

Real numbers:

Euclid's division lemma

Given positive integers a and b, there exist whole numbers q and r satisfying $a=b q+r, 0 \leq r<b$.

Euclid's division algorithm:

This is based on Euclid's division lemma.

According to this, the HCF of any two positive integers a and b, with $a>b$, is obtained as follows:
Step 1: Apply the division lemma to find q and r where $a=b q+r, 0 \leq r<b$.
Step 2: If $r=0$, then HCF is b. If $r \neq 0$, apply Euclid's lemma to b and r.

Step 3: Continue the process till the remainder is zero. The divisor at this stage will be $\operatorname{HCF}(a, b)$.
Also, $\operatorname{HCF}(a, b)=\operatorname{HCF}(b, r)$.

The fundamental theorem of arithmetic

Every composite number can be expressed (factorised) as a product of primes, and this factorization is unique, apart from the order in which the prime factors occur.

- Let $x=p / q$ be a rational number, such that prime factorisation of ' q ' is of the form $2^{n} 5^{m}$, where m, n are nonnegative integers. Then x has a decimal expansion which is terminating.
- Let $x=p / q$ be a rational number, such that prime factorization of ' q ' is not of the form $2^{n} 5^{m}$, where m, n are non-negative integers. Then x has a decimal expansion which is non-terminating repeating.

Polynomial:

- A quadratic polynomial in x with real coefficients is of the form $a x^{2}+b x+c$, where a, b, c are real numbers with $a \neq 0$.
- The zeroes of a polynomial $p(x)$ are precisely the x-coordinates of the points, where the graph of $y=p(x)$ intersects the x-axis.
- A quadratic polynomial can have at most 2 zeroes and a cubic polynomial can have at most 3 zeroes.
- If α and β are the zeroes of the quadratic polynomial $a x^{2}+b x+c$, then

Sum of zeroes $(\alpha+\beta)=\frac{-b}{a}$
Product of zeroes $(\alpha \beta)=\frac{c}{a}$

- If α, β, γ are the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d=0$, then

Sum of zeroes taken one at time $(\alpha+\beta+\gamma)=\frac{-b}{a}$
Sum of zeroes taken two at time $(\alpha \beta+\beta \gamma+\gamma \alpha)=\frac{c}{a}$
Product of zeroes $(\alpha \beta \gamma)=\frac{-d}{a}$

Pair of linear equations in two variables:

- If the lines intersect at a point, then that point gives the unique solution of the two equations. In this case, the pair of equations is consistent.
- If the lines coincide, then there are infinitely many solutions - each point on the line being a solution. In this case, the pair of equations is dependent (consistent).
- If the lines are parallel, then the pair of equations has no solution. In this case, the pair of equations is inconsistent.

Simultaneous pair of Linear equation	Condition	Graphical representation	Algebraic interpretation
$a_{1} x+b_{1} y+c_{1}=0$ $a_{2} x+b_{2} y+c_{2}=0$	$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$	Intersecting lines; The intersecting point coordinate is the only solution	One unique solution only
$a_{1} x+b_{1} y+c_{1}=0$ $a_{2} x+b_{2} y+c_{2}=0$	$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$	Coincident lines; The any coordinate on the line is the solution.	Infinite solutions

$a_{1} x+b_{1} y+c_{1}=0$			
$a_{2} x+b_{2} y+c_{2}=0$	$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$	Parallel Lines	No solution

Cross multiplication method:

$$
\begin{aligned}
a_{1} x+b_{1} y+c_{1} & =0 \\
a_{2} x+b_{2} y+c_{2} & =0 \\
\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{a_{1} c_{2}-a_{2} c_{1}} & =\frac{1}{a_{1} b_{2}-a_{2} b_{1}}
\end{aligned}
$$

Value of x can be obtained by using first and last expression.
Value of y can be obtained by using second and last expression.

Quadratic equation:

The roots of quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0, \mathrm{a} \neq 0$ are given by $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ provided $\mathrm{D} \geq 0$.
Discriminant of the quadratic equation $a x^{2}+b x+c=0, a \neq 0$ is given by
$D=b^{2}-4 a c$

- $b^{2}-4 a c>0$ then we will get two real solutions to the quadratic equation.
- $b^{2}-4 a c=0$ then we will get two equal real solutions to the quadratic equation.
- $b^{2}-4 a c>0$ then we will no real solution to the quadratic equation.
- A quadratic equation can also be solved by method of completing square.

$$
(a+b)^{2}=a^{2}+b^{2}+2 a b
$$

$(a-b)^{2}=a^{2}+b^{2}-2 a b$

Arithmetic Progression:

- If a, b, c are in AP, then $2 b=a+c$
- nth term of an arithmetic progression:
$T_{n}=a+(n-1) d$
- Number of terms of an arithmetic progression:
$\mathrm{n}=\frac{(\mathrm{l}-a)}{d}+1$
Where $\mathrm{n}=$ number of terms, $\mathrm{a}=$ the first term, $\mathrm{l}=$ last term, $\mathrm{d}=$ common difference

Additional notes on AP

To solve most of the problems related to AP, the terms can be conveniently taken as:

- 3 terms: $(a-d)$, $a,(a+d)$
-4 terms: $(a-3 d),(a-d),(a+d),(a+3 d)$
- 5 terms: $(a-2 d),(a-d), a,(a+d),(a+2 d)$
- The nth term of an A.P is the difference of the sum to the first n terms and the sum to first $(\mathrm{n}-1)$ terms of it:
$\mathrm{T}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}}-1$
- If each term of an AP is increased, decreased, multiplied or divided by the same non-zero constant, the resulting sequence also will be in AP.
- In an AP, sum of terms equidistant from beginning and end will be constant.
- A.P which contain finite term is called finite A.P and which contains infinite terms is called infinite term.

Triangles:

$\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$ $\frac{A B}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$	By A.A. test or S.A.S test or by S.S.S. test C.P.S.T.
$\frac{A_{1}}{A_{2}}=\left\|\frac{S_{1}}{S_{2}}\right\|^{2}$	Areas of $\sim \Delta^{\prime}$'s are proportional to squares of their corresponding sides.
$\mathrm{A}_{1}=\mathrm{A}_{2}$	A median divides a Δ into $2 \Delta^{\prime}$'s with equal area.
$\frac{A_{1}}{A_{2}}=\frac{\text { base }_{1}}{\text { base } e_{2}}=$	An area of Δ^{\prime} 's meeting at common vertex and base through the same straight line is proportional to their bases.

- If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then the triangles on both sides of the perpendicular are similar to the whole triangle and also to each other.

Coordinate geometry:

Distance formula

- Distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$. (The same formula is to be used to find the length of line segment, sides of a triangle, square, rectangle, parallelogram etc.)

Section formula

$$
\text { Point }(\mathrm{x}, \mathrm{y})=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)
$$

- If point $P(x, y)$ divides $A B$ in $k: 1$, then the coordinates of point P will be $\left(k x_{2} / k+1, k y_{2}+y_{1} / k+1\right)$
- Mid-point $=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
- Centroid of a triangle $=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
- To prove co-linearity of the given three points A, B, and C, You have to find length of $A B, B C, A C$ then use the condition $A B+B C=A C$.

Area of triangle

- Area of triangle: $1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$
- Area cannot be negative so, we shall ignore negative sign if it's occurring in the problem.
- If the area of the triangle is zero, then vertices of the triangle are collinear.
- To find the area of quadrilateral we shall divide it into two triangles by joining two opposite vertices, find their areas and add them.

Introduction to trigonometry:

	Trígonometry Ratio Table							
Angles (ln Degrees)	0°	30°	45°	60°	90°	180	270	360°
Angles (In Radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$		π	$\frac{3 \pi}{2}$	2π
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$				-1	0
\cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$		-1	0	1
\tan	0	$\frac{1}{\sqrt{3}}$			Defined	0	Not Defined	1
\cot	Not Defined	$\sqrt{3}$			0	Not Defined	0	Not Defined
csc	Not Defined				1	Not Defined	-1	Not Defined
sec	1	$\frac{1}{\sqrt{3}}$		2	Not Defined	-1	Not Defined	1

- Wherever 'Square' appears think of using the identities
(i) $\sin ^{2} \theta+\cos ^{2} \theta=1$
(ii) $\operatorname{Sec}^{2} \theta-\operatorname{Tan}^{2} \theta=1$
(iii) $\operatorname{Cosec}^{2} \theta-\operatorname{Cot}^{2} \theta=1$
- Try to convert all the values of the given problem in terms of $\operatorname{Sin} \theta$ and $\operatorname{Cos} \theta$
- $\operatorname{Cosec} \theta$ may be written as $1 / \operatorname{Sin} \theta$
- $\operatorname{Sec} \theta$ may be written as $1 / \operatorname{Cos} \theta$
- Cot θ may be written as $1 / \operatorname{Tan} \theta$
- Tan θ may be written as $\operatorname{Sin} \theta / \operatorname{Cos} \theta$
- Wherever fractional parts appears then think of taking their 'LCM'
- Think of using $(a+b)^{2},(a-b)^{2},(a+b)^{3},(a-b)^{3}$ formulae etc.
- Rationalise the denominator [If $a+b$, (or) $a-b$ format is given in the denominator]
- You may separate the denominator

$$
\text { For Ex: } \frac{\operatorname{Sin} \theta+\operatorname{Cos} \theta}{\operatorname{Sin} \theta} \text { as } \frac{\operatorname{Sin} \theta}{\operatorname{Sin} \theta}+\frac{\operatorname{Cos} \theta}{\operatorname{Sin} \theta}=1+\operatorname{Cot} \theta
$$

- $\operatorname{Sin}(90-\theta)=\operatorname{Cos} \theta \quad: \quad \operatorname{Cos}(90-\theta)=\operatorname{Sin} \theta$
- $\operatorname{Sec}(90-\theta)=\operatorname{Cosec} \theta: \quad \operatorname{Cosec}(90-\theta)=\operatorname{Sec} \theta$
- $\operatorname{Tan}(90-\theta)=\operatorname{Cot} \theta \quad: \quad \operatorname{Cot}(90-\theta)=\operatorname{Tan} \theta$

Circles:

-The tangent to a circle is perpendicular to the radius through the point of contact.
-The lengths of the two tangents from an external point to a circle are equal.

Area related to circle:

- Area of a Circle $\quad=\pi r^{2}$
- Perimeter of a Circle $=2 \pi r$
- Area of sector $\quad=\theta / 360^{\circ}\left(\pi r^{2}\right)$
- Length of an arc $\quad=\theta / 360^{\circ}(2 \pi r)$
- Area of ring $\quad=\pi\left(R^{2}-r^{2}\right)$
- Area of segment $=$ Area of the corresponding sector - Area of the corresponding triangle
$=\frac{R^{2}}{2}\left(\frac{\theta \pi}{180^{0}}-\sin \theta\right)$
Where, θ is the central angle in degrees.
- Distance moved by a wheel in one revolution = Circumference of the wheel.
- Angle described by minute hand in 60 minutes $=360^{\circ}$
- Angle described by minute hand in 1 minute $=\frac{360^{\circ}}{60^{\circ}}=6^{\circ}$
- Number of revolutions $=\frac{\text { Total distance moved }}{\text { Circumference of the wheel }}$

Surface areas and volume:

Cylinder

Volume of a cylinder $=\pi r^{2} h$
Curved surface area $=2 \pi r h$
Total surface area $\quad=2 \pi r h+2 \pi r^{2}=2 \pi r(h+r)$
Volume of hollow cylinder $=\pi R^{2} h-\pi r^{2} h=\pi\left(R^{2}-r^{2}\right) h$
TSA of hollow cylinder $=$ Outer CSA + Inner CSA +2 Area of ring $=2 \pi R h+2 \pi r h+2\left[\pi R^{2}-\pi r^{2}\right]$

Cone

Volume of a Cone $=\frac{1}{3} \pi r^{2} h$
CSA of a Cone $=\pi r \ell$ (Here ' ℓ ' refers to 'Slant Height') [where $\ell=\sqrt{\left(h^{2}+r^{2}\right)}$]
TSA of a Cone $=\pi r \ell+\pi r^{2}=\pi r(\ell+r)$

Frustum

Volume of a frustum $=\frac{1}{3} \pi h\left[R^{2}+r^{2}+R r\right]$
CSA of a frustum $=\pi \ell[\mathrm{R}+\mathrm{r}]$ (Here ' ℓ ' refers to 'Slant height') [where $\ell=\sqrt{\left(h^{2}+(R-r)^{2}\right)}$]
TSA of a frustum $=\pi \ell(R+r)+\pi r^{2}+\pi R^{2}=$

Sphere

Surface area of a Sphere $=4 \pi r^{2}$ (In case of Sphere, CSA = TSA i.e. they are same)
Volume of hemisphere $=\frac{2}{3} \pi r^{3} \quad$ [Take half the volume of a sphere]
CSA of hemisphere $=2 \pi r^{2}$ [Take half the SA of a sphere]
TSA of hemisphere $=2 \pi r^{2}+\pi r^{2}=3 \pi r^{2}$
Volume of a sphere $=\frac{4}{3} \pi r^{3}$
Volume of spherical shell $=$ Outer volume - Inner volume $=\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$
While solving the problems based on combination of solids it would be better if you take common.

- T.S.A of combined solid = C.S.A of solid $1+$ C.S.A of solid $2+$ C.S.A of solid 3
- If a solid is melted and, recast into number of other small solids, then

Volume of the larger solid = No of small solids x Volume of the smaller solid
For Ex: A cylinder is melted and cast into smaller spheres. Find the number of spheres
Volume of Cylinder $=$ No of sphere \times Volume of sphere

- If an 'ice cream cone with hemispherical top' is given then you have to take
(a) Total Volume $=$ Volume of Cone + Volume of Hemisphere
(b) Surface area $=$ CSA of Cone + CSA of hemisphere

Statistics:

Mean

The mean for grouped data can be found by:
(i) The direct method: $\bar{X}=\frac{\Sigma f i x i}{\sum f i}$
(ii) The assumed mean method: $\bar{X}=a+\frac{\sum f_{i} d_{i}}{\sum f i}$, where $d_{i}=x_{i}-a$
(iii) The step deviation method: $\bar{X}=a+\frac{\sum f_{i} u_{i}}{\sum f i} \times h$, where $u_{i}=\frac{x_{i}-a}{h}$

Mode

The mode for the grouped data can be found by using the formula:
Mode $=l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h$
I = lower limit of the modal class.
$\mathrm{f}_{1}=$ frequency of the modal class.
$f_{0}=$ frequency of the preceding class of the modal class.
$f_{2}=$ frequency of the succeeding class of the modal class.
$h=$ size of the class interval.

Median

The median for the grouped data can be found by using the formula:
Median $=l+\left[\frac{\frac{n}{2}-C f}{f}\right] \times h$
$\mathrm{I}=$ lower limit of the median class.
$\mathrm{n}=$ number of observations.
cf = cumulative frequency of class interval preceding the median class.
$f=$ frequency of median class.
$h=$ class size.

- Empirical Formula: Mode = $\mathbf{3}$ median -2 mean.

Probability:

Probability of an event: P (event) $=\frac{\text { Number of favorable outcomes }}{\text { Total number of outcomes }}$
In a deck of playing cards, there are four types of cards:
. (Spades in Black colour) having A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, K, and Q total 13 cards
(Clubs in Black colour) having A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, K, and Q total 13 cards
\bullet (Hearts in Red colour) having A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, K, and Q total 13 cards

- (Diamond in Red colour) having A, 2, 3, 4, 5, 6, 7, $8,9,10, \mathrm{~J}, \mathrm{~K}$, and Q total 13 cards

52 cards

- Jack, King and Queen are known as 'Face Cards', as these cards are having some pictures on it.
- Always remember Ace is not a face card as it doesn't carry any face on it.

