

Real numbers:

Euclid's division lemma

Given positive integers a and b, there exist whole numbers q and r satisfying a = bq + r, $0 \le r < b$.

Euclid's division algorithm:

This is based on Euclid's division lemma.

According to this, the HCF of any two positive integers a and b, with a > b, is obtained as follows:

Step 1: Apply the division lemma to find q and r where a = bq + r, $0 \le r < b$.

Step 2: If r = 0, then HCF is b. If $r \neq 0$, apply Euclid's lemma to b and r.

Step 3: Continue the process till the remainder is zero. The divisor at this stage will be HCF (a, b).

Also, HCF (a, b) = HCF (b, r).

The fundamental theorem of arithmetic

Every composite number can be expressed (factorised) as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur.

• Let x = p/q be a rational number, such that prime factorisation of 'q' is of the form $2^n 5^m$, where m,n are non-negative integers. Then x has a decimal expansion which is terminating.

• Let x = p/q be a rational number, such that prime factorization of 'q' is not of the form $2^n 5^m$, where m, n are non-negative integers. Then x has a decimal expansion which is non-terminating repeating.

Polynomial:

• A quadratic polynomial in x with real coefficients is of the form $ax^2 + bx + c$, where a, b, c are real numbers with $a \neq 0$.

• The zeroes of a polynomial p(x) are precisely the x-coordinates of the points, where the graph of y = p(x) intersects the x-axis.

• A quadratic polynomial can have at most 2 zeroes and a cubic polynomial can have at most 3 zeroes.

• If α and β are the zeroes of the quadratic polynomial ax² + bx + c, then

Sum of zeroes ($\alpha + \beta$) = $\frac{-b}{a}$

Product of zeroes ($\alpha\beta$) = $\frac{c}{a}$

• If α , β , γ are the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d = 0$, then

Sum of zeroes taken one at time $(\alpha + \beta + \gamma) = \frac{-b}{a}$

Sum of zeroes taken two at time $(\alpha\beta + \beta\gamma + \gamma\alpha) = \frac{c}{a}$

Product of zeroes ($\alpha\beta\gamma$) = $\frac{-d}{a}$

Pair of linear equations in two variables:

• If the lines intersect at a point, then that point gives the unique solution of the two equations. In this case, the pair of equations is **consistent**.

• If the lines coincide, then there are infinitely many solutions — each point on the line being a solution. In this case, the pair of equations is **dependent (consistent)**.

• If the lines are parallel, then the pair of equations has no solution. In this case, the pair of equations is **inconsistent.**

MATHS

Cross multiplication method:

$$a_1x + b_1y + c_1 = 0$$

$$a_2x + b_2y + c_2 = 0$$

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{a_1c_2 - a_2c_1} = \frac{1}{a_1b_2 - a_2b_1}$$

Value of x can be obtained by using first and last expression.

Value of y can be obtained by using second and last expression.

Quadratic equation:

The roots of quadratic equation $ax^2 + bx + c = 0$, $a \neq 0$ are given by $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ provided D≥ 0.

Discriminant of the quadratic equation $ax^2 + bx + c = 0$, a $\neq 0$ is given by

$$\mathsf{D} = \mathsf{b}^2 - 4 \ \mathsf{ac}$$

• b^2 - 4ac > 0 then we will get **two real solutions** to the quadratic equation.

- b^2 4ac = 0 then we will get **two equal real solutions** to the quadratic equation.
- b^2 4ac > 0 then we will **no real solution** to the quadratic equation.
- •A quadratic equation can also be solved by method of completing square.

$$(a +b)^2 = a^2 + b^2 + 2ab$$

$$(a - b)^2 = a^2 + b^2 - 2ab$$

Arithmetic Progression:

- If a, b, c are in AP, then 2b = a + c
- nth term of an arithmetic progression:

T_n = a + (n - 1)d

• Number of terms of an arithmetic progression:

$$\mathsf{n} = \frac{(l-a)}{d} + 1$$

Where n = number of terms, a= the first term, I = last term, d= common difference

Additional notes on AP

To solve most of the problems related to AP, the terms can be conveniently taken as:

- •3 terms: (a d), a, (a +d)
- •4 terms: (a 3d), (a d), (a + d), (a +3d)
- •5 terms: (a 2d), (a d), a, (a + d), (a +2d)
- The nth term of an A.P is the difference of the sum to the first n terms and the sum to first (n-1) terms of it:

 $T_n = S_n - S_n - 1$

• If each term of an AP is increased, decreased, multiplied or divided by the same non-zero constant, the resulting sequence also will be in AP.

- In an AP, sum of terms equidistant from beginning and end will be constant.
- A.P which contain finite term is called finite A.P and which contains infinite terms is called infinite term.

Tria	ng	les:

Δ ABC ~ Δ PQR	By A.A. test or S.A.S test or by S.S.S. test C.P.S.T.
$\frac{AB}{PO} = \frac{BC}{OR} = \frac{AC}{PR}$	
$\frac{A_1}{A_2} = \left \frac{S_1}{S_2}\right ^2$	Areas of $\sim \Delta$'s are proportional to squares of their corresponding sides.
$A_1 = A_2$	A median divides a Δ into 2 Δ 's with equal area.
A_1 base ₁	An area of Δ 's meeting at common vertex and base through the same
A_2 base ₂	straight line is proportional to their bases.

• If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then the triangles on both sides of the perpendicular are similar to the whole triangle and also to each other.

Coordinate geometry:

Distance formula

• Distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$. (The same formula is to be used to find the length of line segment, sides of a triangle, square, rectangle, parallelogram etc.)

Section formula

Point (x, y) = $\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$

• If point P(x, y) divides AB in k:1, then the coordinates of point P will be $(kx_2/k+1, ky_2+y_1/k+1)$

• Mid-point =
$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

• Centroid of a triangle =
$$\begin{pmatrix} x_1 + x_2 + x_3 \\ 3 \end{pmatrix}$$
, $\frac{y_1 + y_2 + y_3}{3}$

• To prove <u>co-linearity</u> of the given three points A,B, and C, You have to find length of AB, BC, AC then use the condition AB + BC = AC.

Area of triangle

- Area of triangle: $1/2[x_1(y_2 y_3) + x_2(y_3 y_1) + x_3(y_1 y_2)] = 0$
- Area cannot be negative so, we shall ignore negative sign if it's occurring in the problem.
- If the area of the triangle is zero, then vertices of the triangle are collinear.

• To find the area of quadrilateral we shall divide it into two triangles by joining two opposite vertices, find their areas and add them.

Introduction to trigonometry:

Trigonometry Ratio Table								
Angles (In Degrees)	0 °	30 °	45°	60°	90°	180°	270°	360 °
Angles (In Radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	<u>a</u> 3	<u>π</u> 2	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
COS	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not Defined	0	Not Defined	1
\cot	Not Defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	Not Defined	0	Not Defined
CSC	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	Not Defined	-1	Not Defined
sec	1	2 x ³	$\sqrt{2}$	2	Not Defined	-1	Not Defined	1

• Wherever 'Square' appears think of using the identities

(i) $\sin^2\theta + \cos^2\theta = 1$ (ii) $\sec^2\theta - \tan^2\theta = 1$ (iii) $\csc^2\theta - \cot^2\theta = 1$

- Try to convert all the values of the given problem in terms of Sin θ and Cos θ
- Cosec θ may be written as 1/Sin θ
- Sec θ may be written as 1/Cos θ
- Cot θ may be written as 1/Tan θ
- Tan θ may be written as Sin θ / Cos θ
- Wherever fractional parts appears then think of taking their 'LCM'
- Think of using $(a + b)^2$, $(a b)^2$, $(a + b)^3$, $(a b)^3$ formulae etc.

- Rationalise the denominator [If a + b, (or) a b format is given in the denominator]
- You may separate the denominator

For Ex: $\frac{\sin \theta + \cos \theta}{\sin \theta}$ as $\frac{\sin \theta}{\sin \theta} + \frac{\cos \theta}{\sin \theta} = 1 + \cot \theta$

- Sin $(90 \theta) = \cos \theta$: $\cos(90 - \theta) = \sin \theta$
- $Cosec (90 \theta) = Sec \theta$ • Sec $(90 - \theta)$ = Cosec θ :

 $=\pi r^2$

Cot $(90 - \theta) = Tan \theta$ • Tan $(90 - \theta) = \text{Cot } \theta$:

Circles:

•The tangent to a circle is perpendicular to the radius through the point of contact.

•The lengths of the two tangents from an external point to a circle are equal.

Area related to circle:

- Area of a Circle
- Perimeter of a Circle = $2\pi r$
- $= \theta/360^{\circ} (\pi r^{2})$ • Area of sector
- Length of an arc $= \theta/360^{\circ} (2\pi r)$
- $=\pi (R^2 r^2)$ • Area of ring
- Area of segment = Area of the corresponding sector Area of the corresponding triangle

$$=\frac{R^2}{2}(\frac{\theta\pi}{180^0}-\sin\theta)$$

- Where, θ is the central angle in degrees.
- Distance moved by a wheel in one revolution = Circumference of the wheel.
- Angle described by minute hand in 60 minutes = 360°
- Angle described by minute hand in 1minute = $\frac{360^{\circ}}{60^{\circ}}$ $= 6^{\circ}$

Total distance moved

• Number of revolutions = Circumference of the wheel

Surface areas and volume:

Cylinder

 $=\pi r^{2}h$ Volume of a cylinder Curved surface area $= 2\pi rh$ $= 2\pi rh + 2\pi r^2 = 2\pi r (h + r)$ Total surface area Volume of hollow cylinder = $\pi R^2 h - \pi r^2 h = \pi (R^2 - r^2) h$ TSA of hollow cylinder = Outer CSA + Inner CSA + 2 Area of ring $= 2\pi Rh + 2\pi rh + 2[\pi R^2 - \pi r^2]$

Cone

Volume of a Cone = $\frac{1}{2}\pi r^2 h$ CSA of a Cone = $\pi r \ell$ (Here ' ℓ ' refers to 'Slant Height') [where $\ell = \sqrt{(h^2 + r^2)}$] TSA of a Cone = $\pi r \ell + \pi r^2 = \pi r (\ell + r)$

Frustum

Volume of a frustum $=\frac{1}{3}\pi h [R^2 + r^2 + Rr]$ CSA of a frustum $=\pi \ell [R + r]$ (Here ' ℓ ' refers to 'Slant height') [where $\ell = \sqrt{(h^2 + (R - r)^2)}$] TSA of a frustum $=\pi \ell (R + r) + \pi r^2 + \pi R^2 =$

Sphere

Surface area of a Sphere = $4 \pi r^2$ (In case of Sphere, CSA = TSA i.e. they are same) Volume of hemisphere = $\frac{2}{3}\pi r^3$ [Take half the volume of a sphere] CSA of hemisphere = $2\pi r^2$ [Take half the SA of a sphere] TSA of hemisphere = $2\pi r^2 + \pi r^2 = 3\pi r^2$ Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume of spherical shell = Outer volume – Inner volume = $\frac{4}{3}\pi$ (R³ – r³)

While solving the problems based on combination of solids it would be better if you take common.

• T.S.A of combined solid = C.S.A of solid 1 + C.S.A of solid 2 + C.S.A of solid 3

• If a solid is melted and, recast into number of other small solids, then

Volume of the larger solid = No of small solids x Volume of the smaller solid

For Ex: A cylinder is melted and cast into smaller spheres. Find the number of spheres

Volume of Cylinder = No of sphere × Volume of sphere

• If an 'ice cream cone with hemispherical top' is given then you have to take

(a) Total Volume = Volume of Cone + Volume of Hemisphere

(b) Surface area = CSA of Cone + CSA of hemisphere

Statistics:

Mean

The mean for grouped data can be found by:

(i) The direct method: $\overline{X} = \frac{\sum fixi}{\sum fi}$

(ii) The assumed mean method: $\bar{X} = a + \frac{\sum f_i d_i}{\sum f_i}$, where $d_i = x_i - a$

(iii) The step deviation method: $\overline{X} = a + \frac{\sum f_i u_i}{\sum f_i} \times h$, where $u_i = \frac{x_i - a}{h}$

Mode

The mode for the grouped data can be found by using the formula: Mode = $l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$

I = lower limit of the modal class.

 $f_1 =$ frequency of the modal class.

 f_0 =frequency of the preceding class of the modal class.

 f_2 = frequency of the succeeding class of the modal class.

h = size of the class interval.

Median

The median for the grouped data can be found by using the formula:

Median = $l + \left[\frac{\frac{n}{2} - Cf}{f}\right] \times h$

I = lower limit of the median class.

n = number of observations.

cf = cumulative frequency of class interval preceding the median class.

f = frequency of median class.

h = class size.

• Empirical Formula: Mode = 3 median –2 mean.

Probability:

Probability of an event: P (event) = $\frac{\text{Number of favorable outcomes}}{\text{Total number of outcomes}}$

In a deck of playing cards, there are four types of cards:

- ♠ (Spades in Black colour) having A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, K, and Q total 13 cards
- ♣ (Clubs in Black colour) having A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, K, and Q total 13 cards
- ♥ (Hearts in Red colour) having A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, K, and Q total 13 cards
- ♦ (Diamond in Red colour) having A, 2, 3, 4, 5, 6, 7,8, 9, 10, J, K, and Q total 13 cards

52 cards

• Jack, King and Queen are known as 'Face Cards', as these cards are having some pictures on it.

• Always remember Ace is not a face card as it doesn't carry any face on it.