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The Induced-Width

 Width along d, w(d):
 max # of previous parents

 Induced width w*(d):
 The width in the ordered 

induced graph
 Induced-width w*:

 Smallest induced-width 
over all orderings

 Finding w*
 NP-complete (Arnborg, 

1985) but greedy heuristics 
(min-fill).
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Road Map
 Graphical models 
 Constraint networks Model
 Inference

 Variable elimination for Constraints
 Variable elimination for CNFs
 Greedy search for induced-width orderings
 Variable elimination for Linear Inequalities

 Constraint propagation
 Search
 Probabilistic Networks
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Finding a Small Induced-Width
 NP-complete
 A tree has induced-width of ?
 Greedy algorithms:

 Min width
 Min induced-width
 Max-cardinality and chordal graphs
 Fill-in (thought as the best)

 Anytime algorithms
 Search-based [Gogate & Dechter 2003]
 Stochastic (CVO)   [Kask, Gelfand & Dechter 2010]
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Min-width Ordering

Proposition: algorithm min-width finds a min-width ordering of a graph
What is the Complexity of MW?  
O(e) class2 828X 2019



Greedy Orderings Heuristics
 Min-induced-width

 From last to first, pick a node with smallest 
width, then connect parent and remove

 Min-Fill
 From last to first, pick a node with smallest 

fill-edges

Complexity? O(𝑛ଷ)
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Min-Fill Heuristic
 Select the variable that creates the fewest “fill-in” 

edges

A
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Eliminate B next?
Connect neighbors
“Fill-in” = 3: 
(A,D), (C,E), (D,E)

Eliminate E next?
Neighbors already connected
“Fill-in” = 0
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Example



Different Induced-Graphs

A Min-fill ordering
A Miw ordering
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 A graph is chordal if every cycle of length at least 4 has a 
chord

 Deciding chordality by max-cardinality ordering: 
 from 1 to n, always assigning a next node connected to a largest set of 

previously selected nodes. 

 A graph along max-cardinality order has no fill-in edges iff it 
is chordal. 

 The maximal cliques of chordal graphs form a tree

Chordal Graphs

[Tarjan & Yanakakis 1980] 10class2 828X 2019



Greedy Orderings Heuristics
 Min-Induced-width

 From last to first, pick a node with smallest width

 Min-Fill
 From last to first, pick a node with smallest fill-

edges

• Max-Cardinality search 
 From first to last, pick a node with largest neighbors 

already ordered.

Complexity? O(𝑛ଷ)

Complexity? O(𝑛 ൅ 𝑚)
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[Tarjan & Yanakakis 1980]



Max-cardinality ordering
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Example
We see again that G in the Figure (a)  is not chordal
since the parents of A are not connected in the max-
cardinality ordering in Figure (d). If we connect B and 
C, the resulting induced graph is chordal.



Which Greedy Algorithm is Best?

 Min-Fill, prefers a node who add the least 
number of fill-in arcs.

 Empirically, fill-in is the best among the 
greedy algorithms (MW,MIW,MF,MC)

 Complexity of greedy orderings?
 MW is O(e), MIW: O( ଷ) MF O( ଷ)  MC is 

O(e+n)
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K-trees

class2 828X 2019 15



Finding a Small Induced-Width
 NP-complete
 A tree has induced-width of ?
 Greedy algorithms:

 Min width (MW)
 Min induced-width (MIW)
 Max-cardinality and chordal graphs (MC)
 Min-Fill (thought as the best) (MIN-FILL)

 Anytime algorithms
 Search-based [Gogate & Dechter 2003]
 Stochastic (CVO)   [Kask, Gelfand & Dechter 2010]
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Summary Of Inference Scheme
 Bucket elimination is time and memory 

exponential in the induced-width.

 Finding the w* is hard, but greedy schemes 
work quit well to approximate. Most popular 
is fill-edges

 W(d) is the induced-width along an ordering 
d. Smallest induced-width is also called tree-
width. 
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Recent work in my group
 Vibhav Gogate and Rina Dechter. "A Complete Anytime

Algorithm for Treewidth". In UAI 2004.
 Andrew E. Gelfand, Kalev Kask, and Rina Dechter. 

"Stopping Rules for Randomized Greedy Triangulation Schemes" 
in Proceedings of AAAI 2011.

 Kask, Gelfand and Dechter, BEEM: Bucket Elimination with 
External memory,  AAAI 2011 or UAI 2011

 Potential project
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Greedy Algorithms for Induced-Width

 Min-width ordering
 Min-induced-width ordering
 Max-cardinality ordering
 Min-fill ordering
 Chordal graphs
 Hypergraph partitionings

(Project: present papers on induced-width, run algorithms for 
induced-width on new benchmarks…)



Min-width Ordering

Proposition: algorithm min-width finds a min-width ordering of a graph
Complexity:?  
O(e) class2 828X 2019



Greedy Orderings Heuristics

min-induced-width (miw)
input: a graph G = (V;E), V = {v1; :::; vn}
output: A miw ordering of the nodes d = (v1; :::; vn).
1. for j = n to 1 by -1 do
2. r  a node in V with smallest degree.
3. put r in position j.
4. connect r's neighbors: E  E union {(vi; vj)| (vi; r) in E; (vj ; r) 2  in E},
5. remove r from the resulting graph: V V - {r}.

min-fill (min-fill)
input: a graph G = (V;E), V = {v1; :::; vn}
output: An ordering of the nodes d = (v1; :::; vn).
1. for j = n to 1 by -1 do
2. r a node in V with smallest fill edges for his parents.
3. put r in position j.
4. connect r's neighbors: E E union {(vi; vj)| (vi; r) 2 E; (vj ; r) in E},
5. remove r from the resulting graph: V V –{r}.

Theorem: A graph is a 
tree iff it has both width 
and induced-width of 1.
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Chordal Graphs;
Max-Cardinality Ordering

 A graph is chordal if every cycle of length at 
least 4 has a chord

 Finding w* over chordal graph is easy using the 
max-cardinality ordering.

 The  induced graph is chordal
 K-trees are special chordal graphs.
 Finding the max-clique in chordal graphs is 

easy (just enumerate all cliques in a max-
cardinality ordering



Road Map
 Graphical models 
 Constraint networks Model
 Inference

 Variable elimination for Constraints
 Variable elimination for CNFs
 Greedy search for induced-width orderings
 Variable elimination for Linear Inequalities

 Constraint propagation
 Search
 Probabilistic Networks
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Linear Inequalities
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Variables domains are the real numbers
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Linear Inequalities: Fourier Elimination

25



Directional linear elimination, DLE :
generates a backtrack-free representation
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Example
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Example
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Algorithms for Reasoning with graphical models

Class5
Rina Dechter
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Road Map
 Graphical models 
 Constraint networks Model
 Inference

 Variable elimination for Constraints

 Variable elimination for CNFs
 Variable elimination for Linear Inequalities
 Constraint propagation (chapter 3 Dechter2)

 Search
 Probabilistic Networks
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Outline
 Arc-consistency algorithms
 Path-consistency and i-consistency
 Arc-consistency, Generalized arc-

consistency, relational arc-consistency
 Global and bound consistency
 Distributed (generalized) arc-

consistency
 Consistency operators: join, resolution, 

Gausian elimination
class2 828X 2019



Sudoku –
Approximation: Constraint Propagation

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints

2 3
4 62 

•Variables: empty slots

•Domains = 
{1,2,3,4,5,6,7,8,9}

•Constraints: 
•27 all-different

•Constraint 
•Propagation

•Inference
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Approximating Inference:
Local Constraint Propagation

 Problem: Adaptive-consistency/Bucket-
elimination algorithms are intractable when 
induced-width is large

 Approximation: bound the size of recorded 
dependencies,  i.e. perform local constraint 
propagation (local inference)
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From Global to Local Consistency
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Arc-Consistency
A binary constraint R(X,Y)  is arc-consistent w.r.t. X is every value
In X’s domain has a match in Y’s domain.

YXRR YX    constraint },3,2,1{ },3,2,1{

Only domains are reduced: 
X YXYX DRR      
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Arc-Consistency

Definition: Given a constraint graph G,
 A variable Xi is arc-consistent relative to Xj iff for every value 

aDXi there exists a value bDXj | (a, b)RXi,Xj.

 The constraint RXi,Xj is arc-consistent iff
 Xi is arc-consistent relative to Xj and 
 Xj is arc-consistent relative to Xi.

 A binary CSP is arc-consistent iff every constraint (or sub-graph 
of size 2) is arc-consistent.

1

2 2

3

1

2

3

1

2

3

Xi XjXjXi
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32,1,

32,1, 32,1,

1  X, Y, Z, T  3
X  Y
Y = Z
T  Z
X  T

X Y

T Z

32,1,


=





Arc-consistency
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Question: What will be the domain of Y once the network is arc-consistent?
Or, how many values will it have?



1  X, Y, Z, T  3
X  Y
Y = Z
T  Z
X  T

X Y

T Z



=





1 3

2 3


X YXYX DRR      

Arc-consistency
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Revise for Arc-Consistency

)( jijiii DRDD  

⋈=⨂
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Revise for Arc-Consistency

)( jijiii DRDD   ⋈
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Complexity?

O(𝑘ଶሻ
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A matching diagram describing a network of constraints that is 
not arc-consistent (b) An arc-consistent equivalent network.
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A matching diagram describing a network of constraints that is 
not arc-consistent (b) An arc-consistent equivalent network.



AC-1

)( 3enkO
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 Proof:
 Convergence?
 Completeness?    



AC-1

)( 3enkO

 Complexity (Mackworth and Freuder, 1986): 
 e = number of arcs, n variables, k values
 (𝑒𝑘ଶ each loop, nk number of loops),  best-case = ek
 Arc-consistency is:
 Complexity of AC-1: O(en𝑘ଷ)

)( 2ek
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AC-3

)( 3ekO Complexity: 
 Best case O(ek),  since each arc may be processed in O(2k)
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Exercise: Apply Arc-Consistency in Class

 Draw the network’s primal and dual 
constraint graph

 Network = 
 Domains {1,2,3,4}
 Constraints: y < x, z < y, t < z, f<t, 

x<=t+1, Y<f+2
 Apply AC-3?
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AC-4  (just FYI)

)( 2ekO Complexity:
 (Counter is the number of supports to 𝑎௜ in 𝑥௜ from 𝑥௝. 𝑆ሺ௫௜,௔௜ሻ is the 

set of pairs that (𝑥௜, 𝑎௜) supports)
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Example applying AC-4



Arc-Consistency Algorithms

)( 3ekO

 AC-1: brute-force, distributed 

 AC-3, queue-based

 AC-4, context-based, optimal

 AC-5,6,7,…. Good in special cases

 Important: applied at every node of search

n=number of variables, e=#constraints, k=domain size
Mackworth and Freuder (1977,1983), Mohr and Anderson, (1985)…

)( 3nekO

)( 2ekO
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From Arc-Consistency to 
Relational Arc-Consistency

 Sound 

 Incomplete 

 Always converges
(polynomial)

A B

CD

3
2
1
A

3
2
1
B

3
2
1
D

3
2
1
C

<

<
< =

A < B
1 2

2 3

A < D
1 2

2 3

D < C
1 2

2 3

B = C
1 1

2 2

3 3
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Relational Distributed Arc-Consistency 
Primal Dual

AB

AD

AB
1 2

2 3

AD
1 2

2 3

A
AB   AD
1 2 1 2

2 3 2 3

A B

CD

3
2
1
A

3
2
1
B

3
2
1
D

3
2
1
C

A < B
1 2

2 3A < D
1 2

2 3

D < C
1 2

2 3

B = C
1 1

2 2

3 3

DC

BC

D

C

B

AB   BC
1 2 2 2

2 3 3 3

BC
1 1

2 2

3 3

DC
1 2

2 3

BC   DC
2 2 1 2

3 3 2 3

AD   DC
1 2 2 3
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All Arc-consistent algorithms 
converge to  an equivalent and 
loosest arc-consistent network!!!
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Constraint Checking
 Arc-consistency

[ 5.... 
18]

[ 4.... 15]

[ 1.... 10 ]
B < C

A < B

B

A

2 < C - A < 5

C

2- A: [ 2 .. 10 ]

C: [ 6 .. 14 ]

3- B: [ 5 .. 13 ]

C:  [ 6 .. 15 ]

1- B: [ 5 .. 14 ]
14
13

6

2

14
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Is Arc-Consistency Enough?

 Example: a triangle graph-coloring with 2 
values.
 Is it arc-consistent?
 Is it consistent?

 It is not path, or 3-consistent.



Outline
 Arc-consistency algorithms
 Path-consistency and i-consistency
 Arc-consistency, Generalized arc-

consistency, relation arc-consistency
 Global and bound consistency
 Distributed (generalized) arc-

consistency
 Consistency operators: join, resolution, 

Gausian elimination
class2 828X 2019



Path-Consistency
 A pair (x, y) is path-consistent relative to Z, if every 

consistent assignment (x, y) has a consistent extension to z.
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Example: Path-Consistency
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Revise-3

)( kjkikijijij RDRRR  

 Complexity: O(𝑘ଷሻ
 Best-case: O(t)
 Worst-case O(tk)
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PC-1

 Complexity: 
 O(𝑛ଷ) triplets, each take O(𝑘ଷ) steps  O(𝑛ଷ𝑘ଷ)
 Max number of loops: O(𝑛ଶ 𝑘ଶ) .

)( 55knO
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PC-2

)( 53knO Complexity:
 Optimal  PC-4:
 (each pair deleted may add: 2n-1 triplets, number of pairs: O(𝑛ଶ 𝑘ଶ)  size 

of Q is  O(𝑛ଷ 𝑘ଶ), processing  is O(𝑘ଷ))

)( 33knO



Path-consistency Algorithms

)( kjkikijijij RDRRR  

 Apply Revise-3 (O( ଷ)) until no change  

 Path-consistency (3-consistency) adds binary 
constraints.

 PC-1: 
 PC-2:
 PC-4 optimal:  

)( 55knO
)( 53knO

)( 33knO

class2 828X 2019

⋈ ⋈



Local i-Consistency

i-consistency: Any consistent assignment to any i-1 variables is
consistent with at least one  value of any i-th variable
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Directional i-Consistency

DCBR

A

E
CD

B


 

 
 D

C B

E

D
C B

E

D
C B

E

:A
B  A:B
BC  :C

AD C,D  :D
BE C,E D,E  :E








Adaptive d-arcd-path

DBDC RR  ,
CBR

DR
CR
DR

class2 828X 2019 63



class2 828X 2019

Boolean Constraint Propagation

 (A V B) and (B)
 B is arc-consistent relative to A but not vice-versa

 Arc-consistency by resolution:
res((A V ൓B),B) = A 

Given also (B V C),  path-consistency:
res((A V B),(B V C) = (A V C)
Relational arc-consistency rule = unit-resolution

BAGGBA  ,,



Gausian and Boolean 
Propagation, Resolution

 Linear inequalities

 Boolean constraint 
propagation, unit resolution

2,2  yx

)( CA 

65

 13,15 zzyx

 )(),( BCBA

MIT 2018
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Unit Propagation

66
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Variable Elimination 

Eliminate 
variables
one by one:
“constraint
propagation”

Solution generation 
after elimination is 
backtrack-free

3

67



Road Map
 Graphical models 
 Constraint networks Model
 Inference

 Variable elimination:

 Tree-clustering
 Constraint propagation

 Search
 Probabilistic Networks
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