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For a countably infinite alphabet A, the classes Reg(A) of regular languages and CFL(A) of 
context-free languages over A are defined by way of an encoding. All the languages contained 
in these classes are decidable, and these classes do have many properties in common with the class 
of regular languages Reg(Z) and the class of context-free languages CFL(Z), respectively, where 
Z is a finite alphabet. In particular, each of these classes can be characterized in a semantical way 
by a certain type of automata over d.  Finally, the classes Reg(A) and CFL (A) are compared to 
the classes of languages over d that are defined by Autebert, Beauquier, and Boasson. 

I. Introduction 

F o r  a f inite a lphabe t  2", the class Reg(Z)  o f  regular  languages  over  2" has been 

charac te r ized  in m a n y  di f ferent  ways.  So when L is a l anguage  over  Z ,  then L is 

regular ,  i .e . ,  L e Reg(Z) ,  i f  and  only if  L is accepted  by  a finite a u t o m a t o n ,  if  and  

only  if  L is represented  by  a regular  express ion,  if  and  only  i f  L is genera ted  by  a 

regular  g r a m m a r ,  i f  and  only if  the  syntact ic  m o n o i d  M L o f  L is f inite [3, 4, 5]. Fu r -  

t he rmore ,  every regular  l anguage  is dec idable  in real  t ime,  and  the class Reg(Z)  is 

c losed under  a large var ie ty  o f  opera t ions ,  e .g . ,  it is c losed under  union ,  intersec-  

t ion ,  c o m p l e m e n t a t i o n ,  conca tena t ion ,  Kleene closure,  reversal ,  G S M  mapp ings ,  
and  inverse G S M  mappings  [5]. 

The  class C F L ( Z )  o f  context - f ree  languages  over  Z has also been charac te r ized  

in several  d i f ferent  ways  by  means  o f  context - f ree  g r a m m a r s ,  p u s h d o w n  a u t o m a t a ,  

and  c losure  p roper t ies  (cf. ,  e .g. ,  the C h o m s k y - S c h i i t z e n b e r g e r  T h e o r e m  [2]). Every  

contex t - f ree  language  over  Z is dec idable  by some a lgo r i thm f rom E2(Z),  where 

Ek(2") denotes  the k- th  class o f  the Grzegorczyk  h ie ra rchy  o f  word  funct ions  over  

Z [9], and  the class C F L ( Z )  is also closed under  var ious  ope ra t ions  [4, 5]. 

In  [1] Au tebe r t ,  Beauquier ,  and  Boasson  use several  o f  the charac te r i za t ions  o f  

Reg(2") and  C F L ( Z )  to def ine  classes o f  languages  over  A,  where  A is a coun tab ly  

inf ini te  a lphabe t .  However ,  it turns  ou t  tha t  none  o f  their  classes meets all the nice 

p roper t i e s  tha t  the  co r re spond ing  class over  Z has.  In pa r t i cu la r ,  each o f  thei r  

classes conta ins  non-recurs ive  languages .  

In  the present  pape r  we def ine  classes Reg(A) and C F L ( A )  f rom Reg(2"2) and  
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CFL(Z2), respectively, by using a specific encoding y f rom A * into Z~'. Here Z 2 
denotes a two-letter alphabet.  Although at first sight this definition may seem to be 
rather at will, it turns out that several other encodings yield the same classes. Fur- 
ther, all the languages f rom Reg(A) are decidable by algorithms from E 1 (A), while 
those f rom CFL(A) are decidable by algorithms from E2(A). Here Ek(A ) denotes 
the k-th class of  the Grzegorczyk hierarchy of word functions over A, which is 
related to the Grzegorczyk hierarchy over Z 2 by one of the encodings we consider 
[6]. 

Then some closure properties and some non-closure properties of  Reg(A) and 
CFL(A) are proved. As it turns out, Reg(A) can be characterized in a syntactical way 
by certain expressions called A-expressions as well as in a semantical way by certain 
au tomata  called finite A-automata.  These finite A-automata  are a direct generaliza- 
tion of  finite automata ,  and they can be considered as a restriction of  the Turing 
machine model Madlener and Otto developed for A [6]. In the same manner CFL(A) 
can be characterized in a semantical way by certain automata ,  but we will not pro- 
ceed this in this paper. 

Finally, the classes Reg(A) and CFL(A) are compared to the classes defined in [1] 
giving a good impression of the relative power of  the different characterizations of  
Reg(Z) and CFL(Z)  when carried over to countably infinite alphabets. As a by- 
product we get the result that, for each L ~ Reg(A), the syntactic monoid M L is 
finite. 

Since so many properties of  the classes Reg(A) and CFL(A) are so close to cor- 
responding properties of  the classes Reg(Z) and CFL(Z),  respectively, we consider 
the classes Reg(A) and CFL(A) as natural generalizations of  the classes of  regular 
and context-free languages to countably infinite alphabets. 

This paper is organized as follows. In Section 1 several encodings are presented, 
and some of their properties, that we will use later on, are derived. In Section 2 the 
class Reg(A) is defined and investigated, and the same is done in Section 3 for the 
class CFL(A). Finally, Section 4 is devoted to comparing the classes Reg(A) and 
CFL(A) to the classes defined in [1]. 

1. Some specific encodings and their properties 

It is assumed that the reader is familiar with the basic concepts of  formal language 
theory as presented in [4] or in [5]. Here some notations and definitions used 
throughout  this paper are given.  Then some specific encodings are defined, and we 
derive some of their properties that we will need later on. 

An alphabet  Z is a countable (i.e., finite or countably infinite) set whose elements 
are called letters. The set o f  words  over Z is denoted Z*, and e denotes the e m p t y  

word.  The identity of  words is written as = ,  and the concatenat ion of words u and 
o is simply written as uu. Numerical superscripts are often used to abbreviate words, 
e.g., a 3 m e a n s  aaa. 
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In general, Ixl denotes the length of  a word x: lel =0 ,  Ixa[ = [xl + 1 for all x~27"  
ae27. For a set S, IS I denotes the cardinality of  S. Each alphabet 27 can be indexed 
by an initial section of  N -  {0}, i.e., if 2` is finite, then it can be written as 
27={si,s2 . . . . .  sn}, where n=[2"], and if 27 is infinite, then it can be written as 
A = {sbs2 . . . . .  si, si+l . . . .  }. Hence, we can define the sum [Ixl] for a word x: ]]e[]--0, 

[[xsill = [Ix[] + / f o r  all x ~ 27", s i ~ 27. Then [[si,si2...s#U = X~=l i j ,  w h i l e  [SilSi2"''Sir I = r. 
For all of  this paper we fix two alphabets A and 2" 2 as follows: 

d = {al, a2 . . . . .  ai, ai+l . . . .  }, and 272= {sl,s2}. In order to be able to compare classes 
of  languages over d with classes of  languages over 272, we introduce some 
encodings. 

Define the function c: A * ~ N  by c(e)=O and 

c(wai)=2Hwad-l +c(w)  for all w e d * ,  a i e A .  

Lemma 1.1 [8]. The funct ion c & a bijection f r o m  A * onto N.  

Proof .  It can be seen easily by induction that 

22~ ,b 1 ' . . .  2 i 1 - 1 .  c(ailai2...a#)= : - +22~:I,~-1 + + 

~k=0/Zk" 2 k, where l=  ~i=1 i j -  1 (=  Ilai,%"'airll- 1), and Hence, c(a i ta i2 . . .a i r )  = t r 

I]O ' i f k ~ [ P l P = ~ i j - l f ° r s ° m e m w i t h l < m < r  1" 
J ' /k  = j = l  

• otherwise. 

Since ij>_ 1 for all j ,  this implies that c is 1-1 and onto, i.e., c is a bijection from 
A* onto N. [] 

Let bin: N~27~ be the mapping that, for each integer n e iN, gives the binary 
representation bin(n), where s 1 and s 2 are interpreted as 0 and 1, respectively. 
Define ~: A *~27~ by 6= binoc,  i.e., ((w) is the binary representation of  the integer 
c(w). 

Lemma 1.2. For all non-empty words u, v e A  *, 6(uv) = ((o) 6(u). 

Proof .  From the proof  of  Lemma 1.1 we immediately derive that 

~.(ai, a i2 . . . a i  r) = S2S~r-IS2S~r l - - 1 . . . S 2 s ~ l - - 1 .  

Further, C(ak) = 2 k- 1 implying 6(ak) = bin(2 k - 1 ) = s2s~ - I. Thus, 

((ai, ai2"'" ai r) = s2s~ r - ls2s~'- '  - 1 . . .  s2s~l - 1 = 6(air ) c ( a i  r , ) " "  e(ai,), 

i.e., 6(uv) = 6(v) 6(u) for all non-empty words u, o e A*. [] 

The function t~2: 27~-*N is defined by ct2(e ) =0  and ot2(wsi)=2t~2(w ) + i for all 
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w eZ~', i=  1,2, i.e., a word w~Z2* is simply interpreted as the 2-adic representation 
of  the integer a2(w). Hence, a2 is a bijection f rom Z'~' onto N. Let Q denote the 
reversal function defined by 0 ( e ) = e  and O(ws)=sQ(w) for all w~Z2*, s~L'2. 

Lemma 1.3 There exists a GSM mapping h satisfying the fol lowing two conditions 
for  all integers n >_ 1: 

(i) h (~o o bin(n)) = ~ o a2 -1 (n), 

(ii) h ~(Ooa£1(n))OZ~ • s 2 = {0obin(n)}. 

Proof .  Consider the following algorithm: 

Algorithm A 

input: a non-empty word SiSir ""Si~Sioe {0, 1}* (=X~) ;  
begin j := O; 

while j<_r and so= 1 do 
t 

begin Sig : :  S 1 ; 

j : = j + l  
end; 
i f j = r + l  then m := r else m := r - 1 ;  

S; :~S2; 
j : = j + l ;  
while j < r do 

t ! . 

begin if s b = 1 then s 6 := s2 else si; := sl, 
j : = j + l  

end; 

output: f (S ir" 'S i lS io  ) : Sit., .. "S~lSiro 
end. 

Claim. For all integers n_> 1, f(bin(n)) = a~l(n).  

Proof .  Let n be an integer with n _  1. If  bin(n) = 1 r for some r_> 1, then f(bin(n))  = 
f(1 r) = s~ = a2- l (n), otherwise, bin(n) = 1 si/"si, 01 k for some r, k _  0. In the latter 

case, 

f(bin(n))=s~r...s~,szs ~, where s ; =  ~ sl" if s6=O, 
(s 2, if s 6 = 1. 

Hence, f (b in(n))=a2Z(n)  also holds in this case. [] 

Now it is straightforward to develop a generalized sequential machine B from A 
such that on input oobin(n)  (n_> 1) B outputs ~ooa~l(n). Let h denote the mapping 
computed by B. Then for all integers n_> 1, h ( o o b i n ( n ) ) = O o a E l ( n ) .  Further we 
have h - 1 ( O o a f l ( n ) )  N Z ~ . s 2 = { ( o o b i n ( n ) }  for all n_>l, since 0ob in  is a bijec- 
tion f rom N - { 0 }  onto X~.s2, and 0oa~ -1 is a bijection f rom N onto Xf.  V~ 
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With fl we denote the function /721 oC. By Lemma 1.1, fl is a bijection from A * 
onto X~'. 

Theorem 1.4 [6]. The conjugation by fl induces a bijection between the linear classes 
o f  word functions over A and the linear classes o f  word functions over Z 2. In par- 
ticular, En(Zz)=f loEn(A)o~ 1 for  all n>_l. 

Here En(Z2) (En(A)) denotes the n-th class of the Grzegorczyk hierarchy over Z2 
(A) [6,9]. Further, a class of word functions over Z 2 (A) is called linear, if it con- 
tains the class El(Z2) (El(A)), and if it is closed under composition of functions 
and limited recursion. 

Finally we introduce an encoding y from A * into Z~ by defining 

Y(ai) =S~-1S2 for all i_> 1. 

2. The class Reg(A) of regular languages over A 

The class Reg(A) of  regular languages over A is defined through the encoding y. 
After showing that all the languages in Reg(A) are decidable, some closure proper- 
ties of  Reg(A) are derived. Finally, a syntactical characterization by means of A- 
expressions and a semantical characterization by means of finite A-automata are 
given for this class. 

For a finite alphabet Z, let Reg(Z) denote the class o f  regular languages over Z. 
Now the class Reg(A) of  regular languages over A is defined as follows. Let L be 
a subset of A *. Then L e Reg(A) if and only if y (L)~  Reg(Z2). 

Lemma 2.1. Let L be a subset o f  A*. 
equivalent: 

(i) L ~ Reg(A), 
(ii) y(L) e Reg(Z2) , 

(iii) g(L) e Reg(Z2), 
(iv) 13(L) e Reg(Z2). 

Then the following four  statements are 

Proof .  Statements (i) and (ii) are equivalent by definition of the class Reg(A). Let 

w=air. . .ai taioEA + (=A * -  {e}). Then 

?(w) = ?(aio)((ai,)... ?(ai,) = s2s~ ° l s2s(~ 1...S2S~r- 1 

by Lemma 1.2, 

y(W)=S[ r 1S2...S~'-1S2S~° IS2=Oo~(W), 

and 

B ( w ) = a f  loc(w) = g o h o g o b i n o c ( w ) = g o h o Q o e ( w )  
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by Lemma 1.3. Thus, if e e L ,  then y ( L ) = o o ? ( L ) ,  and f l ( L ) = o o h o Q o ? ( L ) ,  and 
if e e L ,  then y ( L ) = Q ( 6 ( L ) - { s l } ) U { e } ,  and f l ( L ) = o o h o o ( ? ( L ) - { s l } ) U { e } ,  
since 6(e)= sl, y(e)= e, and fl(e)= e. Now the equivalence of  statements (ii) to (iv) 
follows from well known closure properties of  the class Reg(•2). [] 

From Lemma 2.1 we can immediately derive 

Theorem 2.2. Each language L in Reg(d) is El(A)-decidable. 

Proof .  Let L be a language from Reg(A). We have to show that the characteristic 
function Zc of L is in El(A).  Since L e Reg(d), f l(L) e Reg(Z'2) by Lemma 2.1. This 
implies in particular that the characteristic function gl of  f l(L) is in Et(Z'2), and 
hence, the function Z = f l - l og l  off is in E 1 (d) by Theorem 1.4. But for each w e A *, 

(fl-l(Sl)=al, if fl(w) e f l (L  ), 
Z (w)=f l - l °X l ( f l (w) )=  ~fl-t(e)=e, if f l (w)~fl(L),  

i.e., 
Ia l, if w e L ~  

Z(w)= (e, if w ~ L )  =ZL(W). [] 

From Ogden's lemma for regular sets over £2, and from the definition of  the 
class Reg(A) we get the following version of  Ogden's lemma for languages in 
Reg(A). 

Lemma 2.3. Let L be a language f rom Reg(A). 
(i) There is an integer n such that, f o r  each word w e L o f  length [w[ > n, there 

exists a partition w = xyz satisfying 1 < lYl <- n and {xymz[ m >_ 0} C_ L. 
(ii) There is an integer n'>_3 such that, f o r  each word w e L  and each partition 

w = w I a i w2, where a i e A with i >_ n', there exists an integer j satisfying 1 <_j < n' - 2 
a n d  {wla i+mjW2lm>~ - 1} C_L. 

From part (ii) of  Lemma 2.3 we deduce that the language M =  {aiala i [i>__ 1} c_A * 
is not contained in the class Reg(A). In the following some closure properties and 
some non-closure properties of  the class Reg(A) are derived. 

Corollary 2.4. (i) The class Reg(A) is closed under union, intersection, complemen- 
tation, concatenation, Kleene closure (= star-operation), and reversal. 

(ii) Reg(A) is not closed under e-free homomorphisms, projections, or inverse 
projections. 

(iii) Reg(A) is closed under projections onto A-regular subalphabets and inverse 
projections onto A-regular subalphabets. 

Proof. Part  (i) follows immediately from corresponding closure properties of 
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Reg(Z2) and from Lemma 2.1. A subalphabet £2 of A is A-regular, if £2 e Reg(A) 
holds. By again using well known closure properties of Reg(Z2), we can derive part 
(iii) from Lemma 2.1. 

For proving part (ii) let L 1 = {aili>_ 1} and L 2 = {e}. Then L 1 and L 2 a r e  contain- 
ed in Reg(A). Define a mapping ~0:A*-~A* by ~o(ai)=aiala i for all i>_l. Then 
~o(Ll )={aia la i l i>_l}=M¢Reg(A)  implying that the class Reg(A) is not closed 
under e-free homomorphisms. Finally, let £2 be a subalphabet of  A such that 
OeReg(A) .  Since not all the subsets of {s~s2[i>_O } are regular over Z2, we see 
from the definition of Reg(A) that a subalphabet ~2 of  this form exists. Now let I1 n 
denote the projection from A* onto £2", i.e., 

(a  i, i f  a i E g-2, (ai ) 
(e, otherwise. 

Then I In (L1)NA =(2, and I I ~ l ( L 2 ) = { w ¢ A * [ I I n ( w ) = e } = ( A - £ 2 ) * .  Thus, E2= 
H n ( L ~ ) N A ,  and g2=(//nl(L2))cf-)A, where L c stands for the complement A * - L  
of  L. Hence, the class Reg(A) is neither closed u n d e r / / n  nor under / /~1 .  [] 

The regular languages over X 2 can be described by regular expressions. By 
restricting our attention to regular languages over Z 2 that are contained in 
({sl} *. s2)* we get an according characterization for the languages in Reg(A). 

Definition 2.5. The A-expressions and the sets that they denote are defined recur- 
sively as follows: 

(i) 0 is a A-expression denoting the empty set. 
( i i )  e is a A-expression denoting the set {e}. 

(iii) For each i_> 1, a i is a A-expression denoting the set {ai}. 
(iv) For each i,j>_l, Bi, j is a A-expression denoting the se t  {ai+kj]k>--O }. 
(v) If r and s are A-expressions denoting the sets R and S, respectively, then 

(r+s),  (rs), and (r*) are A-expressions that denote the sets R U S ,  RS, and R*, 
respectively. 

If r is a A-expression, then L(r) denotes the set described by r. 

From the characterization of regular subsets of  ({sl}*" s2)* by regular expres- 
sions the following theorem can be derived easily. 

T h e o r e m  2.6. Let L be a subset o f  A *. The following two statements are equivalent: 
(i) L ~ Reg(A); 

(ii) there exists a A-expression r such that L =L(r) .  

From this characterization of Reg(A) we see that Reg(Z)= Reg(A)N ~(Z*)  for 
each finite subalphabet Z of A. Here :~(Z*) denotes the set of  all subsets of  Z*. 
Further we can derive 
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Theorem 2.7. The class Reg(A) & closed under finite homomorphisms. 

P r o o f .  A h o m o m o r p h i s m  ¢p: A * ~ A  * is called finite, if ~0(A) is a finite subset o f  A *. 

Let  ~o be a finite h o m o m o r p h i s m  with q~(A)={wl, w 2 . . . . .  Wm}C_A*, and let 
L e Reg(A). We must  show that  ~o(L) • Reg(A). This is done by induct ion on the A- 
expression r denoting L.  

I f  r = 0, or if r = e, then ~o(L)= L implying ~0(L)• Reg(A). I f  r = a i for some i >  1, 

then L = {ai}, and so ¢p(L)= {(P(ai)}, which clearly is in Reg(A). Further,  if r=Bi, j 
for  some i,j>_l, then L={ai+kjlk>_O}c_A. Hence, there exists a subset 
{ w 1 . . . . .  Wp } c_ q~(A) such that  ~o(L) = { w I . . . . .  Wp }. Thus,  ~o(L) e Reg(A). Finally, if 

r = (r I + r2), r = (rlr2), or  r = (r~'), then ~o(L) • Reg(A) follows f rom the induct ion 
hypothesis  applied to rl and r2, respectively, and f rom the fact that  ~o is a 
h o m o m o r p h i s m ,  i.e., ~o(uo)= ¢o(u)~o(v) for all u, v • A  *. [] 

Finally, we want  to carry over the semantical characterizat ion o f  the regular 
subsets o f  ({s 1}*. s2)* by means o f  finite au tomata  to Reg(A). For  doing so, we 
define the class A (A)  o f  f inite A-automata as follows. 

Definition 2.8. A f inite A-automaton 92 is denoted by a 4-tuple (Q, qo, F, ~), where 
Q is a finite set o f  states, q o e Q  is the initial state, Fc_Q is the set o f  accepting 
states, and ~ is the transition function mapping Q × A into Q and satisfying the con- 
dit ion (*):  

(*) V q e Q ,  Vi, j>_2: c~(q, ai)=O(q, aj). 

We figure a finite A - a u t o m a t o n  92= (Q, qo, F,6)  as a f inite control, which is in 
some state f rom Q, reading a sequence o f  symbols f rom A written on a tape. In one 
move  the finite A - a u t o m a t o n  92 in state q and scanning symbol  a i enters state 

O(q, ai) and either moves its head one symbol  to the right, if i =  1, or  substitutes a i 
by ai_ 1, i f  i >  1. I f  the cell scanned is empty,  then 92 stops. 

I f  the tape inscription o f  92 is uaiv with u, v • A  * and aiEA,  and if 92 is in state 
q • Q scanning the tape cell containing the letter ai, then this configuration of  92 
can be described by uqai v. Now the behavior  o f  92 can be defined formally by a 
funct ion NEXT~ that,  for each conf igura t ion o f  92, gives the corresponding suc- 
cessor conf igurat ion.  

Definition 2.9. Let 92= (Q, qo, F,O) be a finite A-au tomaton .  
(a) For  all u, v • A *, ai • A, q • Q, 

NEXT~(uqaiv)  = ~ ual q'v, if i = 1, 
(uq'ai iv, if i > l ,  

~,here q'=g(q,  ai). Let - ~ t  denote the transition between configurat ions  induced 
by NEXT~,  and let ~ denote the reflexive and transitive closure o f  ~ ' .  
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(b) Let L(93)={weA* I~JqeF: qow--~alwlq}. Then L is the set of  words that 

cause 93 to halt in an accepting state after starting f rom the configuration qow. 
L(93) is called the language accepted by 93. 

The finite A-automaton is a restriction of the Turing machine model over A as 
defined in [6]. With FA(Z2) we denote the class of  deterministic finite au tomata  
over Z2 as defined in [5]. Then Reg(Z2) = {L c_ Z2* 17J93 E FA(Z2): L = L(93)}. Now 
we can state the last result of  this section. 

Theorem 2.10. Let L be a subset o f  A *. Then the following two statements are 
equivalent: 

(i) L e Reg(A); 
(ii) there exists a finite A-automaton 93 that accepts L. 

Proof .  Assume that 93=(Q, qo, F,d) is a finite A-automaton  such that L=L(93).  
We define a finite automaton 93'~FA(Z2) as follows: 93'=(Q, qo, F,O') with 

6'(q, s l )=ql ,  if d(q, a2)=q 1, and d'(q, s2)=q l, i f  d(q, al)=ql ,  for all q, ql e Q. It 
can be seen easily that L(93')A(Z~.s2t3{e})=y(L).  Since 93'~FA(Z2), L(93')~ 
Reg(Z2), and so y(L) ~ Reg(Z2) implying L ~ Reg(A). 

On the other hand, if L ~ Reg(A), then y(L) ~ Reg(Z2) implying that y(L) = L(93') 
for some finite automaton 93'= (Q, q0, F, d ' )  ~ FA(Z2). Define a finite A-automaton  
93 as follows: 93=(Q,q~ F,d) with d(q, al)=ql ,  if d'(q, s2)=q ~, and d(q, ai)=ql,  if 
d'(q, sl) =ql, for all i_>2 and all q, ql ~ Q. Then 93cA(A), and it is straightforward 

to check that L=L(93).  [] 

3. The class CFL(A) of  context-free languages over A 

Here the encoding y is used to define the class CFL(A) of  context-free languages 
over A, all of  which are decidable. Then some closure properties and some non- 
closure properties of  the class CFL(A) are proved. 

For a finite alphabet Z, CFL(Z)  denotes the class of  context-free languages over 
Z. Now the class CFL(A) of context-free languages over A is defined as follows. Let 
L be a subset of  A *. Then L ~ CFL(A) if and only if y(L)~CFL(Z2).  Obviously, 
we have Reg(A) C+ CFL(A). 

Since CFL(Z2) is closed under reversal, union, intersection with regular sets, 
GSM mappings, and inverse GSM mappings, the proof  of  Lemma 2.1 also applies 
to context-free languages, thus giving 

Lemma 3.1. Let L be a subset o f  A *. Then the following four  statements are 
equivalent: 

(i) L 6 CFL(A), 
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(ii) y(L) e CFL(-r2), 
(iii) E(L) e CFL(X2), 
(iv) fl(L ) c CFL(Z2). 

Now we can easily show that all the languages in CFL(A) are decidable. In fact, 
we prove 

Theorem 3.2. Each language L in CFL(A) is E2(A)-decidable. 

Proof.  Let L~CFL(A) .  By Lemma 3.1 this means that f l(L)cCFL(Z2).  The 
Cocke-Kasami-Younger algorithm (see, e.g. [4]) decides membership for fl(L) in 
time O(n 3) with space O(n2). Thus, the characteristic function Z1 of fl(L) is in 
E2(Z2), and so the function Z=f1-1 oZl off is in E2(A) by Theorem 1.4. As in the 
proof of Theorem 2.2, Z actually is the characteristic function of L implying that 
L is E2(A)-decidable. [] 

Before we come to state some of the closure properties and non-closure properties 
of the class CFL(A), we want to characterize the context-free subalphabets of A. 

Theorem 3.3. Let £2 be a subalphabet o f  A, and let £21 = {a~laie£2 } be the unary 
encoding o f  1-2. Then the following four  statements are equivalent: 

(i) £2 is a A-regular subalphabet o f  A, i.e., f2~Reg(A); 
(ii) O is a A-context-free subalphabet o f  A, i.e., £2eCFL(A); 

(iii) O1 e Reg({al }), 
(iv) 01ECFL({al}).  

Proof.  It is well known that parts (iii) and (iv) are equivalent [4]. Therefore, it suf- 
fices to prove the equivalence of (i) and (iii) and of (ii) and (iv), respectively. For 
that define a homomorphism ~o: Z'2*~{al} * by ~o(sl)=~o(s2)=al . Now for 
£2 ~ CFL(A) (Reg(A)), y(£2) ~ CFL(Z'2) (Reg(Z'2)) implying that £21 = ~0(7(£2)) 
CFL({al}) (Reg({al})). On the other hand, if £21 c CFL({al }) (Reg({al })), then 
(o -](£21) --- { w ~ X~larw I ~ £2 } ~ CFL(Z'2) (Reg(Z'z)). Now 7(£2) = (p-1(f21 ) 13 ({s 1 } *. s2), 
and so y(£2)6 CFL(Z'2) (Reg(Z'2)) implying £2 ~ CFL(A) (Reg(A)). [] 

Hence, the context-free subalphabets of A coincide with the regular subalphabets, 
and they are in 1-1 correspondence with the regular languages over a single-letter 
alphabet. 

Corollary 3.4. (i) The class CFL(A) /s closed under union, concatenation, Kleene 
closure, intersection with languages from Reg(A), and reversal. 

(ii) CFL(A) is not closed under intersection or complementation. 
(iii) CFL(A) is not closed under e-free homomorphisms, finite homomorphisms, 

projections, or inverse projections. 
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(iv) CFL(A) /s closed under projections onto A-context-free subalphabets and 
inverse projections onto A-context-free subalphabets. 

Proof.  Parts (i) and (ii) follow immediately from corresponding properties of 
CFL(272) and from Lemmas 2.1 and 3.1, while part (iv) follows from well known 
closure properties of CFL(272) together with Theorem 3.3. It remains to prove part 
(iii). 

Let L 1 -- {a i [ i _  > 1 }, L 2 = {e}, and L 3 = {aia~[i> 2}. Then L 1, L2, and L 3 a r e  in 
CFL(A). Further, let A be a non-recursive subset of N, and let ¢: A *~A * be de- 
fined by ~(a l )=a l  and, for all i>2 ,  

(a 2, if i~A, 
~ ( a i )  = ~a3, i f i c A .  

Then ~o(A)={al,a2,a3}, i.e., ~0 is an e-free finite homomorphism. Now ~0(L3)= 
{a2a~[i_> 2 and i~ A}U {a3a~]i-> 2 and i¢ A}, and so, for all/_> 2, i E A if and only 
if a2a ~ ~ ~0(L3). Thus, the language ¢(L3) is non-recursive implying that the class 
CFL(A) is neither closed under e-free homomorphisms nor under finite homomor- 
phisms. Finally, let £2 be a subalphabet of A with 12¢CFL(A), and le t /7o denote 
the projection from A* onto f2*. Then 12=FIn(L1)NA implying that CFL(A) is 
not closed under projections. Further, /7~1(L2) = {weA  *[Fln(w)=e } =(A - O ) * .  
Assume that / /~I(L2)~CFL(A ). Then A - f 2 = / / ~ l ( L 2 ) f 3 A  ~CFL(A) by (i), and 
hence A - t 2  ~ Reg(A) by Theorem 3.3. Since Reg(A) is closed under complementa- 
tion and intersection, this implies that f2 e Reg(A), and hence, t2 e CFL(A), a con- 
tradiction. Thus, /7~I(L2)~CFL(A) proving that CFL(A) is not closed under in- 
verse projections. [] 

Let 27 be a finite subalphabet of A. Then for each subset L ___27*, we have 
L ~ C F L ( Z )  if and only if y(L)6CFL(Z2),  since the restriction of y to 27* is a 
homomorphism from 27* into Z~. Thus, CFL(Z)=CFL(A)N ~(27"). 

Finally, we want to mention the fact that the class CFL(A) can also be characteriz- 
ed in a semantical way by automata. Just as finite automata were generalized to 
finite A-automata, one can generalize pushdown automata to A-pushdown auto- 
mata. Then the class CFL(A) is exactly the class of languages over A that are ac- 
cepted by A-pushdown automata. For details see [7]. 

4. Comparing Reg(A) and CFL(A) to other classes of languages over A 

For a finite alphabet Z, the classes Reg(Z) of  regular languages over _r and 
CFL(Z) of context-free languages over Z have several nice characteristic properties. 
For example, a language L _ Z* is regular, if and only if there exist a finite monoid 
M, a subset R of  M, and a homomorphism ~o:Z*-~M such that L=~p-I(R) (cf., 
e.g., [2]), and a language L '  c_ Z* is context-free, if and only if for each (finite) sub- 
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alphabet Z '  of  Z, the set H±.,(L') is in CFL(Z') .  Here H z, denotes the projection 
from Z* onto Z'*. 

In [1] Autebert, Beauquier, and Boasson use several of these characteristic pro- 
perties of Reg(Z) and CFL(X), respectively, to define classes of languages over A. 
After restating their definitions, we compare the classes Reg(A) and CFL(A) to the 
classes defined in this way. 

First we consider those classes that are derived from properties of Reg(Z). 

Definition 4.1. (i) Rat(A) is the family of  rational subsets of A *, i.e., Rat(A) is the 
least family of subsets of A *, that contains the set 0 and {ai} for all i_> 1, and that 
is closed under union, concatenation, and Kleene closure [2]. 

(ii) R-Rat(A) is the least family of  subsets of A *, that contains all the A-regular 
subalphabets of A, and that is closed under union, concatenation, and Kleene 
closure. 

(iii) N-Rat(A) is the least family of  subsets of A *, that contains all subalphabets 
of  A, and that is closed under union, concatenation, and Kleene closure [1]. 

(iv) A language L c_ A * is in H-Rat, if and only if, for each finite alphabet Z and 
each finite homomorphism ~0: A * ~ Z *  (o(L) e Reg(Z) [1]. 

(v) A language L c_ A * is in H-Rat,  if and only if, for each finite subalphabet Z 

of  A, H z ( L ) 6 R e g ( Z )  Ill. 
(vi) Rec(A) is the family of recognizable subsets of A *, i.e., a language L c A  * 

is in Rec(A), if and only if there are a finite monoid M, a subset R of M, and a 
homomorphism ~p: A * ~ M  satisfying L = (o 1 (R) [1,2]. 

We have the following chain of inclusions. 

Theorem 4.2. 

U 
Z ~ A  

Z finite 

Reg(Z) = Rat(A) C R-Rat(A) = Reg(A) C Rec(A) 

= N - Rat(A) C H-Rat C/ / -Rat .  + L 

Proof.  Obviously, 

Rat(A)= U Reg(Z). 
Z c A  

Z finite 

Since A ~ R-Rat(d),  we also have Rat(d)C R-Rat(d) immediately. The class Reg(A) 
is closed under union, concatenation, and Kleene closure implying that R-Rat(A)c_ 
Reg(A). Now the characterization of  Reg(A) by A-expressions (Theorem 2.6) implies 
R-Rat(A) = Reg(A). By Theorem 3.3 there exist subalphabets of  A that are not A- 
regular, which implies that R-Rat(A)C N-Rat(d).  The remaining inclusions are from 
U]. ~] 

In particular, we conclude from Theorem 4.2 
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Corol lary  4.3. The class Rec(A) contains non-recursive languages. 

On the other hand we have a nice character izat ion o f  the languages in Rec(A) by 
means o f  their syntactic monoids.  Before giving this characterizat ion let us first 
recall the definit ion o f  the syntactic monoid  for  a language L c_ A *. 

Definition 4.4. For  a language L c_ A *, the syntactic congruence ~ is defined as 
follows. Let u , ~ e A * .  Then u = v  if and only if, for all x, y e A * ,  x u y e L  is 

equivalent to x v y e L .  The monoid  M L = A * / =  ={[w]=  I w~A*} is the syntactic 

monoid of  L.  Here [w]= denotes the congruence class o f  w. 

Theorem 4.5. Let L be a subset o f  A *. Then the following two statements are 

equivalent: 

(i) L e Rec(A); 

(ii) the syntactic monoid M c o f  L is finite. 

Proof. Let L be a subset o f  A *. I f  L eRec(A) ,  then there are a finite monoid  M, 
a subset R of  M,  and a h o m o m o r p h i s m  ~0: A * ~ M  such that  L =¢p I(R). Define a 

congruence  - on A * by u -  o if and only if ~p(u) = tp(v). Now let u, o e A * with u -  v. 
Then  for all x, y e A *, xuy ~ xvy, implying xuy e L if and only if xvy e L, i.e., u ~ o. 
Hence,  the congruence - is a refinement o f  the syntactic congruence -~. Since there 
are only finitely many  congruence  classes with respect to - ,  there are only finitely 

m a n y  congruence classes with respect to -~. Thus,  the syntactic monoid  M L is 
finite. 

Conversely,  assume that  the syntactic monoid  M L is finite. Define a h o m o m o r -  

phism ~9:A*~M L th rough  ~o(ai)=[ai]~, and a subset R o f  M th rough  R =  
{ [w] = ] w e L }. Obviously,  we have L c_ ~p-l (R). On the other hand,  if x e ¢p-I(R), 

then ~ (x )=  [x]~ = [w]= for some w e L ,  i.e., x-~ w. Since w e L ,  this implies x e L .  
Thus,  L = t p  l(R), and so L e R e c ( A ) .  [Z 

Since Reg(A) is a proper  subset o f  Rec(A), this gives 

Corol lary  4.6. For each language L e Reg(A), the syntactic monoid M L & finite. 

However, there are languages L c_ A * that have finite syntactic monoids, but that 

are not in Reg(A). 

Now we introduce those classes that are derived f rom properties o f  CFL(Z')  [1]. 

Definition 4.7. (i) A language L c_ A* is in N-Alg(A), if and only if there exist a 
finite alphabet  X, a language M e C F L ( X ) ,  and an alphabetic h o m o m o r p h i s m  
a :  A*-~X* such that  L = a  1(M). Here a h o m o m o r p h i s m  is called alphabetic, if 
a (A)  c_ Z'U {e} holds. 

(ii) A language L c_ A * is in H-Alg,  if and only if, for each finite a lphabet  X and 
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each finite homomorphism ~0: A * ~ Z *  tp(L)eCFL(Z) .  

(iii) A language L c_ A * is in H-Alg, if and only if, for each finite subalphabet Z 
of  A, Hz(L )eCFL(Z ). 

Here, we have the following chain of inclusions. 

Lemma 4.8. N-Alg(A) C H-Alg C H-AIg. 

Proof .  Let L EN-Alg(A). Then there exist a finite alphabet Z, a language M e  
CFL(Z),  and an alphabetic homomorphism a: A*-*Z* such that L=a-1(M). 
Without loss of  generality we may assume that Z is a subalphabet of  A implying 
that CFL(Z) c_ H-AIg. Hence, M e  H-AIg. Since the class H-Alg is closed under in- 
verse alphabetic homomorphisms [1], we have L=ct-l(M)eH-Alg. Thus, 
N-Alg(A) c_ H-Alg. 

Consider the language L = {a2]i>_ l }. Then for each finite homomorphism ~p, the 
image ~0(L) is finite implying that LeH-Ra tc_H-Alg .  On the other laand, 
L~N-Alg(A) as can be seen easily. Hence, N-Alg(A)CH-Alg. The inclusion 
H-AIgCH-Alg is proved in Ill. [] 

From the proof  of  Lemma 4.8 we see that H-Rat is not a subclass of  N-AIg(A). 
Further non-inclusions are the following. 

Lemma 4.9. (i) N-AIg(A)~H-Rat .  
(ii) H-Rat ~ H-Alg. 

Proof .  Take L l = {a(a2a~li_> 1 }. Then L 1 e N-Alg(A), but L 1 ¢~ H-Rat implying that 
N-Alg(A) ~ H-Rat.  Let L 2 = {aial aial al l i >- 2}, and let Z be a finite subalphabet of  
A. Then 

~{aiataialaili>2 with ai~Z}U{a2}, i f a l ~ Z ,  
Hz(L2) = ({ai3ili>_2 with aieZ} tO{e}, if al ~Z.  

Since Z is finite, also Hz(L2) is finite, and hence, L 2 e H-Rat.  Define (0: A *~Z~' by 
~o(al)=sl, and q~(ai)=s 2 for all i>_2. Then tp is a finite homomorphism with 
t p ( L 2 )  = i i i {s2s:es:21i>-2}, and so tP(L2) is not in CFL(Z2). Thus, L2~ H-Alg imply- 
ing that H-Ra t~H-Alg .  [] 

Now we can deduce the following proper inclusions. 

Lemma 4.10. (i) N-Rat(A)CN-AIg(A). 
(ii) H-Rat C H-Alg. 

(iii) H-Rat C H-Alg. 

Proof .  A language L c_ A * is in N-Rat(d),  if and only if there are a finite alphabet 
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X, a language M e  Reg(X), and an alphabetic homomorphism a: A *~X* such that 
L = a -  1 (M) [11. Hence, N-Rat(A) c_ N-Alg(A). Since N-Alg(A) g; H-Rat,  this inclu- 
sion is proper. Parts (ii) and (iii) are easy consequences of the definitions. [] 

From Theorem 4.2, from Lemmas 4.8-4.10, and from the fact that H-RatE 
N-AIg(A) (cf. proof  of Lemma 4.8) we get 

Lemma 4.11. The following pairs o f  classes (Cl, C2) are incomparable: 
(i) C a =N-Alg(A), and C2=H-Rat ;  

(ii) C~ =N-Alg(A), and C2=H-Rat ;  
(iii) C 1 = H-Alg, and C 2 = H-Rat.  

It remains to determine the relation between the class CFL(A) and the classes 
defined in 4.1 and 4.7. So far we only know that Reg(A)CCFL(A) implying that 
R-Rat(A)CCFL(A).  On the other hand, since Rec(A) is a subclass of N-Rat(d),  
H-Rat,  H-Rat,  N-AIg(A), H-Alg, and H-Alg, and since Rec(A) contains non- 
recursive languages by Corollary 4.3, CFL(A) does not include any of these classes. 
Further,  we have 

Lemma 4.12. (i) CFL(A)~H-Rat .  
(ii) CFL(A)~Z H-Alg. 

(iii) CFL(A) C H-Alg. 

Proof .  Consider L,={a~a2a[ ii >- 1}. Then L l eCFL(A) ,  but L , ¢ H - R a t ,  thus 
showing that CFL(A)g;H-Rat.  From the proof  of Corollary 3.4 we see that there 
exists a language L 3 e CFL(A) and a finite homomorphism ~0: d *- '  {a 1, a 2, a 3} * 
such that (o(L3)q. CFL({aba2,a3}). Hence, L3~/H-Alg, and so CFL(A)gH-Alg .  
Finally, CFL(A) is closed under projections onto finite subalphabets. Thus, by the 
remark following the proof  of Corollary 3.4, CFL(A) c_ H-Alg. Since CFL(A) does 
not contain H-Alg, this inclusion is proper. [~ 

Putting all these results together we get the following diagrams: 

U Reg(X) = Rat(A) C R-Rat(A) = Reg(A) C Rec(A) = N-Rat(A) C H-Rat C H-Rat 
X c d  + 

X finite + 

c c c 

N-Alg(A) c H-AIg C n-alg 

c / 
CFL(A) + 

[..J Reg(X)C+ U CFL(X)CN-Alg(A)ACFL(A)  
Xc_A X c d  

X finite X finite 
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For  all pairs of classes Cz and  C2, if neither C1 c_ C z nor  C2 c_ C1 can be derived 

f rom these diagrams,  then C 1 and C 2 are incomparable  under  set inclusion.  
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