CLASS IX (2019-20)
 MATHEMATICS (041)
 SAMPLE PAPER-9

Time : 3 Hours

General Instructions :

(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

1. Four rational numbers between 3 and 4 are:
(a) $\frac{3}{5}, \frac{4}{5}, 1, \frac{6}{5}$
(b) $\frac{13}{5}, \frac{14}{5}, \frac{16}{5}, \frac{17}{5}$
(c) $3.1,3.2,4.1,4.2$
(d) $3.1,3.2,3.8,3.9$

Ans: (d) 3.1, 3.2, 3.8, 3.9
To find four rational numbers between 3 and 4 .
$\frac{3 \times 5}{5}$ and $\frac{4 \times 5}{5}$
$\frac{15}{5}$ and $\frac{20}{5}$
Between $\frac{15}{5}$ and $\frac{20}{5}$ lies $\frac{16}{5}, \frac{17}{5}, \frac{18}{5}, \frac{19}{5}$
Now, from the given options (a) and (b) does not contain rational number between 3 and 5 .
(c) has 4.1 and 4.2 that does not lie between 3 and 4 .
2. In the method of factorisation of an algebraic expression, which of the following statement is false?
[1]
(a) Taking out a common factor from two or more terms.
(b) Taking out a common factor from a group of terms.
(c) Using remainder theorem.
(d) Using standard identities.

Ans: (c) Using remainder theorem.
Remainder theorem is not used for factorisation of an algebraic expression.
3. If the coordinates of the point P are $(3,-5)$ then the perpendicular distance of P from the y-axis.
(a) 4
(b) 5
(c) 3
(d) 2

Ans: (c) 3
Since, the abscissa is 3 .

Perpendicular distance from the y-axis is 3 units.
4. The graph of $y=6$ is a line
(a) parallel to x-axis at a distance 6 units from the origin
(b) parallel to y-axis at a distance 6 units from the origin
(c) making an intercept 6 on the x-axis
(d) making an intercept 6 on both the axes

Ans: (a) parallel to x-axis at a distance 6 units from the origin
5. For every line l and for every point P (not on l), there does not exist a unique line through P
(a) Which is not parallel to l.
(b) Which is perpendicular to l.
(c) Which is coincident with l.
(d) None of these

Ans: (a) Which is not parallel to l.
There can be infinite lines that can be drawn through P not $\|$ to l but there exist a unique line through P which is parallel to l.

6. In figure, if $l\|m, m\| n$, then $x=$

(a) 130°
(b) 140°
(c) 120°
(d) 154°

Ans: (a) 130°
Since $l \| m$ and $m \| n$, then $l \| n$

$$
\begin{aligned}
x+50^{\circ} & =180^{\circ} \quad \text { [Co-interior Angles] } \\
x & =130^{\circ}
\end{aligned}
$$

7. In the given figure if $B E=C F$, then
[1]

(a) $\triangle A B E \cong \triangle A C F$
(b) $\triangle A B E \cong \triangle A F C$
(c) $\triangle A B E \cong \triangle C A F$
(d) $\triangle A E B \cong \triangle A F C$

Ans: (a) $\triangle A B E \cong \triangle A C F$
In triangle $A B E$ and $A C F$,

$$
\begin{aligned}
B E & =C F \\
\angle C F A & =\angle B E A=90^{\circ}
\end{aligned}
$$

$\angle A$ is common.
Hence, $\quad \triangle A B E \cong \triangle A C F$
[AAS Criterion]
8. The angles of a quadrilateral are in the ratio $1: 2: 3$
: 4. The largest angle is
(a) 36°
(b) 72°
(c) 108°
(d) 144°

Ans: (d) 144°
Let the angles be $x, 2 x, 3 x$ and $4 x$.

$$
\begin{aligned}
x+2 x+3 x+4 x & =360^{\circ} \\
10 x & =360^{\circ} \\
x & =36^{\circ} \\
\text { largest angle } & =4 x \\
& =4 \times 36^{\circ} \\
& =144^{\circ}
\end{aligned}
$$

9. Which of the following figures lie on the same base and between the same parallels?
(a)

(b)

(c)

(d)

Ans: (b)
Common base $=D C$ and two parallels are $A B$ and $D C$.

Thus, $D E D C$ and parallelogram $A B C D$ are on same base $D C$ and between same parallel lines $A B$ and $D C$.
10. Diagonals of a cyclic quadrilateral are the diameters of that circle, then quadrilateral is a
(a) parallelogram
(b) square
(c) rectangle
(d) trapezium

Ans: (c) rectangle

(Q.11-Q.15) Fill in the blanks :

11. The construction of a triangle $A B C$, given that $B C=6 \mathrm{~cm}, \angle B=45^{\circ}$ is not possible when difference of $A B$ and $A C$ is equal to \qquad cm
Ans : 6.9 cm
It is not possible to construct triangle whose difference of two side is more than the third side.
12. If the perimeter of an equilateral triangle is 90 m , then its area is \qquad m^{2}.
Ans : $225 \sqrt{3} \mathrm{~m}^{2}$
Let a be the side of given triangle.
Given,

$$
\begin{aligned}
3 a & =90 \\
a & =30 \mathrm{~m} \\
S & =\frac{90}{2} \\
& =45 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of triangle }= & \sqrt{45(45-30)(45-30)(45-30)} \\
& =\sqrt{45 \times 15 \times 15 \times 15} \\
& =15 \times 15 \sqrt{3} \\
= & 225 \sqrt{3} \mathrm{~m}^{2} \\
& \quad \text { or }
\end{aligned}
$$

If base of a triangle is doubled then its area will be
\qquad times of original area.

Ans : two

13. Volume of a cylinder is three times the volume of a
\qquad on the same base and of the same height. [1]
Ans : cone
14. Width of the class-interval is called \qquad of class interval.
Ans : size
15. Probability is a measure of \qquad
Ans: Uncertainty

(Q.16-Q.20) Answer the following :

16. Find a rational number between -5 and -6 .

SOLUTION :
Rational number $=\frac{-5+(-6)}{2}=\frac{-5-6}{2}=\frac{-11}{2}$
17. Find the zero of a polynomial $2 x+4$

SOLUTION :
Given polynomial is

$$
\begin{aligned}
p(x) & =2 x+4 \\
p(x) & =0 \\
2 x+4 & =0 \\
2 x & =-4 \\
x & =\frac{-4}{2}=-2 \\
x & =-2
\end{aligned}
$$

On putting
We get

Hence,
is the zero of the polynomial $2 x+4$
18. Find the image of point $(-4,6)$ under origin.

SOLUTION :

If origin is taken as mirror, then signs of both coordinates will be changed.
So, image of point $(-4,6)$ under origin is $(-4,6)$
19. One side of an equilateral triangle is 4 cm Find its area.

SOLUTION:

$$
\text { Area of equilateral triangle }=\frac{\sqrt{3}}{4}(a)^{2}=4 \sqrt{3} \mathrm{~cm}^{2}
$$

20. Is it correct to say that in a histogram, the area of each rectangle is proportional to the class size of the corresponding class interval? If not, correct the statement.

SOLUTION :

It is not correct, because in a histogram, the area of each rectangle is proportional to the frequency of its class.

Section B

21. Find the value of $x, 2^{7 x} \div 2^{2 x}=\sqrt[5]{2^{15}}$.

SOLUTION :
We have, $2^{7 x} \div 2^{2 x}=\sqrt[5]{2^{15}}$

$$
\begin{aligned}
\Rightarrow \quad(2)^{7 x-2 x} & =\sqrt[5]{2^{15}} \\
2^{5 x} & =2^{15 \times \frac{1}{5}} \\
& =2^{3}
\end{aligned}
$$

On comparing the power of 2 from both sides, we get

$$
\begin{aligned}
\Rightarrow \quad 5 x & =3 \\
x & =\frac{3}{5}
\end{aligned}
$$

or
If $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, then find the value of x^{2}.

SOLUTION :

$$
\begin{aligned}
& \text { We have, } \\
& x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \\
& \text { Then, } \\
& x^{2}=\left(\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\right)^{2} \\
& =\frac{3+2+2 \sqrt{6}}{3+2-2 \sqrt{6}} \\
& =\frac{5+2 \sqrt{6}}{5-2 \sqrt{6}} \times \frac{5+2 \sqrt{6}}{5+2 \sqrt{6}} \\
& =\frac{(5+2 \sqrt{6})^{2}}{25-24} \\
& =\frac{25+24+20 \sqrt{6}}{1} \\
& \Rightarrow \quad x^{2}=49+20 \sqrt{6}
\end{aligned}
$$

22. Write linear equation such that each point on its graph has ordinate 3 times its abscissa.

SOLUTION :

Let the abscissa of the point be x and the ordinate of the point be y. According to the question,

$$
y=3 x
$$

when $x=1, \quad y=3 \times 1=3$
when $x=2, \quad y=3 \times 2=6$
when $x=3, \quad y=3 \times 3=9$
Thus, we find three points $A(1,3), B(2,6)$ and $C(3,9)$. Now, we can see that any point on the line joining these points has an ordinate 3 times its abscissa.
23. In which quadrant does the given point lie?
(i) $\quad A(4,-3)$
(ii) $B(-2,5)$
(iii) $C(-3,-2)$
(iv) $D(2,4)$

SOLUTION :
(i) Point $A(4,-3)$ is of the type $(+,-)$.

So, it lies in the IV quadrant.
(ii) Point $B(-2,5)$ is of the type $(-,+)$. So, it lies in the II quadrant.
(iii) Point $C(-3,-2)$ is of the type $(-,-)$. So, it lies in the III quadrant.
(iv) Point $D(2,4)$ is of the type $(+,+)$. So, it lies in the I quadrant.
24. In the given figure, find the value of x.

SOLUTION :

In $\triangle A B C$, we have

$$
\angle B A C+\angle A B C+\angle A C B=180^{\circ}
$$

$$
\Rightarrow \quad \angle A C B=105^{\circ}
$$

Also, $\quad \angle A C B+\angle A C D=180^{\circ}$
[By linear pair axiom]

$$
\Rightarrow \quad \angle A C D=75^{\circ}
$$

$$
\text { Now, } \quad \begin{aligned}
& x=\angle M C D+\angle C D M \\
& x=75^{\circ}+20^{\circ}=95^{\circ}
\end{aligned}
$$

25. In a $\triangle A B C$ if $A B=3 \mathrm{~cm}, A C=3 \mathrm{~cm}$ and $\angle A=50^{\circ}$, then find $\angle B$.

SOLUTION :

Given, in $\triangle A B C$,

$$
\begin{array}{lc}
& A B=A C=3 \mathrm{~cm} \\
\therefore & \angle C=\angle B \\
\text { But } & \angle A+\angle B+\angle C=180^{\circ} \\
\Rightarrow & 50^{\circ}+\angle B+\angle B=180^{\circ} \\
& 2 \angle B=130^{\circ} \\
\Rightarrow & \angle B=\frac{130^{\circ}}{2}=65^{\circ}
\end{array}
$$

or
In a triangle $A B C, \angle B=45^{\circ}, \angle C=55^{\circ}$ and bisector of $\angle A$ meets $B C$ at a point D. Find $\angle A D B$ and $\angle A D C$.

SOLUTION:

$$
\angle B=45^{\circ}, \quad \angle C=55^{\circ}
$$

[Given]
In $\triangle A B C$,

$$
\begin{aligned}
\Rightarrow \quad \angle A C+\angle A B C+\angle A C B & =180^{\circ} \\
\angle B A C+45^{\circ}+55^{\circ} & =180^{\circ} \\
\angle B A C & =80^{\circ} \\
\frac{1}{2} \angle B A C & =40^{\circ}
\end{aligned}
$$

Now, in $\triangle A B D$,

$$
\angle A D B=180^{\circ}-\left(45^{\circ}+40^{\circ}\right)=95^{\circ}
$$

26. A cuboidal water tank is 8 m long, 6 m wide and 3 m deep. How many litres of water can it hold ?

SOLUTION :

Given, the cuboidal water tank have :

$$
\text { length }=8 \mathrm{~m}
$$

$$
\text { breadth }=6 \mathrm{~m}
$$

and \quad height $=3 \mathrm{~m}$

$$
\begin{aligned}
\text { Volume of tank } & =\text { Capacity of the tank } \\
& =\text { Length } \times \text { Breadth } \times \text { Height } \\
& =8 \mathrm{~m} \times 6 \mathrm{~m} \times 3 \mathrm{~m} \\
& =144 \mathrm{~m}^{3}
\end{aligned}
$$

Quantity of water which the tank can hold

$$
\begin{aligned}
& =144 \times 1000 \mathrm{~L} \\
& \quad\left[\because 1 \mathrm{~m}^{3}=1000 \mathrm{~L}\right] \\
& =144000 \mathrm{~L}
\end{aligned}
$$

or
The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm . How many litres of water can it hold ? $\left(1000 \mathrm{~cm}^{3}=1 l\right)$

SOLUTION:

$$
\text { Given, Height, } \begin{aligned}
h & =25 \mathrm{~cm} \\
2 \pi r & =132 \mathrm{~cm} \\
2 \pi r & =132 \\
\Rightarrow \quad 2 \times \frac{22}{7} \times r & =132 \\
r & =\frac{132 \times 7}{2 \times 22}=21 \mathrm{~cm}
\end{aligned}
$$

Volume of the cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 21 \times 21 \times 25 \\
& =34650 \mathrm{~cm}^{3} \\
& =\frac{34650}{1000}=34.65 \text { litres }
\end{aligned}
$$

Section C

27. If $x-y=5$ and $x y=84$, find the value of $x^{3}-y^{3}$. [3] SOLUTION :

$$
\begin{aligned}
x^{3}-y^{3} & =(x-y)\left(x^{2}+y^{2}+x y\right) \\
& =(x-y)\left[(x-y)^{2}+2 x y+x y\right] \\
& =(x-y)\left[(x-y)^{2}+3 x y\right] \\
& =5\left[(5)^{2}+3 \times 84\right] \\
& =5[25+252] \\
& =5 \times 277=1385
\end{aligned}
$$

or
If $2 x+3 y=12$ and $x y=6$, find the value of $8 x^{3}+27 y^{3}$

SOLUTION :

We know that

$$
\begin{aligned}
(x+y)^{3} & =x^{3}+y^{3}+3 x y(x+y) \\
\Rightarrow \quad x^{3}+y^{3} & =(x+y)^{3}-3 x y(x+y) \\
\text { Now, } \quad 8 x^{3}+27 y^{3} & =(2 x)^{3}+(3 y)^{3} \\
& =(2 x+3 y)^{3}-3(2 x)(3 y)(2 x+3 y) \\
& =12^{3}-18 \times 6 \times 12
\end{aligned}
$$

$$
=1728-1296=432
$$

Hence, $8 x^{3}+27 y^{3}=432$.
28. If a line is drawn parallel to base of isosceles triangle to intersect its equal sides, then prove that quadrilateral so formed is cyclic.

SOLUTION :

Given : $A B C$ is an isosceles triangle in which $A B=A C$ and $E D \| B C$.
To prove : $B C D E$ is a cyclic quadrilateral.
Proof: In $\triangle A B C, A C=A B$

$$
\begin{array}{lll}
\therefore & \angle B & =\angle C \\
\text { or } & & \angle 2
\end{array}
$$

$[\because$ Angles opposite to equal sides of an triangle is equal]
$\because E D \| B C$
$\begin{array}{rlr}\therefore & \angle 1+\angle 2 & =180^{\circ}\end{array} \quad$ [Co-interior angles]

$$
\angle B E D+\angle B C D=180^{\circ}[\text { Co-interior angles }] \ldots \text { (1) }
$$

Also, $\quad \angle 3+\angle 4=180^{\circ}$

$$
\angle 2+\angle 4=180^{\circ} \quad[\because \angle 3=\angle 2]
$$

$$
\begin{equation*}
\angle E B C+\angle E D C=180^{\circ} \tag{2}
\end{equation*}
$$

From eqs. (1) and (2), we get quadrilateral $B C D E$ is cyclic.

Hence proved.
29. The perimeter of an isosceles triangle is 32 cm and its base is 12 cm . One of its equal sides forms the diagonal of a parallelogram. Find the area of a parallelogram. [3]

SOLUTION :

Let $\triangle A B C$ be an isosceles triangle with base $B C=12 \mathrm{~cm}$, perimeter $=32 \mathrm{~cm}$ and $A C$ is a diagonal of a parallelogram $A B C D$. Draw $A M \perp B C$.

So,

$$
B M=C M=\frac{12}{2}=6 \mathrm{~cm}
$$

Also, $\quad A B=A C=\frac{32-12}{2}=10 \mathrm{~cm}$
and

$$
\begin{aligned}
A M & =\sqrt{A C^{2}-C M^{2}} \\
& =\sqrt{10^{2}-6^{2}}=\sqrt{100-36} \\
& =\sqrt{64}=8 \mathrm{~cm}
\end{aligned}
$$

\therefore Area of parallelogram $A B C D$

$$
\begin{aligned}
& =A M \times B C \\
& =8 \times 12=96 \mathrm{~cm}^{2}
\end{aligned}
$$

or

D and E are the mid-points of $B C$ and $A D$ respectively of $\triangle A B C$. If area of $\triangle A B C=20 \mathrm{~cm}^{2}$, find area of $\triangle E B D$.

SOLUTION :

Given, D is the mid-point of $B C$.
$\therefore A D$ is the median of the $\triangle A B C$.
$\Rightarrow \quad \operatorname{ar}(\triangle A B D)=\frac{1}{2} \operatorname{ar}(\triangle A B C)$
$[\because$ Median of a triangle divides it into two triangles of equal areas]

Also, $B E$ is the median of $\triangle A B D$
So, $\quad \operatorname{ar}(\triangle E B D)=\frac{1}{2} \operatorname{ar}(\triangle A B D)$

$$
=\frac{1}{2} \times 10=5 \mathrm{~cm}^{2}
$$

30. In the given figure, $D E \| B C$ and $M F \| A B$. Find :
[3]
(i) $\angle A D E+\angle M E N$
(ii) $\angle B D E$
(iii) $\angle B L E$

SOLUTION :

In the given figure, $D E \| B C$ and $A B$ is a transversal.
Then

$$
\angle A D E=\angle A B C=40^{\circ}
$$

$[\because$ Corresponding angles are equal]
Also, $A B \| M F$ and $D E$ is a transversal.

Then $\quad \angle M E N=\angle A D E$
$\Rightarrow \quad \angle M E N=40^{\circ}$
(i) $\angle A D E+\angle M E N=40^{\circ}+40^{\circ}=80^{\circ}$
(ii)

$$
\begin{aligned}
\angle B D E & =180^{\circ}-\angle A D E \\
& =180^{\circ}-40^{\circ} \\
& =140^{\circ}
\end{aligned}
$$

$[\because A B$ is a line and $D E$ is a ray standing on it, so $\angle A D E+\angle B D E=180^{\circ}$]
(iii)

$$
\begin{aligned}
\angle D E L & =\angle M E N \\
& =40^{\circ}
\end{aligned}
$$

[Vertically opposite angles]
Now, $D E \| B C$ and $M F$ is a transversal.
$\therefore \angle D E L+\angle B L E=180^{\circ}$
$[\because$ Pair of interior angles on the same side of the transversal are supplementary].

$$
\begin{aligned}
\Rightarrow \quad 40^{\circ}+\angle B L E & =180^{\circ} \\
\angle B L E & =180^{\circ}-40^{\circ}=140^{\circ}
\end{aligned}
$$

31. In figure, $A B=C D$. Prove that $B E=D E$ and $A E=C E$, where E is the point of intersection of $A D$ and $B C$.

SOLUTION :

Given : In figure, $A B=C D . E$ is the point of intersection of $A D$ and $B C$.
To prove : $B E=D E$ and $A E=C E$
Proof: In $\triangle E A B$ and $\triangle E C D$,

$$
\begin{array}{rlr}
A B & =C D & \text { [Given] } \\
\angle B & =\angle D & \text { [Angles in the same segment] } \\
\angle A & =\angle C & \text { [Angles in the same segment] } \\
\therefore \quad \triangle E A B & \cong \Delta E C D & \text { [By ASA] } \\
B E & =D E & {[\text { By CPCT] }} \\
\text { and } \quad A E & =C E & {[\text { By CPCT] }}
\end{array}
$$

32. Construct a triangle $A B C$ in which $B C=7 \mathrm{~cm}$, $\angle B=75^{\circ}$ and $A B+A C=13 \mathrm{~cm}$.

SOLUTION :

Steps of Construction :
(i) Draw a line segment $B C=7 \mathrm{~cm}$.
(ii) At B, draw $\angle C B X=75^{\circ}$.
(iii) Cut a line segment $B D=13 \mathrm{~cm}$ from $B X$.
(iv) Join $D C$.
(v) Draw the perpendicular bisector $L M$ of $C D$, which intersects $B D$ at A.
(vi) Join $A C$. Then $A B C$ is the required triangle.

33. The volume of a cylinder is $448 \pi \mathrm{~cm}^{3}$ and height is 7 cm . Find its lateral surface area and total surface area.

SOLUTION :

Let the radius of the base and height of the cylinder be $r \mathrm{~cm}$ and $h \mathrm{~cm}$ respectively.
Then,

$$
h=7 \mathrm{~cm}
$$

$$
\text { Volume }=448 \pi \mathrm{~cm}^{3}
$$

$$
\begin{array}{rlrl}
\Rightarrow & \pi r^{2} h & =448 \pi \\
\pi \times r^{2} \times 7 & =448 \pi \\
r^{2} & =64 \\
\Rightarrow & r & =8 \mathrm{~cm}
\end{array}
$$

\therefore Lateral surface area of cylinder

$$
\begin{aligned}
& =2 \pi r h=2 \times \frac{22}{7} \times 8 \times 7 \\
& =352 \mathrm{~cm}^{2}
\end{aligned}
$$

Total surface area of cylinder

$$
\begin{aligned}
& =\left(2 \pi r h+2 \pi r^{2}\right)=2 \pi r(r+h) \\
& =2 \times \frac{22}{7} \times 8(8+7) \\
& =\frac{5280}{7}=754.28 \mathrm{~cm}^{2}
\end{aligned}
$$

or
The largest sphere is carved out of a cube of side 7 cm . Find the volume of the sphere.

SOLUTION :

$$
\begin{aligned}
\text { Side of cube } & =7 \mathrm{~cm} \\
\text { Diameter of sphere } & =\text { Side of cube }=7 \mathrm{~cm} \\
\text { Radius of sphere } & =r=\frac{7}{2} \\
\text { Volume of sphere } & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(\frac{7}{2}\right)^{3} \\
& =\frac{4}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2} \\
& =179.67 \mathrm{~cm}^{3}
\end{aligned}
$$

34. Probability of getting a blue ball is $\frac{2}{3}$, from a bag containing 6 blue and 3 red balls. 12 red balls are being added in the bag, then find the probability of getting a blue ball.

SOLUTION :

Given, number of blue balls in a bag $=6$
Number of red balls in a bag $=3$

Then, total number of balls in a bag $=3$
After adding 12 red balls,
Total number of balls became $=9+12=21$
Number of blue balls $=6$

$$
\begin{aligned}
P(\text { getting a blue ball }) & =\frac{\text { Number of blue balls }}{\text { Total number of balls }} \\
& =\frac{6}{21}=\frac{2}{7}
\end{aligned}
$$

Section D

35. If $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+b \sqrt{7}$, find the values of a and b.

SOLUTION :

We have,

$$
\begin{aligned}
& \quad \frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+b \sqrt{7} \\
& \Rightarrow \frac{(\sqrt{7}-1)(\sqrt{7}-1)-(\sqrt{7}+1)(\sqrt{7}+1)}{(\sqrt{7}+1)(\sqrt{7}-1)}=a+b \sqrt{7} \\
& \Rightarrow \quad \frac{(\sqrt{7}-1)^{2}-(\sqrt{7}+1)^{2}}{(\sqrt{7})^{2}-(1)^{2}}=a+b \sqrt{7} \\
& \Rightarrow \frac{\left\{(\sqrt{7})^{2}-2(\sqrt{7})(1)+(1)^{2}\right\}-\left\{(\sqrt{7})^{2}+2(\sqrt{7})(1)+(1)^{2}\right\}}{7-1} \\
& \Rightarrow \quad \frac{(7-2 \sqrt{7}+1)-(7+2 \sqrt{7}+1)}{6}=a+b \sqrt{7} \\
& \Rightarrow \quad \frac{-4 \sqrt{7}}{6}=a+b \sqrt{7} \\
& \Rightarrow \quad-\frac{2}{3} \sqrt{7}=a+b \sqrt{7} \\
& \Rightarrow a=0, b=-\frac{2}{3}
\end{aligned}
$$

36. Factorise :
$(a+b)^{3}-(b+c)^{3}+(c+a)^{3}+3(a+b)(b+c)(c+a)$
SOLUTION :

$$
\left.\begin{array}{rl}
(a+b)^{3} & -(b+c)^{3}+(c+a)^{3}+3(a+b)(b+c)(c+a) \\
= & (a+b)^{3}+\left\{-(b+c)^{3}+(c+a)^{3}\right\} \\
& -3(a+b)\{-(b+c)\}(c+a) \\
= & {[(a+b)+\{-(b+c)\}+(c+a)]} \\
\quad\left[(a+b)^{2}+\{-(b+c)\}^{2}+(c+a)^{2}-(a+b)\right. \\
\{-(b+c)\}-\{-(b+c)\}(c+a)-(c+a)(a+b)]
\end{array}\right\} \begin{array}{r}
=(a+b-b-c+c+a)\left[a^{2}+2 a b+b^{2}+b^{2}+2 b c\right. \\
\quad+c^{2}+2 c a+a^{2}+(a+b)(b+c)+(b+c)(c+a) \\
\quad-(c+a)(a+b)] \\
=(2 a)\left[a^{2}+2 a b+b^{2}+b^{2}+2 b c+c^{2}\right. \\
\quad+c^{2}+2 c a+a^{2}+a b+b^{2}+b c+a c+b c \\
\left.\quad+b a+c^{2}+c a-c a-c b-a^{2}-a b\right]
\end{array}
$$

or
If $a+b+c=0$, then prove that

$$
\frac{(b+c)^{2}}{3 b c}+\frac{(c+a)^{2}}{3 a c}+\frac{(a+b)^{2}}{3 a b}=1
$$

SOLUTION :

$$
\begin{aligned}
& \text { L.H.S. }=\frac{(b+c)^{2}}{3 b c}+\frac{(c+a)^{2}}{3 a c}+\frac{(a+b)^{2}}{3 a b} \\
& \begin{array}{r}
=\frac{b^{2}+c^{2}+2 b c}{3 b c}+\frac{c^{2}+a^{2}+2 a c}{3 a c}+\frac{a^{2}+b^{2}+2 a b}{3 a b} \\
\quad \quad\left[\mathrm{Using}(x+y)^{2}=x^{2}+y^{2}+2 x y\right] \\
=\frac{1}{3 a b c}\left[a b^{2}+a c^{2}+2 a b c+b c^{2}+b a^{2}+2 a b c+a^{2} c\right. \\
\\
\left.+b^{2} c+2 a b c\right]
\end{array} \\
& \begin{array}{r}
=\frac{1}{3 a b c}\left[a b^{2}+a c^{2}+b c^{2}+b a^{2}+a^{2} c+b^{2} c+6 a b c\right] \\
=\frac{1}{3 a b c}[a b(b+a)+a c(c+a)+b c(c+b)+6 a b c] \\
=\frac{1}{3 a b c}[a b(-c)+a c(-b)+b c(-a)+6 a b c]
\end{array} \\
& =\frac{1}{3 a b c}[-a b c-a b c-a b c+6 a b c] \\
& =\frac{3 a b c}{3 a b c}=1=\text { R.H.S. } \quad \text { Hence proved }
\end{aligned}
$$

37. The cost of a shirt of a particular brand is ₹ 1000 . Write a linear equation, when the cost of x shirts is $₹ y$. Draw the graph of this equation and find the cost of 12 such shirts from the graph.

SOLUTION :

Given, \quad cost of x shirts $=₹ y$
$\therefore \quad$ Cost of 1 shirt $=₹ \frac{y}{x}$
According to the question,

$$
\begin{array}{rlrl}
\Rightarrow & \frac{y}{x} & =1000 \\
1000 x-y & =0
\end{array}
$$

From graph, the cost of 12 shirts is ₹ 12000 .
38. Construct a triangle $A B C$ in which $B C=5.8 \mathrm{~cm}$, $\angle B=45^{\circ}$ and $\angle C=60^{\circ}$. Construct angle bisectors of $\angle B$ and $\angle C$ and intersect them at point O. Measure $\angle B O C$.

SOLUTION :

Steps of construction :
(a) Draw a line segment $B C=5.8 \mathrm{~cm}$.
(b) At B and C, draw $\angle X B C=45^{\circ}$ and $\angle Y C B=60^{\circ}$
(c) The rays $X B$ and $Y C$ intersect at A. Therefore, $\triangle A B C$ is the required triangle.
(d) Taking B as centre, and with some radius, draw arcs intersecting $X B$ and $B C$ at E and D respectively.
(e) Taking D and E as centres with radius greater than $\frac{1}{2} D E$, draw arcs intersecting each other at F.

(f) Draw the ray $B F$. It is the angle bisector of $\angle B$.
(g) Similarly, construct angle bisector $C G$ of $\angle C$.
(h) Let $B F$ and $C G$ intersect each other at O.
(i) On measuring $\angle B O C$, we get, $\angle B O C=127.5^{\circ}$.
39. The outer diameter of a spherical shell is 10 cm and the inner diameter is 9 cm . Find the volume of the metal contained in the shell. (Use $\pi=\frac{22}{7}$)
SOLUTION :
Outer diameter $=10 \mathrm{~cm}$
\therefore Outer radius $(R)=\frac{10}{2}=5 \mathrm{~cm}$
Inner diameter $=9 \mathrm{~cm}$
Inner radius $(r)=\frac{9}{2} \mathrm{~cm}$
Volume of the metal contained in the shell

$$
\begin{aligned}
& =\frac{4}{3} \pi R^{3}-\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi\left(R^{3}-r^{3}\right) \\
& =\frac{4}{3} \times \frac{22}{7}\left[(5)^{3}-\left(\frac{9}{2}\right)^{3}\right] \\
& =\frac{4}{3} \times \frac{22}{7} \times\left[125-\frac{729}{8}\right] \\
& =\frac{4}{3} \times \frac{22}{7} \times \frac{271}{8} \\
& =\frac{2981}{21} \mathrm{~cm}^{3}
\end{aligned}
$$

40. The runs scored by two teams A and B on the first 60 balls in a cricket match are given below :

Number of balls	Team A	Team B
$1-6$	2	5
$7-12$	1	6
$13-18$	8	2
$19-24$	9	10
$25-30$	4	5
$31-36$	5	6
$37-42$	6	3
$43-48$	10	4
$49-54$	6	8
$55-60$	2	10

Represent the data of both the teams on the same graph by frequency polygons.

SOLUTION:

First, we make the class intervals continuous then modified table of given data is as shown below.

Number of balls	Class marks	Team A	Team B
$0.5-6.5$	3.5	2	5
$6.5-12.5$	9.5	1	6
$12.5-18.5$	15.5	8	2
$18.5-24.5$	21.5	9	10
$24.5-30.5$	27.5	4	5
$30.5-36.5$	33.5	5	6
$36.5-42.5$	39.5	6	3
$42.5-48.5$	45.5	10	4
$48.5-54.5$	51.5	6	8
$54.5-60.5$	57.5	2	10

Now, frequency polygon for both teams are given below

or
Draw a histogram and frequency polygon on the same graph for the following data.

Class interval	Frequency
$150-200$	5
$200-250$	3
$250-300$	5
$300-350$	6
$350-400$	8
$400-450$	7
$450-500$	1

SOLUTION :

WWW.CBSE.ONLINE

Download unsolved version of this paper from www.cbse.online

This sample paper has been released by website www.cbse.online for the benefits of the students. This paper has been prepared by subject expert with the consultation of many other expert and paper is fully based on the exam pattern for 2019-2020. Please note that website www.cbse.online is not affiliated to Central board of Secondary Education, Delhi in any manner. The aim of website is to provide free study material to the students.

