Class- X

Mathematics-Basic (241)

Marking Scheme SQP-2020-21

Max. Marks: 80

Duration:3hrs

1	$156 = 2^2 \times 3 \times 13$	1
2	Quadratic polynomial is given by x^2 - (a +b) x +ab x^2 -2x -8	1
3	HCF X LCM =product of two numbers	1/2
	LCM (96,404) = $\frac{96 X 404}{HCF(96,404)} = \frac{96 X 404}{4}$	1/2
	LCM = 9696	
	OR	
	Every composite number can be expressed (factorized) as a product of primes, and this factorization is unique, apart from the order in which the factors occur.	1
4	x - 2y = 0	
	3x + 4y -20 =0	
	$\frac{1}{3} \neq \frac{-2}{4}$	1/2
	As, $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is one condition for consistency.	
	Therefore, the pair of equations is consistent.	1/2
5	1	1
6	e = 60°	
	Area of sector $=\frac{\theta}{360^{\circ}} \Pi r^2$	
	$A = \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times (6)^{2} \text{ cm}^{2}$	1/2
	$A = \frac{1}{6} X \frac{22}{7} X36 \text{ cm}^2$	
	$= 18.86 \text{ cm}^2$	1/2

	OR	
	Another method- Horse can graze in the field which is a circle of radius 28 cm. So, required perimeter = $2\Pi r$ = $2.\Pi(28)$ cm = $2 \times \frac{22}{7} X$ (28)cm = 176 cm	1/2 1/2
7	By converse of Thale's theorem DE II BC	1/2
	∟BCA = 180° - 120° = 60°	1⁄2
	OR	
	EC = AC - AE = (7 - 3.5) cm = 3.5 cm $\frac{AD}{BD} = \frac{2}{3} \text{ and } \frac{AE}{EC} = \frac{3.5}{3.5} = \frac{1}{1}$ So, $\frac{AD}{BD} \neq \frac{AE}{EC}$	1/2
	Hence, By converse of Thale's Theorem, DE is not Parallel to BC.	1⁄2
8	Length of the fence = $\frac{Total cost}{Rate}$ = $\frac{Rs.5280}{Rs 24/metre}$ = 220 m So, length of fence = Circumference of the field \therefore 220m= 2 Π r=2 X $\frac{22}{7}$ x r	1⁄2
	So, $r = \frac{220 x 7}{2 x 22} m = 35 m$	1⁄2
9	Soliton 20 $s = \frac{AB}{B}$	
	Sol: $\tan 30^\circ = \frac{AB}{BC}$ $1/\sqrt{3} = \frac{AB}{8}$	1/2
	AB = 8 / $\sqrt{3}$ metres Height from where it is broken is 8/ $\sqrt{3}$ metres	1/2

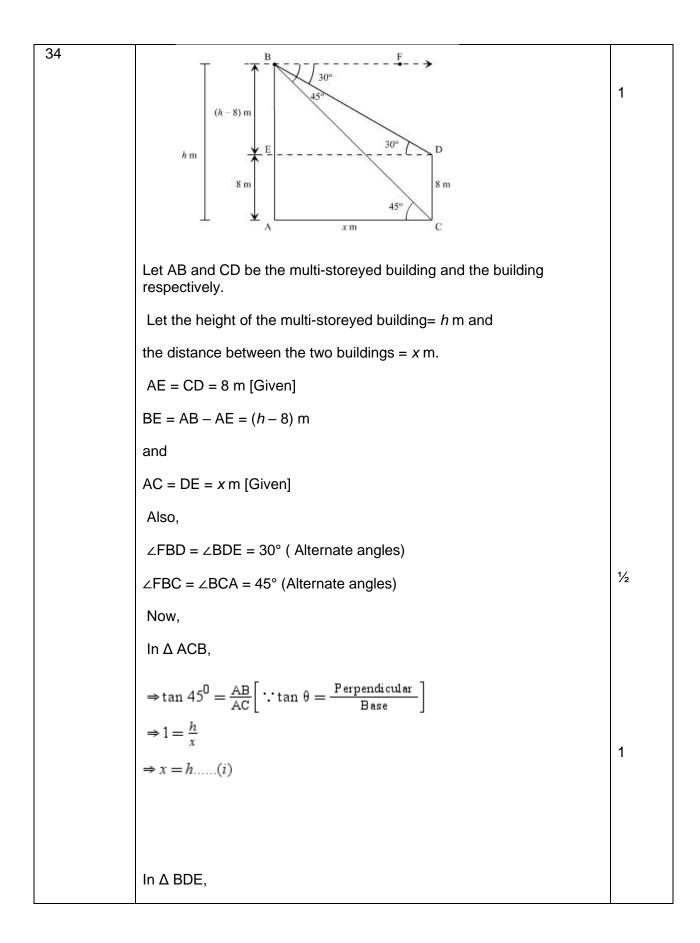
Perimeter = Area	1
$2\Pi r = \Pi r^2$	
r = 2 units	
3 median = mode + 2 mean	1
8	1
$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ is the condition for the given pair of equations to have unique solution.	1/2
$\frac{4}{2} \neq \frac{p}{2}$	
p ≠4	1/2
Therefore, for all real values of p except 4, the given pair of equations will have a unique solution.	
OR	
Here, $\frac{a1}{a2} = \frac{2}{4} = \frac{1}{2}$	
$\frac{b1}{b2} = \frac{3}{6} = \frac{1}{2}$ and $\frac{c1}{c2} = \frac{5}{7}$	
$\frac{1}{2} = \frac{1}{2} \neq \frac{5}{7}$	
$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ is the condition for which the given system of equations will represent parallel lines.	1/2
So, the given system of linear equations will represent a pair of parallel lines.	1⁄2
No. of red balls = 3, No.black balls =5 Total number of balls = $5 \pm 3 = 8$	1/2
Probability of red balls $=\frac{3}{8}$	1⁄2
OR	
Total no of possible outcomes = 6 There are 3 Prime numbers, 2,3,5. So, Probability of getting a prime number is $\frac{3}{6} = \frac{1}{2}$	1/2 1/2
	$2\Pi r = \Pi r^{2}$ $r = 2 \text{ units}$ 3 median = mode + 2 mean 8 $\frac{a1}{a2} \neq \frac{b1}{b2} \text{ is the condition for the given pair of equations to have unique solution. \frac{4}{2} \neq \frac{p}{2} p \neq 4 Therefore, for all real values of p except 4, the given pair of equations will have a unique solution. OR Here, \frac{a1}{a2} = \frac{2}{4} = \frac{1}{2} \frac{b1}{b2} = \frac{2}{6} = \frac{1}{2} \text{ and } \frac{c1}{c2} = \frac{5}{7} \frac{1}{2} = \frac{1}{2} \neq \frac{5}{7} \frac{a1}{a2} = \frac{b1}{b2} \neq \frac{c1}{c2} \text{ is the condition for which the given system of equations will represent parallel lines. So, the given system of linear equations will represent a pair of parallel lines. No. of red balls = 3, No.black balls =5 Total number of balls = 5 + 3 =8 Probability of red balls = \frac{3}{8} OR Total no of possible outcomes = 6 There are 3 Prime numbers, 2,3,5.$

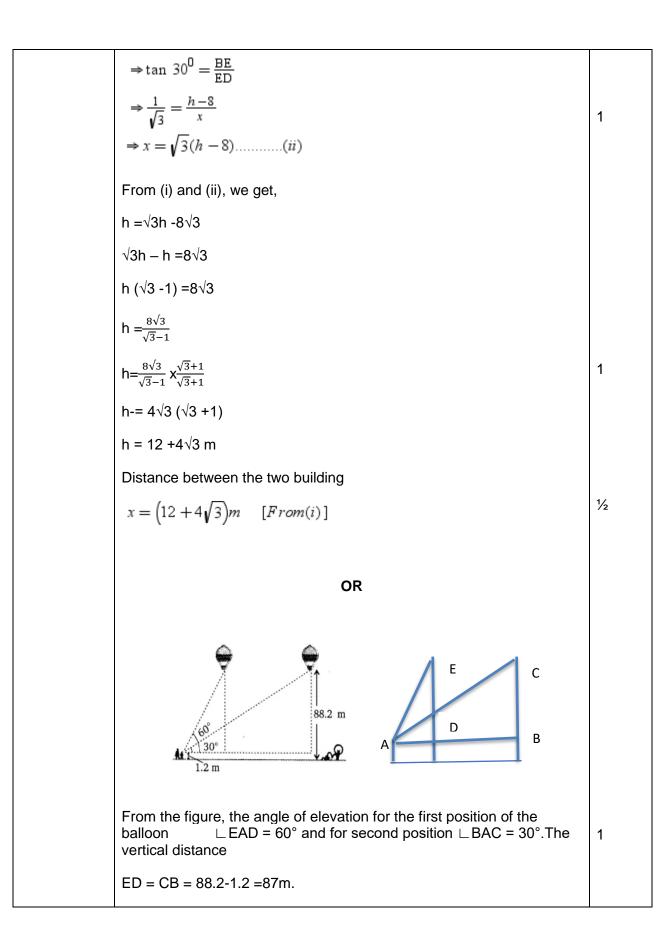
15		
	$A = \frac{h}{15}$ $A = \frac{h}{15}$ $A = \frac{h}{15}$	1⁄2
	$\sqrt{3} = \frac{h}{15}$ $h = 15\sqrt{3} \text{ m}$	1/2
16	1	1
17 i)	Ans : b) Cloth material required = 2X S A of hemispherical dome = $2 \times 2\Pi r^2$ = $2 \times 2x \frac{22}{7} \times (2.5)^2 m^2$ = 78.57 m ²	1
ii)	a) Volume of a cylindrical pillar = Πr^2h	1
	b) Lateral surface area = $2x 2\Pi rh$ = $4 x \frac{22}{7} x 1.4 x 7 m^2$ = $123.2 m^2$	1
iv)	d) Volume of hemisphere $=\frac{2}{3} \Pi r^{3}$ $=\frac{2}{3} \frac{22}{7} (3.5)^{3} m^{3}$ $= 89.83 m^{3}$	1
V)	b) Sum of the volumes of two hemispheres of radius 1cm each= $2 \times \frac{2}{3} \Pi 1^3$ Volume of sphere of radius 2cm = $\frac{4}{3} \Pi 2^3$ So, required ratio is $\frac{2 \times \frac{2}{3} \Pi 1^3}{\frac{4}{3} \Pi 2^3} = 1:8$	1/2 1/2

18 i)	c) (0,0)	1
ii)	a) (4,6)	1
iii)	a) (6,5)	1
iv)	a) (16,0)	1
v)	b) (-12,6)	1
19 i)	c) 90°	1
ii)	b) SAS	1
iii)	b) 4:9	1
iv)	d) Converse of Pythagoras theorem	1
V)	a) 48 cm ²	1
20 i)	d) parabola	1
ii)	a) 2	1
iii)	b) -1, 3	1
iv)	c) $x^2 - 2x - 3$	1
V)	d) 0	1
21	Let P(x,y) be the required point. Using section formula	
	$\{\frac{m \ 1x2 + m2x1}{m1 + m2}, \frac{m1y2 + m2y1}{m1 + m2}\} = (X, Y)$ 3(8)+1(4) 3(5)+1(-3)	1
	$ \begin{array}{l} x = \frac{3(8)+1(4)}{3+1} & , y = \frac{3(5)+1(-3)}{3+1} \\ x = 7 & $	1
	(7,3) is the required point	

	OR	
	Let P(x, y) be equidistant from the points A(7,1) and B(3,5) Given AP =BP. So, $AP^2 = BP^2$	1
	$(x-7)^{2} + (y-1)^{2} = (x-3)^{2} + (y-5)^{2}$ x ² -14x+49 +y ² -2y +1 = x ² -6x +9+y ² -10y+25 x - y =2	1
22	By BPT, $\frac{AM}{MB} = \frac{AL}{LC} \dots $	1/2
	Also, $\frac{AN}{ND} = \frac{AL}{LC}$ (2)	1⁄2
	By Equating (1) and (2) $\frac{AM}{MB} = \frac{AN}{ND}$	1
23	To prove: $AB + CD = AD + BC$.	
	Proof: AS = AP (Length of tangents from an external point to a circle	1
	are equal) BQ = BP CQ = CR DS = DR AS + BQ + CQ + DS = AP + BP + CR + DR (AS+DS) + (BQ + CQ) = (AP + BP) + (CR + DR) AD + BC = AB + CD	1
24	For the correct construction	2

25	15 cot A =8, find sin A and sec A.	
25	Cot A = 8/15	1
	001 A =0/13	1
	C 15x B 8x A	
	$\frac{Adj}{oppo} = 8/15$ By Pythagoras Theorem	
	$AC^{2} = AB^{2} + BC^{2}$ $AC = \sqrt{(8x)^{2} + (15x)^{2}}$ AC = 17x	1/2
	Sin A = 15/17 Cos A =8/17	1/2
	OR	
	By Pythagoras Theorem $QR = \sqrt{(13)^2 - (12)^2}$ cm QR = 5cm	1
	Tan P = $5/12$ Cot R = $5/12$ Tan P -Cot R = $5/12 - 5/12$ = 0	1
26	9,17,25, $S_n = 636$ a = 9 $d = a_2 \cdot a_1$ = 17 - 9 = 8	1/2
	$S_{n} = \frac{n}{2} [2a + (n-1) d]$ $Sn = \frac{n}{2} [2a + (n-1) d]$	1/2


	$636 = \frac{n}{2} [2x 9 + (n-1) 8]$ $1272 = n [18 + 8n - 8]$ $1272 = n [10 + 8n]$ $8n^{2} + 10n - 1272 = 0$ $4n^{2} + 5n - 636 = 0$ $n = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$	1/2
	$n = \frac{-5 \pm \sqrt{5^2 - 4x 4x(-636)}}{2x4}$ $n = -\frac{-5 \pm 101}{8}$ $n = \frac{96}{8}$ $n = 12$ $n = -\frac{-53}{4}$ $n = 12 \text{ (since n cannot be negative)}$	1⁄2
27	Let $\sqrt{3}$ be a rational number. Then $\sqrt{3} = p/q$ HCF (p,q) =1 Squaring both sides $(\sqrt{3})^2 = (p/q)^2$ $3 = p^2/q^2$ $3q^2 = p^2$ 3 divides $p^2 \gg 3$ divides p 3 is a factor of p Take p = 3C $3q^2 = (3c)^2$ $3q^2 = 9C^2$ 3 divides $q^2 \gg 3$ divides q 3 is a factor of q Therefore 3 is a common factor of p and q It is a contradiction to our assumption that p/q is rational. Hence $\sqrt{3}$ is an irrational number.	1 1⁄2 1⁄2 1
28		


	Required to prove -: \Box PTQ = 2 \Box OPQ	1
	Sol :- Let ∟PTQ = e	
	Now by the theorem TP = TQ. So, TPQ is an isosceles triangle	
	∟TPQ = ∟TQP = ½ (180° -θ)	1
	$=90^{\circ} - \frac{1}{2} \Theta$	
	∟OPT = 90°	1/2
	∟OPQ =∟OPT -∟TPQ =90° -(90° - ½ θ)	
	= ½ Θ	
	= ½ ∟PTQ	1/2
	$\Box PTQ = 2 \Box OPQ$	
29	Let Meena has received x no. of 50 re notes and y no. of 100 re	1
	notes.So,	
	50 x + 100 y =2000	
	x + y =25	
	multiply by 50	
		1
	50x + 100y =2000	
	50 x + 50 y = 1250	
	<u> </u>	
	50y =750	
	Y= 15	
		1
	Putting value of y=15 in equation (2)	
	x+ 15 = 25	
	x = 10	
	Meena has received 10 pieces 50 re notes and 15 pieces of 100 re notes	
30	(i) 10,11,1290 are two digit numbers. There are 81	
	numbers.So,Probability of getting a two-digit number	1
	= 81/90 = 9/10	
		1
	(ii) 1, 4, 9,16,25,36,49,64,81 are perfect squares. So, Brobability of getting a perfect square number	1
	Probability of getting a perfect square number. = 9/90 = 1/10	
	(iii) 5, 10,1590 are divisible by 5. There are 18 outcomes	1
	So,Probability of getting a number divisible by 5.	
	= 18/90 =1/5	

	OR	
	(i) Probability of getting A king of red colour.	1
	P (King of red colour) = $2/52 = 1/26$	
	(ii) Probability of getting A spade P (a spade) = 13/52 = 1/4	1
	(iii) Probability of getting The queen of diamonds P (a the queen of diamonds) = 1/52	1
31	$r_{1} = 6cm$ $r_{2} = 8cm$	
	r_{3} = 10cm Volume of sphere = $\frac{4}{3}\Pi r^{3}$	1
	Volume of the resulting sphere = Sum of the volumes of the smaller spheres. $4_{3}\Pi r^{3} = 4_{3}\Pi r_{1}^{3} + 4_{3}\Pi r_{2}^{3} + 4_{3}\Pi r_{3}^{3}$ $4_{3}\Pi r^{3} = 4_{3}\Pi (r_{1}^{3} + r_{2}^{3} + r_{3}^{3})$ $r^{3} = 6^{3} + 8^{3} + 10^{3}$ $r^{3} = 1728$ $r = \sqrt[3]{1728}$	1
	r = 12 cm	1
	Therefore, the radius of the resulting sphere is 12cm.	
32	(sin A-cos A+1)/ (sin A+cosA-1) = 1/(sec A-tan A)	
	L.H.S. divide numerator and denominator by cos A	
	= (tan A-1+secA)/ (tan A+1-sec A)	1
	= $(\tan A-1+\sec A)/(1-\sec A + \tan A)$	
	We know that 1+tan ² A=sec ² A	1
	Or $1=\sec^2 A - \tan^2 A = (\sec A + \tan A)(\sec A - \tan A)$	
	=(sec A + tan A-1)/[(sec A + tan A)(sec A-tan A)-(sec A-tan A)]	
	=(sec A + tan A-1)/(sec A-tan A)(sec A + tan A-1)	1

	= 1/(sec A-tan A) , proved.	
33	Given:-	
	Speed of boat =18 <i>km/hr</i> Distance =24 <i>km</i>	
	Let x be the speed of stream. Let $t1$ and $t2$ be the time for upstream and downstream. As we know that,	1/2
	speed= distance / time ⇒time= distance / speed	
	For upstream, Speed = $(18-x) \ km/hr$ Distance = $24km$ Time = $t1$ Therefore,	1/2
	$t_1 = \frac{24}{18 - x}$	
	For downstream, Speed = $(18+x)km/hr$ Distance = $24km$ Time = $t2$ Therefore,	
	$t_2 = \frac{24}{18 + x}$ Now according to the question-	
	<i>t</i> 1= <i>t</i> 2+1	
	$\frac{24}{18-x} = \frac{24}{18+x} + 1$	
	$\Rightarrow \frac{24(18+x) - 24(18-x)}{(18-x)(18+x)} = 1$	1/2
	$\Rightarrow 48x = (18 - x)(18 + x)$	
	$\Rightarrow 48x = 324 + 18x - 18x - x^2$	
	$\Rightarrow x^{2}+48x-324=0$ $\Rightarrow x^{2}+54x-6x-324=0$ $\Rightarrow x(x+54)-6(x+54)=0$	
	\Rightarrow (x+54)(x-6)=0	

	1/2
$\Rightarrow x = -54 \text{ or } x = 6$	/2
Since speed cannot be negative.	
$\Rightarrow x = -54$ will be rejected	
∴ <i>x</i> =6	
Thus, the speed of stream is 6 <i>km/hr.</i>	1
OR	
Let one of the odd positive integer be x	
then the other odd positive integer is $x+2$	1
their sum of squares = $x^2 + (x+2)^2$	
$= x^{2} + x^{2} + 4x + 4$ = 2x ² + 4x + 4	
= 2x ² + 4x + 4 Given that their sum of squares = 290	
$\Rightarrow 2x^2 + 4x + 4 = 290$	
$\Rightarrow 2x^2 + 4x = 290 - 4 = 286$	
$\Rightarrow 2x^2 + 4x - 286 = 0$	1
$\Rightarrow 2(x^2 + 2x - 143) = 0$	
$\Rightarrow x^{2} + 2x - 143 = 0$ $\Rightarrow x^{2} + 13x - 11x - 143 = 0$	
$\Rightarrow x^{2} + 13x - 11x - 143 = 0$ $\Rightarrow x(x+13) - 11(x+13) = 0$	
\Rightarrow (x - 11)(x + 13) = 0	
\Rightarrow (x-11) = 0, (x+13) = 0	
Therefore, $x = 11$ or -13	
According to question, x is a positive odd integer. Hence, We take positive value of x	4
So , $x = 11$ and $(x+2) = 11 + 2 = 13$	1
Therefore, the odd positive integers are 11 and 13.	
·	

Let $AD = x m$ and $AB = y m$.			
Then in right \triangle ADE, tan60° = $\frac{DE}{AD}$			
$X = \frac{87}{\sqrt{3}}$ (i)			
In right $\triangle ABC$, tan 30° = $\frac{BC}{AB}$			
$\frac{1}{\sqrt{3}} = \frac{87}{y}$			
Y = 87√3(ii)	1		
Subtracting(i) and (ii)	1		
$1/12 = 87/3 = 10^{-87}$			
$y - x - 07 \sqrt{3} - \frac{1}{\sqrt{3}}$	1		
$y-x = \frac{87.2.\sqrt{3}}{\sqrt{3}.\sqrt{3}}$			
y-x = 58√3 m			
Hence, the distance travelled by the balloon is equal to BD			
y-x =58√3 m.	1		
Let A be the first term and D the common difference of A.P.			
Tp = a = A + (p-1)D = (A - D) + pD (1)	1/2		
Tq=b=A+(q-1)D=(A-D)+qD(2)	1/2		
Tr=c=A+(r-1)D=(A-D)+rD(3)	1/2		
Here we have got two unknowns A and D which are to be eliminated.			
We multiply (1),(2) and (3) by $q-r,r-p$ and $p-q$ respectively and add:			
a (q-r) = (A - D)(q-r) + Dp(q-r)	1/2		
	1/2 1/2		
	12		
a(q-r)+o(r-p)+c(p-q)	1		
=(A-D)[q-r+r-p+p-q]+D[p(q-r)+q(r-p)+r(p-q)] = (A - D) (0) + D [pq-pr + qr - pq + rp - rq) =0	1		
	$\sqrt{3} = \frac{87}{x}$ $X = \frac{87}{\sqrt{3}} \dots \dots (i)$ In right $\triangle ABC$, tan $30^{\circ} = \frac{BC}{AB}$ $\frac{1}{\sqrt{3}} = \frac{87}{y}$ $Y = 87\sqrt{3} \dots \dots (ii)$ Subtracting(i) and (ii) $y \cdot x = 87\sqrt{3} \dots \frac{87}{\sqrt{3}}$ $y \cdot x = \frac{87 \cdot 2 \sqrt{3}}{\sqrt{3}\sqrt{3}}$ $y - x = \frac{87 \cdot 2 \sqrt{3}}{\sqrt{3}\sqrt{3}}$ $y - x = 58\sqrt{3} m$ Hence, the distance travelled by the balloon is equal to BD $y \cdot x = 58\sqrt{3} m$ Let A be the first term and D the common difference of A.P. $Tp = a = A + (p-1)D = (A - D) + pD \qquad (1)$ $Tq = b = A + (q-1)D = (A - D) + qD \qquad(2)$ $Tr = c = A + (r-1)D = (A - D) + rD \qquad(3)$ Here we have got two unknowns A and D which are to be eliminated. We multiply (1),(2) and (3) by $q - r, r - p$ and $p - q$ respectively and add: $a (q - r) = (A - D)(q - r) + D p(q - r)$ $c(p - q) = (A - D)(q - r) + D q(r - p)$ $c(p - q) = (A - D)(q - r) + D p(q - r)$ $a(q - r) + b(r - p) + c(p - q)$ $= (A - D)[q - r + r - p + p - q] + D[p(q - r) + r(p - q)]$		

36	Height (in cm)	f	C.F.	
	below 140	4	4	
	140-145	7	11	1
	145-150	18	29	1
	150-155	11	40	
	155-160	6	46	
	160-165	5	51	
	<i>N</i> =51⇒			
	<i>N/</i> 2=51/2=25.5			
	As 29 is just greater than 25.5, therefore median class is 145-150.			
	Median= $I + \frac{\left(\frac{N}{2} - C\right)}{f} X h$	1		
	Here, \models lower limit of median class =145			
	C=C.F. of the class preceding the median class =11			
	<i>h</i> = higher limit - lower limit =150–145=5			
	f= frequency of median class =18			
	<i>∴median</i> =			
	$= 145 + \frac{(25.5 - 11)}{18} \times 5$			1/2
	=149.03			
	Mean by direct method			
				1
	Height (in cm) ^f	Xi	fxi	
	below 140 4	137.5	550	
		142.5	997.5	
	145-150 18	147.5	2655	
	150-155 11	152.5	1677.5	
	155-160 6	157.5	945	1
	5	162.5	812.5	
	160-165	$\sum f$	x	
	Mean =			
		Ν		
	=763	7.5/51		
	= 149			1