Classical Mechanics

LECTURE 5: KINETIC & POTENTIAL ENERGY

Prof. N. Harnew University of Oxford MT 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣……

1

OUTLINE : 5. KINETIC & POTENTIAL ENERGY

5.1 Conservative forces Examples

5.2 Potential with turning points

5.2.1 Oscillation about stable equilibrium 5.2.2 Bounded and unbounded potentials

5.1 Conservative forces

$$W_{ab} = \int_a^b \underline{\mathbf{F}} \cdot d\underline{\mathbf{r}} = U(a) - U(b)$$

For a conservative field of force, the work done depends only on the initial and final positions of the particle independent of the path.

The conditions for a conservative force (all equivalent) are:

- ► The force is derived from a (scalar) potential function: $\underline{\mathbf{F}}(\underline{\mathbf{r}}) = -\nabla U \rightarrow F(x) = -\frac{dU}{dx}$ etc.
- ► There is zero net work by the force when moving a particle around any closed path: $W = \oint_c \mathbf{F} \cdot d\mathbf{r} = 0$
- In equivalent vector notation $\underline{\nabla} \times \underline{\mathbf{F}} = \mathbf{0}$

For any force: $W_{ab} = \frac{1}{2}mv_b^2 - \frac{1}{2}mv_a^2$

Only for a *conservative* force: $W_{ab} = U(a) - U(b)$

Conservative force: example 1. Constant acceleration

Consider a particle moving under constant force (in 1-D).

- F = ma. Say at $t = 0 \rightarrow x = x_0$ and $v = v_0$
- $T_2 + U_2 = T_1 + U_1$ (the total energy is conserved)
- $\frac{1}{2}mv^2 (ma)x = \frac{1}{2}mv_0^2 (ma)x_0 = \text{constant}$ • $v^2 = v_0^2 + 2a(x - x_0)$

4

Gravitational potential energy

•
$$U(\Delta y) = -\int_{y_1}^{y_2} F(y) dy$$

•
$$U(\Delta y) = -\int_{y_1}^{y_2} (-mg) dy = mg(y_2 - y_1)$$

Example 2. Simple harmonic oscillator

Equation of motion: $F = m \frac{d^2 x}{dt^2} = -kx$

- Potential energy: $U(x) = -\int_0^x F dx = -\int_0^x (-kx) dx = \frac{kx^2}{2}$
- Total energy: $E = T(x) + U(x) = \frac{1}{2}m\dot{x}^2 + \frac{kx^2}{2}$
- ► Check conservation of energy: EOM : $m\ddot{x} + kx = 0$ \rightarrow [multiply by \dot{x}] $m\ddot{x}\dot{x} + kx\dot{x} = 0$ $\rightarrow \frac{1}{2}m\frac{d}{dt}(\dot{x}^2) + \frac{1}{2}k\frac{d}{dt}(x^2) = 0$
- ► Integrate wrt $t: \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = \text{constant} \rightarrow \text{ i.e. energy conserved.}$

SHM potential energy curve

$$\bullet \ E = U(x) + \frac{1}{2}mv^2$$

• The particle can only reach locations x that satisfy U < E

Example 3. Minimum approach of a charge

A particle of mass *m* and charge $+Q_1$ starts from $x = +\infty$ with velocity v_0 . It approaches a fixed charge +Q. Calculate its minimum distance of approach x_{min} .

Force on charge
$$+Q_1$$
: $F(x) = +\frac{QQ_1}{4\pi\epsilon_0 x^2}$ (+ve direction)

- ► Potential energy at point *x*: $U(x) = -\int_{\infty}^{x} F(x) dx = +\frac{QQ_1}{4\pi\epsilon_0 x}$ (where PE = 0 at $x = \infty$)
- Conservation of energy : $\frac{1}{2}mv_0^2 + 0 = \frac{1}{2}mv^2 + U(x)$
- Min. dist. when v = 0: $\frac{1}{2}mv_0^2 = \frac{QQ_1}{4\pi\epsilon_0 x_{min}} \rightarrow x_{min} = \frac{QQ_1}{2\pi m\epsilon_0 v_0^2}$

5.2 Potential with turning points

- U is a maximum: unstable equilibrium
- ► U is a minimum: *stable* equilibrium

5.2.1 Oscillation about stable equilibrium

- For SHM : $U(x) = \frac{1}{2}k(x x_0)^2$
- Taylor expansion about x₀:

$$U(x) = U(x_0) + \underbrace{\left[\frac{dU}{dx}\right]_{x=x_0}}_{=0} (x-x_0) + \frac{1}{2!} \underbrace{\left[\frac{d^2U}{dx^2}\right]_{x=x_0}}_{=k} (x-x_0)^2 + \dots$$

Example: The Lennard-Jones potential

The Lennard-Jones potential describes the potential energy between two atoms in a molecule: $U(x) = \epsilon[(x_0/x)^{12} - 2(x_0/x)^6]$ (ϵ and x_0 are constants and x is the distance between the atoms).

《曰》 《聞》 《臣》 《臣》 三臣

Show that the motion for small displacements about the minimum is simple harmonic and find its frequency.

• $U(x) = U(x_0) + \left[\frac{dU}{dx}\right]_{x=x_0}(x-x_0) + \frac{1}{2!}\left[\frac{d^2U}{dx^2}\right]_{x=x_0}(x-x_0)^2 + \dots$ • $U(x_0) = \epsilon[(x_0/x)^{12} - 2(x_0/x)^6]_{x=x_0} = -\epsilon$ • $\frac{dU(x)}{dx}|_{x=x_0} = 12\epsilon[-\frac{1}{x_0}(x_0/x)^{13} + \frac{1}{x_0}(x_0/x)^7]_{x=x_0} = 0$ as expected. • $\frac{d^2U(x)}{dx^2}|_{x=x_0} = \frac{12\epsilon}{x_0^2}[13(x_0/x)^{14} - 7(x_0/x)^8]_{x=x_0} = \frac{72\epsilon}{x_0^2}$ • Hence $U(x) \approx -\epsilon + \frac{72\epsilon}{2!x_0^2}(x-x_0)^2$ • $F(x) = -\frac{dU}{dx} \approx -\frac{1}{2} \times 2(\frac{72\epsilon}{x_0^2})(x-x_0) = -k(x-x_0)$ SHM about x_0 • Angular frequency of small oscillations : $\omega^2 = \frac{k}{m} = \frac{72\epsilon}{mx^2}$

5.2.2 Bounded and unbounded potentials

- ▶ Bounded motion : $E = E_1$: x constrained $x_1 < x < x_2$
- ▶ Unbounded motion : $E = E_2$: x unconstrained at high x $x_0 < x < \infty$