#### **Engineering Hydrology**

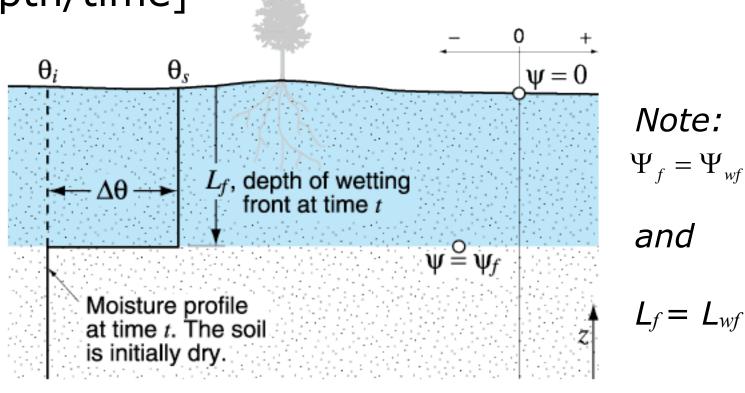
# Class 9 Infiltration: Horton Method

If you've not viewed it already, pause this webcast and open up the video under Lecture 8, a studentcreated video that illustrates a demonstration of infiltration. The student authors are Cui, Dearinger, Lyons and Martin.

## Objectives

 Apply the Horton Method to estimate wetting front depth over time

estimate aggregate amount of infiltration


## Objectives

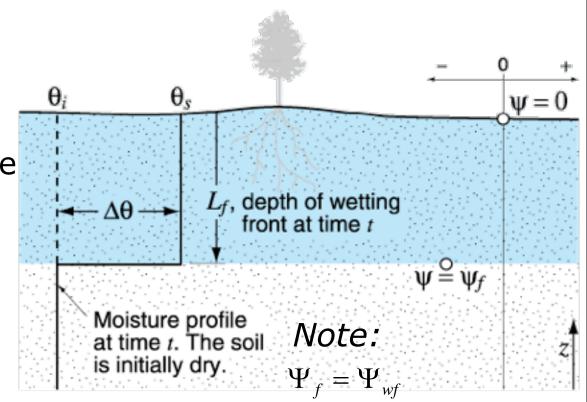
 Apply the Horton Method to estimate wetting front depth over time

estimate aggregate amount of infiltration

## Conditions of infiltration

P(t): precip event (rainfall and snow)
 [depth/time]




## Conditions of infiltration

P(t): precip event (rainfall and snow) [depth/time]

Evaporation

Video

- f(t): infiltration rate [depth/time]
- *H*(t): the depth of ponding
- L(t): depth of wetting front
- Infiltration occurs under ponded or non-ponded conditions



and

$$L_f = L_{wf}$$

covered or under low evaporative demand Evaporation

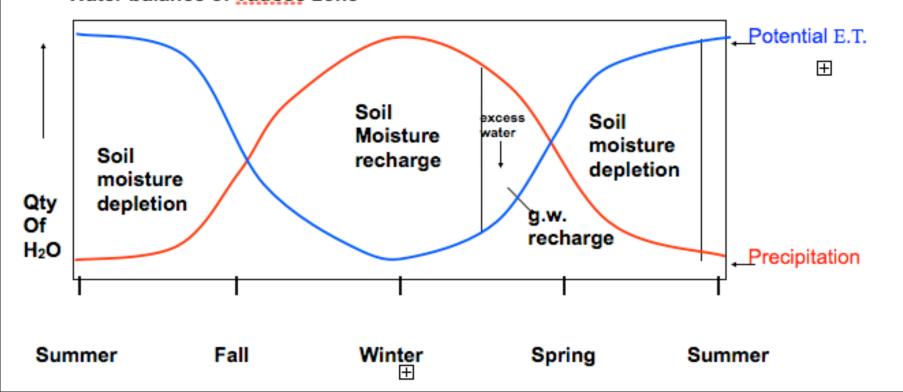
## Conditions of infiltration

(1) No ponding (water has not accumulated on the soil surface)

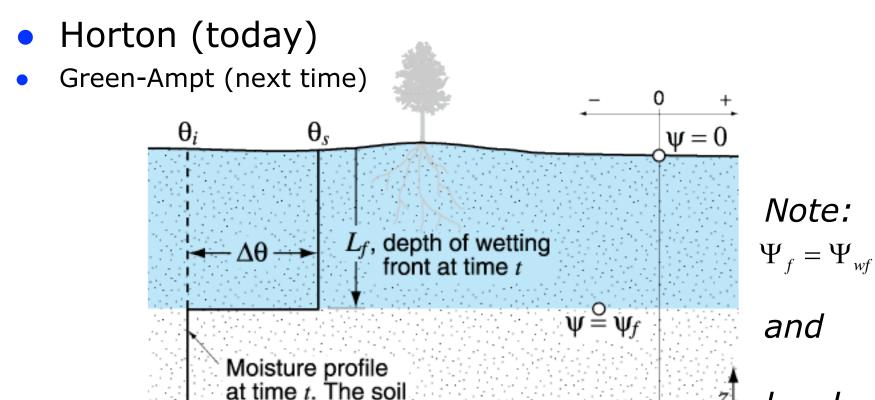
$$H(t)=0, f(t)=P(t)$$

Infiltration rate is equal to precip rate

(2) Surface ponding H(t)>0,  $f(t)=f_{max}(t)< P(t)$ 


(3) Surface ponding (Overland flow) H(t)>0, f(t)=0 Infiltration Under Various Climatic Regimes

#### Humid climate:

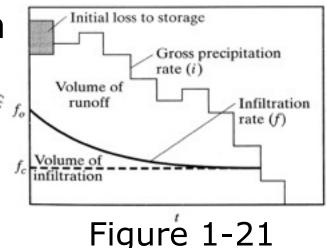

- precipitation in all seasons
- virtually all non-discharge areas are ground water recharge areas
- recharge occurs at all seasons

Humid to semi-humid climate – winter precipitation

#### Water balance of vadose zone



#### Methods we will examine:




Another approach: Phi-index method (reading material to be provided)

is initially dry.

## Horton method (1940)

- Maximum possible infiltration rates (f)
- Infiltration rate decreases with time after the onset of rainfall and ultimately reaches a constant rate ( $f_c$ )



 If at any time the rate of rainfall exceeds the infiltration capacity, excess water will pond on the soil surface (then overland flow)

**Horton Method** 

Overview

## Horton method (1940)

**Evaporation** 

$$f = f_c + (f_o - f_c)e^{-kt}$$

f: infiltration rate {length/time}

f<sub>c</sub>: final infiltration rate

 $f_0$ : initial infiltration rate

k: decay parameter (a soil property)

 $f_c$  is equivalent to saturated hydraulic conductivity 11

## Horton method (1940)

$$f = f_c + (f_o - f_c)e^{-kt}$$

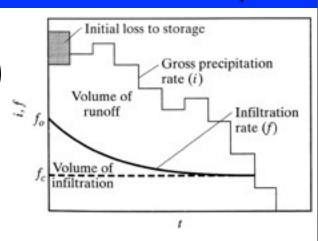
**Table 1-6.** Typical Values of the Parameters of  $f_0$ ,  $f_c$ , and k of the Horton Model

| Soil Type                | f <sub>c</sub><br>(in./hr) | f <sub>o</sub><br>(in./hr) | k<br>(hr <sup>-1</sup> ) |
|--------------------------|----------------------------|----------------------------|--------------------------|
| Alphalpha loamy sand     | 1.40                       | 19.00                      | 38.29                    |
| Carnegie sandy loam      | 1.77                       | 14.77                      | 19.64                    |
| Dothan loamy sand        | 2.63                       | 3.47                       | 1.40                     |
| Fuquay pebbly loamy sand | 2.42                       | 6.24                       | 4.70                     |
| Leefield loamy sand      | 1.73                       | 11.34                      | 7.70                     |
| Tooup sand               | 1.80                       | 23.01                      | 32.71                    |

After Rawls et al., 1976.

Evaporation

Video


Evaporation

Video

# Horton method (1940)

#### Infiltration rate

$$f = f_c + (f_o - f_c)e^{-kt}$$

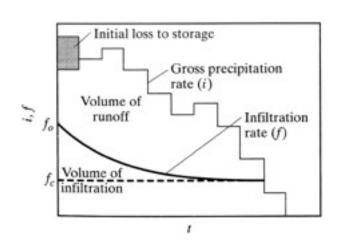


### Cumulative infiltration volume (F(t))

$$F(t) = \int f(t) dt$$

(integrate above equation)

$$F(t) = f_c t + \left| \frac{f_0 - f_c}{k} \left( 1 - e^{-kt} \right) \right|$$


## Assumptions

Objectives

Evaporation

Video

- Assumes ponding conditions (P(t)>0)
- Infiltration rate decrease as a function of time
- After a certain period, infiltration rate becomes constant (at this condition,  $f_c = K_{sat}$  - the value of conductivity for saturated flow)

