
1 
 

Classic MapReduce: 
A job run in classic MapReduce is illustrated in Figure 6-1. At the highest level, there are 

four independent entities: 

• The client, which submits the MapReduce job. 

 

• The jobtracker, which coordinates the job run. The jobtracker is a Java application  whose 

main class is JobTracker. 

 

• The tasktrackers, which run the tasks that the job has been split into. Tasktrackers are Java 

applications whose main class is TaskTracker. 

 

• The distributed filesystem (normally HDFS, covered in Chapter 3), which is used for 

sharing job files between the other entities. 

 

 

 
 

Job Submission: 
The submit() method on Job creates an internal JobSummitter instance and calls 

submitJobInternal() on it (step 1 in Figure 6-1). 

 

The job submission process implemented by JobSummitter does the following: 

 Asks the jobtracker for a new job ID (by calling getNewJobId() on JobTracker) (step 

2). 

 Computes the input splits for the job. Copies the resources needed to run the job, 

including the job JAR file, the configuration file, and the computed input splits, to the 

jobtracker’s filesystem in a directory named after the job ID. (step 3). 



2 
 

 Tells the jobtracker that the job is ready for execution (by calling submitJob() on 

JobTracker) (step 4). 

 

Job Initialization: 

 
When the JobTracker receives a call to its submitJob() method, it puts it into an internal 

queue from where the job scheduler will pick it up and initialize it. Initialization involves 

creating an object to represent the job being run (step 5). 

 

To create the list of tasks to run, the job scheduler first retrieves the input splits computed by 

the client from the shared filesystem (step 6). It then creates one map task for each split. 

 

Task Assignment: 
 

Tasktrackers run a simple loop that periodically sends heartbeat method calls to the 

jobtracker. Heartbeats tell the jobtracker that a tasktracker is alive As a part of the heartbeat, a 

tasktracker will indicate whether it is ready to run a new task, and if it is, the jobtracker will 

allocate it a task, which it 

communicates to the tasktracker using the heartbeat return value (step 7). 

 

Task Execution: 

 
Now that the tasktracker has been assigned a task, the next step is for it to run the task. First, 

it localizes the job JAR by copying it from the shared filesystem to the tasktracker’s 

filesystem. It also copies any files needed from the distributed cache by the application to the 

local disk; see “Distributed Cache” on page 288 (step 8). 

 

TaskRunner launches a new Java Virtual Machine (step 9) to run each task in (step 10). 

 

 

Progress and Status Updates: 
MapReduce jobs are long-running batch jobs, taking anything from minutes to hours to run. 

Because this is a significant length of time, it’s important for the user to get feedback on how 

the job is progressing. A job and each of its tasks have a status. 

 

When a task is running, it keeps track of its progress, that is, the proportion of the task 

completed. 

 

Job Completion: 

 
When the jobtracker receives a notification that the last task for a job is complete (this will be 

the special job cleanup task), it changes the status for the job to “successful.” 

 
 
 
 
 
 
 



3 
 

Shuffle and Sort: 
The Map Side : 
MapReduce makes the guarantee that the input to every reducer is sorted by key. The process by 
which the system performs the sort—and transfers the map outputs to the reducers as inputs—is 
known as the shuffle.  
Each map task has a circular memory buffer that it writes the output to. The buffer is 100 MB by 
default, a size which can be tuned by changing the io.sort.mb property.When the contents of the 
buffer reaches a certain threshold size (io.sort.spill.per cent, default 0.80, or 80%), a background 
thread will start to spill the contents to disk. Each time the memory buffer reaches the spill 
threshold, a new spill file is created. Spills are written in round-robin fashion to the directories. 
Before it writes to disk, the thread first divides the data into partitions corresponding to the reducers 
that they will ultimately be sent to. Within each partition, the background thread performs an in-
memory sort by key, and if there is a combiner function, it is run on the output of the sort. Running 
the combiner function makes for a more compact map output, so there is less data to write to local 
disk and to transfer to the reducer. 
 so after the map task has written its last output record there could be several spill files.Before the 
task is finished, the spill files are merged into a single partitioned and sorted output file. 
If there are at least three spill files (set by the min.num.spills.for.combine property) then the 
combiner is run again before the output file is written. If there are only one or two spills, then the 
potential reduction in map output size is not worth the overhead in invoking the combiner. 

 
 
 

The Reduce Side : 
Let’s turn now to the reduce part of the process. 
The map output file is sitting on the local disk of the machine that ran the map task.But now it is 
needed by the machine that is about to run the reduce task for the partition. The reduce task needs 
the map output for its particular partition from several map tasks across the cluster. The copy phase 
of the reduce task. The reduce task has a small number of copier threads so that it can fetch map 
outputs in parallel. The default is five threads, but this number can be changed by setting the 
mapred.reduce.parallel.copies property. 
The map outputs are copied to the reduce task JVM’s memory if they are small enough,otherwise 
they are copied to disk.When the in-memory buffer reaches a threshold size (controlled by 



4 
 

mapred.job.shuffle.merge.percent), or reaches a threshold number of map outputs 
(mapred.inmem.merge.threshold), it is merged and spilled to disk. 
When all the map outputs have been copied, the reduce task moves into the merge phase.which 
merges the map outputs, maintaining their sort ordering. This is done in rounds. For example, if 
there were 50 map outputs, and the merge factor was 10 (the default, controlled by the io.sort.factor 
property, just like in the map’s merge),then there would be 5 rounds. Each round would merge 10 
files into one, so at the end there would be five intermediate files. 
During the reduce phase, the reduce function is invoked for each key in the sorted output. The 
output of this phase is written directly to the output filesystem, typically HDFS. 
 
 

 
Configuration Tuning : 

 



5 
 

 
 
 

 
 



6 
 

Hadoop Streaming  
Hadoop provides an API to MapReduce that allows you to write your map and reduce functions in 
languages other than Java. Hadoop Streaming uses Unix standard streams as the interface between 
Hadoop and your program, so you can use any language that can read standard input and write to 
standard output to write your MapReduce program. 
Hadoop Pipes Hadoop Pipes is the name of the C++ interface to Hadoop MapReduce. Unlike 
Streaming, which uses standard input and output to communicate with the map and reduce code, 
Pipes uses sockets as the channel over which the tasktracker communicates with the process running 
the C++ map or reduce function. JNI is not used. 

 
 

Map Reduce Types: 
The map and reduce functions in Hadoop MapReduce have the following general form: 

 

  map: (K1, V1) → list(K2, V2) 

 

                        reduce: (K2, list(V2)) → list(K3, V3) 

 

In general, the map input key and value types (K1 and V1) are different from the map output 

types (K2 and V2). However, the reduce input must have the same types as the map output, 

although the reduce output types may be different again (K3 and V3). 



7 
 

 
public void map(LongWritable key, Text value, Context context) 
{ 
              ..... 
 ..... 
 context.write(new Text(year), new IntWritable(airTemperature)); 
} 
 
public void reduce(Text key, Iterable  <IntWritable> values, Context context) 
{ 
               .................. 
 context.write(key, new IntWritable(maxValue)); 
} 
public void combiner(Text key, Iterable  <IntWritable> values, Context context) 
{ 
               .................. 
 context.write(key, new IntWritable(maxValue)); 
} 
 

If a combine function is used, then it is the same form as the reduce function (and is an 

implementation of Reducer), except its output types are the intermediate key and value types 

(K2 and V2), so they can feed the reduce function: 

 

 map: (K1, V1) → list(K2, V2) 

 combine: (K2, list(V2)) → list(K2, V2) 

 reduce: (K2, list(V2)) → list(K3, V3) 

 

Often the combine and reduce functions are the same, in which case, K3 is the same as K2, 

and V3 is the same as V2. 

 

Input types are set by the input format. So, for instance, a TextInputFormat generates keys of 

type LongWritable and values of type Text. The other types are set explicitly by calling the 

methods on the Job as follows. 

 
 job.setOutputKeyClass(Text.class);  
 job.setOutputValueClass(IntWritable.class); 
 

So if K2 and K3 are the same, you don’t need to call setMapOutputKeyClass(), since it falls 

back to the type set by calling setOutputKeyClass(). Similarly, if V2 and V3 are the same, 

you only need to use setOutputValueClass(). 



8 
 

 
 

 

 

Input Formats: 
 

     Hadoop can process many different types of data formats, from flat text files to databases. 

 

The Relationship Between Input Splits and HDFS Blocks Figure 7-3 shows an example. 

A single file is broken into lines, and the line boundaries do not correspond with the HDFS 

lock boundaries. Splits honor logical record boundaries,in this case lines, so we see that the 

first split contains line 5, even though it spans the first and second block. The second split 

starts at line 6. 

 
 

Text Input: 
 

TextInputFormat : 
TextInputFormat is the default InputFormat. Each record is a line of input. The key, a 

LongWritable, is the byte offset within the file of the beginning of the line. The value is the 

contents of the line. 

So a file containing the following text: 

On the top of the Crumpetty Tree 

The Quangle Wangle sat, 

But his face you could not see, 

On account of his Beaver Hat. 

 



9 
 

The records are interpreted as the following 

key-value pairs: 

(0, On the top of the Crumpetty Tree) 

(33, The Quangle Wangle sat,) 

(57, But his face you could not see,) 

(89, On account of his Beaver Hat.) 

 

KeyValueTextInputFormat 

 
TextInputFormat’s keys, being simply the offset within the file, are not normally very useful. 

It is common for each line in a file to be a key-value pair, separated by a delimiter such as a 

tab character. 

 

You can specify the separator via the mapreduce.input.keyvaluelinerecor 

dreader.key.value.separator property (or key.value.separator.in.input.line in the old API). 

It is a tab character by default. Consider the following input file, where → represents a 

(horizontal) tab character: 

 

line1→On the top of the Crumpetty Tree 

line2→The Quangle Wangle sat, 

line3→But his face you could not see, 

line4→On account of his Beaver Hat. 

 

Like in the TextInputFormat case, the input is in a single split comprising four records, 

although this times the keys are the Text sequences before the tab in each line: 

 

 (line1, On the top of the Crumpetty Tree) 

(line2, The Quangle Wangle sat,) 

(line3, But his face you could not see,) 

(line4, On account of his Beaver Hat.) 

 

NLineInputFormat 

 
With TextInputFormat and KeyValueTextInputFormat, each mapper receives a variable 

number of lines of input. The number depends on the size of the split and the length of the 

lines. If you want your mappers to receive a fixed number of lines of input, then 

NLineInputFormat is the InputFormat to use. Like TextInputFormat, the keys are the byte 

offsets within the file and the values are the lines themselves. 

 

N refers to the number of lines of input that each mapper receives. With N set to one (the 

default), each mapper receives exactly one line of input. 

 

On the top of the Crumpetty Tree 

The Quangle Wangle sat, 

But his face you could not see, 

On account of his Beaver Hat. 

 

 



10 
 

If, for example, N is two, then each split contains two lines. One mapper will receive the first 

two key-value pairs: 

(0, On the top of the Crumpetty Tree) 

(33, The Quangle Wangle sat,) 

 

And another mapper will receive the second two key-value pairs: 

(57, But his face you could not see,) 

(89, On account of his Beaver Hat.) 

 

XML 

 

Most XML parsers operate on whole XML documents, so if a large XML document is made 

up of multiple input splits, then it is a challenge to parse these individually. 

 

Large XML documents that are composed of a series of “records” (XML document 

fragments) can be broken into these records using simple string or regular-expression 

matching to find start and end tags of records. 

 

set your input format to StreamInputFormat and set the stream.recordreader.class 

property to org.apache.hadoop.streaming.StreamXmlRecordReader to use xml as an 

input format. 

 

To take an example, Wikipedia provides dumps of its content in XML form, which are 

appropriate for processing in parallel using MapReduce using this approach. 

 

Binary Input : 
 
SequenceFileInputFormat 
 

Hadoop’s sequence file format stores sequences of binary key-value pairs. Sequence files are 

well suited as a format for MapReduce data since they are splittable they support 

compression as a part of the format 

 

SequenceFileAsTextInputFormat 

 

SequenceFileAsTextInputFormat is a variant of SequenceFileInputFormat that converts the 

sequence file’s keys and values to Text objects. 

 

SequenceFileAsBinaryInputFormat 

 

SequenceFileAsBinaryInputFormat is a variant of SequenceFileInputFormat that retrieves the 

sequence file’s keys and values as opaque binary objects. 

 

Multiple Inputs 
The input to a MapReduce job may consist of multiple input files. This case is handled 

elegantly by using the MultipleInputs class. For example, if we had weather data from the 

UK Met Office6 that we wanted to combine with the NCDC data for our maximum 

temperature analysis, then we might set up the input as follows: 

 



11 
 

MultipleInputs.addInputPath(job, ncdcInputPath, TextInputFormat.class, 

MaxTemperatureMapper.class); 

 

 MultipleInputs.addInputPath(job, metOfficeInputPath, TextInputFormat.class, 

MetOfficeMaxTemperatureMapper.class); 

 

Database Input 

 
DBInputFormat is an input format for reading data from a relational database, using JDBC. It 

is best used for loading relatively small datasets, perhaps for joining with larger datasets from 

HDFS, using MultipleInputs. 

 

 

 
 

 

 

 

 

 

 

 

 



12 
 

Output Formats 

 

 
 

Text Output  

 
The default output format, TextOutputFormat, writes records as lines of text. Its keys and 

values may be of any type, since TextOutputFormat turns them to strings by calling toString() 

on them. Each key-value pair is separated by a tab character. The counterpart to TextOutput 

Format for reading in this case is KeyValueTextInputFormat. 

 

Binary Output  

 
SequenceFileOutputFormat As the name indicates, SequenceFileOutputFormat writes 

sequence files for its output. 

 

SequenceFileAsBinaryOutputFormat  
 

SequenceFileAsBinaryOutputFormat is the counterpart to SequenceFileAsBinaryInput 

Format, and it writes keys and values in raw binary format into a SequenceFile container. 

 

MapFileOutputFormat  

 
MapFileOutputFormat writes MapFiles as output. The keys in a MapFile must be added in 

order, so you need to ensure that your reducers emit keys in sorted order. 



13 
 

Multiple Outputs  
 

FileOutputFormat and its subclasses generate a set of files in the output directory. There is 

one file per reducer, and files are named by the partition number: part-r-00000, partr-00001, 

etc. There is sometimes a need to have more control over the naming of the files or to 

produce multiple files per reducer. MapReduce comes with the MultipleOutputs class to 

help you do this. 

 

An example: Partitioning data Consider the problem of partitioning the weather dataset by 

weather station. We would like to run a job whose output is a file per station, with each file 

containing all the records for that station. 

 

One way of doing this is to have a reducer for each weather station. To arrange this, we need 

to do two things. First, write a partitioner that puts records from the same weather station into 

the same partition. Second, set the number of reducers on the job to be the number of weather 

stations. The partitioner would look like this: 

 

public class StationPartitioner extends Partitioner<LongWritable, Text> { 

 

 private NcdcRecordParser parser = new NcdcRecordParser(); 

 

 @Override 

 public int getPartition(LongWritable key, Text value, int numPartitions) { 

 parser.parse(value); 

 return getPartition(parser.getStationId()); 

 } 

 private int getPartition(String stationId) { 

 ... 

 } 

} 

 

Lazy Output 

 
 FileOutputFormat subclasses will create output (part-r-nnnnn) files, even if they are empty. 

Some applications prefer that empty files not be created, which is where LazyOutputFormat 

helps. 

 

Database Output 

 
 The output formats for writing to relational databases and to HBase. DBOutputFormat, 

which is useful for dumping job outputs (of modest size) into a database. 

 

 

 
 
 
 
 
 



14 
 

 
 
 

A partitioner works like a condition in processing an input dataset. The partition phase 

takes place after the Map phase and before the Reduce phase. 

The number of partitioners is equal to the number of reducers. That means a partitioner 

will divide the data according to the number of reducers. Therefore, the data passed from a 

single partitioner is processed by a single Reducer. 

 

Partitioner 
A partitioner partitions the key-value pairs of intermediate Map-outputs. It partitions the 

data using a user-defined condition, which works like a hash function. The total number of 

partitions is same as the number of Reducer tasks for the job. Let us take an example to 

understand how the partitioner works. 

 

The default partitioner is the hash partitioner. 

 

Custom partitioner 

name<tab>age<tab>gender<tab>score 

Input 

 

Alice<tab>23<tab>female<tab>45 

Bob<tab>34<tab>male<tab>89 

Chris<tab>67<tab>male<tab>97 

Kristine<tab>38<tab>female<tab>53 

Connor<tab>25<tab>male<tab>27 

Daniel<tab>78<tab>male<tab>95 

James<tab>34<tab>male<tab>79 

Alex<tab>52<tab>male<tab>69 

Nancy<tab>7<tab>female<tab>98 

Adam<tab>9<tab>male<tab>37 

Jacob<tab>7<tab>male<tab>23 

Mary<tab>6<tab>female<tab>93 

Clara<tab>87<tab>female<tab>72 

Monica<tab>56<tab>female<tab>92 

https://hadooptutorial.wikispaces.com/Custom+partitioner


15 
 

 

 

 



16 
 

 

 

 Partial sorting: 

When a reducer receives those pairs they are sorted by key, so generally the output of a 
reducer is also sorted by key. However, the outputs of different reducers are not ordered 
between each other, so they cannot be concatenated or read sequentially in the correct 
order. 

For example with 2 reducers, sorting on simple Text keys, you can have : 
 Reducer 1 output : (a,5), (d,6), (w,5) 
 Reducer 2 output : (b,2), (c,5), (e,7) 
The keys are only sorted if you look at each output individually, but if you read one after the 
other, the ordering is broken. 

Total Sort: 

The objective of Total Order Sorting is to have all outputs sorted across all reducers : 
 Reducer 1 output : (a,5), (b,2), (c,5) 
 Reducer 2 output : (d,6), (e,7), (w,5) 
This way the outputs can be read/searched/concatenated sequentially as a single ordered 
output. 

Note: Use TotalOrderPartitioner to get global sorting. 



17 
 

Example: 

 
 
Map side and Reduce side joins : 

 
Map Side Join: 



18 
 

 
 
 
 
 
 
 
 
 
 
Reduce Side Join: 

 
 
 
 



19 
 

Secondary Sort : 
A secondary sort problem relates to sorting values associated with a key in the reduce phase. 
Sometimes, it is called value-to-key conversion. The secondary sorting technique will enable us to 
sort the values (in ascending or descending order) passed to each reducer. 
A dump of the temperature data might look something like the following (columns are year, month, 
day, and daily temperature, respectively): 
2012, 01, 01, 5 
2012, 01, 02, 45 

 
 

 
Secondary sorting data flow 

 
The mappers create (K,V) pairs, where K is a composite key 
of (year,month,temperature) and V is temperature. The (year,month) part of the composite key is 
the natural key. The partitioner plug-in class enables us to send all natural keys to the same reducer 



20 
 

and the grouping comparator plug-in class enables temperatures to arrive sorted at reducers. The 
Secondary Sort design pattern uses MapReduce’s framework for sorting the reducers’ values rather 
than collecting them all and then sorting them in memory. The Secondary Sort design pattern 
enables us to “scale out” no matter how many reducer values we want to sort. 
 


