Classical Mechanics

$$
\begin{aligned}
& \text { LECTURE 5: } \\
& \text { KINETIC \& POTENTIAL } \\
& \text { ENERGY }
\end{aligned}
$$

Prof. N. Harnew
University of Oxford
MT 2016

OUTLINE : 5. KINETIC \& POTENTIAL ENERGY

5.1 Conservative forces

Examples
5.2 Potential with turning points
5.2.1 Oscillation about stable equilibrium
5.2.2 Bounded and unbounded potentials

$$
\begin{gathered}
\text { 5.1 Conservative forces } \\
W_{a b}=\int_{a}^{b} \underline{\mathbf{F}} \cdot d \underline{\mathbf{r}}=U(a)-U(b)
\end{gathered}
$$

For a conservative field of force, the work done depends only on the initial and final positions of the particle independent of the path.
The conditions for a conservative force (all equivalent) are:

- The force is derived from a (scalar) potential function:

$$
\underline{\mathbf{F}}(\underline{\mathbf{r}})=-\nabla U \rightarrow F(x)=-\frac{d U}{d x} \text { etc. }
$$

- There is zero net work by the force when moving a particle around any closed path: $W=\oint_{c} \underline{\mathbf{F}} . d \underline{\mathbf{r}}=0$
- In equivalent vector notation $\underline{\nabla} \times \underline{\mathbf{F}}=0$

$$
\text { For any force: } \quad W_{a b}=\frac{1}{2} m v_{b}^{2}-\frac{1}{2} m v_{a}^{2}
$$

Only for a conservative force: $W_{a b}=U(a)-U(b)$

Conservative force: example 1. Constant acceleration
Consider a particle moving under constant force (in 1-D).

- $F=m a$. Say at $t=0 \rightarrow x=x_{0}$ and $v=v_{0}$
- $T_{2}+U_{2}=T_{1}+U_{1} \quad$ (the total energy is conserved)
- $\frac{1}{2} m v^{2}-(m a) x=\frac{1}{2} m v_{0}^{2}-(m a) x_{0}=$ constant
- $v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$

- Gravitational potential energy
- $U(\Delta y)=-\int_{y_{1}}^{y_{2}} F(y) d y$
- $U(\Delta y)=-\int_{y_{1}}^{y_{2}}(-m g) d y=m g\left(y_{2}-y_{1}\right)$

Example 2. Simple harmonic oscillator

Equation of motion: $F=m \frac{d^{2} x}{d t^{2}}=-k x$

- Potential energy: $U(x)=-\int_{0}^{x} F d x=-\int_{0}^{x}(-k x) d x=\frac{k x^{2}}{2}$
- Total energy: $E=T(x)+U(x)=\frac{1}{2} m \dot{x}^{2}+\frac{k x^{2}}{2}$
- Check conservation of energy: EOM : $m \ddot{x}+k x=0 \rightarrow$ [multiply by $\dot{x}] m \ddot{x} \ddot{x}+k x \dot{x}=0$ $\rightarrow \frac{1}{2} m \frac{d}{d t}\left(\dot{x}^{2}\right)+\frac{1}{2} k \frac{d}{d t}\left(x^{2}\right)=0$
- Integrate wrt $t: \frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2}=$ constant \rightarrow i.e. energy conserved.

SHM potential energy curve

- $E=U(x)+\frac{1}{2} m v^{2}$
- The particle can only reach locations x that satisfy $U<E$

Example 3. Minimum approach of a charge

A particle of mass m and charge $+Q_{1}$ starts from $x=+\infty$ with velocity v_{0}. It approaches a fixed charge $+Q$. Calculate its minimum distance of approach $x_{\text {min }}$.

- Force on charge $+Q_{1}: \quad F(x)=+\frac{Q Q_{1}}{4 \pi \epsilon_{0} x^{2}} \quad$ (+ ve direction)
- Potential energy at point $x: U(x)=-\int_{\infty}^{x} F(x) d x=+\frac{Q Q_{1}}{4 \pi \epsilon_{0} x}$ (where PE $=0$ at $x=\infty$)
- Conservation of energy: $\quad \frac{1}{2} m v_{0}^{2}+0=\frac{1}{2} m v^{2}+U(x)$
- Min. dist. when $v=0: \frac{1}{2} m v_{0}^{2}=\frac{Q Q_{1}}{4 \pi \epsilon_{0} X_{\text {min }}} \rightarrow x_{\text {min }}=\frac{Q Q_{1}}{2 \pi m \epsilon_{0} v_{0}^{2}}$

5.2 Potential with turning points

- U is a maximum: unstable equilibrium
- U is a minimum: stable equilibrium

5.2.1 Oscillation about stable equilibrium

- For SHM : $U(x)=\frac{1}{2} k\left(x-x_{0}\right)^{2}$
- Taylor expansion about x_{0} :

$$
U(x)=U\left(x_{0}\right)+\underbrace{\left[\frac{d U}{d x}\right]_{x=x_{0}}\left(x-x_{0}\right)+\frac{1}{2!} \underbrace{\left[\frac{d^{2} U}{d x^{2}}\right]_{x=x_{0}}}_{=k}\left(x-x_{0}\right)^{2}+\ldots}_{=0}
$$

Example: The Lennard-Jones potential

The Lennard-Jones potential describes the potential energy between two atoms in a molecule: $U(x)=\epsilon\left[\left(x_{0} / x\right)^{12}-2\left(x_{0} / x\right)^{6}\right]$ (ϵ and x_{0} are constants and x is the distance between the atoms).

Show that the motion for small displacements about the minimum is simple harmonic and find its frequency.

- $U(x)=U\left(x_{0}\right)+\left[\frac{d U}{d x}\right]_{x=x_{0}}\left(x-x_{0}\right)+\frac{1}{2!}\left[\frac{d^{2} U}{d x^{2}}\right]_{x=x_{0}}\left(x-x_{0}\right)^{2}+\ldots$
- $U\left(x_{0}\right)=\epsilon\left[\left(x_{0} / x\right)^{12}-2\left(x_{0} / x\right)^{6}\right]_{x=x_{0}}=-\epsilon$
- $\left.\frac{d U(x)}{d x}\right|_{x=x_{0}}=12 \epsilon\left[-\frac{1}{x_{0}}\left(x_{0} / x\right)^{13}+\frac{1}{x_{0}}\left(x_{0} / x\right)^{7}\right]_{x=x_{0}}=0$ as expected.
- $\left.\frac{d^{2} U(x)}{d x^{2}}\right|_{x=x_{0}}=\frac{12 \epsilon}{x_{0}^{2}}\left[13\left(x_{0} / x\right)^{14}-7\left(x_{0} / x\right)^{8}\right]_{x=x_{0}}=\frac{72 \epsilon}{x_{0}^{2}}$
- Hence $U(x) \approx-\epsilon+\frac{72 \epsilon}{2!x_{0}^{2}}\left(x-x_{0}\right)^{2}$
- $F(x)=-\frac{d U}{d x} \approx-\frac{1}{2} \times 2\left(\frac{72 \epsilon}{x_{0}^{2}}\right)\left(x-x_{0}\right)=-k\left(x-x_{0}\right)$ SHM about x_{0}
- Angular frequency of small oscillations : $\omega^{2}=\frac{k}{m}=\frac{72 \epsilon}{m x_{0}^{2}}$

5.2.2 Bounded and unbounded potentials

- Bounded motion : $E=E_{1}$: x constrained $x_{1}<x<x_{2}$
- Unbounded motion : $E=E_{2}$: x unconstrained at high x $x_{0}<x<\infty$

