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Synopsis 
 
 
 
Revision of Newtonian mechanics and non-inertial frames: Revision of Newton’s laws, 
momentum, angular momentum, work and energy, conservative forces, central forces. 
Rotating frames, centrifugal and Coriolis forces.  
 
 
Normal modes: Analysis of motion of many-particle systems in terms of normal modes. 
Degrees of freedom of a system, matrix notation, orthogonality of the eigenvectors, zero 
frequency and degenerate modes. Use of symmetries to find normal modes. Modes of 
molecules and continuous systems (standing waves).  
 
 
Orbits: Kepler’s laws. Effective potentials and the radial equation. Circular and elliptic orbits. 
Escape velocity, transfer orbits and gravitational slingshot of space probes. Parabolic and 
hyperbolic orbits, classical treatment of Rutherford scattering.  
 
 
Rigid body dynamics: Angular velocity and angular momentum as vectors, conservation of 
angular momentum. Moment of inertia tensor, principal axes. Free precession. Forced 
precession,  gyroscopes. Lamour precession.  
 
 
Elastic media: Hooke’s Law. Stress and strain tensors, principal stresses and strains. Elastic 
moduli for isotropic solids and relations between them. Poisson’s ratio. Bending of beams, 
bending moments. 
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1 Review of Newtonian Mechanics and Non-Inertial 
Frames 

1.1 Review of Newtonian Mechanics 

1.1.1 Newtonian Mechanics is:  

- Non- Relativistic, i.e. 18 ms103 −=<< xcv   (speed of light) 
 
- Classical, i.e. Js106.6 34−=>> xhEt  (Planck’s constant) 
 
and so assumes that: 
- the mass of objects is independent of velocity, time or frame of reference, 
 
- measurements of length and time are independent of the frame of reference and, like 
measurements of mass, are made by comparison with an arbitrary standard, 
 
- all parameters can be known precisely. 
 

1.1.2 The use of vectors 

- Vectors have both magnitude and direction. 
 
- If a physical quantity has both magnitude and direction and adds, resolves and behaves 
under coordinate transformations like a vector, it can be usefully represented by a vector. 
 
- Obvious vectors: position, velocity, acceleration, force, momentum 
 
- Not such obvious vectors: quantities that ‘happen’ to behave as vectors and so can be 
represented as vectors such as angular velocity, angular acceleration, torque, and angular 
momentum. 
 

1.1.3 Vector basis sets and frames of reference 

- Vectors ‘exist’ in space and have properties that are independent of any basis set used to 
represent them. The same is true of functions of vectors, such as dot and cross products, and 
derivatives of such as div, grad and curl. 
 
- Vectors may be represented with various basis sets, e.g: 

Cartesian coordinates (basis set of unit vectors independent of  position:) 
 

( )zyxr ,,= ,   where   zzyyxxr ˆˆˆ ++= ,      ( )zyxv ��� ,,=  

 
 
 

x̂

ẑ ŷ

Cartesian 
basis set 
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Cylindrical polars 
x

ρ
y ρ̂

φ̂

φ

Cylindrical polar coordinates (basis set varies with position, r ): 

  
( )zr ,ρ= ,      where      zzr ˆˆ += ρρ   

 ( ) zzzv ˆˆˆ,, ������ ++== φφρρρφρρ  

 
 
 

 
- Coordinate axes (e.g. x̂ , ŷ , ẑ ) and a clock provide a frame of reference, with respect to 

which every event can be labelled by its space and time coordinates ( r , t). 

 
- A frame of reference in which Newton’s laws hold is an inertial frame. 
 
- If a frame S (with coordinates ( r , t) ) is an inertial frame and frame S’ ( with coordinates 

( ’r , t’) ) is in uniform motion relative to S, then S’ is also an inertial frame, because 

accelerations are the same in both frames. The equations relating the coordinates of the two 
frames are know as the Galilean transformation: 
 
  tt =’  
  Rrr −=’  

tuRR += 0  

 
where R  is the position of the origin of the S’ frame in the S frame at time t and u  is the 

velocity of S’ with respect to S. 
The velocities and accelerations are related by: 
 
  urRrr −=−= ����’  

⇒  
m

F
rr == ���� ’   ⇒ Newton’s Laws hold in S’ if true in S. 

 

1.1.4 Mechanics   

= Statics (absence of motion) 
  + Kinematics (description of motion, using vectors for position and velocity) 
  + Dynamics (prediction of motion, and involves forces and/or energy) 
 

1.1.5 Statics 

- Forces and torques balance. 
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1.1.6  Kinematics 

- motion and be described with respect to different frames of reference, and ‘kinematics’ 
includes a treatment of the ‘fictitious’ forces that need to be introduced to describe motion in 
an accelerating frame. 
 
 
- definition of velocity and acceleration 
 

Velocity:    
t

r
v

t δ
δ

δ 0
lim

→
=  

 

Acceleration:    
t

v
a

t δ
δ

δ 0
lim

→
=  

 
 

1.1.7 Dynamics 

- motion can be described with respect to different frames of reference, and ‘kinematics’ 
includes a treatment of the ‘fictitious’ forces that need to be introduced to describe motion in 
an accelerating frame. 
 
- basic principle of dynamics, Newton’s second law [N2]: 
 
  
 
 
 
 

1.1.8 Force 

- N2 is not a definition of force – force is defined as a push or pull that changes or tends to 
change a body’s state of rest or relative motion. Force can be measured by various means, the 
simplest being to compare it (using a balance of some kind) with the force of gravity on a set 
of standard weights. 
 
 

1.1.9  Mass 

- N2 is, however, a definition of inertial mass, which was shown by experiment (summarised 
in Newton’s Law of Gravitation) to be proportional to gravitational mass. 
 
 
 
 

vv

v

vv δ+

vδ

applied force mass of body 

Fam =
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1.1.10 Momentum 

- Momentum is defined as the product of mass and velocity: 
 

vmp =  

F
dt

pd
p ==�   (N2 again) 

 
- If a force acts on a particle from time it  to  ft , then the time integral of the force (the 

impulse) is equal to the change in momentum: 
 

∫=−
f

f

t

t
if

dttFpp )(  

 
- The impulse of a force can be extremely useful in problems such as collisions where the 
force varies rapidly in an unknown way, but all that is of interest is the ‘net effect’ of the 
force. 
 

1.1.11 Motion of a collection of particles: the centre of mass 

- The centre of mass R of a collection of particles (positions ri ) is defined as: 
 

∑=
i

ii rmRM    

 
where the total mass M is given by:  
 

∑=
i

imM  

Using N2, the acceleration of the centre of mass is given by: 
 

∑∑∑∑∑ +===
i j

ij
i

io
i

i
i

ii FFFrmRM ����    

 
where Fi is the total force on the ith particle, Fio is the external force on the ith particle and Fij 
is the force on the ith particle from the jth . Since jiij FF −=  by Newton’s 3rd law, the term 

∑∑
i j

ijF  sums to zero, and the acceleration of the centre of mass is given by the sum of the 

external forces Fo: 
 

o
i

io
i

ii FFrmRM === ∑∑ ����    

 
Since oPRM =   , the total momentum, in the absence of an external force momentum is 

conserved ( 0== oo PF � ). 
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1.1.12 Motion of a collection of particles: rotations about the centre of Mass 

- The motion of a collection of particles can be considered in two parts – the motion of the 
centre of mass, and the movement (or rotation if the particles make a rigid body) of the 
collection of particles about the centre of mass. To help handle motion about a point, it is 
useful to define the quantities torque and angular momentum. 
 
 

1.1.13 Torque 

-  The ‘effectiveness’ of a force at producing rotations about a particular point, A, is given by 
the moment (or torque) G of the force about that point: 
 

FrG ×=  

 
where r is the position of the point of action of the force relative to the reference point, A. 
Since torque is defined as the cross product of two vectors, it itself is automatically a vector. 
 
 

1.1.14 Angular momentum 

- The angular momentum of a particle about a particular point, A, is given by the moment of 
the linear momentum about that point: 
 
  prJ ×=  

 
 

1.1.15 Relation between G and J 

- For a single particle, (index i)direct application of N2 to the definitions of G and J gives: 
 
  iiiiiiiiiii GGFrvmvprprJ =+=×+×=×+×= 0���  

 
i.e. torque is the rate of change of angular momentum 
 
- For a collection of particles with no forces between them, the rate of change of angular 
momentum of each particle can be summed and equated to the sum of the external torques 
acting on each particle. 
 
  o

i
i

i
i GGJJ === ∑∑ ��  

 
where J is the total angular velocity of the system and Go  is the total external couple on the 
system. 
- If now two of the particles have are interacting, then the contribution to the total couple will 
be: 
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( ) 1221212121 FrrFrFrG ×−=×+×=∆  

 
 ( 2112 FF −=  by N3). If we assume that the force between the two particles is directed along 

the line between them then 12F  is parallel to ( )21 rr −  and 0=∆G . It follows that the 

internal forces do not affect the result that the rate of change of total angular momentum of a 
system is given by the sum of the externally applied torques. 
 
- Angular momentum was ‘invented’ because it is a useful tool in rotational mechanics. The 
relation oGJ =�  enables forces applied to a body to be related to the its rotational 

acceleration, and hence solve the dynamics. 
 
 

1.1.16 Work and Energy 

- Work done by a force = force x (distance moved parallel to force) 
 
 

 rFW δδ .=  

 
 
 

 
- Work done by a force moving along path P 

  ∫∫ ==
2

1

2

1

..
t

t

r

r

vFrdFW dt  

(using N2)  ∫=
2

1

.
t

t

v
dt

vd
m dt ( )∫=

2

1

2

2

1
t

t

v
dt

d
m dt   

   2
1

2
2 2

1

2

1
vmvm −=  

   = increase in KINETIC ENERGY (T) 
 

 

1.1.17  Potential Energy and Conservative Forces 

- If the work done, W, by a force in moving along a path from a point 1r to a point 2r  is 

independent of the path taken, then the force is know as a conservative force and it is possible 
to relate the work done to a function ( )rU  which takes the form of a potential energy: 

 
( ) ( )21 rUrUW −=   

(The equation defines U so that if work is done by the force, U decreases) 
 
- equating expressions for the work done in terms of kinetic and potential energies gives: 
 

θ Frr δ+

r

rδ

1r

2r P 
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( ) ( )21
2
1

2
2 2

1

2

1
rUrUmvmvW −=−=  

⇒  ( ) ( ) 2
22

2
11 2

1

2

1
mvrUmvrU +=+  Conservation of Energy ( VTE += ) 

 
- ’Conservation of energy’ is simply the integral form of N2. Other forms of ’energy’  (heat, 
electostatic etc) are ’fixed’ so as to fit in with this simple idea. 
 
- The force may be recovered from the potential energy by differentiating: 
 

1D  
dx

xdU
xF

)(
)( −=  

3D  ( )rUrF ∇−=)(   

 
(∇ is the gradient vector operator which is given in Cartesian coordinates by 

  





∂
∂

∂
∂

∂
∂=∇

z

U

y

U

x

U
U ,,       ) 

 
- Central forces are conservative. Suppose: 
 
  rrfrF ˆ)()( =  

 
and since drrdr =.ˆ  

we have ∫∫ =
2

1

2

1

)(.
r

r

r

r

drrfrdF     

since the work done by the force in going from 1r to 2r  is a scalar integral of )(rf , the work  

done is independent of path and the force is conservative 
 
- How can we know if a force is conservative, without performing integrals over all paths? A 
force is conservative if: 
 

 0. =∫ rdF  

 
 for any closed path. Stokes theorem states that integral of a vector round a closed loop is 
equal to the integral of the curl of that vector across any surface bounded by that loop. Since  

for a conservative force 0. =∫ rdF  for all loops then 0. =×∇∫ SdF  for any integration over 

any area and so for a conservative field: 
  
  0=×∇ F  

 
So, if the curl of a force is everywhere zero, the force is conservative and there exists a scalar 
function )(rφ  such that: 

  φ∇−=F  
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1.2 Non-Inertial Frames 

1.2.1 Transformations from stationary to rotating frames 

- If a point on a rigid body has a position vector r measured with respect to the axis of 
rotation, and if the body is rotating with and angular velocity ω , then the velocity of the point 

with respect to stationary coordinates is given by: 
 
  rv ×= ω0  

 
(vectors with the suffix o are with respect to the stationary frame, S0, those without a suffix 
are with respect to the rotating frame, S, and for convenience the equations are written for the 
instant in time when the coordinate axes of S and S0 coincide, so  rr =0  and ωω =0 ) 

 
- If  the point is also moving on the rigid body with a velocity v with respect to coordinates 
that rotate with the body, then this extra velocity must be added into the velocity 0v : 

 
  rvv ×+= ω0  

 
- similarly the time derivative of any vector in S0 is related to that of the same vector quantity, 
but measured with respect to S by: 
 

A
dt

Ad

dt

Ad

SS

×+



=



 ω

0

 

 

1.2.2 Derivation of fictitious forces 

- Newton’s Laws only apply in inertial frames. It is, however, often convenient to solve 
dynamical problems from the point of view of a rotating (non-inertial) frame such as the 
Earth. If  you are making observations in such a frame, and if  you insist that you want to use 
Newton’s laws to describe what you see, then you have to allow for ‘fictitious’ forces that 
seem to push objects around in mysterious ways. In dynamics these ‘forces’ are introduced as 
a ‘fix’ to make Newton’s laws work in a frame where they are actually invalid, because 
solving the problem in an ‘proper’ inertial frame is harder than worrying about the fictitious 
(‘fix’) forces in the non-inertial one. They are also introduced because to an observer forces 
are more apparent than accelerations, and if something appears to accelerate, we have enough 
of an intuitive feel for Newton’s laws to ask what force is accelerating them. If you want to 
hold an object still in a rotating frame, technically what you are doing is accelerating the 
object towards the axis of rotation. However, what you see is a stationary object and what you 
feel is the very real centrifugal force (actually a N3 reaction to you pushing and accelerating 
the object inwards) that tends to fling the object outwards, and if you let go of that object, it is 
a fair question to ask what force produces the apparent acceleration outwards that ensues. 
 
- In order to derive an expression for the acceleration of an object as seen in a rotating frame,  
we can use the formula given above that rates the time derivative of an vector in stationary 
and rotating frames. Firstly for velocity: 
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r
dt

rd

dt

rd

SS

×+



=



 ω

0

0 ,     i.e.  rvv ×+= ω0  

 
The subtle bit of this derivation now follows. The true acceleration of an object (i.e. measured 
in an inertial frame such as S0 ) is the time derivative of the true velocity, i.e. 0v  if you 

measure it in S0  and rv ×+ ω  if you measure it in S. (note the observer in S thinks the 

velocity is just v , but once he is told that actually it is rv ×+ ω  he can then use this to work 

out the true acceleration in S coordinates.) So, the expression for the true acceleration, a0 , in 
terms of vectors measured in S is: 
 

  
( ) ( )rv

dt

rvd
v

dt

vd

dt

vd
a

SSS

×+×+



 ×+=×+



=



= ωωωω 0

00
0

0

 

( )rvva ××+×+×+= ωωωω  

( )rva ××+×+= ωωω2  

 
 
Now, an observer in the rotating frame measures an acceleration a, and as far as he is 
concerned, since he wishes to believe that Newton’s laws apply in his non-inertial frame, 
there must therefore be a total force acting on the object given by am : 

 
 

 
  
 
 
 

 
 
- An alternative relation between a and a0 can also be derived by expressing the position 
vector of a point, r0 explicitly in terms of the coordinates (x, y, z) and rotating basis set, ( x̂ , 

ŷ , ẑ ) in S and taking derivatives w.r.t. time, noting that: xx ˆˆ ×= ω� ,  ( )xx ˆˆ ××= ωω��    etc. 

 
  zzyyxxr ˆˆˆ0 ++=  

 

  ........ˆˆ0 +++= xxxxr ���   (y and z terms similar) 

  ( ) ........ˆˆ ++×+= xxxx ω�   (y and z terms similar) 

 
  ( ) ( )[ ] ........ˆˆ2ˆ0 +××+×+= xxxxxxr ωωω�����   (y and z terms similar) 

 
  ( )rvaa ××+×+= ωωω20   (as previously) 

 
 

Total Apparent force Coriolis force True force 0am=  centrifugal force 

( )rmvmFam ××−×−= ωωω2
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1.2.3 Centrifugal force 
- Using cylindrical polar coordinates (ρ, φ, z) (see section 1.1.3) with the axis of rotation 
along the z axis: 
 

zzr ˆˆ += ρρ ,  ẑωω = , ρ is the distance from the axis or rotation 

⇒  ( ) φωρρωρω ˆˆˆ =×=× zr  

⇒  ( ) ( ) ρρωφρωωω ˆˆˆ 22 =×−=××− zr  

 
i.e. Centrifugal force  =  ×2ωm   (distance from axis of rotation) 

 and is directed away from the axis of rotation 
 
Example: rotation of Earth at equator  

  6400
1

2
2

2







=Ω

day
Re

π
km  ≈  0.003g 

 
 

1.2.4 Coriolis force on Earth’s surface 

 
            vmF Cor ×Ω−= 2  

 
=Ω Earth’s angular velocity 

 =v  velocity in frame S′, fixed to Earth 

 
 Coordinate axes in S′: 
  ’x̂  pointing East 

  ’ŷ  pointing North 

  ’ẑ  pointing radially outwards at latitude λ. 

 
   

 ’ˆsin'ˆcos zy λλ Ω+Ω=Ω  

 
for v in the plane of the Earth’s surface ’ˆ'ˆ yvxvv yx +=  

 
⇒  ( )’ˆ'ˆsin2 yvxvmF xyCor −Ω= λ  sideways force 

⇒  ’ˆcos2 zvm xλΩ+   vertical force  

 
- The sideways force is always perpendicular to v in surface plane with a magnitude of 

λsin2 vmΩ , independent of the direction of v in the surface plane, and acts to the right in the 
northern hemisphere, and to the left in the southern hemisphere. 
 
 

’ẑ’ŷ

’x̂

Ω

Equator 

N  
pole 

λ



 11 

2 Normal Modes 

2.1 Definition 
 
- In general no analytical solution is possible for the motion of a many body system. 
 
- BUT there is a large class of systems which are close to mechanical equilibrium for which 
the inter-body potentials between components of the system may be expanded about a local 
minimum value as a Taylor expansion with only the quadratic term being of importance for 
small displacements: 
 

( ) ...
2

1 2

0 +
∂∂

∂+
∂
∂+= ∑∑ ji

ij ji
i

i i

xx
xx

V
x

x

V
VxV    

where 0=
∂
∂

ix

V
 for all i since the potential is being expanded about a local minimum at 0=x  

A potential which does not have higher order terms in its expansion that the 2nd order ones is 
said to be harmonic. 
 
- In 1D we would then have: 
 

  2

2

1
)( kxxV =  

where x is the displacement of the particle from its equilibrium position, and the equation of 
motion is: 
 

  kxx
dx

Vd
xm −=−=

2

2

��  

 
and the solution can be written in one the well known forms: 
 
Real number forms 
 ( )εω += txx cos0  initial position:  ( )εcos0x  initial velocity:  ( )εω sin0x−  

 
 ( ) ( )tBtAx ωω sincos +=   initial position: A  initial velocity: Bω  

 
Complex number forms 
 ( ) ( )( )[ ]εω +== tixXx expReRe 0  

 initial position:  ( )εcos0x  initial velocity:  ( )εω sin0x−  

( 0x  is a real number) 

 ( ) ( )[ ]tiXXx ωexpReRe 0==  

  ( )εixX exp00 =      initial position: ( )0Re X  initial velocity: ( )0Im Xω−  

where the angular frequency of the simple harmonic motion is   m
k=ω  
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- What happens when we go to more than one dimension? We find that provided the inter-
particle potential approximates to a harmonic (quadratic) form, we can resolve the motion of a 
general system for small displacements about its equilibrium into a number of Normal Modes. 
In  each of these normal modes of vibration the whole system oscillates together with one 
frequency, and a general motion of the system can be written as the sum of various amounts 
of each of these modes. If N coordinates are required to describe the system, then there will be 
N normal modes. 
 

2.2 An example of a 2 coordinate normal mode system 
 
 

 

 

 

 

 

 

- consider the case where mmm == 21  

 
- if the tensions in the springs, labelled left to right are, F1, F2, and F3 then we have: 
 

11 kxF =  

( )122 xxkF −=  

33 kxF −=  

 
and the equations of motion for the two masses are: 
 

21121 2 kxkxFFxm +−=−=��        2.2.1 

21322 2kxkxFFxm −=−=��  

 
If we now look for normal mode solutions in which both coordinates oscillate with the same 
frequency, i.e. 

( ) ( )εωεω +





=+= t

x

x
txx coscos

20

10
0      2.2.2 

Substituting this trial solution into equations 2.2.1 gives: 
 

( ) ( ) ( )εωεωω ++−=+− tkxkxtmx cos2cos 201010
2      

( ) ( ) ( )εωεωω +−=+− tkxkxtmx cos2cos 201020
2     

 
and dividing through by ( )εω +tcos  gives: 

201010
2 2 kxkxmx +−=−ω        2.2.3 

201020
2 2kxkxmx −=−ω     

m1  m2 

x1 

x
x2 

x

k 

x

k 

x
k 
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and rearranging equations 2.2.3 gives: 
 

2
20

10

2 ωmk

k

x

x

−
=         2.2.4 

k

mk

x

x 2

20

10 2 ω−=    

 
Hence a solution of the form of equation 2.2.2 is only possible if both equations 2.2.4 are true. 
To find the values of ω for which this is true we can equate the two equations 2.2.4: 
 

k

mk

mk

k 2

2

2

2

ω
ω

−=
−

 

 

⇒   ( )222 2 ωmkk −=  

 
 

and we have two possible frequencies: 
m

k=−ω and 
m

k3=+ω  

(note – the two solutions 
m

k=−ω  and 
m

k−=−ω  give identical normal modes since 

( ) ( )tt −− −= ωω coscos , so are counted as one) 

 
 
Substituting back into equations 2.2.4 gives: 
 

    for       −= ωω     1
20

10 =−

−

x

x
     −−

−
− =





= ex

x
x 0

0
0 1

1

2
       in phase:  

    and for  += ωω    1
20

10 −=+

+

x

x
    ++

+
+ =





−

= ex
x

x 0
0

0 1

1

2
    out of phase: 

 
 

(the unit vectors 





=−

1

1

2

1
e  and 





−

=+

1

1

2

1
e  are used because they are orthonormal, i.e. 

orthogonal to each other and normalised 1.. == −−++ eeee ,  0. =−+ ee . We will show later in 

this section that this orthonomal property is very useful when it comes to fitting the initial 
conditions. In general such we will show in sections 2.4 and  2.6 that one can always find 
such orthonormal sets and indeed that is why the modes are called normal modes) 
 
 
A general motion of the system can be written as a linear combination of the two modes 
 

 ( ) ( )++
+

−−
− +++= εωεω txtxtx coscos)( 00  
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or: 

( ) ( ) ( )[ ]++
+

−−
− +++= εωεω txtxtx coscos

2

1
001  

( ) ( ) ( )[ ]++
+

−−
− +−+= εωεω txtxtx coscos

2

1
002  

 
Suppose we have the starting (initial) condition that one of the masses is displaced from 
equilibrium by and amount a, i.e. we have: 

01 =x ,   ax =2 ,   01 =x� ,   02 =x��  

 
writing the general solution in the form: 
 

 ( ) ( )++
++

−−
−− +++= εωεω textextx coscos)( 00  

 
we have: 
 

 ( ) ( )++
++

+−−
−−

− +−+−= εωωεωω textextx sinsin)( 00�  

 
and at 0=t  we have: 
 

 ( ) ( ) 





=+= +

++
−

−−

a
exexx

0
coscos)0( 00 εε      2.2.5 

 ( ) ( ) 





=−−= +

++
+−

−−
− 0

0
sinsin)0( 00 εωεω exexx�     2.2.6 

 

if we take equation 2.2.6 first and take the dot product of  both  sides with −e we get 

 

( ) ( ) 0.
0

0
sin.sin.).0( 00 =





=−−= −

+
−++

+−
−−−

−
− eeexeexex εωεω�  

 

and using the orthogonality conditions 1. =−− ee ,  0. =−+ ee  we get 

 
( ) 0sin0 =−

− εx  

 
and since 00 ≠−x , we have ( ) 0sin =−ε  and 0=−ε  

 

similarly taking the dot product of  both  sides of equation 2.2.6 with +e we get 0=+ε  

 
Equation 2.2.5 now becomes: 
 

 





=+= ++−−

a
exexx

0
)0( 00  
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and again taking the dot product with −e  and +e  gives: 

−−++−−−−






=+= e

a
eexeexex .

0
..).0( 00  

⇒  
21

1

2

10
0

a

a
x =





⋅





=−  

 
and  

+++++−−+






=+= e

a
eexeexex .

0
..).0( 00  

⇒  
21

1

2

10
0

a

a
x −=





−

⋅





=+  

 
giving the solution: 

( ) [ ]ttatx +− += ωω coscos
2

1
1  

( ) [ ]ttatx +− −= ωω coscos
2

1
2  

 

2.3 Matrix notation for a 2 coordinate system 
 
- we can write equations 2.2.1 in the form 
 













−

−
=






2

1

2

1

2

2

2

2

x

x

kk

kk

x

x

dt

d
m       2.3.1 

     
 

- substituting in equation 2.3.1 for a normal mode ( ) ( )εωεω +





=+= t

x

x
txx coscos

20

10
0  and 

dividing by ( )εω +tcos  gives: 

 

 











−

−
=





−

20

10

20

102

2

2

x

x

kk

kk

x

x
mω  

 

⇒  











−

−
=











−

−

20

10

20

10

2

2

2

2

0

0

x

x

kk

kk

x

x

m

m

ω
ω

 

 

⇒  





=











−−
−−

0

0

2

2

20

10

2

2

x

x

mkk

kmk

ω
ω

      2.3.1 
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- Since the right and side of equation 2.3.1 is zero, the matrix is not invertable, i.e. it is 
singular, and its determinant must be zero. Again, this places a restriction on permitted values 
of ω. 
 

 0
2

2
2

2

=
−−
−−

ω
ω

mkk

kmk
 

 

⇒  ( ) 02 222 =−− kmk ω   as previously 

 

- We can write: K
kk

kk
=





−

−
2

2
  and M

m

m
=





0

0
  or for different masses M

m

m
=






2

1

0

0
 

 
 
 
- Now the normal mode equation looks like: 
 







−=





−

20

10

20

102

x

x
K

x

x
Mω  

⇒  ( ) 





=





−

0

0

20

102

x

x
MK ω  

⇒  ( ) 0det 2 =− MK ω  

 

- The matrix M  is invertable, 





= −

−
−

1
2

1
11

0

0

m

m
M  

 

⇒  ( ) 0det 21 =−− IKM ω      I  is the unit matrix 

 

- The normal mode frequencies squared are therefore the eigenvalves of the matrix KM 1−  

and the unit vectors −e  and +e  introduced above as normal mode displacement patterns turn 

out to be the normalised eigenvectors of the matrix KM 1− . 

 
 

2.4 General solution of a N normal mode system 
 
- For a system with N coordinates the matrices K  and M  will be NN ×  matrices, where the 

matrix element ijK  is the restoring force on particle i for unit displacement of particle j. 

 
- Writing the total potential energy of the system as a Taylor expansion about the equilibrium 
position, all first order terms vanish, leaving the 2nd order terms as the most significant ones. 
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( ) ji
ij ji

xx
xx

V
VxV ∑ ∂∂

∂+=
2

0 2

1
 

 

and ij
ji

K
xx

V =
∂∂

∂ 2

. Since 
ijji xx

V

xx

V

∂∂
∂=

∂∂
∂ 22

, jiij KK =  and the K  matrix is symmetrical. 

 
- The Secular Equation: 
 

 ( ) 0det 21 =−− IKM ω  

 
now as N solutions – with N frequencies and N normal modes, and the squared frequencies 

are eigenvalues of KM 1− . 

 
- In general when a matrix acts on a vector, it changes both its direction and magnitude. 
However, for a N dimensional matrix one can find N eigenvectors which only change their 
magnitude when operated on by the matrix, and not their direction. Thus an eigenvector of a 
matrix A  is one which obeys the relation: 

 
eeA λ=  

⇒  ( ) 0=− eIA λ  

⇒  ( ) 0det =− IA λ  

 
where λ is the eigenvalue associated with eigenvector e. 
 
 
- If A  is a real symmetric matrix, its eigenvalues are all real and its eigenvectors are 

orthogonal, and can be normalised so that. 
 

ijji ee δ=⋅  

 
examples of these orthonormal eigenvectors and their use was given above in section 2.2. 
 
- The general solution to an N dimensional normal mode problem, i.e. how the values of all 
the coordinates of the system vary with time, can then be expressed as a sum over the N 
normal modes. 
 

( ) ( )∑
=

+=
N

j
jjj

j textx
1

)(
0 cos εω  

 
or in complex notation 

( ) ( )∑
=

=
N

j
jj

j tieXtx
1

)(
0 expRe ω  
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2.5 Zero frequency modes 
 
- Zero frequency modes correspond to free motion (translation or rotation) with no restoring 
force.  
 
- Zero frequency modes must be written as: 
 

( ) ( )BtAxtx tt += 0  

 
where 0txA  gives where the motion starts at 0=t  and 0txB gives the velocities. 

 
 
 
-Consider 3 equal masses connected by 2 springs, with the masses free to move along the line 
joining the centres of the masses: 
 
 
 
 
 
 
 
 
 
 

( )121 xxkxm −=��       

 ( ) ( )23212 xxkxxkxm −+−=��  

( )323 xxkxm −=��         

 
and  
 

















−
−−

−
=⋅−

110

121

011
1

m

k
KM  

normal mode frequencies m
kαω =2   where 0

110

121

011

=
−−
−−−

−−

α
α

α
  and: 

 

⇒  ( ) ( ) ( ) 01221 2 =−−−− ααα  

 
⇒  ( )( ) 031 =−− ααα  

 
⇒  3,1,0=α  

m m  

x1 

x
x2 

x

k 

x

k 

x

m  

x3 

x



 19 

and the normal mode frequencies are  
 

 01 =ω , m
k=2ω ,  and m

k3
3 =ω  

 
the corresponding eigenvectors are found by substituting the frequencies back into the 
eigenvector equation: 
 

 ( ) 021 =−−
jj eIKM ω  

 
i.e. 

0

110

121

011

3

2

1

=
































−−
−−−

−−

j

j

j

j

j

j

e

e

e

α
α

α
 

 
hence, after normalising the eigenvectors are: 
 

 















=

1

1

1

3

1
1e ,  

















−
=

1

0

1

2

1
2e , 
















−=
1

2

1

6

1
3e  

 
and we have three modes: 

 
 
 
 

2.6 Orthogonality of normal modes 
 
- We can show that for a symmetric matrix the eigenvectors are orthogonal by considering the 
action of the matrix on two of its eigenvectors 
 

  ( ) ( ) ( )aaa eeA λ=   ( ) ( ) ( )bbb eeA λ=  

 
pre-multiplying each equation by the other eigenvector gives: 
 

  ( ) ( ) ( ) ( ) ( )aTbaaTb eeeAe λ=   ( ) ( ) ( ) ( ) ( )bTabbTa eeeAe λ=  

Mode 1 

01 =ω  

No restoring 

forces, translation 

Mode 2 

 m
k=2ω  

Central mass 

stationary 

Mode 3 

Max. spring 

extension, max. ω 

m
k3

3 =ω
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taking the transpose of the first equation gives  ( ) ( ) ( ) ( ) ( )bTaabTTa eeeAe λ=   and since AAT =  

we can equate the left hand side of both equations, to give: 
 

( ) ( )( ) ( ) ( )bTaba eeλλ −=0  

 

so if ( ) ( )ba λλ ≠  then ( ) ( ) 0=bTa ee  i.e. the eigenvectors are orthogonal. 

 
 

- The matrix KM 1−  in the secular equation, ( ) 0det 21 =−− IKM ω , is only symmetric if all 

the masses of the interacting particles are equal. If the masses of the interacting particles are 
not equal, then whilst the basic properties of the normal modes are unaffected, the 
eigenvectors are no longer orthogonal. However we can derive an orthogonality relation. 
Consider again two eigenvectors (the eigenvalues are written with λ again rather than ω2 to 
simplify the algebra). 
 

  ( ) ( ) ( )aaa eMeK λ=   ( ) ( ) ( )bbb eMeK λ=  

 
pre-multiplying each equation by the other eigenvector gives: 
 

  ( ) ( ) ( ) ( ) ( )aTbaaTb eMeeKe λ=   ( ) ( ) ( ) ( ) ( )bTabbTa eMeeKe λ=  

 

Taking the transpose of the first equation gives ( ) ( ) ( ) ( ) ( )bTTaabTTa eMeeKe λ=  and since 

KK T =  and MM T =  we can equate the left hand sides of both equations to give: 

 
( ) ( )( ) ( ) ( )bTaba eMeλλ −=0  

 

so if ( ) ( )ba λλ ≠  then ( ) ( ) 0=bTa eMe  and if we have a general displacement given as sum of 

eigenvectors ( )∑=
j

j
j ecx  then pre-multiplying by ( ) Me

Tk  extracts the coefficients cj thus: 

 
( ) ( ) ( ) ( ) ( )

k
kTk

j

jTk
j

Tk ceMeeMecxMe == ∑  

 

( ( ) ( )kTk eMe  can easily be calculated). Given the more complicated form of the orthogonality 

relation, there is no point in normalising the eigenvectors, as was done for the case where all 
the masses of the particles is the same. 
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- Take the case of a two masses connected by a spring in 1d, with 12 2mm =  and 







=





=

20

01

0

0
1

2

1 m
m

m
M , the un-normalised eigenvectors are ( )







=

1

11e  (translation) and 

( )






−

=
1

22e  (vibration- to find the eigenvector consider the fact that the centre of mass has no 

momentum for the vibrational case). If we have a general position of the system given by: 
 

  ( ) ( ) ( ) ( ) ( ) ( )






−

+





=+=





=

1

2

1

1 212211

2

1 ccecec
x

x
x  

 
we can find the values of the coefficients ( )1c  and ( )2c  by first pre-multiplying by the M 
matrix: 
 







=





=

2

1
1

22

11

2x

x
m

xm

xm
xM  

 

and then pre-multiply by ( )1e  to give: 

 

( ) ( ) ( ) ( )111

2

1
1

1

21

1
eMec

x

x
mxMe

TT
=





⋅





=  

 

and since ( ) ( )
21

11 mmeMe
T

+=    we have:      ( ) ( )
21

2111 2

mm

xxm
c

+
+

=  

 

- Taking the proof above that ( ) ( ) 0=bTa eMe  and repeating it, but starting with 

( )
( ) ( )aa

a
eMeK =

λ
1

 that gives: 

 

( ) ( )
( ) ( )ba

ba
eKe

T






 −=

λλ
11

0  

 

 a second orthogonality relation ( ) ( ) 0=bTa eKe  
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2.7 Energy of normal modes 
 

- Kinetic energy given by xMxxmT
j

jj ���

2

1

2

1 2 == ∑  

 
- When the system is displaced to a position x, then the force of the jth component is given by: 
 
  ∑−=

k
kjkj xKF  

 
If we wish to find the potential energy stored in the system when it is at a displacement x then 
we can start with the system at equilibrium and increase the displacement linearly to  x by 
setting the displacement to be equal to xµχ = and increasing µ from 0 to 1. The work done 

on the system for a small change in µ  is then: 
 

µµµ dxxKdxFxdFdW
j

j
k

kjk∑∑=⋅−=⋅−=  

 
 
and integrating gives: 
 

xKxxxKdxxKdWU T

j
j

k
kjk

j
j

k
kjk 2

1

2

11

0

==== ∑∑∫∑∑∫ µµ  

 
The total energy of a system is then given by: 
 

xKxxMxUTE T

2

1

2

1 +=+= ��  

 
- Consider the energy stored in a single normal mode or amplitude ( )jx0  we have: 

 
( ) ( ) jjj

j etxx εω += cos0  
( ) ( ) jjjj

j etxx εωω +−= sin0�  

 
and  
 

  ( ) ( ) j
T
jjjj

j
j eMetxT εωω += 222

0 sin
2

1
 

  ( ) ( ) j
T
jjj

j
j eKetxU εω += 22

0 cos
2

1
 

 
but we have:      ( ) 02 =− jj eMK ω  
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and so    ( ) 02 =− j
T
j eMKe ω    and   j

T
jj

T
j eMeeKe 2ω=  

 
and the total energy stored in the jth mode is given by: 
 

( ) ( )
j

T
j

j
j

T
jj

j
jjj eKexeMexUTE

2

0
22

0 2

1

2

1 ==+= ω  

and average values are given by: 
 

2
j

jj

E
UT ==   

⇒  equipartition between kinetic and potential energies for oscillating system. 
 
- now consider a superposition of normal modes: 
 

( ) ( )∑ +=
j

jjj
j etxx εωcos0  

( ) ( )∑ +−=
j

jjjj
j etxx εωω sin0�  

  ( ) ( ) ( ) ( )∑ ++==
kj

j
T
kkkjjkj

kj eMettxxxMxT
,

00 sinsin
2

1

2

1 εωεωωω��  

 

but if jk ≠  0=j
T
k eMe , so the expression for T becomes 

 

  

( ) ( )

∑

∑
=

+=

j
j

j
j

T
jjjj

j

T

eMetxT εωω 22
0 sin

2

1 2

 

and similarly: 

  

( ) ( )

∑

∑
=

+=

j
j

j
j

T
jjj

j

U

eKetxU εω22

0 cos
2

1

 

and so: 
  ∑=

j
jEE  

i.e. the total energy of the system can be written in terms of a sum of the energies stored in 
each individual normal mode. Since normal modes oscillate independently of each other, their 
amplitude remains constant in time and no energy is transferred from one mode to another. 
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2.8 Degenerate modes 
 
- For systems of high symmetry, some modes have the same frequency, and in which case the 
modes are said to be degenerates. 
 

- The proof’s that eigenvectors were orthogonal (or orthogonal when using the ( ) ( ) 0=bTa eMe  

and ( ) ( ) 0=bTa eKe  relations) all applied when the eigenvalues (normal mode frequencies) 

were different. 
 
- if two modes have the same frequency, then any linear combination of them will also be a 
normal mode of the same frequency. In terms of eigenvalues of a matrix A , this can be seen 

as follows: 
 

if ( ) ( )aa eeA λ=   and  ( ) ( )bb eeA λ=   then   
( ) ( )( ) ( ) ( )( )baba eeeeA βαλα +=+  

 

If we have a pair of normalised eigenvectors ( )ae0   and ( )be0 that are degenerate and are not 

orthogonal, it is always possible to derive a pair of eigenvectors from them that are orthogonal 

to each other. For example such a pair ( ( )ae  and ( )be , say) can be produced by the following 

method: 
( ) ( )aa ee 0=  
( ) ( ) ( ) ( )( ) ( )ababb eeeee 0000 ⋅−=  (this is orthogonal to ( )ae  but not normalised) 

 
 

2.9 Use of symmetries to find modes/Guessing displacement 
patterns 

 
- It is very important to use the symmetry of a particular system, and previous experience to 
GUESS normal mode displacement patterns. Often quite complex systems can be completely 
solved in this manner – and it is a lot quicker than setting up and solving the secular equation. 
 
- Key points are: 
 
 (1)  If you have N coordinates there will be N normal modes 
 (2) Displacement patterns have to be orthogonal to each other for non-degenerate 
normal modes. The first thing to check with a new guessed normal mode is if it is orthogonal 
to the ones already established – if not – either guess again, or use a relation like the one at 
the end of section 2.9 to orthogonalise the new mode with respect  to the ones already 
discovered. 
 (3) For a free system – remember the translation and rotation modes 
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2.10  Modes of molecules 
 
- If there are M atoms in a molecule, then there will be 3M  normal modes 
 
- There will always be 3 zero frequency translational modes. 
 
- If the molecule is linear the there will be 2 rotational zero frequency modes, otherwise it will 
have three rotational modes. 
 
- There are, therefore, 3M-6 vibrational modes for a non linear molecule and 3M-5 for a linear 
ones. 
 
 

2.11 Continuous systems: normal modes and standing waves 
 
- If one considers a piece of string with N masses on it –one can sketch out displacement 
patterns of the N masses 
 
- As the number N rises and the separation becomes smaller and small, the system eventually 
goes over to one better described by a continuous model – and the normal mode has the form 
of a standing wave on a continuous system. 


