to thin infinitely long straight wire of uniform linear charge density λ

$$
E=\frac{\lambda}{2 \pi \varepsilon_{0} r},
$$

(i) At a point outside the shell i.e., $r>R$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
$$

(ii) At a point on the shell i.e., $r=R$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R^{2}}
$$

(iii) At a point inside the shell i.e., $r<R$

$$
E=0
$$

- Electric field due to a non conducting solid sphere of uniform volume charge density ρ and radius R at a point distant r from the centre of the sphere is given as follows :
(i) At a point outside the sphere i.e., $r>R$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}
$$

(ii) At a point on the surface of the sphere i.e., $r=R$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{R^{2}}
$$

(iii) At a point inside the sphere i.e., $r<R$

$$
E=\frac{\rho r}{3 \varepsilon_{0}}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q r}{R^{3}}
$$

- Electric field due to a thin non conducting infinite sheet of charge with uniformly charge surface density σ is $E=\frac{\sigma}{2 \varepsilon_{0}}$
- Electric field between two infinite thin plane parallel sheets of uniform surface charge density σ and $-\sigma$ is $E=\sigma / \varepsilon_{0}$.

ELECTROSTATIC POTENTIAL AND CAPACITANCE

- Electric potential $V=\frac{W}{q}$
- Electric potential at a point distant r from a point charge q is $V=\frac{q}{4 \pi \varepsilon_{0} r}$
- The electric potential at point due to an electric dipole

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{p \cos \theta}{r^{2}}
$$

- Electric potential due to a uniformly charged spherical shell of uniform surface charge density σ and radius R at a distance r from the centre the shell is given as follows :
(i) At a point outside the shell i.e., $r>R$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
$$

(ii) At a point on the shell i.e., $r=R$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}
$$

(iii) At a point inside the shell i.e., $r>R$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}
$$

- Electric potential due to a non-conducting solid sphere of uniform volume charge density r and radius R distant r from the sphere is given as follows :
(i) At a point outside the sphere i.e. $r>R$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
$$

(ii) At a point on the sphere i.e., $r=R$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}
$$

(iii) At a point inside the sphere i.e., $r<R$

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q\left(3 R^{2}-r^{2}\right)}{2 R^{3}}
$$

- Relationship between \vec{E} and \vec{V}

$$
\vec{E}=-\vec{\nabla} V
$$

where $\overline{\bar{\gamma}}=\left(j \frac{\partial}{\partial \pi}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right]$

- Electric potential energy of a system of two point charges is $U=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r_{12}}$
- Capacitance of a spherical conductor of radius R is $C=4 \pi \varepsilon_{0} R$
- Capacitance of an air filled parallel plate capacitor $\mathrm{C}=\frac{\varepsilon, A}{d}$
- Capacitance of an air filled spherical capacitor

$$
C=4 \pi \varepsilon_{0} \frac{a b}{b-a}
$$

- Capacitance of an air filled cylindrical capacitor $C=\frac{2 \pi \varepsilon_{0} L}{\ln \left(\frac{b}{a}\right)}$
- Capacitance of a parallel plate capacitor with a dielectric slab of dielectric constant K, completely filled between the olates of the capacitor, is given by $\mathrm{C}=\frac{\pi \varepsilon A}{d}=\frac{\varepsilon \varepsilon A}{d}$
\square When a dielectric slab of thickness t and dielectric constant K is introduced between the plates, then the capacitance of a parallel plate capacitor is given by $C=\frac{\varepsilon_{0} A}{d-t\left(1-\frac{1}{K}\right)}$
- When a metallic conductor of thickness t is introduced between the plates, then capacitance of a parallel plate capacitor is given by

$$
\mathrm{c}=\frac{\varepsilon \mathrm{A} A}{d-\lambda}
$$

- Energy stored in a capacitor :

$$
U=\frac{1}{2} C V^{2}=\frac{1}{2} Q V=\frac{1}{2} \frac{Q^{2}}{C}
$$

- Energy density: $u=\frac{1}{2} \varepsilon_{0} E^{2}$
- Capacitors in series : $\frac{1}{C_{S}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\ldots .+\frac{1}{C_{n}}$
- Capacitors in parallel : $C_{P}=C_{1}+C_{2}+\ldots .+C_{n}$

CURRENT ELECTRICITY

- Current, $I=\frac{q}{t}$
- Current density $J=\frac{I}{A} \quad$ (Electricity, Class 10)
- Drift velocity of electrons is given by

$$
\vec{v}_{d}=-\frac{e \vec{E}}{m} \tau
$$

- Relationship between current and drift velocity

$$
I=n A e v_{d}
$$

- Relationship between current density and drift velocity

$$
J=n e v_{d}
$$

- Mobility, $\mu=\frac{\left|v_{d}\right|}{E}=\frac{q E \tau / m}{E}=\frac{q \tau}{m}$
- Resistance $\Omega=\frac{V}{J}$.
- Conductance : $G=\frac{1}{R}$.
- The resistance of a conductor is

$$
R=\frac{m}{n e^{2} \tau} \frac{l}{A}=\rho \frac{l}{A} \text { where } \rho=\frac{m}{n e^{2} \tau}
$$

- Conductivity:

$$
\sigma=\frac{1}{\rho}=\frac{n e^{2} \tau}{m}=n e \mu \quad\left[\text { As } \mu=\frac{v_{d}}{E}=\frac{e \tau}{m}\right]
$$

- If the conductor is in the form of wire of length l and a radius r, then its resistance is

$$
R=\frac{\rho 2}{\pi v^{2}}
$$

- If a conductor has mass m, volume V and density d, then its resistance R is

$$
R=\frac{\rho^{2}}{A}=\frac{\rho^{2}}{A L^{2}}=\frac{\rho^{2}}{V}=\frac{\rho^{2} s^{2}}{n}
$$

(Electricity, Class 10)

- A cylindrical tube of length l has inner and outer radii r_{1} and r_{2} respectively. The resistance between its end faces is

$$
R=\frac{\rho l}{\pi\left(r_{2}^{2}-r_{1}^{2}\right)}
$$

- Relationship between J, σ and E

$$
J=\sigma E
$$

- The resistance of a conductor at temperature $t^{\circ} \mathrm{C}$ is given by $R_{t}=R_{0}\left(1+\alpha t+\beta t^{2}\right)$
- Resistors in series $R_{s}=R_{1}+R_{2}+R_{3}$
- Resistors in parallel $\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$.
(Electricity, Class 10)
- Relationship between ε, V and r

$$
\text { or } \quad r=R\left(\frac{\varepsilon}{V}-1\right)
$$

where ε emf of a cell, r internal resistance and R is external resistance

- Wheatstone's bridge $\frac{P}{Q}=\frac{R}{S}$
- Metre bridge or slide metre bridge

The unknown resistance, $R=\frac{S l}{100-l}$.

- Comparison of emfs of two cells by using potentiometer $\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{l_{1}}{l_{2}}$
- Determination of internal resistance of a cell by potentiometer $r=\left(\frac{l_{1}-l_{2}}{l_{2}}\right) R$
- Electric power $P=\frac{\text { electric work done }}{\text { time taken }}$

$$
P=V I=I^{2} R=\frac{V^{2}}{R} .
$$

(Electricity, Class 10)

MOVING CHARGES AND MAGNETISM

- Force on a charged particle in a uniform electric field $\vec{F}=q \vec{E}$
\square Force on a charged particle in a uniform magnetic field $\vec{F}=q(\vec{v} \times \vec{B})$ or $F=q v B \sin \theta$
- Motion of a charged particle in a uniform magnetic field
(i) Radius of circular path is

$$
R=\frac{F \pi v}{R_{g}}=\frac{\sqrt{2+r K}}{q S}
$$

(ii) Time period of revolution is $T=\frac{2 \pi R}{v}=\frac{2 \pi+\pi}{q B}$
(iii) The frequency is $v=\frac{1}{T}=\frac{q B}{2 \pi m}$
(iv) The angular frequency is $\omega=2 \pi 0=\frac{Q B}{\pi r}$

- Cyclotron frequency, $v=\frac{B q}{2 \pi m}$
- Biot Savart's law

$$
d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d l \sin \theta}{r^{2}} \text { or } d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I(d \vec{l} \times \vec{r})}{r^{3}}
$$

- The magnetic field B at a point due to a straight wire of finite length carrying current I at a perpendicular distance r is

$$
B=\frac{\mu_{0} I}{4 \pi r}[\sin \alpha+\sin \beta]
$$

- The magnetic field at a point on the axis of the circular current carrying coil is

$$
B=\frac{\mu_{0}}{4 \pi} \frac{2 \pi N I a^{2}}{\left(a^{2}+x^{2}\right)^{3 / 2}}
$$

- Magnetic field at the centre due to current carrying circular arc

$$
B=\frac{\mu_{0} I \phi}{4 \pi a}
$$

- The magnetic field at the centre of a circular coil of radius a carrying current I is

$$
B=\frac{\mu_{0}}{4 \pi} \frac{2 \pi I}{a}=\frac{\mu_{0} I}{2 a}
$$

If the circular coil consists of N turns, then

$$
B=\frac{\mu_{0}}{4 \pi} \frac{2 \pi N I}{a}=\frac{\mu_{0} N I}{2 a}
$$

- Ampere's circuital law $\oint \vec{B} \cdot d \vec{l}=\mu_{0} I$.
- Magnetic field due to an infinitely long straight solid cylindrical wire of radius a, carrying current I
(a) Magnetic field at a point outside the wire i.e. $(r>a)$ is $B=\frac{\mu_{0} I}{2 \pi r}$
(b) Magnetic field at a point inside the wire i.e. $(r<a)$ is $B=\frac{\mu_{0} I r}{2 \pi a^{2}}$
(c) Magnetic field at a point on the surface of a wire i.e. $(r=a)$ is $B=\frac{\mu_{0} I}{2 \pi a}$
- Force on a current carrying conductor in a uniform magnetic field

$$
\vec{F}=I(\vec{l} \times \vec{B}) \quad \text { or } \quad F=I l B \sin \theta
$$

- When two parallel conductor separated by a distance r carry currents I_{1} and I_{2}, the magnetic field of one will exert a force on the other. The force per unit length on either conductor is

$$
f=\frac{\mu_{0}}{4 \pi} \frac{2 I_{1} I_{2}}{r}
$$

- The force of attraction or repulsion acting on each conductor of length l due to currents in two parallel conductor is $F=\frac{\mu_{0}}{4 \pi} \frac{2 I_{1} I_{2}}{r} l$.
- When two charges q_{1} and q_{2} respectively moving with velocities v_{1} and v_{2} are at a distance r apart, then the force acting between them is

$$
F=\frac{\mu_{0}}{4 \pi} \frac{q_{1} q_{2} v_{1} v_{2}}{r^{2}}
$$

- Torque on a current carrying coil placed in a uniform magnetic field

$$
\tau=N I A B \sin \theta=M B \sin \theta
$$

- If α is the angle between plane of the coil and the magnetic field, then torque on the coil is

$$
\tau=N I A B \cos \alpha=M B \cos \alpha
$$

- Workdone in rotating the coil through an angle θ from the field direction is

$$
W=M B(1-\cos \theta)
$$

- Potential energy of a magnetic dipole

$$
U=-\vec{M} \cdot \vec{B}=-M B \cos \theta
$$

- An electron revolving around the central nucleus in an atom has a magnetic moment and it is given by

$$
\overline{\mu_{1}}=-\frac{t}{2 r \pi} \bar{L}
$$

- Conversion of galvanometer into a ammeter

$$
S=\left(\frac{I_{g}}{I-I_{g}}\right) G
$$

- Conversion of galvanometer into voltmeter

$$
R=\frac{V}{I_{g}}-G
$$

- In order to increase the range of voltmeter n times the value of resistance to be connected in series with galyanometer is $R=(n-1) G$.
- Magnetic dipole moment

$$
\vec{M}=m(2 \vec{l})
$$

- The magnetic field due to a bar magnet at any point on the axial line (end on position) is

$$
B_{\text {axial }}=\frac{\mu_{0}}{4 \pi} \frac{2 M r}{\left(r^{2}-l^{2}\right)^{2}}
$$

For short magnet $l^{2} \ll r^{2}$

$$
B_{\text {axial }}=\frac{\mu_{0} 2 M}{4 \pi r^{3}}
$$

The direction of $B_{\text {axial }}$ is along $S N$.

- The magnetic field due to a bar magnet at any point on the equatorial line (board-side on position) of the bar magnet is

$$
B_{\text {equatorial }}=\frac{\mu_{0} M}{4 \pi\left(r^{2}+l^{2}\right)^{3 / 2}}
$$

For short magnet

$$
B_{\text {equatorial }}=\frac{\mu_{0} M}{4 \pi r^{3}}
$$

The direction of $B_{\text {equatorial }}$ is parallel to NS.

- In moving coil galvanometer the current I passing through the galvanometer is directly proportional to its deflection (θ).

$$
I \propto \theta \quad \text { or, } \quad I=G \theta
$$

where $G=\frac{k}{N A B}=$ galvanometer constant

- Current sensitivity: $\mathrm{J}_{\mathrm{t}}=\frac{\theta}{\mathrm{j}}=\frac{N \mathrm{NAB}}{\mathrm{k}}$.
- Voltage sensitivity: $V,=\frac{\theta}{V}=\frac{\theta}{5 R}=\frac{N A B}{k R}$.

MAGNETISM AND MATTER

- Gauss's law for magnetism

$$
\phi=\sum_{\substack{\text { all area } \\ \text { elements } \Delta S}} \vec{B} \cdot \Delta \vec{S}=0
$$

- Horizontal component :

$$
B_{H}=B \cos \delta
$$

- Magnetic intensity

$$
B=\mu H
$$

- Intensity of magnetisation

$$
I=\frac{\text { Magnetic moment }}{\text { Volume }}=\frac{M}{V}
$$

- Magnetic susceptibility

$$
\chi_{m}=\frac{I}{H}
$$

- Magnetic permeability

$$
\mu=\frac{B}{H}
$$

- Relative permeability :

$$
\mu_{c}=\frac{\mu}{\mu_{0}}
$$

- Relationship between magnetic permeability and susceptibility

$$
\mu_{r}=1+\chi_{m} \text { with } \mu_{r}=\frac{\mu}{\mu_{0}}
$$

- Curie law : $\chi_{m}=\frac{C}{T}$

$$
\chi_{m}=\frac{C}{T-T_{\mathrm{C}}}\left(T>T_{\mathrm{C}}\right)
$$

ELECTROMAGNETIC INDUCTION

- Magnetic Flux

$$
\phi=\vec{B} \cdot \vec{A}=B A \cos \theta
$$

- Faraday's law of electromagnetic induction

$$
\varepsilon=-\frac{d \phi}{d t}
$$

- When a conducting rod of length l is rotated perpendicular to a uniform magnetic field B, then induced emf between the ends of the rod is

$$
\begin{aligned}
& |\varepsilon|=\frac{B u l^{\prime}}{2}=\frac{B(2(0)) ?}{2} \\
& |\varepsilon|=B v\left(\pi l^{2}\right)=B v A
\end{aligned}
$$

- The self induced emf is

$$
\varepsilon=-\frac{d \phi}{d t}=-L \frac{d I}{d t}
$$

- Self inductance of a circular coil is

$$
L=\frac{\mu_{0} N^{2} \pi R}{2}
$$

- Let I_{P} be the current flowing through primary coil at any instant. If ϕ_{S} is the flux linked with secondary coil then

$$
\phi_{S} \propto I_{P} \text { or } \phi_{S}=M I_{P}
$$

where M is the coefficient of mutual inductance. The emf induced in the secondary coil is given by

$$
\varepsilon_{S}=-M \frac{d I_{P}}{d t}
$$

where M is the coefficient of mutual inductance.

- Coefficient of coupling (K) :

$$
K=\frac{M}{\sqrt{L_{1} L_{2}}}
$$

- The coefficient of mutual inductance of two long co-axial solenoids, each of length l, area of cross section A, wound on air core is

$$
M=\frac{\mu_{0} N_{1} N_{2} A}{l}
$$

- Energy stored in an inductor

$$
U=\frac{1}{2} L I^{2}
$$

- During the growth of current in a $L R$ circuit is

$$
I=I_{0}\left(1-e^{-R t / L}\right)=I_{0}\left(1-e^{-t / \tau}\right)
$$

where I_{0} is the maximum value of current, $\tau=L / R=$ time constant of $L R$ circuit.

- During the decay of current in a $L R$ circuit is

$$
I=I_{0} e^{-R t / L}=I_{0} e^{-t / \tau}
$$

- During charging of capacitor through resistor

$$
q=q_{0}\left(1-e^{-t / R C}\right)=q_{0}\left(1-e^{-t / \tau}\right)
$$

where q_{0} is the maximum value of charge.
$\tau=R C$ is the time constant of $C R$ circuit.

- During discharging of capacitor through resistor

$$
q=q_{0} e^{-t / R C}=q_{0} e^{-t / \tau}
$$

ALTERNATING CURRENT

- Mean or average value of alternating current or voltage over one complete cycle

$$
\begin{aligned}
& I_{m} \text { or } \bar{I} \text { or } I_{a v}=\frac{\int_{0}^{T} I_{0} \sin \omega t d t}{\int_{0}^{T} d t}=0 \\
& V_{m} \text { or } \bar{V} \text { or } V_{a v}=\frac{\int_{0}^{T} V_{0} \sin \omega t d t}{\int_{0}^{T} d t}=0
\end{aligned}
$$

- Average value of alternating current for first half cycle is

$$
I_{a v}=\frac{\int_{0}^{T / 2} I_{0} \sin \omega t d t}{\int_{0}^{T / 2} d t}=\frac{2 I_{0}}{\pi}=0.637 I_{0}
$$

․ Similarly, for alternating voltage, the average value over first half cycle is

$$
V_{a v}=\frac{\int_{0}^{T / 2} V_{0} \sin \omega t d t}{\int_{0}^{T / 2} d t}=\frac{2 V_{0}}{\pi}=0.637 V_{0}
$$

- Average value of alternating current for second cycle is

$$
I_{a v}=\frac{\int_{T / 2}^{T} I_{0} \sin \omega t d t}{\int_{T / 2}^{T} d t}=-\frac{2 I_{0}}{\pi}=-0.637 I_{0}
$$

- Similarly, for alternating voltage, the average value over second half cycle is

$$
V_{a v}=\frac{\int_{T / 2}^{T} V_{0} \sin \omega t d t}{\int_{T / 2}^{T} d t}=-\frac{2 V_{0}}{\pi}=-0.637 V_{0}
$$

- Mean value or average value of alternating current over any half cycle

$$
\begin{aligned}
& I_{a v}=\frac{2 I_{0}}{\pi}=0.637 I_{0} \\
& I_{a v}=\frac{2 I_{0}}{\pi}=0.637 I_{0}
\end{aligned}
$$

- Root mean square (rms) value of alternating current

$$
I_{r m s} \text { or } I_{v}=\frac{I_{0}}{\sqrt{2}}=0.707 I_{0}
$$

Similarly, for alternating voltage

$$
V_{r m s}=\frac{V_{0}}{\sqrt{2}}=0.707 V_{0}
$$

- Forn factor $=\frac{I_{m e}}{I_{d u}}$
- Inductive reactance :

$$
X_{L}=\omega L=2 \pi v L
$$

- Capacitive reactance : $X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi v C}$

The impedance of the series $L C R$ circuit.

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}
$$

$\therefore \quad$ Admittance $=\frac{1}{\text { Impedance }}$ or $Y=\frac{1}{Z}$
\therefore Susceptance $=\frac{1}{\text { Reactance }}$
O Inductive susceptance $=\frac{1}{\text { Inductive reactance }}$ or $\quad S_{L}=\frac{1}{X_{L}}=\frac{1}{\omega L}$

- Capacitive susceptance $=\frac{1}{\text { Capacitive reactance }}$
or $S_{C}=\frac{1}{X_{C}}=\frac{1}{1 / \omega C}=\omega C$
- The resonant frequency is

$$
\begin{aligned}
& \mathrm{v}_{r}=\frac{1}{2 \pi \sqrt{L C}} \\
& \mathrm{w}_{r}=\frac{1}{\sqrt{L C}} \\
& \mathrm{Q}=\frac{X_{L}}{R}=\frac{\omega L}{R} \\
& \mathrm{Q}=\frac{X_{\mathrm{c}}}{\mathrm{R}}=\frac{1}{\omega C R} \\
& \therefore Q=\frac{1}{R} \sqrt{\frac{1}{C}}
\end{aligned}
$$

- Average power $\left(P_{a v}\right)$:

$$
P_{a v}=V_{r m s} I_{r m s} \cos \phi=\frac{V_{0} I_{0}}{2} \cos \phi
$$

- Apparent power : $P_{v}=V_{r m s} I_{r m s}=\frac{V_{0} I_{0}}{2}$
- Efficiency of a transformer,

$$
\eta=\frac{\text { output power }}{\text { input power }}=\frac{V_{S} I_{S}}{V_{P} I_{P}}
$$

ELECTROMAGNETIC WAVES

- The displacement current is given by

$$
I_{0}=\varepsilon_{0} \frac{d q_{g}}{d t}
$$

- Four Maxwell's equations are :
- Gauss's law for electrostatics

$$
\oint A \cdot d^{*}=\frac{9}{\varepsilon_{0}}
$$

- Gauss's law for magnetism

$$
\phi s \cdot d s=0
$$

O Faraday's law of electromagnetic induction

$$
\oint \vec{E} \cdot d \vec{l}=-\frac{d \phi_{B}}{d t}
$$

O Maxwell-Ampere's circuital law

$$
\phi S \cdot d t=\mu_{0}\left[I+\varepsilon_{0} \frac{d 中_{g}}{d t}\right]
$$

- The amplitudes of electric and magnetic fields in free space, in electromagnetic waves are related by

$$
E_{0}=c B_{0} \quad \text { or } \quad B_{0}=\frac{E_{0}}{c}
$$

- The speed of electromagnetic wave in free space is

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

- The speed of electromagnetic wave in a medium is

$$
\nu=\frac{1}{\sqrt{\mu \varepsilon}}
$$

- The energy density of the electric field is

$$
u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}
$$

- The energy density of magnetic field is

$$
u_{B}=\frac{1}{2} \frac{B^{2}}{\mu_{0}}
$$

- Average energy density of the electric field is

$$
<u_{E}>=\frac{1}{4} \varepsilon_{0} E_{0}^{2}
$$

- Average energy density of the magnetic field is

$$
<u_{B}>=\frac{1}{4} \frac{B_{0}^{2}}{\mu_{0}}=\frac{1}{4} \varepsilon_{0} E_{0}^{2}
$$

- Average energy density of electromagnetic wave is

$$
<u>=\frac{1}{2} \varepsilon_{0} E_{0}^{2}
$$

- Intensity of electromagnetic wave

$$
I=<u>c=\frac{1}{2} \varepsilon_{0} E_{0}^{2} c
$$

- Momentum of electromagnetic wave $p=\frac{U}{c}$ (complete absorption) $p=\frac{2 U}{c}$ (complete reflection)
- The poynting vector is $\vec{S}=\frac{1}{\mu_{0}}(\vec{E} \times \vec{B})$

RAY OPTICS AND OPTICAL INSTRUMENTS

- When two plane mirrors are inclined at an angle θ and an object is placed between them, the number of images of an object are formed due to multiple reflections.

$n=\frac{\mathbf{3 6 0}}{} \boldsymbol{0}^{\circ}$	Position of object	Number of images
even	anywhere	$n-1$
odd	symmetric	$n-1$
	asymmetric	n

- If $\frac{360^{\circ}}{\theta}$ is a fraction, the number of images formed will be equal to its integral part.
(Light, Class 8)
- The focal length of a spherical mirror of radius R is given by

$$
f=\frac{\mathrm{R}}{2}
$$

- Transverse or linear magnification

$$
m=\frac{\text { size of image }}{\text { size of object }}=-\frac{v}{u}
$$

- Longitudinal magnification :

$$
m_{L}=-\frac{d v}{d u}
$$

- Superficial magnification :

$$
m_{s}=\frac{\text { area of image }}{\text { area of object }}=m^{2}
$$

- Mirror's formula $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
- Newton's formula is $f^{2}=x y$,
- Laws of refraction: $\frac{\sin i}{\sin r}={ }^{1} \mu_{2}$
- Absolute refractive index:

$$
\mu_{\mathrm{c}}=\frac{\mu_{3}}{\mu_{1}}=\frac{\left(\frac{c}{v_{3}}\right)}{\left(\frac{c}{v_{1}}\right)}=\frac{v_{1}}{v_{3}}
$$

Lateral shift, $d=t \frac{\sin (i-r)}{\cos r}$

(Light, Reflection and Refraction, Class 10)

- If there is an ink spot at the bottom of a glass slab, it appears to be raised by a distance

$$
d=t-\frac{t}{\mu}=t\left(1-\frac{1}{\mu}\right)
$$

\square When the object is situated in rarer medium, the relation between μ_{1} (refractive index of rarer medium) μ_{2} (refractive index of the spherical refracting surface) and R (radius of curvature) with the object and image distances is given by

$$
-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}
$$

- When the object is situated in denser medium, the relation between μ_{1}, μ_{2}, R, u and v can be obtained by interchanging μ_{1} and μ_{2}. In that case, the relation becomes

$$
-\frac{\mu_{2}}{u}+\frac{\mu_{1}}{v}=\frac{\mu_{1}-\mu_{2}}{R} \text { or }-\frac{\mu_{1}}{v}+\frac{\mu_{2}}{u}=\frac{\mu_{2}-\mu_{1}}{R}
$$

- Lens maker's formula

$$
\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
$$

- Thin lens formula

$$
\frac{1}{v}-\frac{1}{v}=\frac{1}{f}
$$

- Linear magnification

$$
m=\frac{\text { size of image }(I)}{\text { size of object }(O)}=\frac{v}{u} .
$$

- Power of a lanc

$$
P=\frac{1}{\text { foall length in metres }}
$$

- Combination of thin lenses in contact

$$
\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}+\ldots
$$

- The total power of the combination is given by

$$
P=P_{1}+P_{2}+P_{3}+\ldots
$$

- The total magnification of the combination is given by

$$
m=m_{1} \times m_{2} \times m_{3} \ldots
$$

- When two thin lenses of focal lengths f_{1} and f_{2} are placed coaxially and separated by a distance d, the focal length of a combination is given by

$$
\frac{1}{\bar{F}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}} .
$$

- In terms of power $P=P_{1}+P_{2}-d P_{1} P_{2}$.
(Light, Reflection and Refraction, Class 10)
- If I_{1}, I_{2} are the two sizes of image of the object of size O, then $O=\sqrt{I_{1} I_{2}}$
- The refractive index of the material of the prism is

$$
\mu=\frac{\sin \left[\frac{\left(A+\delta_{m}\right)}{2}\right]}{\sin \left(\frac{A}{2}\right)}
$$

where A is the angle of prism and δ_{m} is the angle of minimum deviation.

- Mean deviation $\delta=\frac{\delta_{V}+\delta_{R}}{2}$.
- Dispersive power,

$$
\begin{aligned}
& \omega=\frac{\operatorname{angular} \text { dispersion }\left(\delta_{V}-\delta_{R}\right)}{\text { mean deviation }(\delta)} \\
& \omega=\frac{\mu_{V}-\mu_{R}}{(\mu-1)}
\end{aligned}
$$

where $\mu=\frac{\mu_{V}+\mu_{R}}{2}=$ mean refractive index

- Magnifying power, of simple microscope

$$
\begin{aligned}
M & =\frac{\text { angle subtended by image at the eye }}{\text { angle subtended by the object at the eye }} \\
& =\frac{\tan \beta}{\tan \alpha}=\frac{\beta}{\alpha}
\end{aligned}
$$

- When the image is formed at infinity (far point),

$$
M=\frac{D}{f}
$$

- When the image is formed at the least distance of distinct vision D (near point),

$$
M=1+\frac{D}{f}
$$

- Magnifying power of a compound microscope

$$
M=m_{o} \times m_{e}
$$

- When the final image is formed at infinity (normal adjustment),

$$
M=\frac{v_{o}}{u_{o}}\left(\frac{D}{f_{e}}\right)
$$

Length of tube, $L=v_{o}+f_{e}$

- When the final image is formed at least distance of distinct vision,

$$
H_{1}=\frac{v_{*}}{w_{*}}\left(1+\frac{D}{f_{t}}\right)
$$

where u_{o} and v_{o} represent the distance of object and image from the objective lens, f_{e} is the focal length of an eye lens.
Length of the tube, $L=v_{o}+\left(\frac{f_{e} D}{f_{e}+D}\right)$

- Astronomial telescope
magnifying power, $M=\frac{f_{o}}{f_{e}}$
Length of tube, $L=f_{0}+\left(\frac{f_{e} D}{f_{e}+D}\right)$

WAVE OPTICS

- For constructive interference (i.e. formation of bright fringes)
- For $n^{\text {th }}$ bright fringe,

Path difference $=x_{n} \frac{d}{D}=n \lambda$
where $n=0$ for central bright fringe
$n=1$ for first bright fringe,
$n=2$ for second bright fringe and so on
$d=$ distance between two slits
$D=$ distance of slits from the screen
$x_{n}=$ distance of $n^{\text {th }}$ bright fringe from the centre.

$$
\therefore \quad x_{n}=n \lambda \frac{D}{d}
$$

- For destructive interference (i.e. formation of dark fringes).
O For $n^{\text {th }}$ dark fringe,
path difference $=x_{n} \frac{d}{D}=(2 n-1) \frac{\lambda}{2}$
where
$n=1$ for first dark fringe,
$n=2$ for $2^{\text {nd }}$ dark fringe and so on.
$x_{n}=$ distance of $n^{\text {th }}$ dark fringe from the centre
$\therefore \quad x_{n}=(2 n-1) \frac{\lambda}{2} \frac{D}{d}$
- Fringe width, $\beta=\frac{\lambda D}{d}$

ㅁ Angular fringe width, $\theta=\frac{\beta}{D}=\frac{\lambda}{d}$

- If W_{1}, W_{2} are widths of two slits, I_{1}, I_{2} are intensities of light coming from two slits; a, b are the amplitudes of light from these slits, then

$$
\frac{W_{1}}{W_{2}}=\frac{I_{1}}{I_{2}}=\frac{a^{2}}{b^{2}}
$$

$$
\frac{I_{\max }}{I_{\min }}=\frac{(a+b)^{2}}{(a-b)^{2}}
$$

- Fringe visibility $V=\frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}+I_{\text {min }}}$
- When entire apparatus of Young's double slit experiment is immersed in a medium of refractive index μ, then fringe width becomes

$$
\beta^{\prime}=\frac{\lambda^{\prime} D}{d}=\frac{\lambda D}{\mu d}=\frac{\beta}{\mu}
$$

- When a thin transparent plate of thickness t and refractive idnex μ is placed in the path of one of the interfering waves, fringe width remains unaffected but the entire pattern shifts by

$$
\Delta x=(\mu-1) t \frac{D}{d}=(\mu-1) t \frac{\beta}{\lambda}
$$

- Diffraction due to a single slit Width of secondary maxima or minima
where

$$
\beta=\frac{\lambda D}{a}=\frac{\lambda f}{a}
$$

$a=$ width of slit
$D=$ distance of screen from the slit
$f=$ focal length of lens for diffracted light

- Width of central maximum $=\frac{2 \lambda D}{a}=\frac{2 f \lambda}{a}$
- Angular width fringe of central maximum $=\frac{2 \lambda}{a}$.
- Angular fringe width of secondary maxima or $\operatorname{minima}=\frac{\lambda}{a}$
- Fresnel distance, $Z_{F}=\frac{a^{2}}{\lambda}$
- Resolving power of a microscope

$$
\text { Resolving power }=\frac{1}{d}=\frac{2 \mu \sin \theta}{\lambda}
$$

- Resolving power of a telescope

$$
\text { Resolving power }=\frac{1}{d \theta}=\frac{D}{1.22 \lambda}
$$

DUAL NATURE OF RADIATION AND MATTER

- Energy of a photon $E=h v=\frac{h c}{\lambda}$
- Momentum of photon is

$$
p=\frac{E}{c}=\frac{h v}{c}
$$

- The moving mass m of photon is $m=\frac{E}{c^{2}}=\frac{h v}{c^{2}}$.
- Stopping potential

$$
K_{\max }=e V_{0}=\frac{1}{2} m v_{\max }^{2}
$$

- Einstein's photoelectric equation

 If a light of frequency v is incident on a photosensitive material having work function$\left(\phi_{0}\right)$, then maximum kinetic energy of the emitted electron is given as

$$
K_{\max }=h v-\phi_{0}
$$

For $v>v_{0}$ or $e V_{0}=h v-\phi_{0}=h v-h v_{0}$
or $\quad e V_{0}=K_{\max }=h c\left(\frac{1}{\lambda}-\frac{1}{\lambda_{0}}\right)$.

- If the rest mass of a particle is m_{0}, its de Broglie wavelength is given by

$$
\lambda=\frac{h\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}}{m_{0} v}
$$

- In terms of kinetic energy K, de Broglie wavelength is given by $\lambda=\frac{h}{\sqrt{2 m K}}$.
- If a particle of charge q is accelerated through a potential difference V, its de Broglie wavelength
is given by $\lambda=\frac{h}{\sqrt{2 m q V}}$.
For an electron, $\lambda=\left(\frac{150}{V}\right)^{1 / 2} \AA$.
ㅁ For a gas molecule of mass m at temperature T kelvin, its de Broglie wavelength is given by $\lambda=\frac{h}{\sqrt{3 m k T}}$, where k is the Boltzmann constant.

ATOMS

- Rutherford's nuclear model of the atom

$$
N(\theta)=\frac{N_{i} n t Z^{2} e^{4}}{\left(8 \pi \varepsilon_{0}\right)^{2} r^{2} K^{2} \sin ^{4}(\theta / 2)}
$$

The frequency of incident alpha particles scattered by an angle θ or greater

$$
f=\pi n t\left(\frac{Z e^{2}}{4 \pi \varepsilon_{0} K}\right)^{2} \cot ^{2} \frac{\theta}{2}
$$

- The scattering angle θ of the α particle and impact parameter b are related as

$$
b=\frac{Z e^{2} \cot (\theta / 2)}{4 \pi \varepsilon_{0} K}
$$

- Distance of closest approach

$$
r_{0}=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0} K}
$$

- Angular momentum of the electron in a stationary orbit is an integral multiple of $h / 2 \pi$.

$$
\text { i.e., } L=\frac{n h}{2 \pi} \quad \text { or, } m v r=\frac{n h}{2 \pi}
$$

The frequency of a radiation from electrons makes a transition from higher to lower orbit

$$
v=\frac{E_{2}-E_{1}}{h}
$$

- Bohr's formulae
(i) Radius of $n^{\text {th }}$ orbit

$$
y_{\pi}=\frac{4 \pi j_{1} x^{2} h^{2}}{4 \pi^{2} \pi y_{e^{2}}^{2}} ; y_{\pi}=\frac{053 n^{2}}{2} A
$$

(ii) Velocity of electron in the $n^{\text {th }}$ orbit

$$
v_{n}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \pi Z e^{2}}{n h}=\frac{2.2 \times 10^{6} \mathrm{Z}}{n} \mathrm{~m} / \mathrm{s}
$$

(iii) The kinetic energy of the electron in the $n^{\text {th }}$

$$
\begin{aligned}
I_{x}=\frac{1}{4 \varepsilon_{0}} \frac{2 \theta^{2}}{2 n} & =\left(\frac{1}{4 \pi \varepsilon_{d}}\right)^{2} \frac{2 \pi^{2} m^{4} z^{2}}{r^{2} h^{2}} \\
& =\frac{13.6 Z^{2}}{n^{2}} \mathrm{eV} .
\end{aligned}
$$

(iv) The potential energy of electron in $n^{\text {th }}$ orbit

$$
\begin{aligned}
U_{n}=-\frac{1}{4 \pi \varepsilon_{d}} \frac{Z \theta^{2}}{n_{n}} & =-\left(\frac{1}{4 \pi \varepsilon_{d}}\right)^{2} \frac{4 \pi^{2} \mu \theta^{4} z^{2}}{n^{2} k^{2}} \\
& =\frac{-27.2 Z^{2}}{n^{2}} \mathrm{eV} .
\end{aligned}
$$

(v) Total energy of electron in $n^{\text {th }}$ orbit
$E_{\pi}=U_{X}+K_{X}=-\left(\frac{1}{4 \pi \varepsilon_{a}}\right)^{2} \frac{2 \pi^{2} m a^{4} Z^{2}}{n^{2} x^{2}}=-\frac{13.6 Z^{2}}{n^{2}} \mathrm{eV}$.
(vi) Frequency of electron in $n^{\text {th }}$ orbit

$$
v_{n}=\left(\frac{1}{4 \pi \varepsilon_{0}}\right)^{2} \frac{4 \pi^{2} Z^{2} e^{4} m}{n^{3} h^{3}}=\frac{6.62 \times 10^{15} Z^{2}}{n^{3}}
$$

(vii) Wavelength of radiation in the transition from
$n_{2} \rightarrow n_{1}$ is given by

$$
\frac{1}{\lambda}=R Z^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

where R is called Rydberg's constant.

$$
\mathrm{R}=\left(\frac{1}{4 \pi \varepsilon_{d}}\right)^{2} \frac{2 \pi^{2} m a^{4}}{c k^{3}}=1097 \times 10^{7} \mathrm{~m}^{-1}
$$

- Lyman series

Emission spectral lines corresponding to the transition of electron from higher energy levels $\left(n_{2}=2,3, \ldots, \infty\right)$ to first energy level $\left(n_{1}=\right.$ 1) constitute Lyman series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

where $n_{2}=2,3,4, \ldots \ldots ., \infty$

Balmer series
Emission spectral lines corresponding to the transition of electron from higher energy levels $\left(n_{2}=3,4, \ldots . \infty\right)$ to second energy level ($n_{1}=2$) constitute Balmer series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{2^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

where $n_{2}=3,4,5 \ldots, \infty$

- Paschen series

Emission spectral lines corresponding to the transition of electron from higher energy levels $\left(n_{2}=4,5, \ldots . ., \infty\right)$ to third energy level (n_{1} $=3$) constitute Paschen series.

$$
\frac{1}{\lambda}=\frac{1}{R}\left[\frac{1}{3^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

- Brackett series

Emission spectral lines corresponding to the transition of electron from higher energy levels $\left(n_{2}=5,6,7, \ldots \ldots, \infty\right)$ to fourth energy level $\left(n_{1}=4\right)$ constitute Brackett series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{4^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

where $n_{2}=5,6,7 \ldots \ldots, \infty$

- Pfund series

Emission spectral lines corresponding to the transition of electron from higher energy levels $\left(n_{2}=6,7,8, \ldots, \infty\right)$ to fifth energy level ($n_{1}=5$) constitute Pfund series.

$$
\frac{1}{\lambda}=R\left[\frac{1}{5^{2}}-\frac{1}{n_{2}^{2}}\right]
$$

where $n_{2}=6,7$,

$$
, \ldots, \infty
$$

- Number of spectral lines due to transition of electron from $n^{\text {th }}$ orbit to lower orbit is

$$
N=\frac{n(n-1)}{2}
$$

- Ionization energy $=\frac{13.6 Z^{2}}{n^{2}} \mathrm{eV}$.
- Ionization potential $=\frac{13.6 \mathrm{Z}^{2}}{n^{2}}$ volt.
- Energy quantisation

$$
E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}} \text { where } n=1,2,3, \ldots \ldots . .
$$

NUCLEI

- Nuclear radius, $R=R_{0} A^{1 / 3}$
where R_{0} is a constant and A is the mass number
- Nuclear density,

$$
\rho=\frac{\text { mass nuclear }}{\text { volume of nucleus }}
$$

- Mass defect is given by

$$
\Delta m=\left[Z m_{p}+(A-\mathrm{Z}) m_{n}-m_{N}\right]
$$

- The binding energy of nucleus is given by $E_{b}=\Delta m c^{2}=\left[Z m_{p}+(A-Z) m_{n}-m_{N}\right] c^{2}$
$=\left[Z m_{p}+(A-Z) m_{n}-m_{N}\right] \times 931.49 \mathrm{MeV} / \mathrm{u}$.
- The binding energy per nucleon of a nucleus

$$
=E_{b} / A
$$

- Law of radioactive decay

$$
\frac{d N}{d t}=-\lambda N(t) \quad \text { or } \quad N(t)=N_{0} e^{-\lambda t}
$$

- Half-life of a radioactive substance is given by

$$
T_{1 / 2}=\frac{\ln 2}{\lambda}=\frac{0.693}{\lambda}
$$

- Mean life or average life of a radioactive substance is given by

$$
\tau=\frac{1}{\lambda}=\frac{T_{1 / 2}}{0.693}=1.44 T_{1 / 2}
$$

- Activity : $R=-d N / d t$
- Activity law $R(t)=R_{0} e^{-\lambda t}$ where $R_{0}=\lambda N_{0}$ is the decay rate at $t=0$ and $R=N \lambda$.
- Fraction of nuclei left undecayed after n half live is

$$
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{t / T} 1 / 2 \text { or } t=n T_{1 / 2}
$$

- Neutron reproduction factor (K)

$$
=\frac{\text { rate of production of neutrons }}{\text { rate of loss of neutrons }}
$$

SEMICONDUCTOR ELETRONICS, MATERIALS, DEVICES AND S'MPLE CIRCUITS

- Forbidden energy gap or forbidden band

$$
E_{g}=h v=\frac{h v}{\lambda}
$$

- The intrinsic concentration n_{i} varies with temperature T as

$$
n_{i}^{2}=A_{0} T^{3} e^{-E_{g} / k T}
$$

- The conductivity of the semiconductor is given by $\sigma=e\left(n_{e} \mu_{e}+n_{h} \mu_{h}\right)$
where μ_{e} and μ_{h} are the electron and hole mobilities, n_{e} and n_{h} are the electron and hole densities, e is the electronic charge.
- The conductivity of an intrinsic semiconductor is

$$
\sigma_{i}=n_{i} e\left(\mu_{e}+\mu_{h}\right)
$$

- The conductivity of n-type semiconductor is

$$
\sigma_{n}=e N_{d} \mu_{e}
$$

- The conductivity of p-type semiconductor is

$$
\sigma_{p}=e N_{a} \mu_{h}
$$

The current in the junction diode is given by

$$
I=I_{0}\left(e^{e V / k T}-1\right)
$$

where $k=$ Boltzmann constant, $I_{0}=$ reverse saturation current.
In forward biasing, V is positive and low, $e^{e V / k T} \gg 1$, then forward current,

$$
I_{f}=I_{0}\left(e^{e V / k T}\right)
$$

In reverse biasing, V is negative and high $e^{e V / k T} \ll 1$, then reverse current,

$$
I_{r}=-I_{0}
$$

․ Dynamic resistance

$$
r_{d}=\frac{\Delta V}{\Delta I}
$$

Half wave rectifier

- Peak value of current is

$$
I_{m}=\frac{V_{m}}{r_{f}+R_{L}}
$$

where r_{f} is the forward diode resistance, R_{L} is the load resistance and V_{m} is the peak value of the alternating voltage.

- rms value of current is

$$
I_{\mathrm{rms}}=\frac{I_{m}}{2}
$$

\square dc value of current is

$$
I_{\mathrm{dc}}=\frac{I_{m}}{\pi}
$$

Peak inverse voltage is

$$
P . I . V=V_{m}
$$

dc value of voltage is

$$
V_{\mathrm{dc}}=I_{\mathrm{dc}} R_{L}=\frac{I_{m}}{\pi} R_{L}
$$

Full wave rectifier

- Peak value of current is

$$
I_{m}=\frac{V_{m}}{r_{f}+R_{L}}
$$

- dc value of current is

$$
I_{\mathrm{dc}}=\frac{2 I_{m}}{\pi}
$$

- rms value of current is

$$
I_{\mathrm{rms}}=\frac{I_{m}}{\sqrt{2}}
$$

․ Peak inverse voltage is

$$
\text { P.I. } V=2 V_{m}
$$

- dc value of voltage is

$$
V_{\mathrm{dc}}=I_{\mathrm{dc}} R_{L}=\frac{2 I_{m}}{\pi} R_{L}
$$

Ripple frequency

$$
\begin{gathered}
r=\frac{\mathrm{rms} \text { value of the components of wave }}{\text { average or dc value }} \\
r=\sqrt{\left(\frac{I_{\mathrm{rms}}}{I_{\mathrm{dc}}}\right)^{2}-1}
\end{gathered}
$$

- For half wave rectifier,

$$
\begin{aligned}
I_{\mathrm{rms}} & =\frac{I_{m}}{2}, I_{\mathrm{dc}}=\frac{I_{m}}{\pi} \\
r & =\sqrt{\left(\frac{I_{m} / 2}{I_{m} / \pi}\right)^{2}-1} \\
& =1.21
\end{aligned}
$$

- For full wave rectifier,

$$
\begin{aligned}
I_{\mathrm{rms}} & =\frac{I_{m}}{\sqrt{2}}, I_{\mathrm{dc}}=\frac{2 I_{m}}{\pi} \\
r & =\sqrt{\left(\frac{I_{m} / \sqrt{2}}{2 I_{m} / \pi}\right)^{2}-1} \\
& =0.482
\end{aligned}
$$

Rectification efficiency

$$
\eta=\frac{\text { dc power delivered to load }}{\text { ac input power from transformer secondary }}
$$

- For a half wave rectifier,
dc power delivered to the load is

$$
P_{\mathrm{dc}}=I_{\mathrm{dc}}^{2} R_{L}=\left(\frac{I_{m}}{\pi}\right)^{2} R_{L}
$$

Input ac power is

$$
P_{\mathrm{ac}}=I_{\mathrm{rms}}^{2}\left(r_{f}+R_{L}\right)=\left(\frac{I_{m}}{2}\right)^{2}\left(r_{f}+R_{L}\right)
$$

Rectification efficiency

$$
\begin{aligned}
\eta=\frac{P_{\mathrm{dc}}}{P_{\mathrm{ac}}} & =\frac{\left(I_{m} / \pi\right)^{2} R_{L}}{\left(I_{m} / 2\right)^{2}\left(r_{f}+R_{L}\right)} \times 100 \% \\
& =\frac{40.6}{1+r_{f} / R_{L}} \%
\end{aligned}
$$

- For a full wave rectifier,
dc power delivered to the load is

$$
P_{\mathrm{dc}}=I_{\mathrm{dc}}^{2} R_{L}=\left(\frac{2 I_{m}}{\pi}\right)^{2} R_{L}
$$

Input ac power is

$$
P_{\mathrm{ac}}=I_{\mathrm{rms}}^{2}\left(r_{f}+R_{L}\right)=\left(\frac{I_{m}}{\sqrt{2}}\right)^{2}\left(r_{f}+R_{L}\right)
$$

Rectification efficiency

$$
\eta=\frac{P_{\mathrm{dc}}}{P_{\mathrm{ac}}}=\frac{\left(2 I_{m} / \pi\right)^{2} R_{L}}{\left(I_{m} / \sqrt{2}\right)^{2}\left(r_{f}+R_{L}\right)} \times 100 \%=\frac{81.2}{1+r_{f} / R_{L}} \%
$$

$$
\text { If } r_{f} \ll R_{L}
$$

Maximum rectification efficiency, $\eta=81.2 \%$

Form factor

- Form factor $=\frac{I_{\mathrm{rms}}}{I_{\mathrm{dc}}}$
- For half wave rectifier,

$$
I_{\mathrm{rms}}=\frac{I_{m}}{2}, \quad I_{\mathrm{dc}}=\frac{I_{m}}{\pi}
$$

Form factor $=\frac{I_{m} / 2}{I_{m} / \pi}=\frac{\pi}{2}=1.57$

- For full wave rectifier,

$$
I_{\mathrm{rms}}=\frac{I_{m}}{\sqrt{2}}, I_{\mathrm{dc}}=\frac{2 I_{m}}{\pi}
$$

Form factor $=\frac{I_{m} / \sqrt{2}}{2 I_{m} / \pi}=\frac{\pi}{2 \sqrt{2}}=1.11$

Common emitter amplifier

- dc current gain

$$
\beta_{\mathrm{dc}}=\frac{I_{C}}{I_{B}}
$$

- ac current gain

$$
\beta_{\mathrm{ac}}=\frac{\Delta I_{C}}{\Delta I_{B}}
$$

- Voltage gain

$$
A_{v}=\frac{V_{o}}{V_{i}}=-\beta_{\mathrm{ac}} \times \frac{R_{o}}{R_{i}}
$$

- Power gain

$$
A_{p}=\frac{\text { output power }\left(P_{o}\right)}{\text { input power }\left(P_{i}\right)}
$$

- Voltage gain $($ in dB$)=20 \log _{10} \frac{V_{o}}{V_{i}}$

$$
\begin{aligned}
& =20 \log _{10} A_{v} \\
& \text { Power gain (in dB) }=10 \log \frac{P_{o}}{P_{i}}
\end{aligned}
$$

Common base amplifier

de current gain

- ac current gain

$$
\alpha_{\mathrm{dc}}=\frac{I_{C}}{I_{E}}
$$

$$
\alpha_{\mathrm{ac}}=\left(\frac{\Delta I_{C}}{\Delta I_{E}}\right)
$$

- Voltage gain

$$
A_{v}=\frac{V_{o}}{V_{i}}=\alpha_{\mathrm{ac}} \times \frac{R_{o}}{R_{i}}
$$

- Power gain

$$
\begin{aligned}
A_{p}= & \frac{\text { output power }\left(P_{o}\right)}{\text { input power }\left(P_{i}\right)} \\
& =\alpha_{\mathrm{ac}} \times A_{v}
\end{aligned}
$$

- Relationship between α and β

$$
\beta=\frac{\alpha}{1-\alpha} ; \alpha=\frac{\beta}{1+\beta}
$$

Name of gate	Symbol	Truth Table	Boolean expression	
OR	$A-Y$	A	B	Y
0	0	0	$Y=A+B$	
	B	0 1 1		
		1	0	1
1	1	1		

AND		$\begin{array}{lll} A & B & Y \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$Y=A \cdot B$
NOT	$A-\mathrm{B}$	A Y 0 1 1 0	$Y=\bar{A}$
NAND		$\begin{array}{lll} A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	$Y=\overline{A \cdot B}$
NOR		$\begin{array}{lll} A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}$	$Y=\overline{A+B}$
XOR (also called exclusive OR gate)		$\begin{array}{lll} A & B & Y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	$Y=A \cdot \bar{B}+\bar{A} \cdot B$
XNOR		$\begin{array}{lll} A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$Y=A \cdot B+\bar{A} \cdot \bar{B}$

COMMUNICATION SYSTEM

- Critical frequency, $v_{c}=g\left(N_{\max }\right)^{1 / 2}$
where $N_{\text {max }}$ the maximum number density of electron $/ \mathrm{m}^{3}$.
- Maximum usable frequency

$$
\text { MUF }=\frac{v_{c}}{\cos i}=v_{c} \sec i
$$

- The skip distance is given by

$$
D_{\text {skip }}=2 h \sqrt{\left(\frac{v_{0}}{v_{c}}\right)^{2}-1}
$$

where h is the height of reflecting layer of atmosphere, $v_{0}=$ maximum frequency of electromagnetic waves used and v_{c} is the critical frequency for that layer.

- If h is the height of the transmitting antenna, then the distance to the horizon is given by

$$
\dot{d}=\sqrt{2 h R}
$$

where R is the radius of the earth.
For TV signal,
area covered $=\pi d^{2}=\pi 2 h R$
Population covered $=$ population density \times area covered

- The maximum line of sight distance d_{M} between two antennas having heights h_{T} and h_{R} above the earth is given by

$$
\sigma_{i s}=\sqrt{2 R h_{5}}+\sqrt{2 R h_{2}}
$$

where h_{T} is the height of the transmitting antenna and h_{R} is the height of the receiving antenna and R is the radius of the earth.

- The amplitude modulated signal contains three frequencies, viz. $v_{c}, v_{c}+v_{m}$ and $v_{c}-v_{m}$. The first frequency is the carrier frequency Thus, the process of modulation does not change the original carrier frequency but produces two new frequencies $\left(v_{c}+v_{m}\right)$ and $\left(v_{c}-v_{m}\right)$ which are known as sideband frequencies.

$$
v_{S B}=v_{c} \pm v_{m}
$$

- Frequency of lower side band

$$
v_{L S B}=v_{c}-v_{m}
$$

- Frequency of higher side band

$$
v_{U S B}=v_{c}+v_{m}
$$

Bandwidth of AM signal $=v_{U S B}-v_{L S B}=2 v_{m}$

- Average power per cvcle in the carrier wave is

$$
\mathrm{P}_{4}=\frac{A_{i}^{2}}{2 R}
$$

where R is the resistance
\square Total power per cycle in the modulated wave

$$
P_{t}=P_{c}\left(1+\frac{\mu^{2}}{2}\right)
$$

- If I_{t} is rms value of total modulated current and I_{c} is the rms value of unmodulated carrier current, then

$$
\frac{I_{t}}{I_{c}}=\sqrt{1+\frac{\mu^{2}}{2}}
$$

- For detection of AM wave, the essential condition is

$$
\frac{1}{v_{s}} \ll \mathrm{RC}
$$

- The instantaneous frequency of the frequency modulated wave is

$$
v(t)=v_{c}+k \frac{V_{m}}{2 \pi} \sin \omega_{m} t
$$

where k is the proportionality constant.

- The maximum and minimum values of the frequency is

$$
v_{\max }=v_{c}+\frac{k V_{m}}{2 \pi} \text { and } v_{\min }=v_{c}-\frac{k V_{m}}{2 \pi}
$$

- Frequency deviation

$$
\delta=v_{\max }-v_{c}=v_{c}-v_{\min }=\frac{k V_{m}}{2 \pi}
$$

Only Practice From The Best, Makes You The Best!

SHOP NOW!

Buy MTG's ScoreMore 21 Sample Papers \&
 Score Your Best!

