+

Algorithms for Reasoning with graphical models

Class4
Rina Dechter

The Induced-Width

Width along @, w(d):
= max # of previous parents

= Induced width w*(d):
= The width in the ordered

(£) (&) induced graph
o o) = Induced-width w*;
W' (D) =3 W (D)=2 = Smallest induced-width
(©) (©) over all orderings
= Finding w*
(BY (B)
K = NP-complete (Armnborg,
(4) (E) 1985) but greedy heuristics
W () =3 W =2 (min-fifl).

i Road Map

= Inference

= Greedy search for induced-width orderings

i Finding a Small Induced-Width

= NP-complete
s A tree has induced-width of ?

= Greedy algorithms:
« Min width
= Min induced-width
= Max-cardinality and chordal graphs
« Fill-in (thought as the best)

= Anytime algorithms
= Search-based
= Stochastic (CVO)

i Min-width Ordering

MIN-WIDTH (MW)

input: a graph G = (V, E), V ={v,...,v,}
output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j =nto1by-1do

2. r < a node in G with smallest degree.
3. put r in position 7 and G «— G —r.

(Delete from V' node r and from E all its adjacent edges)
4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph
What is the Complexity of MW?

O(e)

i Greedy Orderings Heuristics

s Min-induced-width

= From last to first, pick a node with smallest
width, then connect parent and remove

x Min-Fill
= From last to first, pick a node with smallest
fill-edges

Complexity? OMn3)

i Min-Fill Heuristic
s Select the variable that creates the fewest “fill-in”

edges l
Eliminate B next? (B) ()
. Y Eliminate E next?

Ci t neighb '
/gZZIE;C :;vg o , ' Neighbors already connected
(AD), (GE), (DE) GG Pk =0

class2 828X 2019

i Different Induced-Graphs

(c) (d)
A Miw ordering
A Min-fill ordering 9

Chordal Graphs

graph is chordal if gvery cyclegof length af least 4 has a
chord . e o ¢ ” ¢ -

Deciding chordality by max-cardinality ordering:

« from 1 to n, always assigning a next node connected to a largest set of
previously selected nodes.

A graph along max-cardinality order has no fill-in edges iff it
is chordal.

The maximal cliques of chordal graphs form a tree

[1arjan & Yanakakis 1980] 10

iGreedy Orderings Heuristics

= Min-Induced-width
= From last to first, pick a node with smallest width

x Min-Fill
= From last to first, pick a node with smallest fill-

edges
Complexity? Om3)

Max-Cardinality search /7@7an & Yanakakis 1950]

= From first to last, pick a node with largest neighbors
already ordered. Complexity? Om+m)

11

‘L Max-cardinality ordering

MAX-CARDINALITY (MC)

input: a graph G= (V. E), V ={vy,....u,
output: An ordering of the nodes d = (vq, ..., v,).
1. Place an arbitrary node in position 0.

2. for y=1tondo

3. r « a node in G that is connected to a largest subset of nodes
in positions 1 to j — 1, breaking ties arbitrarily.
4. endfor

Proposition 5.3.3 [56] Given a graph G = (V, E) the complezity of maz-cardinality
search is O(n +m) when V| =n and |E| = m.

i Example

We see again that Gin the Figure (a) is not chordal
since the parents of A4 are not connected in the max-
cardinality ordering in Figure (d). If we connect B and
¢, the resulting induced graph is chordal.

R

> ¥ 0 U X

€s) ()

a)

i Which Greedy Algorithm is Best?

= Min-Fill, prefers a node who add the least
number of fill-in arcs.

= Empirically, fill-in is the best among the
greedy algorithms (MW,MIW,MF,M(C)

= Complexity of greedy orderings?
= MW is O(e), MIW: O(n3) MF O(n3) MC is
O(e+n)

* K-trees

Definition 5.3.4 (k-trees) A subclass of chordal graphs are k-trees. A k-tree is a chordal
graph whose maximal cliques are of size k+1, and it can be defined recursively as follows:
(1) A complete graph with k vertices is a k-tree. (2) A k-tree with r vertices can be
extended to r + 1 vertices by connecting the new vertex to all the vertices in any clique of

size k. A partial k-tree is a k-tree having some of its arcs removed. Namely it will clique

of size smaller than k.

class2 828X 2019 15

i Finding a Small Induced-Width

= NP-complete
s A tree has induced-width of ?

= Greedy algorithms:
= Min width (MW)
= Min induced-width (MIW)
= Max-cardinality and chordal graphs (MC)
= Min-Fill (thought as the best) (MIN-FILL)

= Anytime algorithms
= Search-based
= Stochastic (CVO)

16

i Summary Of Inference Scheme

= Bucket elimination is time and memory
exponential in the induced-width.

= Finding the w* is hard, but greedy schemes
work quit well to approximate. Most popular
is fill-edges

= W(d) is the induced-width along an ordering
d. Smallest induced-width is also called tree-
width.

17

Recent work in my group

= Vibhav Gogate and Rina Dechter. "A Complete Anytime
Algorithm for Treewidth". In UAI 2004.

= Andrew E. Gelfand, Kalev Kask, and Rina Dechter.

"Stopping Rules for Randomized Greedy Triangulation Schemes"
in Proceedings of AAAI 2011.

= Kask, Gelfand and Dechter, BEEM: Bucket Elimination with
External memory, AAAI 2011 or UAI 2011

= Potential project

i Greedy Algorithms for Induced-Width

= Min-width ordering

= Min-induced-width ordering
=« Max-cardinality ordering

= Min-fill ordering

= Chordal graphs

= Hypergraph partitionings

(Project: present papers on induced-width, run algorithms for
induced-width on new benchmarks...)

i Min-width Ordering

MIN-WIDTH (MW)

input: a graph G = (V, E), V ={v,...,v,}
output: A min-width ordering of the nodes d = (vy, ..., v,).
1. for j =nto1by-1do

2. r < a node in G with smallest degree.
3. put r in position 7 and G «— G —r.

(Delete from V' node r and from E all its adjacent edges)
4. endfor

Proposition: algorithm min-width finds a min-width ordering of a graph
Complexity:?
O(e)

i Greedy Orderings Heuristics

min-induced-width (miw)

input: a graph G = (V;E), V = {v1; :::; vn}

output: A miw ordering of the nodes d = (v1; :::; vn).
l.forj=nto1by-1do

2. r € anode in V with smallest degree.

3. put r in position j.

4. connect r's neighbors: E < E union {(vi; vj)| (vi; r)inE; (vj; r) 2 in E},
5. remove r from the resulting graph: V €V - {r}.

Theorem: A graph is a
min-fill (min-fill) tree Iff it has both width
input: a graph G = (V;E), V = {v1; :::; vn} and induced-width of 1.
output: An ordering of the nodes d = (v1; :::; vn).
l.forj=nto1by-1do
2. r €a node in V with smallest fill edges for his parents.

3. put r in position j.
4. connect r's neighbors: E <E union {(vi; vj)| (vi; r) 2 E; (vj; r) in E},
5. remove r from the resulting graph: V <V —{r}.

21

Chordal Graphs;
Max-Cardinality Ordering

= A graph is chordal if every cycle of length at
least 4 has a chord

= Finding w* over chordal graph is easy using the
max-cardinality ordering.

= The induced graph is chordal
= K-trees are special chordal graphs.

= Finding the max-clique in chordal graphs is
easy (just enumerate all cliques in a max-
cardinality ordering

i Road Map

= Inference

= Variable elimination for Linear Inequalities

‘L Linear Inequalities

Variables domains are the real numbers

(SIi—I—QIj ‘_: ‘3) A\ (——’LI?E—F 5Ij “_: 1)

Definition 3.3.1 (Linear elimination) Let a = Z“ﬂ Y,z + apx, < ¢, and =
Z{T_” bix;+b.x, < d. Then elim,(«, 3) is applicable only if a, and b, have opposite
signs, in which case elim,(a,) = Z::ll (—a.ii—: + b;j)x; < —2—’;{? +d. If a, and b,

have the same sign the elimination implicitly generates the universal constraint.

Linear Inequalities: Fourier Elimination

DIRECTIONAL-LINEAR-ELIMINATION (¢, d)

Input: A set of linear inequalities ©, an ordering d = =y, ..., T,.
OutputA decision of whether ¢ 1s satisfiable. If 1t 1s, a backtrack-
free theory E ().

1. Initialize: Partition inequalities into ordered buckets.
2. for i+ n downto 1 do
3. if ; has one value 1n 1ts domain then

substitute the value mmto each mequality in the bucket
and put the resulting mequality i the right bucket.

4, else.for each pair {a, 3} C bucket;, compute v = elim;(a, 5)
if 4 has no solutions, return E;(¢) = {}, “inconsistency”

else add ~ to the appropriate lower bucket.

e |

return E4(p) < |, bucket,

Directional linear elimination, DLE :
generates a backtrack-free representation

Theorem 4.8.3 Given a set of linear inequalities p, algorithm DLE (Fourier elimina-
tion) decides the consistency of ¢ over the Rationals and the Reals, and it generates an
equivalent backtrack-free representation. O

class2 828X 2019

26

ﬁ Example

bucket, :
buckets :
buckets :
brucket, :

524+ 3x2 —x1 <5, T4 +x1 <2, —x4 <0,
rz3 < 5, 1 +ZTy — 3 < —10

rq +2$2 S 0.

Figure 4.23: initial buckets

class2 828X 2019

27

‘L Example

buckety :
buckets :
buckets :

bucket, :

bucket :
bucket3 .
b’UCketz .
bucket, :

54 +3x2 — 21 <5, Ta+x1 <2, —xs <0,
1355, T +$2—I3S —10
.‘E1+2I2 S 0.
Figure 4.23: initial buckets
0Ty +3T3 — 21 <5, T4+ 21 <2, —x24 <0,
23 <5, 71 +22—23< —10
T+ 22 <0 || 3z — 21 < 5,20 + 25 < =5

||:!:1§2.

Figure 4.24: final buckets

class2 828X 2019

28

+

Algorithms for Reasoning with graphical models

Classh
Rina Dechter

29

i Road Map

= Inference

= Constraint propagation (chapter 3 Dechter2)

i Outline

= Arc-consistency algorithms
= Path-consistency and i-consistency

Sudoku —
Approximation: Constraint Propagation

e Variables: empty slots

e Constraint o =

e Propagation {1,2,3,4,5,6,7,8,9}
eConstraints:

oln fe rence 27 all-different

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints
class2 828X 2019 32

Approximating Inference:
i Local Constraint Propagation

= Problem: Adaptive-consistency/Bucket-
elimination algorithms are intractable when
induced-width is large

= Approximation: bound the size of recorded
dependencies, i.e. perform local constraint
propagation (local inference)

class2 828X 2019

From Global to Local Consistency

Global consistency

local consistency
approximations

y

ARC-CONSISTENCY

34

i Arc-Consistency

A binary constraint R(X,Y) is arc-consistent w.r.t. X is every value
In X's domain has a match in Y’s domain.

R, =1{1,2,3}, R, =1{1,2,3}, constraint X <Y

¥ L ¥
- 1 1
2 2 .
L 3 3
S oy

[a) [b)

L ([M

Only domains are reduced: RX < H X RXY X DY

Arc-Consistency

Definition: Given a constraint graph 6,

= A variable X is arc-consistent relative to X; iff for every value
aeDy; there exists a value beDy; | (g, b)thiIXj.

Xi Xj Xj

= The constraint Ry y; is arc-consistent iff
= X is arc-consistent relative to X; and
= X is arc-consistent relative to X.

= A binary CSP is arc-consistent iff every constraint (or sub-graph
of size 2) is arc-consistent.

* Arc-consistency

X<Y
Y=/
T <Z

=T @A —@wd
<
T Z

—

X Y
Qp——@d
1<X,Y,Z,TZ3
A —

1<X,Y,Z TZ<3
X<Y
Y=Z
T <Z
X<T

* Arc-consistency

X Y
CO——CD
A —

O©—O
T Z

Ry < |, Ry X Dy

38

‘L Revise for Arc-Consistency

REVISE((z;), z;)

input: a subnetwork defined by two variables X = {z;, z;}, a distinguished variable z;,

domains: D; and D;, and constraint R;;
output: D;, such that, z; arc-consistent relative to z;
1. for each a; € D;

2. if there is no a; € D; such that (a;,a;) € R;;
3. then delete a; from D;

4, endif

5. endfor

Figure 3.2: The Revise procedure
D, < D, N7 (R; ®D;)

39

‘L Revise for Arc-Consistency

REVISE((z;), z;)

input: a subnetwork defined by two variables X = {z;, z;}, a distinguished variable z;,

domains: D; and D;, and constraint R;;
output: D;, such that, z; arc-consistent relative to z;
1. for each a; € D;

2. if there is no a; € D; such that (a;,a;) € R;j
3. then delete a; from D;
4. endif
5. endfor
Complexity?

Figure 3.2: The Revise procedure
2
) D, « D, " 7,(R,@D,)

40

A matching diagram describing a network of constraints that is
not arc-consistent (b) An arc-consistent equivalent network.

(a)

class2 828X 2019

A matching diagram describing a network of constraints that is
not arc-consistent (b) An arc-consistent equivalent network.

(a) (b)

AC-1

AC-1(R)

input: a network of constraints R = (X, D,C)

output: R’ which is the loosest arc-consistent network equivalent to R
1. repeat

2 for every pair {z;,x;} that participates in a constraint

3. Revise((z;), x;) (or D; « D; Nm;(R;; X D))

4. Revise((z;), ;) (or D; «— D; Nm;(R;; X D))

5 endfor

6. until no domain is changed

= Proof: Figure 3.4: Arc-consistency-1 (AC-1)

= Convergence?
= Completeness?

43

AC-1

AC-1(R)

input: a network of constraints R = (X, D,C)

output: R’ which is the loosest arc-consistent network equivalent to R
1. repeat

2 for every pair {z;,z;} that participates in a constraint

3. Revise((z;), z;) (or D; «— D; Nm;(Ry; M D;))

4. R@Vise((xj),xi) (01' .DJ — .DJ M WJ(R.LJ X Dz))
5

6.

endfor
until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)
Complexity (Mackworth and Freuder, 1986):
e = number of arcs, n variables, & values
(ek? each loop, nk number of loops), best-case = ek
Arc-consistency is: Q(ek?)
Complexity of AC-1: O(enk?3)

44

AC-3
AC-3(R)

input: a network of constraints R = (X, D, ()

output: R’ which is the largest arc-consistent network equivalent to R
1. for every pair {z;, z;} that participates in a constraint R;; € R
2 queue «— queue U {(z;, x;), (z;,x;)}

3. endfor

4. while queue # {}

5. select and delete (z;, ;) from queue

6. Revise((x;), ;)

7 if Revise((z;),x;) causes a change in D;

8 then queue <+ queue U {(x,x;),t # k}

9. endif

10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)

Complexity: O(ek”)
Best case O(ek), since each arc may be processed in O(2k)

45

i Exercise: Apply Arc-Consistency in Class

= Draw the network’s primal and dual
constraint graph

s Network =
= Domains {1,2,3,4}

» Constraints: y < x,z<y, t <z f<t,
x<=t+1, Y<f+2

AC-4(R) 6 y
input: a network of constraints R -

output: An arc-consistent network equivalent to R (
Y ()

1. Initialization: M « 0,

2 initialize S(z,.,), counter(i,a;, j) for all R;;

3 for all counters

4. if counter(z;,a;,x;) = 0 (if < z;,a; > is unsupported by z;)
5. then add < z;,a; > to LIST

6 endif

7 endfor

8. while LIST is not empty

9. choose < x;,a; > from LIST, remove it, and add it to M
10. for each < z;,a; > in Sy a0

11. decrement counter(zx;,a;, x;)

12. if counter(z;,a;,xr;) =0

13. then add < z;,a; > to LIST

14. endif

15. endfor

16. endwhile

2Figure 3.7: Arc-consistency-4 (AC-4)

= Complexity: O(ek
= (Counter is the number of supports to a; in x; from x;. S 4 is the
set of pairs that (x;, a;) supports)

47

xample applying AC-4

Example 3.2.9 Consider the problem in Figure 3.6. Initializing the S, 4 arrays (indi-
cating all the variable-value pairs that each < z,a > supports), we have :

Sey = {< 5,2 >,< 3,2 >,< y,4 >}, Ses = {< 5,5 >}, Sp2 = {< 2,2 >},
S(x,S) e {< Z,0 >}, S(y’g) o {< 2,2 >}, S(y,4) o= {< 2,2 >}.

For counters we have: counter(z,2,z) = 1, counter(z,5,z) = 1, counter(z,2,z) = 1,
counter(z,5,z) = 1, counter(z,2,y) = 2, counter(z,5,y) = 0, counter(y,2,z) = 1,
counter(y,4,z) = 1. (Note that we do not need to add counters between variables that
are not directly constrained, such as z and y.) Finally, List = {< 2,5 >}, M = (). Once
< z,5 > is removed from Lest and placed in M, the counter of < z,5 > is updated to
counter(z,5,z) = 0, and < z,5 > is placed in List. Then, < z,5 > is removed from
Last and placed in M. Since the only value it supports is < z,5 > and since < z,5 > is
already in M, the List remains empty and the process stops. 0

48

i Arc-Consistency Algorithms

AC-1: brute-force, distributed O(nek3)
= AC-3, queue-based O(ek?)
= AC-4, context-based, optimal O(ekz)
= AC-5,6,7,.... Good in special cases

= Important: applied at every node of search

n=number of variables, e=#constraints, k=domain size
Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)...

class2 828X 2019

From Arc-Consistency to

Relational Arc-Consistency

= Sound
= Incomplete

= Always converges
(polynomial)

WIN|~ D

WININID

A<B

1

2

2

3

class2 828X 2019

WIN~ D

W[N |[= |

W{N|~[Q

i Relational Distributed Arc-Consistency

WIN(N D

Primal

)
>
o

WIN|NID

A<B 3
SR .

2 |3 BC

1|1

2 | 2

3|3

D<C KC C

1 2 1

2 | 3 2

3

Dual
AB BC
1222
23|33
S ’49 B @
AB AD
1 2|1 2 /4 C
2 32 3
AD
D
1 2 @ /DC
AD DC
1223

BC

BC DC

2 2|1 2

3323

DC

51

All Arc-consistent algorithms
converge to an equivalent and
loosest arc-consistent network!!!

52

Constraint Checking

rc-consistency

_)

1-B:[5..14]
[5...— C: [6..15]
18]
2-A:[2..10]
H‘ 10] C:[6.14]

2<C- A<5_—l[3-B:[5..13]

[-4— -}51

i Is Arc-Consistency Enough?

= Example: a triangle graph-coloring with 2
values.
= Is it arc-consistent?
= Is it consistent?

= It is not path, or 3-consistent.

i Outline

= Path-consistency and i-consistency

i Path-Consistency

= A pair (X, y) is path-consistent relative to Z, if every
consistent assignment (X, y) has a consistent extension to z.

<

(a) (b)

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical
picture of path-consistency using the matching diagram.

class2 828X 2019

i Example: Path-Consistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

57

Revise-3

REVISE-3((z,¥), 2)

input: a three-variable subnetwork over (z,y, 2), Ry, Ry., Ra...
output: revised R,, path-consistent with z.
1. for each pair (a,b) € R,,

2. if no value ¢ € D, exists such that (a,c) € R, and (b,¢) € R,.
3. then delete (a,b) from R,,.

4. endif

5. endfor

Figure 3.9: Revise-3
Ry « R n7;(Ry, ® D, ®Ry;)

= Complexity: O(k3)
= Best-case: O(t)
= Worst-case O(tk)

58

i PC-1

PC-1(R)

input: a network R = (X, D,C).

output: a path consistent network equivalent to R.
1. repeat

2. for k— 1ton

3 fori,j«— 1ton

4. Ri; « Ry Ny (Rig M Dy W Ry;) /* (Revise — 3((2, 7), k))
5. endfor

6 endfor

7. until no constraint is changed.

Figure 3.10: Path-consistency-1 (PC-1)

= Complexity: O(n’k>)
= O(n3) triplets, each take O(k?) steps > O(n3k?3)
= Max number of loops: O(n? k?) .

59

PC-3(R)

input: a network R = (X, D, C).

output: R’ a path consistent network equivalent to R.

1. Q—{(i,k,j)|1<i<ji<nl1<k<nk#ik#j}

2. while @ is not empty

3 select and delete a 3-tuple (7, &, 7) from @

4. Ri; — Ry Nmj(Ry X Dy X Ry;) /* (Revise-3((, 7), k))
5. if R;; changed then
6
7.

Q—QU{(,4,7), 5,79 |1 <I<nl#il+#j}
endwhile

Figure 3.11: Path-consistency-3 (PC-3)

= Complexity: o(n’k?)
= Optimal PC-4: o(n’k?)

= (each pair deleted may add: 2n-1 triplets, number of pairs: O(n? k?) - size

of Qis O(n3 k?), processing is O(k3))

60

i Path-consistency Algorithms

= Apply Revise-3 (O(k?)) until no change
Ri < Ry N7 (R 6D, BaIR,;)

= Path-consistency (3-consistency) adds binary
constraints.

= PC-1: O(n°k>)
« PC-2: O(nk%)
= PC-4 optimal: O(n’k’)

‘L Local i-Consistency

I-consistency: Any consistent assignment to any i-1 variables is
consistent with at least one value of any i-th variable

ARC-CONSISTENCY

-

GED— Q2D

PATH-CONSISTENCY

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency,
(c) i-consistency

62

i Directional i-Consistency

B i
Adaptive
EDECED i
D:D%C,D=A Rpoces
C:C=B I
B: A»B

A:

63

i Boolean Constraint Propagation

O (A Vv —|B) and (B)
= B is arc-consistent relative to A but not vice-versa

= Arc-consistency by resolution:
res((AV —=B),B) = A

Given also (B V C), path-consistency:
res((AV -B),BVC)=(AVCO

Relational arc-consistency rule = unit-resolution

AAnB —> G,—lG,:> —Av —B

Gausian and Boolean
i Propagation, Resolution

= Linear inequalities
X+y+z<15z2>213=

X<2,y<2

= Boolean constraint
propagation, unit resolution

(AvBv—-C),(—-B)=
(AV —|C)

65

i Unit Propagation

Procedure UNIT-PROPAGATION
Input: A cnf theory, ¢, d = @, ..., @x.
Output: An equivalent theory such that every unit clause
does not appear in any non-unit clause.
1. queue = all unit clauses.
2. while queue is not empty, do.
3. T «— next unit clause from Queue.
for every clause § containing 7" or -7
if 8 contains 7" delete 8 (subsumption elimination)
else, For cach clause y = resolve(3,T).
if 7, the resolvent, is empty, the theory is unsatisfiable.
7. else, add the resolvent ~ to the theory and delete 5.
if 7y is a unit clause, add to Queue.
8. endfor.
9. endwhile.

o O

Theorem 3.6.1 Algorithm UNIT-PROPAGATION has a linear time complexity.

class2 828X 2019

‘L Variable Elimination

=
T
&
~

. [222 DBC .

Eliminate L2235 - 22 =Ry

variables

one by one: el

“constraint 7 23 P \

propagation” O
’ { eliminating E

Solution generation c=3

after elimination is o e

_ PO pop =i pRE
backtrack-free 00 N SRR
1.2} A — B (L2 i

‘L Road Map

= Search

