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Synopsis

Revision of Newtonian mechanics and non-inertial frames. Revision of Newton’s laws,
momentum, angular momentum, work and energy, conservative forces, central forces.
Rotating frames, centrifugal and Coriolis forces.

Normal modes. Analysis of motion of many-particle systems in terms of norma modes.
Degrees of freedom of a system, matrix notation, orthogonality of the eigenvectors, zero
frequency and degenerate modes. Use of symmetries to find norma modes. Modes of
molecules and continuous systems (standing waves).

Orbits: Kepler's laws. Effective potentials and the radial equation. Circular and élliptic orbits.
Escape velocity, transfer orbits and gravitational slingshot of space probes. Parabolic and
hyperbolic orbits, classical treatment of Rutherford scattering.

Rigid body dynamics: Angular velocity and angular momentum as vectors, conservation of
angular momentum. Moment of inertia tensor, principal axes. Free precession. Forced
precession, gyroscopes. Lamour precession.

Elastic media: Hooke's Law. Stress and strain tensors, principal stresses and strains. Elastic
moduli for isotropic solids and relations between them. Poisson’s ratio. Bending of beams,
bending moments.



Books

Two good books that cover much of the course but at a somewhat too elementary level are:
Introduction to Classical Mechanics, French A.P. and Ebison M.G. (Chapman & Hall 1986):
Particle dynamics, orbits, elementary rigid body dynamics.

Vibrations and Waves, French A.P. (Chapman & Hall 1971): Normal modes.

More comprehensive are:

Principles of Dynamics, Greenwood D.T. (2nd edn Prentice & Hall 1988).
Classical Mechanics, Barger V.D. and Olsson M.G. (McGaw-Hill 1995).
Mechanics, Landau L.D. and Lifshitz E.M. (3rd edn Butterworth-Heinemann 1976)

For elasticity:
Lectures on Physics, Feynman R.P. et. al. (Addison-Wesley 1963), Vol 2: two useful chapters.

For the relevant maths:
Mathematical Methods for Physics and Engineering, Riley R.F., Hobson M.P. and Bence S.J.
(CUP 1997)

Acknowledgments

The lecture handouts for this course are based in part on those of the previous Dynamics
lecturers, in particular those of Prof. Webber and Dr’s Mackay and Kenderdine.



1 Review of Newtonian M echanics and Non-Inertial
Frames

1.1 Review of Newtonian M echanics

1.1.1 Newtonian Mechanicsis:
- Non- Relativistic, i.e. v<<c=3x10°ms™ (speed of light)

- Classicdl, i.e. Et >>h =6.6x10"*Js (Planck’s constant)

and so assumes that:
- the mass of objects is independent of velocity, time or frame of reference,

- measurements of length and time are independent of the frame of reference and, like
measurements of mass, are made by comparison with an arbitrary standard,

- all parameters can be known precisely.

1.1.2 Theuseof vectors
- Vectors have both magnitude and direction.

- If a physical quantity has both magnitude and direction and adds, resolves and behaves
under coordinate transformations like a vector, it can be usefully represented by a vector.

- Obvious vectors: position, velocity, acceleration, force, momentum

- Not such obvious vectors: quantities that ‘happen’ to behave as vectors and so can be
represented as vectors such as angular velocity, angular acceleration, torque, and angular
momentum.

1.1.3 Vector basis sets and frames of reference

- Vectors ‘exist’ in space and have properties that are independent of any basis set used to
represent them. The same is true of functions of vectors, such as dot and cross products, and
derivatives of such as div, grad and curl.

- Vectors may be represented with various basis sets, e.g:
Cartesian coordinates (basis set of unit vectors independent of position:)

r=(x vy, z), where r=xx+yy+zz, v=(x y, 2)

Cartesian
basis set



Cylindrical polar coordinates (basis set varies with position, r ):
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Cylindrical polars

- Coordinate axes (e.g. X, g Z) and a clock provide a frame of reference, with respect to
which every event can be labelled by its space and time coordinates (r , t).

- A frame of reference in which Newton’s laws hold is an inertial frame.

- If a frame S (with coordinates (r, t) ) is an inertial frame and frame S’ ( with coordinates
(r’, t’) ) is in uniform motion relative to S, then S’ is also an inertial frame, because

accelerations are the same in both frames. The equations relating the coordinates of the two
frames are know as the Galilean transformation:

where R is the position of the origin of the S* frame in the S frame at time t and u is the
velocity of S” with respect to S.
The velocities and accelerations are related by:

r

|70-

r-R=f-u

[ i"=F= [0 Newton’s Laws hold in S’ if true in S.

3 |Im

1.1.4 Mechanics

= Statics (absence of motion)
+ Kinematics (description of motion, using vectors for position and velocity)
+ Dynamics (prediction of motion, and involves forces and/or energy)

115 Statics
- Forces and torques balance.



1.1.6 Kinematics

- motion and be described with respect to different frames of reference, and ‘kinematics’
includes a treatment of the “fictitious’ forces that need to be introduced to describe motion in
an accelerating frame.

- definition of velocity and acceleration

Velocity: v= Iing—-

Acceleration: a= Iing—-

1.1.7 Dynamics

- motion can be described with respect to different frames of reference, and ‘kinematics’
includes a treatment of the “fictitious’ forces that need to be introduced to describe motion in
an accelerating frame.

- basic principle of dynamics, Newton’s second law [N2]:

ma=F

mass of body/ \pplied force

1.1.8 Force

- N2 is not a definition of force — force is defined as a push or pull that changes or tends to
change a body’s state of rest or relative motion. Force can be measured by various means, the
simplest being to compare it (using a balance of some kind) with the force of gravity on a set
of standard weights.

1.19 Mass

- N2 is, however, a definition of inertial mass, which was shown by experiment (summarised
in Newton’s Law of Gravitation) to be proportional to gravitational mass.



1.1.10 Momentum
- Momentum is defined as the product of mass and velocity:

p=—=F (N2 again)

- If a force acts on a particle from time t, to t,, then the time integral of the force (the
impulse) is equa to the change in momentum:

t

P, =P = [E)d

- The impulse of a force can be extremely useful in problems such as collisions where the
force varies rapidly in an unknown way, but all that is of interest is the ‘net effect’ of the
force.

1.1.11 Motion of a collection of particles: the centre of mass
- The centre of mass R of a collection of particles (positions r; ) is defined as:

MR=% mr,

where the total mass M is given by:

M:Zmi

Using N2, the acceleration of the centre of mass is given by:
MR= mi,=%F, =) F+ E;
LIRS LRI

where F; is the total force on the it particle, Fio is the external force on the i particle and F;;
is the force on the i particle from the j"™ . Since F; =-F ; by Newton’s 3 law, the term

Z Z F; sums to zero, and the acceleration of the centre of mass is given by the sum of the
[

external forces Fo:
ME: zrniL = ZEio :Eo

Since MR=P, , the total momentum, in the absence of an external force momentum is
conserved (F, =P, =0).



1.1.12 Motion of a collection of particles: rotations about the centre of Mass

- The motion of a collection of particles can be considered in two parts — the motion of the
centre of mass, and the movement (or rotation if the particles make a rigid body) of the
collection of particles about the centre of mass. To help handle motion about a point, it is
useful to define the quantities torque and angular momentum.

1.1.13 Torque

- The “effectiveness’ of a force at producing rotations about a particular point, A, is given by
the moment (or torque) G of the force about that point:

G=rxF

where r is the position of the point of action of the force relative to the reference point, A.
Since torque is defined as the cross product of two vectors, it itself is automatically a vector.

1.1.14 Angular momentum

- The angular momentum of a particle about a particular point, A, is given by the moment of
the linear momentum about that point:

J=rxp

1.1.15 Relation between G and J
- For a single particle, (index i)direct application of N2 to the definitions of G and J gives:

J;=fxp +r;xp =y xmy, +1,xF; =0+G, =G,

i.e. torque is the rate of change of angular momentum

- For a collection of particles with no forces between them, the rate of change of angular
momentum of each particle can be summed and equated to the sum of the external torques
acting on each particle.

where J is the total angular velocity of the system and G, is the total external couple on the
system.

- If now two of the particles have are interacting, then the contribution to the total couple will
be:



AG=r,xF,, +r,xF, = ([1 _LZ)XElz

(E,, =—F, by N3). If we assume that the force between the two particles is directed along
the line between them then F,, is parallel to (r, -r,) and AG=0. It follows that the

internal forces do not affect the result that the rate of change of total angular momentum of a
system is given by the sum of the externally applied torques.

- Angular momentum was ‘invented’ because it is a useful tool in rotational mechanics. The
relation J =G, enables forces applied to a body to be related to the its rotational

acceleration, and hence solve the dynamics.

1.1.16 Work and Energy
- Work done by a force = force x (distance moved parallel to force)

W=F.cr

- Work done by a force moving along path P
r t

W:JE.d[:{E.\_/ dt

t t
. 2dv 1 2d 2
using N2 =m[—=v dt==mf—\v" ) dt
r p  (usingN2) {dt— 2{dt()
1 1
=§m\_/§-§m\_/f

=increasein KINETIC ENERGY (T)

1.1.17 Potential Energy and Conservative Forces
- If the work done, W, by a force in moving along a path from a point r to a point r, is

independent of the path taken, then the force is know as a conservative force and it is possible
to relate the work done to afunction U ([) which takes the form of apotential energy:

wW=u ([1)_U([2)

(The equation defines U so that if work is done by the force, U decreases)

- equating expressions for the work done in terms of kinetic and potential energies gives:



1 1
=§mv§ _Emvlz :U(Ll)_U(LZ)

N U(El)”%mvf =U([2)+%rnv22 Conservation of Energy (E=T +V)

- 'Conservation of energy’ is simply the integral form of N2. Other forms of ’energy’ (heat,
electostatic etc) are 'fixed so asto fit in with this simple idea

- The force may be recovered from the potential energy by differentiating:

1D F(x) = _du(x)
dx
3D F(r)=-0U(r)

(O isthe gradient vector operator which is given in Cartesian coordinates by

U odJU odU E

DU: Y T~y T
- ox oy 0z

- Central forces are conservative. Suppose:
E(r)=f(r)f
and since r.dr=dr

we have IE.d[:rjf(r)dr

since the work done by the force in going from r,to r, isascalar integra of f(r), thework
done isindependent of path and the force is conservative

- How can we know if aforce is conservative, without performing integrals over all paths? A
forceisconservativeif:

IE.d[:O

for any closed path. Stokes theorem states that integral of a vector round a closed loop is
equal to the integral of the curl of that vector across any surface bounded by that loop. Since

for a conservative force I F.dr =0 for al loops then I [OxF.dS=0 for any integration over

any areaand so for a conservative field:
OxF =0

So, if the curl of aforce is everywhere zero, the force is conservative and there exists a scalar
function ¢(r) such that:
F=-q



1.2 Non-Inertial Frames

1.2.1 Transformationsfrom stationary to rotating frames

- If a point on a rigid body has a position vector r measured with respect to the axis of
rotation, and if the body is rotating with and angular velocity « , then the velocity of the point

with respect to stationary coordinatesis given by:

Vo =G XxIr
(vectors with the suffix o are with respect to the stationary frame, S, those without a suffix
are with respect to the rotating frame, S, and for convenience the equations are written for the
instant in time when the coordinate axes of Sand Sycoincide, so r, =r and &, =)

- If the point is aso moving on the rigid body with a velocity v with respect to coordinates
that rotate with the body, then this extra velocity must be added into the velocity v, :

Vo SV+Haxr

- similarly the time derivative of any vector in S isrelated to that of the same vector quantity,
but measured with respect to S by:

MAO _WAD

o B, " Bac g A

1.2.2 Derivation of fictitiousforces

- Newton’s Laws only apply in inertial frames. It is, however, often convenient to solve
dynamical problems from the point of view of a rotating (non-inertial) frame such as the
Earth. If you are making observations in such a frame, and if you insist that you want to use
Newton’s laws to describe what you see, then you have to allow for “fictitious’ forces that
seem to push objects around in mysterious ways. In dynamics these ‘forces’ are introduced as
a ‘fix’ to make Newton’s laws work in a frame where they are actually invalid, because
solving the problem in an “proper’ inertial frame is harder than worrying about the fictitious
(“fix’) forces in the non-inertial one. They are also introduced because to an observer forces
are more apparent than accelerations, and if something appears to accelerate, we have enough
of an intuitive feel for Newton’s laws to ask what force is accelerating them. If you want to
hold an object still in a rotating frame, technically what you are doing is accelerating the
object towards the axis of rotation. However, what you see is a stationary object and what you
feel is the very real centrifugal force (actually a N3 reaction to you pushing and accelerating
the object inwards) that tends to fling the object outwards, and if you let go of that object, it is
a fair question to ask what force produces the apparent acceleration outwards that ensues.

- In order to derive an expression for the acceleration of an object as seen in a rotating frame,
we can use the formula given above that rates the time derivative of an vector in stationary
and rotating frames. Firstly for velocity:



dr,0 _[™dr0o , _
%&-%ﬂ"‘@xb I8 Vo =V+aXxr

The subtle bit of this derivation now follows. The true acceleration of an object (i.e. measured
in an inertial frame such as & ) is the time derivative of the true velocity, i.e. v, if you
measure it in S and v+a Xr if you measure it in S. (note the observer in S thinks the
velocity isjust v, but once heistold that actually it is v+a xr he can then use this to work

out the true acceleration in S coordinates.) So, the expression for the true acceleration, ao , in
terms of vectors measured in Sis.

a :[d\_loD :[d\_/oD + WXV :[d(\_/"‘Qx[)D +wx(\_/+w><r)
© HaH HaH ©°H « H ¢
=ataxXv+axv+aX aX[)

=a+2axv+ax(axr)

Now, an observer in the rotating frame measures an acceleration a, and as far as he is
concerned, since he wishes to believe that Newton’s laws apply in his non-inertial frame,
there must therefore be a total force acting on the object given by ma:

ma = F -2mexv -mex(exr)
Total Apparent force  Trueforce = ma, Coriolisforce centrifugal force

- An alternative relation between a and ap can also be derived by expressing the position
vector of a point, rp explicitly in terms of the coordinates (x, y, z) and rotating basis set, (X,

¥, 2) in Sand taking derivatives w.r.t. time, noting that: X = wxX, X=wx(wx%) etc.

fo = XX+yy+2z2

o= XX+ XK+t (y and z terms similar)

= XK+ X x %)+ ...+ ... (y and z terms similar)
iy = %%+ 2x(e x %)+ X[e x (@ x X)]... + ... (y and z terms similar)
a, =a+2exv+ax(exr) (as previously)



1.2.3 Centrifugal force
- Using cylindrical polar coordinates (o, ¢ 2) (see section 1.1.3) with the axis of rotation

along the z axis:

r=pp+z2, a=az, p isthe distance from the axis or rotation
=aplzx p)=wpp

~wx(@xr)=-wtplexg)=wpp

i.e. Centrifugal force = maw? x (distance from axis of rotation)
and is directed away from the axis of rotation

Example: rotation of Earth at equator

T

Q°R, = 2a éMOOkm = 0.003g
y

1.2.4 Coriolis force on Earth’s surface

ECor = _zmg x \_/
O .
n 5 Q =Earth’s angular velocity
N = B v = velocity in frame S', fixed to Earth
pole QX
Coordinate axes in S':
X' pointing East
g ¥’ pointing North
Equator 2Z pointing radially outwards at latitude A.
Q =QcosAy+QsinAZ
for v in the plane of the Earth’s surface V=V, X4V Y
O F o =2mQsinAly, X -v, ¥) sideways force
O +2mQcosAv, 2 vertical force

- The sideways force is aways perpendicular to v in surface plane with a magnitude of
2mQvsin A, independent of the direction of v in the surface plane, and acts to the right in the
northern hemisphere, and to the left in the southern hemisphere.

10



2 Normal Modes
2.1 Definition

- In general no analytical solution is possible for the motion of a many body system.

- BUT thereis alarge class of systems which are close to mechanical equilibrium for which
the inter-body potentials between components of the system may be expanded about a local
minimum value as a Taylor expansion with only the quadratic term being of importance for
small displacements:

_ v
V(>_<)—Vo+|2a ZZOX,OX X

where Z_V =0 for al i since the potential is being expanded about alocal minimum at x=0
X.

A potential which does not have higher order terms in its expansion that the 2nd order onesis
said to be harmonic.

- In 1D we would then have:
1

V(x) = = kx?
(=7

where X is the displacement of the particle from its equilibrium position, and the equation of
motion is:

X = —kx

dx?
and the solution can be written in one the well known forms:

Real number forms
x=x,008(ct+&) initial position: x,cos(¢) initia velocity: —a X, sin(e)

x = Acos(wt)+Bsin(et) initia position: A initia velocity: & B

Complex number forms
x = Re(X ) = Relx, exp(i (.t +£))]
initial position: x,cos(¢) initial velocity: —a x,sin(g)
(X%, isareal number)
x = Re(X) = Re[ X, explic.t)]
X, =x,exp(ie) initia position:Re(X,) initia velocity: — . Im(X,)

where the angular frequency of the ssmple harmonic motionis w= %

11



- What happens when we go to more than one dimension? We find that provided the inter-
particle potential approximates to a harmonic (quadratic) form, we can resolve the motion of a
genera system for small displacements about its equilibrium into a number of Normal Modes.
In each of these normal modes of vibration the whole system oscillates together with one
frequency, and a general motion of the system can be written as the sum of various amounts
of each of these modes. If N coordinates are required to describe the system, then there will be
N normal modes.

2.2 An example of a 2 coordinate normal mode system

QQQQQ Lma\ QQQQG (mek QQQQG

- consider thecasewhere m, =m, =m

- if the tensions in the springs, labelled |eft to right are, F1, F», and F3 then we have:

F, =k
F, = k(xz - X1)
F, = —kx,

and the equations of motion for the two masses are:

m¥, = F, —F, = =2kx, +kx, 221
mX, =F, - F, = kx, — 2k,

If we now look for normal mode solutions in which both coordinates oscillate with the same
frequency, i.e.

X = x, cos(wt + €)= @’0 %os(wt +£) 222
20

Substituting this trial solution into equations 2.2.1 gives:

- w*mx,, cos(wt + &) = (- 2k, + kx,, ) cos(wt + )
— w*mX,, cos(wt + €)= ( kx,, — 2k, ) cos(wt + £)

and dividing through by cos(c.t +¢) gives:
— Py, = —2kx,, + kg 223
= My = kg = 2Ky,

12



and rearranging equations 2.2.3 gives:

YooK 224
X 2K—mw

X, _ 2K —mw?

Xo0 k

Hence a solution of the form of equation 2.2.2 is only possible if both equations 2.2.4 are true.
To find the values of wfor which thisis true we can equate the two equations 2.2.4:

k _ 2k-mw’
2k - ma? K

0 k? :(2k—ma)2)2

and we have two possible frequencies. w_ = \/% and w, = 3_rE

: /k /k o :
(note — the two solutions w_. =./— and w_ =-,/— give identical normal modes since
m m

cos(c_t)= cos(~ a_t), so are counted as one)

Substituting back into equations 2.2.4 gives:

_ Xo _ - X HHD o :
for a=a. —=1 X, = —HH=X e in phase: }\QQQQQQQQQQQQQQQQQ
SR A e
y + ; 1 +
and for a =, X1+° =-1 ZO:X—O = x,e out of phase: }&QQQ&O&QMQQQQQQJ{
X Vo1 e

20

- N 1 _
(the unit vectors e = %EE and e = %E 1@ are used because they are orthonormal, i.e.

orthogonal to each other and normalised e".e”" =e . =1, e".e" =0. We will show later in

this section that this orthonomal property is very useful when it comes to fitting the initial
conditions. In general such we will show in sections 2.4 and 2.6 that one can always find
such orthonormal sets and indeed that is why the modes are called normal modes)

A general motion of the system can be written as a linear combination of the two modes

X(t)= xcos@.t+e )+ x;coslw,t+e,)

13



or:

x (t)=—= [x cos(w_t +£_ )+ x; cos(w,t +€, )]

xz(t)— [x0 cos(w.t + £ )-x cos(w,t+¢, )|

Suppose we have the starting (initial) condition that one of the masses is displaced from
equilibrium by and amount a, i.e. we have:
X =0, x,=a, ¥x=0, X,=0

writing the general solution in the form:
x(t)= x;e cos(w.t+e )+x e cos(w,t +e,)
we have:
Xt)= —wxse sn(wt+e )-wx;e sin(w,t+e,)

and at t =0 we have:

x(0)= x;e cosle_)+x; e cosle, )= EE 2.25

x(0)= -—w.xje sin(e.)-w,x;e sine, )= %@ 2.2.6
if we take equation 2.2.6 first and take the dot product of both sideswith e we get
X0 = ~wxe e snle)-wxe e sn,)= %% =0

and using the orthogonality conditions e .e” =1, e".e =0 we get
x; sin(e_)=0
and since x; #0,wehave sin(e_)=0and £. =0
similarly taking the dot product of both sides of equation 2.2.6 with e"weget £, =0

Equation 2.2.5 now becomes:

x(0)= x& +x€ = g@

14



and again taking the dot product with e~ ande”™ gives:

x(0)e = xe e +xee = g%

and

giving the solution:
x(t)= %a[cosa)_t + cosw, ]

x,(t)= %a[cosw_t — cosw, t]

2.3 Matrix notation for a 2 coordinate system

- we can write equations 2.2.1 in the form
d? 2k k
m— = 231
FHE e -ade:

- substituting in equation 2.3.1 for a normal mode x = x, cos(wt + £) = @’0 E:os(wt +¢&) and
20

dividing by cos(et +¢) gives:

-ma e e

20 K -2k 20

. mw* 0 OE_ELZK K %?OE
0 = Mw® [ e k= 2K
— 2 —

0 K=ma K 10 E: %E 231
- k 2k - ma)z 20

15



- Since the right and side of equation 2.3.1 is zero, the matrix is not invertable, i.e. it is
singular, and its determinant must be zero. Again, this places a restriction on permitted values
of w.

2k — me” -k |
-k 2k — ma’®
O (2k - ma)z)2 -k*=0 as previously

_ 2k -k 0 ) 0
- We can write; =K and =M or for different masses =M
-~k 2k = m- = 0 mp =

- Now the normal mode equation looks like:

. . _ <0
- ThematrixM isinvertable, M ™ = .
- - 0 m

0 det(M _1£—wzl=): 0 | isthe unit matrix

- The normal mode frequencies squared are therefore the eigenvalves of the matrix ﬂ_li

and the unit vectors e ande” introduced above as norma mode displacement patterns turn
out to be the normalised eigenvector s of the matrix M ™K .

2.4 General solution of a N normal mode system

- For a system with N coordinates the matrices K and M will be Nx N matrices, where the
matrix element K;; isthe restoring force on particlei for unit displacement of particlej.

- Writing the total potential energy of the system as a Taylor expansion about the equilibrium
position, al first order terms vanish, leaving the 2nd order terms as the most significant ones.

16



VR=Vo+ 2y 2T

2 1 i

2
oV _ K, .Since oV = oV K; =K andthe K matrix is symmetrical.

and , K,
oxox, " ox0x; ox;0%

- The Secular Equation:
det(M K ~?1)=0

now as N solutions — with N frequencies and N normal modes, and the squared frequencies
are eigenvalues of M K .

- In general when a matrix acts on a vector, it changes both its direction and magnitude.
However, for a N dimensional matrix one can find N eigenvectors which only change their
magnitude when operated on by the matrix, and not their direction. Thus an eigenvector of a
matrix A is one which obeys the relation:

Ae= e

0 (aA-Alk=0

0 det(a-A1)=0

where A is the eigenvalue associated with eigenvector e.

- If A is a real symmetric matrix, its eigenvalues are all real and its eigenvectors are
orthogonal, and can be normalised so that.

ele = aij

examples of these orthonormal eigenvectors and their use was given above in section 2.2.
- The general solution to an N dimensional normal mode problem, i.e. how the values of all

the coordinates of the system vary with time, can then be expressed as a sum over the N
normal modes.

N
x(t) = Z xe, cos(a)jt tE, )
=1

or in complex notation

N
xt)=ReS Xe, explic)

=1
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2.5 Zero frequency modes

- Zero frequency modes correspond to free motion (translation or rotation) with no restoring
force.

- Zero frequency modes must be written as:
X (t) = XA+ Bt)

where Ax,, gives where the motion startsat t = 0 and BX,,gives the velocities.

-Consider 3 equal masses connected by 2 springs, with the masses free to move along the line
joining the centres of the masses:

Kk k
—» —» —»
X1 X2 X3

mX, = k(Xz - Xl)
Mg, = k(% =%, )+ k(x = x,)
mX, = k(X2 - X3)

and

1 -1 0
M_lEE:hD-l 2 -10
—  MJo -1 1H
1-a -1 0
normal modefrequencieswzza% whee| -1 2-a -1|=0 and
0 -1 1l-a

0  (@-af(@-a)-20-a)=0
0 (@-a)a-3p=0

O a=0 13
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and the normal mode frequencies are

a, =0, W, = % andw3=\/%

the corresponding eigenvectors are found by substituting the frequencies back into the
eigenvector equation:

(ﬂ_li _wizl=)§i =0

i.e.
Er.—aj -1 0 115
U U
r O -1 1l-a, F&jejst

hence, after normalising the elgenvectors are:

1 EH 1 H;H 1 5125
€ =—/=00 e =—70V0 € =—F—=0 <0
3 2 6
VA V2R Yoh1
and we have three modes:
Mode 1 Mode 2 Mode 3
O0099909999.,0 O0099999999.0 OO0
— —> — —> «— > «— >
=0 _
a4 w, = % W, = \/%
No restoring Central mass Max. spring
forces, trandation stationary extension, max. w

2.6 Orthogonality of normal modes

- We can show that for a symmetric matrix the eigenvectors are orthogona by considering the
action of the matrix on two of its eigenvectors

Ae®) = )@ e® Ae®) = b))
pre-multiplying each equation by the other eigenvector gives:

g(b)T ég(a) _ A(a)g(b)-r 9(51) g(a)T ég(b) — A(b) g(a)-r g(b)
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taking the transpose of the first equation gives e(a) AT e(b) = A(a)e(a)T ®) and since é =A
we can equate the left hand side of both equations, to give:

0= (1@ - J0) )" g®

s0if A® £ A®) then e®e® =0 i.e. the eigenvectors are orthogonal.

- The matrix M ™K in the secular equation, det(M_li—wZI:): 0, is only symmetric if all

the masses of the interacting particles are equal. If the masses of the interacting particles are
not equal, then whilst the basic properties of the norma modes are unaffected, the
eigenvectors are no longer orthogonal. However we can derive an orthogonality relation.
Consider again two eigenvectors (the eigenvalues are written with A again rather than «f to
simplify the algebra).

Ke® = 1@pme® Ke® = 10)m )
pre-multiplying each equation by the other eigenvector gives:

g(b)T 5g(a) _ /\(a)g(b)T Mg(a) g(a)T K g(b) = )b g(a)T M §(b)

Taking the transpose of the first equation gives &' ETg(b) = N M'é ®) and since
K'=K and M" =M we can equate the l&ft hand sides of both equations to give:

0= (A(a)_ A(b))e(a)T Me (b)

0 if A® £ A0 then &' Me® =0 and if we have a general displacement given as sum of

eigenvectors X = z C g(j) then pre-multiplying by 9(")T M extracts the coefficients ¢ thus:
J

& Mx = zce "Me?) = " mel,

(g(")T Mg(k) can easily be calculated). Given the more complicated form of the orthogonality

relation, there is no point in normalising the eigenvectors, as was done for the case where all
the masses of the particlesisthe same.
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- Take the case of a two masses connected by a spring in 1d, with m, =2m, and
0 0
Ez ml% ZE the un-normalised eigenvectors are g(l) = g@ (trandation) and

" m

g(z) = @ @(vi bration- to find the eigenvector consider the fact that the centre of mass has no

I=

1
momentum for the vibrational case). If we have a general position of the system given by:

Z:%?%:°®§”+c@é”:C®§%+da%i%
2

we can find the values of the coefficients ¢c® and c® by first premultiplying by the M

matrix:
_HMX %_ %&E
Mx = =m
- 2X2 X2

and then pre-multiply by g(l) to give

& Mx= m%é@’i %z gt Me?
M ) M

and since g(l)T Me¥ =m+m, wehave c®= m (x, +2x,)
- m, +m,
- Taking the proof above that g(a)T M g(b) =0 and repeating it, but starting with

/1%5‘) ﬁg("") = &g(a) that gives:

_Bl _ 1 0@ 6)
O_ [A(a) W[_ ig

a second orthogonality relation e at Eg(b) =0

21



2.7 Energy of normal modes

- Kinetic energy givenby T = z%mjxf =
J

Lo
Lo

- When the system is displaced to a position x, then the force of the | component is given by:

F, = —Z K X,

If we wish to find the potential energy stored in the system when it is at a displacement x then
we can start with the system at equilibrium and increase the displacement linearly to x by
setting the displacement to be equal to y = uXxand increasing ¢ from O to 1. The work done

on the system for asmall changein y isthen:

dW =-F [tlx = -F [kdu = zZK]-k/JXkX]-d/J
T

and integrating gives.

p 1 1+
U=[dW= K. X X dy == K XX ==x Kx
J- ‘([ZZ ik k%) ZZZ JK K 2= =
Thetotal energy of a system isthen given by:

E=T+U = 1>_'<|\/|>_'< +1>_<TK>_<
27— 27 =

- Consider the energy stored in asingle normal mode or amplitude xéj) we have:

x=x{ coslw,t+¢, o,
x=—xPw sinlwt+e e,

and

= 1 (P 42 gin? |
T, _ExoJ w? sin (wjt”gj)_jﬂ@i

]

_1 (i? 2 T
U, _EXOI Ccos (a)jt+£j) e; Ke,

but we have: (ﬁ - wjzﬂ)_ej =0
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i e (-w'Ml, =0 ad gKe,

' Me,
and the total energy stored in thej™ mode is given by:

E; =T, +U, = %ng)zwjzjﬂgj = %Xéj)zeT-Ke-

=l ==

and average values are given by:

Ei
Tj :Uj :7

[ equipartition between kinetic and potential energies for oscillating system.
- now consider a superposition of normal modes:
x=% xW coslw t +¢, ),
X = —]Z e, sin(wjt +€, )gi
J

T=1imx= % Z xx¥w w sinfwt+e, Jsin(wt +& el Me,

I

butif k £ j glﬂgj =0, so the expression for T becomes

T :%Z X w? sinz(a)jt té Eﬂgi

J
= zTJ
J
and similarly:
_1 iP ~nc2 U
U —EZXSI) cos’wt+e,) e Ke,

J
:ZUj
E:ZEj

i.e. the total energy of the system can be written in terms of a sum of the energies stored in

each individual normal mode. Since normal modes oscillate independently of each other, their
amplitude remains constant in time and no energy is transferred from one mode to another.

and so:
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2.8 Degenerate modes

- For systems of high symmetry, some modes have the same frequency, and in which case the
modes are said to be degenerates.

- The proof’s that eigenvectors were orthogonal (or orthogonal when using the g(a)T Mg(b) =0
and g(""ﬁ ﬁg(b) =0 relations) al applied when the eigenvalues (norma mode frequencies)
were different.

- if two modes have the same frequency, then any linear combination of them will also be a
normal mode of the same frequency. In terms of eigenvalues of a matrix A, this can be seen

asfollows:

it 2e® = 1e® and Ae® = 16 then Aloe® +e®)= Alge® + ge®)
If we have a pair of normalised eigenvectors gg") and gg’)that are degenerate and are not
orthogonal, it is always possible to derive a pair of eigenvectors from them that are orthogonal
to each other. For example such a pair (g(a) and g("), say) can be produced by the following
method:

e® = gga)

e® =l _ (9(;’) [ggb)kga) (thisis orthogonal to e but not normalised)

2.9 Use of symmetries to find modes/Guessing displacement
patterns

- It is very important to use the symmetry of a particular system, and previous experience to
GUESS norma mode displacement patterns. Often quite complex systems can be completely
solved in this manner — and it is a lot quicker than setting up and solving the secular equation.

- Key points are:

(1) If you have N coordinates there will be N normal modes

(2) Displacement patterns have to be orthogonal to each other for non-degenerate
normal modes. The first thing to check with a new guessed normal mode is if it is orthogonal
to the ones already established — if not — either guess again, or use a relation like the one at
the end of section 2.9 to orthogonalise the new mode with respect to the ones already
discovered.

(3) For a free system — remember the translation and rotation modes
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2.10 M odes of molecules

- If there are M atoms in amolecule, then there will be 3M normal modes
- There will always be 3 zero frequency translational modes.

- If the molecule is linear the there will be 2 rotational zero frequency modes, otherwise it will
have three rotational modes.

- There are, therefore, 3M-6 vibrational modes for anon linear molecule and 3M-5 for alinear
ones.

2.11Continuous systems: normal modes and standing waves

- If one considers a piece of string with N masses on it —one can sketch out displacement
patterns of the N masses

- As the number N rises and the separation becomes smaller and small, the system eventually

goes over to one better described by a continuous model — and the normal mode has the form
of a standing wave on a continuous system.
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