Classification and Regression Trees

Bob Stine Dept of Statistics, Wharton School University of Pennsylvania

Trees

- Familiar metaphor
 - Biology
 - Decision tree
 - Medical diagnosis
 - Org chart
- Properties
 - Recursive, partitioning items into unique leaf
 - Increasing specialization
- Convey structure at-a-glance
- How to grow a tree from data?
 - What rules identify the relevant variables, split rules?

Phylogenetic Tree of Life

Archaea

Methanosamina

Methanobacteriun Methanococcus

Tcel

Entamoebae

Halophile

Eucaryota

Fungi

Ciliates

Frichomonade

Microsporidia

Bacteria

Cvanobacteria

Cvtophag

Green Filamentous bacteria

Gram

Trees as Models for Data

- Different type of explanatory variable
 - Decision rules replace typical predictors
 - Implicit equation uses indicator functions $X \Rightarrow I_{x \leq c} \ \& \ I_{x > c}$
 - Software builds these from training data
- Process
 - Find rule to partition data
 - Fits are averages of subsets
 - Use validation data to decide when to stop
- Models as averages
 - All models average, just question of which cases

Old Idea

- Binning data
 - Use categorical variables to define bins
 - Each observation goes into a bin
 - Prediction
 - average of cases in bin
 - most common category in bin
- Classify new case
 - No equation: Use score for the matching bin
- Trade-offs
 - Good: avoid assuming additive, transformations
 - Bad: Some bins may be nearly empty, sparse Need lots of data to fill a contingency table with several axes

bias vs variance

• Issues: Which characteristics? Which attributes?

Classical Example

- Fisher's iris data
 - Classification tree: categorical response
 - 50 flowers from 3 species of iris
 - four variables: length and width of sepal and petal

Classification

tree

Example

- ANES 2008
 - Regression tree: numerical response
 - Favor or oppose gay marriage
 - X's: Obama-McCain, PresDiapproval, Econ Problem

Regression

tree with

dummy

response

Gay Marriage Favor

Oppose

Recursive Partitioning

- Recursive, binary splits CART™
 - Start with all cases in one group, the root node Tree grows upside down
 - Split a current group to make homogeneous May split same group several times
 - Continue until objective is reached
- Comments
 - Recursive: once cases are split, never rejoin
 - Greedy: immediate step rather than look ahead Very fast, even with many features
 - Invariant of order-preserving transformations
 - Rules are not unique (as in collinearity in regr)
 - Interactions

Growing Tree

- Search for best splitting variable
 - Numerical variable

Partition cases $X \le c$ and X > c, all possible c Consider only numbers c that match a data point (ie, sort cases)

Categorical variable

Partition cases into two mutually exclusive groups Lots of groups if the number of labels k is large (2^{k-1}-1 splits)

- Greedy search
 - One-step look ahead (as in forward stepwise)
 - Find next variable that maximizes search criterion, such as level of significance or R².
 - Criterion depends on response: numerical or categorical

Splitting Criteria

- Numerous choices
- Log-likelihood for classification tree
 - Recall -2 log likelihood \approx residual SS in OLS
 - G² is node's contribution to -2 log likelihood Related to the entropy of the current partition (entropy measures randomness)
 - G² = 0 for node that is homogenous perfect fit, no value in trying to split further (entropy = 0)
- Log worth
 - JMP version of the p-value of a split
- Cross-validation
 - Use a tuning sample to decide how many splits

Common Limitations

- Splits are parallel to axis
 - Binary split on an observed variable
 - Some tree methods allow splits on linear combination

• Discrete fit

Piecewise constant fit

Lots of splits on one variable indicate trend

• Greedy search

Vert fast but can miss the best partition Common advice: over-fit then prune back As used for AIC, BIC in regr

• Over-fitting

Example: ANES

- Classify those who did not vote
 - Use 3-level validation variable

 4000 observed Obama/Romney, exclude others
 training, I = tuning, determines tree size
 test sample
 - Big assumption: same rules apply to those who voted and did not vote

1610	0.27
2496	0.42
118	0.01
1692	0.28
5916	1.00
	1610 2496 118 1692 5916

- Predictive features to consider
 - Avoid direct Obama/Romney specific questions
 Keep the problem more challenging
 - Demographics
 - Missing indicators

sample weights?

Fitting the Tree

- Running options
 - Minimum split size 25 Avoid leaves with few cases
 - Nice interface

Can force splits at any location

Validation properties

Department of Statistics

	RSquare	N	Number of Splits
Training	0.764	2167	13
Validation	0.730	699	
Test	0.663	1322	

Column Contributions

Term	What happens if this	of
Party.Identification	feature is not used?	
Better.party.for.women	leature is not used.	
Big.government.index		
Environmental.protection	.scale	
Make.difference.which.pa	rty.in.power	
Aid.to.blacks.scale		
Equality.Index		
Federal.govt.threatening.	to.citizens	
Allow Gay Marriage?		
Interest.in.campaign		
Media Frequency		

Number of Splits	G^2	Portion
2	1652.00843	0.7380
2	362.331905	0.1619
2	101.85863	0.0455
2	34.4754097	0.0154
1	23.3682291	0.0104
1	17.1555426	0.0077
1	17.1072163	0.0076
1	15.1433622	0.0068
1	14.9227152	0.0067
0	0	0.0000
0	0	0.0000
0	0	0.0000

Would be a nice feature for NN as well!

12

Mosaic Plot

- Summary of tree
 - Thin bins have few cases
 - Less flat means better splits

Estimated Tree

- Note variables that define first splits
 - Feeling thermometer differences, several splits
 - Race, but only for some
 - Voting behavior
- Some leaves are very homogeneous
 - No point in further splitting

Classify Missing

- Majority vote
 - 'Drop case' into estimated tree
 - Classify based on the preponderance of cases
- Results
 - Save tree prediction formula (not predicteds) Get probabilities* as well as most likely choice
 - Distribution of predicteds for missing cases

I hings to Improve?

- So few possible values
 - Number of leaf nodes determines the number of possible predictions; very discrete fit.
- Highly variable
 - Take a different subset and split points change
 - Fitted values, however, are likely similar
- Calibrated, but few possible values

training sample

Averaging Trees

- Rather than average within a model, we can average over models
- Model averaging borrows strength
 - Fit collection of models
 - Predict by 'majority vote' or averaging
 - Question: How to get a collection of models?
- Boosting
 - Re-weight cases not fit well by current model (If numerical Y, fit next model to residuals of current model)
 - Simple models
- Bagging
 - Build trees (forest) using bootstrap samples
 - Complicated models, different sets of variables

Random Forest

- Problem with trees
 - 'Grainy' predictions, few distinct values Each final node gives a prediction
 - Highly variable

Sharp boundaries, huge variation in fit at edges of bins

- Random forest
 - Cake-and-eat-it solution to bias-variance tradeoff Complex tree has low bias, but high variance. Simple tree has high bias, but low variance.
 - Fit ensemble of trees, each to different BS sample
 - Average of fits of the trees
 - Increase independence of trees by forcing different variables in the different trees

Often need relatively big tree to capture interesting structure

0 0.1 0.3 0.5 0.7 0.9

0.8

0.7 0.6 0.5 0.4

0.3-

Random Forest

• Fit using random forest

bottom left of dialog

Number of trees in the forest

Bootstrap sample rate:

Minimum Size Split:

Minimum Splits Per Tree:

Maximum Splits Per Tree

Number of terms sampled per split:

Classification tree has only few leaves Method

Bootstrap Forest

200

49 1

10

2000 25

- Very coarse predictions of voting behavior (though maybe enough)
- Forest has more branches, more variables
- Summary of forest

More variables used

Target Column	President	al vote	Training rows	2167	Early Stopping	
Validation Column:	Validation		Validation rows:	699		
validation column.	vandation		Tost rows:	1222		
			Test Tows.	1322		
Number of trees in the forest:		46	Number of terms:	196		
Number of terms sampled per split:		49	Bootstrap samples:	2167		
			Minimum Splits Per Tree:	10		
			Minimum Size Split:	25		
Column Contributions						
	Number					
Term	of Splits		G^2	Portion		
Party.identification	112	22516.6	355	0.3627		
X2008.presidential.vote	65	12031.6	696	0.1938		
Better.party.for.women	59	7245.49	179	0.1167		
Big.government.index	42	4303.97	312	0.0693		
Ideology	32	1975.53	171	0.0318		
Health.insurance.plan.scale	36	1710.34	517	0.0275		
Economy.past.year	35	1698.3	951	0.0274		
Unemployment.past.year	44	1336.7	817	0.0215		
Tea.Party.support	40	1264.07	236	0.0204		
Offshore.drilling	26	910.504	349	0.0147		
Race	38	860.210	261	0.0139		19
Moral.Traditionalism	28	821.10	427	0.0132		

Forest Results

• Confusion matrix

Confusion	Matrix							
Actual		Predicted	Actual		Predicted	Actual		Predicted
Training	Obama	Romney	Validation	Obama	Romney	Test	Obama	Romney
Obama	1248	40	Obama	412	19	Obama	732	45
Romney	64	815	Romney	20	248	Romney	47	498

• Goodness of fit summary

Overal	Statistics
--------	-------------------

Measure	Training	Validation	Test	Definition
Entropy RSquare	0.7620	0.7419	0.7097	1-Loglike(model
Generalized RSquare	0.8674	0.8528	0.8325	(1-(L(0)/L(model
Mean -Log p	0.1607	0.1718	0.1967	$\Sigma - Log(\rho[j])/n$
RMSE	0.2038	0.2142	0.2339	$\sqrt{\Sigma(y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.1252	0.1335	0.1415	$\sum y[j] - \rho[j] /n$
Misclassification Rate	0.0480	0.0558	0.0696	$\sum (\rho[j] \neq \rho Max)/n$
N	2167	699	1322	n

progress as forest grows

Calibration Plot

- Test sample results for random forest
- Richer set of predictions
 - linear, but not with slope 1
- Smooth ROC

Boosting

- General method for improving predictive model
 - Build additive sequence of predictive models (ensemble) Final prediction is accumulated over many models.
 - Start with initial predictive model
 - Compute residuals from current fit
 - Build model for residuals
 - Repeat
- Implication: Use simple model at each step
 - Weak learner: 'stump' (one split), few splits
 - Next response = (current response) (learning rate) x fit
- Weaknesses
 - Loss of 'interpretability', at what gain?

Original method called Adaboost

Boosted Trees

- Different way to get multiple trees
 - Simple models
 - Refit to training sample, but put more weight to cases not fit well so far

Column Contributions

• Uses many variables without random exclusion

Gradient-Boosted Trees Specification 200 Splits Per Tree: 3 0.01 Learning Rate: 0.0001 **Overfit Penalty:** Minimum Size Split: 5 Early Stopping Multiple Fits over splits and learning rate: Max Splits Per Tree 3 Max Learning Rate 0.1

Only in JMP Pro

Boosted Tree

Method

Specifications			
Target Column:	Presidential.vote	Number of training rows:	2167
Validation Column	n: Validation	Number of validation rows:	699
Number of Layers	: 200	Number of test rows:	1322
Splits Per Tree:	3		
Learning Rate:	0.01		
Overfit Penalty:	0.0001		

G^2	Portion
206582.042	0.2654
143276.078	0.1841
141790.62	0.1821
105168.516	0.1351
61440.0214	0.0789
36496.9081	0.0469
28999.8764	0.0373
15180.9567	0.0195
13967.6236	0.0179
13416.6216	0.0172
5879.29482	0.0076
2672.81659	0.0034
1802.83762	0.0023
	GA2 206582.042 143276.078 141790.62 105168.516 61440.0214 36496.9081 28999.8764 15180.9567 13967.6236 13416.6216 5879.29482 2672.81659 1802.83762

23

Boosting Results

Confusion matrix

	Confusion	n Matrix								
	Actual		Predicted	Actual		Predicted	Actual		Predicted	
Variation in	Training Obama Romney	Obama 1242 78	Romney 46 801	Validation Obama Romney	Obama 410 23	Romney 21 245	Test Obama Romney	Obama 735 54	Romney 42 491	
choice of test	Actual		Predicted	Actual		Predicted	Actual		Predicted	
sample:	Training Obama Romney	Obama 1248 64	Romney 40 815	Validation Obama Romney	Obama 412 20	Romney 19 248	Test Obama Romney	Obama 732 47	Romney 45 498	<forest< td=""></forest<>

• Goodness of fit summary

Overall Statistics				The second second
Measure	Training	Validation	Test	Definition
Entropy RSquare	0.7241	0.7046	0.6859	1-Loglike(model)/Loglik
Generalized RSquare	0.8421	0.8271	0.8156	$(1-(L(0)/L(model))^{(2/n)})$
Mean -Log p	0.1863	0.1966	0.2128	$\Sigma - Log(\rho[j])/n$
RMSE	0.2159	0.2258	0.2390	$\sqrt{\Sigma(y[i]-\rho[i])^2/n}$
Mean Abs Dev	0.1403	0.1467	0.1514	$\sum y[i] - \rho[i] /n$
Misclassification Rate	0.0572	0.0629	0.0726	$\sum (\rho[j] \neq \rho Max)/n$
Ν	2167	699	1322	n

24

Calibration Plots

- Results for test sample with boosting
- Similar benefits obtained by forest
 - Boosting is a bit more predictive

Comparison of Predictions

Training Sample

Test Sample

Take-Aways

- Classification and regression trees
 - Partition cases into homogeneous subsets Regression tree: small variation around leaf mean Classification tree: concentrate cases into one category
 - Greedy, recursive algorithm Very fast
 - Flexible, iterative implementation in JMP Also found in several R packages (such as 'tree')
- Model averaging
 - Boosting, bagging smooth predictions
 - Borrow strength
- Over-fitting
 - Control with cross-validation
 - Analogous to use of CV in tuning Neural Net

Some questions to ponder...

- How does a tree indicate the presence of an interaction between factors?
- What does it mean when a tree splits many times on the same variable?

How might you remedy this problem?

- Why is it important (at least 2 reasons) to avoid categorical variables with many categories in trees?
- What does it mean to describe a tree as defined by recursive and binary cuts? Why do it this way?

Next Time

- Thursday
 - Newberry Lab day for nets and trees
- Friday
 - Kernel methods and random projection
 - Text mining
 - Comparisons and summary

