
Classical Mechanics

1 Introduction

Classical mechanics is important as it gives the foundation for most of physics. The theory, based
on Newton�s laws of motion, provides essentially an exact description of almost all macroscopic
phenomena. The theory requires modi�cation for

1. microscopic systems, e.g. atoms, molecules, nuclei - use quantum mechanics

2. particles travelling at speeds close to the speed of light - use relativistic mechanics

These other theories must reduce to classical mechanics in the limit of large bodies travelling at speed
much less than the speed of light.

The subject is usually divided into

1. statics - systems at rest and in equilibrium,

2. kinematics - systems in motion, often accelerating. Concerned here with general relationships,
e.g. F =dp

dt , (Newton�s second law, without specifying the details of the force.)

3. dynamics - details of the force law are speci�ed, e.g. gravitational force, force due to a stretched
spring.

2 Newton�s laws of motion

These were formulated in his book Principia Mathematica in 1687. They are the basis of all classical
mechanics.

1. A body remains at rest or in a state of uniform motion (non-accelerating) unless acted on by an
external force.

2. Force = time rate of change of momentum, i.e.

F =
dp

dt
; (1)

where p = mv = momentum of body of mass m moving with velocity v. If m is constant then

F = m
dv

dt
= ma; (2)

with acceleration, a = dv
dt .

3. To every force (action) there is an equal but opposite reaction.

These laws are only true in an inertial (non-accelerating) frame of reference. We shall discuss
later how we can treat motion relative to an accelerating frame of reference.
From the second law, if F = 0, then the acceleration a = dv

dt = 0, so the velocity, v, is constant. Thus
�rst law is special case of the second law.

We can also derive the third law from the second law as follows. Apply a force F to body 1. Body 1
pushes on body 2 with force F2 and body 2 pushes back on body 1 with force F1 as shown in �g 1.
Applying Newton�s second law, for the combined system,

F = (m1 +m2)a: (3)

For body 1,
F+ F1 = m1a; (4)
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Figure 1: Demonstration of Newton�s Third Law

for body 2,
F2 = m2a: (5)

Adding

F+ F1 + F2 = (m1 +m2)a = F (6)

F1 + F2 = 0 (7)

and hence
F1 = �F2: (8)

So that forces F1 and F2 are equal in magnitude but opposite in direction.

3 Scalars and Vectors

There are two main types of variables in mechanics.

Scalar �has only magnitude, e.g. mass, energy, speed.

Vector �has magnitude and direction, e.g. position, velocity, acceleration, force.

A vector may be represented graphically by a directed line segment. The length of the line represents
the magnitude of the vector, the direction of the line shows the direction of the vector. In printed text
vectors are often written in bold type, and will be underlined in hand written text. A certain knowledge
of vectors is assumed, in particular their Cartesian form.
Consider Newton�s second law,

F = ma: (9)

This is a vector equation which means that not only is the magnitudes on both sides of the equation
equal, but the direction of the acceleration a is the same as the force, F. If we express F and a in
Cartesian form,

F = Fx + Fy + Fz (10)

a = ax + ay + az; (11)

then

Fx = max = m
dvx
dt

= m
d2x

dt2
; (12)

Fy = may = m
dvy
dt

= m
d2y

dt2
; (13)

Fz = maz = m
dvz
dt

= m
d2z

dt2
: (14)

2



4 Units and Dimensions

In order to discuss concepts such as velocity, force energy, etc. we must introduce a standard set of units
of the fundamental variables or dimensions. The fundamental variables are mass [M ], length [L] and
time [T ]. The most widely used set of units for these variables is the Système International (S.I.).
The base units of the S.I. system are

variable unit name abbreviation
mass [M ] kilogram kg
length [L] metre m
time [T ] second s

From these base units we can obtain derived units for other variables, e.g. speed = distance/time, with
dimensions of speed [v] = [L] = [T ] and the S.I. unit is m/s, or ms�1. For force = mass � acceleration
the dimensions are [F ] = [m] [L] [T ]�2 and the unit is kgm s�2 = Newton (N). Units have dimensions
and all equations in physics must be dimensionally homogeneous; i.e. both sides and each term of
the equation must have the same dimensions. As an example,

1. distance travelled in time t at constant speed v is s = vt. The dimension are

[L] = [L] [T ]
�1

[T ] = [L] : (15)

2. distance travelled in time t under a constant acceleration a from an initial speed u is

s = ut+
1

2
at2: (16)

The dimensions are

[L] = [L] [T ]
�1

[T ] + [L] [T ]
�2

[T ]
2 (17)

[L] = [L] + [L] : (18)

Dimensional analysis of equations provides a very useful check on the correctness of algebraic expres-
sions. However it does not give information about dimensionless constants, such as the 1

2 in equation
(16) above.

5 Time rate of change of vectors

Newton�s second law, F = mdv
dt , involves the time rate of change of the velocity vector, v. Consider

v =
dr

dt
: (19)

Change of position of particle in time interval �t is �r, so velocity (see �g 2

v = lim
�t!0

�r

�t
=
dr

dt
: (20)

In Cartesian coordinates

r = xbi+ ybj+ zbk; (21)

v =
dr

dt
=
dx

dt
bi+ dy

dt
bj+ dz

dt
bk; (22)

= vxbi+ vybj+ vzbk: (23)

The speed of the particle is

v = jvj =
p
v � v =

q
v2x + v

2
y + v

2
z : (24)
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Figure 2: Time-dependent vectors

For acceleration, replace r by v in the above expressions,

a = lim
�t!0

�v

�t
=
dv

dt
: (25)

In Cartesian coordinates

a = vxbi+ vybj+ vzbk; (26)

a =
dv

dt
=
dvx
dt
bi+ dvy

dt
bj+ dvz

dt
bk; (27)

=
d2x

dt2
bi+ d2y

dt2
bj+ d2z

dt2
bk: (28)

6 Motion in one dimension

Consider a particle of mass, m, moving along the positive x-axis as in �g 3.

Figure 3: Motion along x-axis

The velocity is positive for motion in sense of x increasing and negative for x decreasing.
In time dt distance travelled by particle is dx = vdt. In the �nite time interval between t1, when

position of particle is x1, and time t2 when position is x2, distance travelled is

s = (x2 � x1) =
Z t2

t1

v dt: (29)

This is represented by the shaded area in �g 4(a). We need to know how v varies with t in order to
calculate s.
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Figure 4: (a) Left: Velocity - time graph; (b) Right: Acceleration - time graph

Similarly for acceleration, a, the change in velocity in time interval between time t1 and t2 is

(v2 � v1) =
Z t2

t1

adt; (30)

and is represented by the shaded area in �g 4(b). As before we need to know how a varies as a function
of time.

7 Motion under a constant force

If the force is constant, then by Newton�s second law, F = ma, then so is the acceleration. Hence from
�g 3

v2 = v1 + a (t2 � t1) ; (31)

v = at+K (32)

where K is an arbitrary constant of integration. Suppose v = u at t = 0, this is a boundary or initial
condition, so

v = u+ at (33)
dx

dt
= u+ at (34)

and integrating gives

x = ut+
1

2
at2 +K2; (35)

where K2 is another constant of integration determined by another boundary (initial) condition. Suppose
x = x0 at t = 0, then

x = x0 + ut+
1

2
at2 (36)

and distance travelled in time t, is

s = (x� x0) = ut+
1

2
at2: (37)

Since t = (v � u) =a, then

s = u
(v � u)
a

+
1

2
a

�
(v � u)
a

�2
(38)
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and re-arranging,
v2 = u2 + 2as (39)

Collecting together the equations of motion we have for linear motion under a constant acceleration (or
force)

v = u+ at; (40)

s = ut+
1

2
at2; (41)

v2 = u2 + 2as; (42)

s =
1

2
(u+ v) t: (43)

7.1 Free fall under gravity

In this case the constant acceleration is downwards, with a = �g, as x, v, and a are positive when
measured upwards. Consider a body thrown upwards with an initial speed u. Forces are as shown in

Figure 5: Mass falling freely under in�uence of gravity

�g 5. The initial conditions are, x = 0, v = u at t = 0. To �nd the maximum height reached, we �nd s
where v = 0. Thus from eq(42), 0 = u2 � 2gs giving s = u2= (2g). The time to the maximum height is
found using eq(40) giving t = u=g. To �nd the time to reach some speci�ed height, x1, then use eq(41),

x1 = ut� 1
2
gt2 (44)

gt2 � 2ut+ 2x1 = 0: (45)

This is a quadratic equation in t, with two roots,

t =
u�

p
u2 � 2gx1
g

: (46)

If u2 > 2gx1, the body can reach a height greater than x1 and the two roots are real, with

t1 =
u�

p
u2 � 2gx1
g

(47)

giving the time to reach x1 on the way up and

t2 =
u+

p
u2 � 2gx1
g

(48)

giving the time to reach height x1 going down after reaching the maximum height. Note that t1 and t2
are symmetric about the time to maximum height t = u=g. If x1 > u2=g no particle can reach this height
(the two roots of the quadratic are complex quantities).

6



8 Force of friction

Consider a block of mass m sliding on a rough surface. The frictional force, Ff , as it acts on the
block, is in a direction opposite to the motion of the block. It acts at the surface of the block in contact
with the rough surface. The normal reaction, N, of the surface on the block is perpendicular to the
surface. As there is no resultant vertical force on the block, (see �g 6) then the magnitude

Figure 6: Block sliding over rough horzontal surface

N = mg: (49)

If the block is sliding the frictional force is proportional to the normal reaction. The constant of pro-
portionality is called the coe¢ cient of friction, often denoted by �. Hence we write Ff = �N for the
magnitude.
Some typical values of � are surfaces �

steel on steel 0.4
te�on on te�on 0.04
lead on steel 1

If applied force F is not su¢ ciently large to cause the block to slide, there is still a frictional force Ff
acting in the direction opposite to that in which the body would move if there were no friction, but
Ff < �N .
If the body is just about to slide we shall assume that Ff = �N . In practice the coe¢ cient of

sliding friction is slightly less than the coe¢ cient of static friction.
Consider the motion of a block sliding on a rough horizontal surface. Resolving the forces vertically,

mg �N = 0 (50)

so
Ff = �N = �mg (51)

and the resultant horizontal force on the body is

(F � Ff ) = ma = m
dv

dt
: (52)

This is the equation of motion of the body.

Example 1 Suppose body is initially sliding to the right and the applied force F = 0. The body slides
to rest under the in�uence of the frictional force. Equation of motion is

�Ff = ��mg = ma; (53)

so the acceleration
a = ��g (54)
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is constant. Hence previous results for motion under a constant acceleration can be used. In particular
the time to come to rest if initial velocity is u is given by

0 = u� �gt; (55)

t = u= (�g) : (56)

8.1 Motion of body on rough inclined plane

Consider the body being pulled/pushed up the plane at a constant speed. The forces are as in the
diagram, �g 7. The body is sliding so we take frictional force Ff = �N . There is no resultant force

Figure 7: Mass pulled up an inclined plane

perpendicular to the plane (it remains in contact) so

N = mg cos�: (57)

Resolving forces parallel to plane surface,

F � Ff �mg sin� = ma = m
dv

dt
(58)

F � �mg cos��mg sin� = m
dv

dt
: (59)

Example 2 What is largest value for the angle of inclination of the plane for which body remains at rest
on the plane without sliding down. In this case the body wants to slide down, so the frictional force Ff
acts up the plane, as in �g 8. For equilibrium there is no resultant force on the particle in any direction.

Figure 8: Body sliding down an inclined plane

Resolving forces perpendicular to the plane

N = mg cos� (60)
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and parallel to the plane
Ff = mg sin�: (61)

The maximum value of Ff is �N , so

Ff = �N = �mg cos� (62)

so the maximum value of � is when

�mg cos� = mg sin� (63)

tan� = �: (64)

8.2 Role of friction in accelerating a car

Forces are as shown for a rear-wheel drive car in �g 9. The frictional force between the rear wheels and

Figure 9: Rear-wheel driven vehicle

the ground is Ff , and this force provides the force needed to accelerate the car, Ff = ma.

9 Kinematical relations

Before considering other one-dimensional problems we need to develop some other general aspects of
mechanics.

9.1 Work

Force F is applied to a body. If point of application of the force, i.e. body moves a distance dr as in �g
10, the work done by the force is de�ned to be

dW = F � dr = (F cos�) dr (65)

where F cos� is component of force in direction of motion of the body. Hence work is a scalar
quantity.
For �nite displacements of a particle from position r1 to r2 as in �g 10 the work done by the force is

W =

Z r2

r1

F � dr (66)

Note that F may vary with position.
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Figure 10: Force displaced

Figure 11: Body moving over curved path

For a constant force (in both magnitude and direction), work done is

W = F � (r2 � r1) : (67)

Work is energy and the S.I. unit is the newton metre (Nm).
If force acts in the x-direction and the particle can only move in the x-direction, then we can drop

the scalar product in eq(66) and write

W =

Z x2

x1

F dx (68)

as the work done by force F in moving particle from position x1 to x2.

Example 3 Work that must be done to stretch a spring, as illustrated in �g 12: Tension in the spring

Figure 12: Stretched spring

when extended is proportional to the (small) extension, (Hooke�s law), so T = �kx where k is the sti¤ness
constant. To stretch the spring we must apply a force F = +kx. The work done by force F (i.e. by us)
to stretch spring to an extension x1 is

W =

Z x1

0

F dx =

Z x1

0

kxdx =
1

2
kx21: (69)
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We assume there are no dissipative forces (e.g. friction) so this energy is stored in the stretched spring
as potential energy. Potential energy will be discussed in more detail later.

Example 4 Work done by gravity when particle falls from position x1to x2 where (x1 � x2) = h. The

Figure 13: Body falling through distance h under gravity

force F = �mg and the work

W =

Z x2

x1

F dx =

Z x2

x1

(�mg) dx = (�mgx) jx2x1 = �mg (x2 � x1) = mgh: (70)

The work done manifests itself as kinetic energy of the particle.

Example 5 Suppose particle is constrained to fall under gravity inside a smooth tube, as in the �g
14. Force of tube on the particle is N and is normal to the tube. (The tube being smooth produces no

Figure 14: Contrained motion of particle under gravity

frictional force - an idealized situation!) So resultant force on particle is N + F. Work done by these
forces as particle moves a distance dr along the tube is

dW = (N+ F) � dr = N � dr+ F � dr: (71)

11



But N is orthogonal (perpendicular) to dr at every point along tube, so N � dr = 0. Hence

dW = F � dr (72)

and constraining forces which are not dissipative (i.e. no friction) do no work. For this problem,
F = �mgbi and dr = dxbi+ dybj, so

dW = F � dr =�mgbi � �dxbi+ dybj� = �mgdx (73)

and hence the work done by gravity when particle falls from height x1 to x2 is

W =

Z x2

x1

(�mg) dx = mgh (74)

as before.

9.2 Power

Power, P , is de�ned as the rate of doing work,

P =
dW

dt
: (75)

The S.I. unit is the joule/second
�
J s�1

�
or watt (W). Since dW = F � dr then

P =
dW

dt
= F � dr

dt
= F � v = Fxvx + Fyvy + Fzvz: (76)

Average power over extended time interval t is P =W=t, where W is work done in time t.

9.3 Impulse

Consider a force F which acts on a body of mass m during a time interval from t1 to t2. The impulse (a
vector quantity) of F during this time interval is de�ned as

I =

Z t2

t1

Fdt (77)

But from Newton�s second law

F =
dp

dt
(78)

so

I =

Z t2

t1

dp

dt
dt =

Z p2

p1

dp =(p2 � p1) (79)

where p1 = mv1, the momentum of particle at time t, and similarly p2 = mv2 at time t2. Hence
Newton�s second law can also be stated as Impulse = change in momentum,

I = �p = (p2 � p1) : (80)

If force, F, is constant (in direction and magnitude) throughout the time interval �t = (t2 � t1), then

I = F (t2 � t1) = F�t: (81)

An important special case is when force, F, is very large and �t is very small, so that I = �p is �nite.
Note as I =

R t2
t1
Fdt then

F =
dp

dt
=
dI

dt
(82)

Example 6 Particle of mass m bouncing o¤ a wall elastically (no loss of kinetic energy) as in �g 15.
Change in momentum of particle is �p = (�mv)�mv = �2mv is the impulse on the particle. Therefore
by Newton�s third law the impulse on the wall is +2mv.
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Figure 15: Particle bouncing elastically from a wall (very large mass)

9.4 Kinetic energy and potential energy

Consider a one-dimensional problem with the force F in the x-direction acting on a particle of mass m.
The equation of motion is

F = ma = m
dv

dt
= m

dv

dx

dx

dt
= mv

dv

dx
: (83)

The work done by the force in moving the particle from position x1 to position x2 in �g 16 is

Figure 16: Work done between two points

W =

Z x2

x1

F dx =

Z x2

x1

mv
dv

dx
dx =

Z v2

v1

mv dv =
1

2
mv2jv2v1 =

1

2
mv22 �

1

2
mv21 ; (84)

where v1 is velocity of particle at position x1 and similarly at position 2. We de�ne kinetic energy
(K.E.) as KE =

1
2mv

2. Hence the work done by the force is equal to the change (increase) in kinetic
energy.
We can also consider the work done by the force as the di¤erence in potential energy (P.E.)

between positions x1 and x2, thus we de�ne (mechanical) potential V (x) by

W =

Z x2

x1

F dx = V (x1)� V (x2) = � [V (x2)� V (x1)] =
1

2
mv22 �

1

2
mv21 (85)

and
V (x1) +

1

2
mv21 = V (x2) +

1

2
mv22 : (86)

The above relationship only de�nes the di¤erence in potential energy. To de�ne an absolute
potential energy of a particle at x1 we need an arbitrary but conveniently chosen position, x0, at which
the potential V = 0 by de�nition. Then

V (x1) =

Z x0

x1

F dx (87)

and

V (x1)� V (x2) =
Z x0

x1

F dx�
Z x0

x2

F dx =

Z x0

x1

F dx+

Z x2

x0

F dx =

Z x2

x1

F dx =W: (88)
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Since
V (x1) +

1

2
mv21 = V (x2) +

1

2
mv22 (89)

then potential energy + kinetic energy is constant, i.e. total energy is constant. Hence total energy,
E = V +KE , is conserved throughout the motion provided force F is non-dissipative (i.e. no friction).
If we know the potential energy as a function of position, V (x) we can determine the force F from

F = �dV
dx
: (90)

Note F is in the direction of decreasing V .

Example 7 Gravitational force F = �mg. Then

Figure 17: Particle falling under gravity

V (x1) =

Z x0

x1

F dx =

Z x0

x1

(�mg) dx = (�mgx) jx0x1 = mgx1 �mgx0: (91)

We can choose x0 = 0 as the ground, giving

V (x) = mgx (92)

and

F = �dV
dx

= �mg (93)

as above.

Example 8 Equation for motion under constant acceleration of gravity given earlier,

v2 = u2 � 2g (x� x0) (94)

can be re-written by multiplying by 1
2m as

1

2
mv2 =

1

2
mu2 � 1

2
m2g (x� x0) (95)

1

2
mv2 +mgx =

1

2
mu2 +mgx0 (96)

i.e. conservation of total energy.

In three-dimensions we have

W =

Z r2

r1

F�dr =1
2
mv22 �

1

2
mv21 : (97)
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also
W = V (r1)� V (r2) = change of P:E: (98)

and

V (r1) =

Z r0

r1

F�dr (99)

V (r0) = 0 (100)

F = �rV (101)

where the gradient operator

r �bi @
@x

+bj @
@y
+ bk @

@z
: (102)

We can only write F = �rV and de�ne a potential energy function V (r) for a non-dissipative or
conservative force. A conservative force is one such that the work done by the force in moving the
particle from position r1 to r2 is independent of the path between r1 and r2, see �g 18 The work

Figure 18: Work done over di¤erent paths by a conservative force

done just depends on the initial and end points,

WAB =W =

Z rB

rA

F�dr = V (rA)� V (rB) : (103)

Examples of conservative forces are: electrostatics, gravitation, force due to a stretched spring.

10 Simple Harmonic motion

Consider a particle of mass m attached to a light (massless) spring with a displacement x from the
equilibrium (unstretched) position x = 0 as shown in �g 19. Positive x means extension, negative x
means compression of the spring. The restoring force is given by Hooke�s law, F = �kx. The equation
of motion is

F = �kx = md
2x

dt2
(104)

or, writing ! =
p
k=m

d2x

dt2
+ !2x = 0: (105)
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Figure 19: Stretched spring

This equation, in one form or another, is one of the most common equations in physics.
The general solution is

x (t) = A cos!t+B sin!t; (106)

where A and B are two arbitrary constants of integration of the second-order di¤erential equation eq(105).
The functions sin!t and cos!t are shown in �gs 20 and 21. This solution can also be written in the form

x (t) = Cei!t +De�i!t; (107)

where C and D are two arbitrary constants of integration, or as

x (t) = r cos (!t+ �) (108)

with distance r and angle � arbitrary constants. The values of these arbitrary constants are determined
by the initial or boundary conditions.

107.552.50

1

0.5

0

-0.5

-1

t

x

t

x

Figure 20: sin!t

107.552.50

1

0.5

0

-0.5

-1

t

x

t

x

Figure 21: cos!t

Any solution to the equation of motion is periodic, the time for one complete period/oscillation being

T =
2�

!
= 2�

r
m

k
: (109)
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The frequency of oscillation is

� =
1

T
=
!

2�
=
1

2�

r
k

m
Hz: (110)

and the angular frequency ! =
p
k=m rad/s.

Example 9 Suppose x = a and dx=dt = 0 at t = 0 are the initial conditions. Then from

x (t) = A cos!t+B sin!t; (111)
dx

dt
= �!A sin!t+ !B cos!t (112)

substituting the initial values gives,

a = A; (113)

0 = !B: (114)

Thus a particular solution satisfying the initial conditions is

x (t) = a cos!t (115)

v (t) = �a! sin!t: (116)

The largest displacement a is called the amplitude.

10.1 Potential and kinetic energy in simple harmonic motion

We now consider the variations of the potential energy and kinetic energy of the particle as it undergoes
simple harmonic motion. The force F = �kx is a conservative force so the potential energy

V (x) =
1

2
kx2 + V0: (117)

We can choose V (x = 0) = 0 giving V0 = 0 and the potential energy is

V (x) =
1

2
ka2 cos2 (!t) (118)

The kinetic energy KE is

KE =
1

2
mv2 =

1

2
ma2!2 sin2 (!t) : (119)

The total energy E = KE + V is

E =
1

2
ma2!2 sin2 (!t) +

1

2
ka2 cos2 (!t) : (120)

But !2 = k=m so

E =
1

2
ma2

k

m
sin2 (!t) +

1

2
ka2 cos2 (!t) ; (121)

=
1

2
ka2

�
sin2 (!t) + cos2 (!t)

�
; (122)

E =
1

2
ka2 = KE + V: (123)

Fig 22 shows the potential energy curve for a stretched spring. If total energy is E, then the motion is
restricted to jxj < a. At x = a, V = 1

2ka
2 = E, and KE = 0; at x = 0, V = 0, and KE =

1
2ka

2 = E.
Whenever the potential energy function of a system has a rounded minimum, the vibrational motion

about the equilibrium position of minimum potential energy approximates to simple harmonic motion.
An example is two atoms bound together to form a molecule, such as in �g 23,. If r0 is the separation
for minimum potential energy, (the equilibrium separation), the two atoms vibrate about this value r0.
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Figure 22: Potential energy curve for simple harmonic motion
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Figure 23: Potential energy curve as a function of the separation of two atoms

This can be shown by taking a Taylor�s series expansion about the equilibrium position. If x0 is the
exquilibrium separation, then

V (x)� V (x0) =
�
dV

dx

�
x=x0

(x� x0) +
1

2

�
d2V

dx2

�
x=x0

(x� x0)2 + : : : : (124)

But at x = x0 is a minimum, so
�
dV
dx

�
x=x0

= 0 and
�
d2V
dx2

�
x=x0

> 0. Since the force for small displace-

ments (x� x0) is

F (x) = �
�
dV

dx

�
; (125)

= �
�
d2V

dx2

�
x=x0

(x� x0) : (126)

Hence force is of the form F = �kx where x is displacement from equilibrium, with k > 0, i.e.S.H.M.
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10.2 Damped oscillations

In all real mechanical oscillators there is some damping (or friction). The damping force opposes the
motion of the particle. Consider a damping force that is proportional to the velocity of the particle,
i.e. Ff = ��dxdt with � a positive constant. Suppose the velocity is positive, i.e. motion in direction of
increasing x, then the damping force is in the opposite direction (see �g 24). The equation of motion of

Figure 24: Displacement and forces in a damped harmonic oscillator

the particle is

F + Ff = m
d2x

dt2
; (127)

�kx� �dx
dt
= m

d2x

dt2
(128)

or

m
d2x

dt2
+ �

dx

dt
+ kx = 0: (129)

This is a second-order, linear, homogeneous di¤erential equation with constant coe¢ cients, m, � and k.
The general solution is

x (t) = Aeq1t +Beq2t; (130)

where q1 and q2 are the roots of the quadratic equation (the auxiliary equation)

mq2 + �q + k = 0; (131)

q =
���

p
�2 � 4mk
2m

: (132)

In the absence of damping, � = 0, then the natural angular frequency of oscillation, denoted by !0 =p
k=m. Then

q = � �

2m
�

s
�2

4m2
� k

m
= � �

2m
� i

s
k

m
� �2

4m2
(133)

= � �

2m
� i

s
!20 �

�2

4m2
(134)

= � �

2m
� i!; (135)

where the angular frequency

! =

s
!20 �

�2

4m2
: (136)

There are three possibilities;
(a) �2 < 4mk, so �2=4m < k=m = !0, and ! is real and positive and 0 < ! < !0
(b) �2 = 4mk, so �2=4m = k=m = !0 and ! = 0,
(c) �2 > 4mk, so�2=4m > k=m = !0 so ! is complex and q is wholly real, and there is no oscillation.
We will consider these cases in turn.
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(a) �2 < 4mk, known as light damping (0 < ! < !0).
The roots are complex quantities, q1 = � �

2m + i! and q2 = �
�
2m � i!, so

x (t) = Aeq1t +Beq2t; (137)

= e�(�=2m)t
�
Aei!t +Be�i!t

�
: (138)

From de Moivre�s theorem ei� = cos � + i sin �, x (t) can be re-written as

x (t) = e�(�=2m)t [C cos!t+D sin!t] (139)

which is a product of a function e�(�=2m)t exponentially decaying with time and an oscillating function
[C cos!t+D sin!t] of time with angular frequency ! as shown in �g 25.
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Figure 25: Displacement as function of time in an under damped oscillator

Energy is continually being lost due to the damping force but at any given time the energy of the
oscillator is

E = KE + V =
1

2
mv2 +

1

2
kx2: (140)

Using the above expressions for x (t) it can be shown that for very light damping

E (t) ' E0e��t=m; (141)

where E0 is the total energy at t = 0. Therefore E0 = 1
2ka

2 for an initial displacement a, and

dE

dt
' � �

m
E0e

��t=m ' � �
m
E: (142)

Hence in time interval dt the fractional energy loss

dE

E
= � �

m
dt: (143)
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In a time interval dt = 1=!, the fractional energy loss is �= (m!). The reciprocal of this quantity

E

dE
= Q =

m!

�
' m!0

�
(144)

is called the Q-factor or quality factor. For a lightly damped oscillator the Q-factor is large.

(b) �2 = 4mk, (! = 0)known as critical damping
The two roots are equal to ��= (2m). In this case the general solution to the equation of motion is

x (t) = (A+Bt) e�(�=2m)t: (145)

If x = a and dx=dt = 0 at t = 0, x (t) is never negative - there is no oscillation and the system returns
to the equilibrium position is the shortest time (see �g 26).
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Figure 26: Displacement as function of time for critical damping

Critical damping is required for swing-doors and car suspensions.

(c) �2 > 4mk, known as heavy damping, ! is complex and q is wholly real. The two roots are

q1 = � �

2m
+

s
�2

4m2
� !20 < 0; (146)

q2 = � �

2m
�

s
�2

4m2
� !20 < 0: (147)

Both roots are negative but q2 is more negative then q1, i.e. jq2j > jq1j. The displacement

x (t) = Ae�jq1jt +Be�jq2jt (148)

is the addition of two term, the �rst Ae�jq1jt dies away slowly (middle curve in �g 27), the second
Be�jq2jt dies away more quickly (lower curve in �g 27). As damping increases jq1j becomes smaller and
the displacement decreases more slowly with time.
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Figure 27: Displacement as function of time for overdamped (heavy) oscillator

10.3 Forced damped oscillator

Consider applying a periodic force F = F0 cos!f t to a damped oscillator in order to keep it oscillating.
The equation of motion of the particle is

m
d2x

dt2
+ �

dx

dt
+ kx = F0 cos!f t (149)

where the term on the R.H.S. is the driving or forcing term. The general solution to this equation is the
sum of the general solution to the homogeneous equation (zero on R.H.S., eq(129)) plus a particular
solution to the full equation. It was shown above that the solution to the homogeneous equation eq(129)
dies away exponentially (this is called the transient solution) so that after a su¢ ciently long time the
motion of the particle is described by the particular solution alone.
Let�s take as an ansatz solution a particular solution of the form

x (t) = A cos (!f t+ �) : (150)

That is one having the same frequency !f as the driving frequency but with an unknown phase di¤erence
� and amplitude A. To determine A and � substitute the assumed solution into the di¤erential equation
of motion. As

dx

dt
= �!fA sin (!f + �) ; (151)

d2x

dt2
= �!2fA cos (!f + �) ; (152)

we have
�m!2fA cos (!f + �)� �!fA sin (!f + �) + kA cos (!f t+ �) = F0 cos!f t (153)

A
�
k �m!2f

�
cos (!f + �)� �!fA sin (!f + �) = F0 cos!f t (154)

Expanding the cosine and sine terms,

A
�
k �m!2f

�
[cos!f t cos�� sin!f t sin�]� �!fA [sin!f t cos�+ cos!f t sin�] = F0 cos!f t (155)
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This equation must be true for all values of t. (Note cosine and sine are orthogonal functions.) Choose
t such that cos!f t = 1, then sin!f t = 0, and

A
�
k �m!2f

�
cos�� �!fA sin� = F0: (156)

Now choose t such that sin!f t = 1, then cos!f t = 0, and

�A
�
k �m!2f

�
sin�� �!fA cos� = 0: (157)

Squaring eq(156) and eq(157) and adding gives,

A2
�
k �m!2f

�2
+ �2!2fA

2 = F 20 ; (158)

and

A =
F0��

k �m!2f
�2
+ �2!2f

�1=2 : (159)

For an undamped, unforced oscillator the natural angular frequency is

!0 =

r
k

m
(160)

so k = m!20, which gives

A =
F0�

m2
�
!20 � !2f

�2
+ �2!2f

�1=2 : (161)

We can now investigate the variation of A with !f . If there were no damping, � = 0, then

A =
F0

m
����!20 � !2f���� : (162)

Hence A ! 1 as !f ! !0. Even with damping, A has its maximum value when !f ' !0. This is the
phenomena of resonance.Amplitude of the oscillation becomes much larger when the angular frequency
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Figure 28: Amplitude of forced oscillator; Lower curve - heavy damping; Upper curve - light damping

of the driving force is equal to the natural frequency of the undamped oscillator as shown in �g 28.
Dramatic example - Facoma Narrows bridge.
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From eq(157)

tan� =
�!f�

m!2f � k
� = �!f

m
�
!2f � !20

� : (163)

Below the resonance frequency, !f < !0 the phase angle � is fairly small, but negative as shown in �g
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Figure 29: Phase in forced oscillator as function of driving frequency

29. Therefore the displacement x is approximately in phase with the driving force. As !f increases
through !0 the phase angle increases rapidly and drops through ��=2 to ��, at which stage x is then
out of phase with the driving force for !f > !0.

11 Motion in a plane (two-dimensions)

Particle at point P as in �g 30. Its position, velocity and acceleration are

Figure 30: Vectors for motion in two dimensions

r = xbi+ ybj; (164)

v =
dr

dt
=
dx

dt
bi+ dy

dt
bj; (165)

a =
dv

dt
=
d2x

dt2
bi+ d2y

dt2
bj: (166)
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We will consider various examples of motion in a plane

11.1 Trajectories of particle in a uniform gravitational �eld (ballistic trajec-
tories)

Initial velocity u0 makes an angle � with the horizontal (sometimes called the angle of elevation) as in
�g 31. Equation of motion is

Figure 31: Ballistic trajectory

m
dv

dt
= m

�
dvx
dt
bi+ dvy

dt
bj� = �mgbj: (167)

Hence immediately we see that
dvx
dt

= 0 (168)

and so vx is constant, equal to its initial value

vx (t) = u0 cos�; (169)

x (t) = u0t cos�: (170)

Also

dvy
dt

= �g; (171)

vy = u0 sin�� gt; (172)

y = u0t sin��
1

2
gt2; (173)

and (from v2 = u2 + 2as)

v2y = u
2
0 sin

2 �� 2gy: (174)

11.1.1 Shape of trajectory

Since x (t) = u0t cos� then t = x= (u0 cos�). Hence using the y position, eq(173)

y = u0

�
x

u0 cos�

�
sin�� 1

2
g

�
x

u0 cos�

�2
(175)

= x tan��
�

gx2

2u20 cos
2 �

�
: (176)

This is the equation of a parabola.
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The range R on the horizontal plane is found from setting y = 0. Then

0 = x tan�� 1
2
g

�
x2

u20 cos
2 �

�
(177)

which has one solution, x = 0, and the other

x = R =
2u20
g
sin� cos� =

u20
g
sin 2�: (178)

Time to reach y = 0 is found from

0 = u0t sin��
1

2
gt2 (179)

giving either t = 0 (the initial position) or for the whole range

T =
2u0 sin�

g
: (180)

Maximum range occurs when sin 2� = 1, so when � = �=4 = 45�, and Rmax = u20=g.
For a range R < Rmax there are two values of � which give rise to the same range, as illustrated in

�g 32 and �g 33.

Figure 32: Angle for di¤erent ranges

Figure 33: Two trajectories giving the same range

Since R = Rmax sin 2�, and sin 2� = sin (� � 2�) then

2�1 = sin
�1
�

R

Rmax

�
= sin�1

�
gR

u20

�
; (181)
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(� � 2�2) = sin�1
�

R

Rmax

�
= 2�1: (182)

Hence
�2 =

�

2
� �1 (183)

and then
�2 �

�

4
=
�

4
� �1 (184)

so we see that the two angles for the same range are symmetric about �=4, see �g 33. Maximum range
occurs when �1 = �2 = �=4.

12 Conservation of momentum for isolated systems of particles

From Newton�s second law, F = dp
dt , if F = 0, then p is constant. Consider a body of massM moving with

velocity V and not subject to any forces. Its momentum remains constant, i.e. p = MV = constant.
The body then explodes into several pieces (say at least three) with masses mi, i = 1, 2, 3 : : : travelling
with velocities vi, i = 1, 2, 3 : : : as illustrated in �g 34. The total momentum of the pieces is

Figure 34: Exploding mass

p1 + p2 + p3 + : : : = m1v1 +m2v2 +m3v3 + : : : : (185)

The explosion gives impulses Ii to each of the three pieces. Because of Newton�s third law (action and
reaction are equal an opposite). If impulse on particle 1 due to particle 2 is I12 and that due to particle
2 on particle 1 is I21, then

I12 = I21: (186)

For particle 1 the total impulse on it due to the other particles is

I1 = I12 + I13 (187)

and for the whole system we have

I1 + I2 + I3 = (I12 + I13) + (I21 + I23) + (I31 + I32) (188)

= (I12 + I21) + (I23 + I21) + (I31 + I32) (189)

= 0 + 0 + 0 (190)

Thus total impulse is zero and so the total momentum is the same before and after the explosion,

p = p1 + p2 + p3 + : : : (191)

MV = m1v1 +m2v2 +m3v3 + : : : (192)

that is, total momentum is conserved. In this case (non-relativistic) mass is conserved,

M = m1 +m2 +m3 + : : : : (193)
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On the other hand kinetic energy is not conserved,

1

2
MV 2 6= 1

2
m1v

2
1 +

1

2
m2v

2
2 +

1

2
m3v

2
3 + : : : (194)

but the extra kinetic energy comes from chemical potential energy or energy stored in springs.

Example 10 Two particles, one initially at rest, collide and stick together (opposite of the explosion).
Initial momentum is

pi = m1v1 + 0: (195)

Final momentum is
pf =MV = (m1 +m2)V: (196)

Since total momentum is conserved, pi = pf , so m1v1 = (m1 +m2)V and

V =
m1

m1 +m2
v1 (197)

and combined particle moves in the same direction as the incoming one, but at a reduced speed. The
initial kinetic energy is

KEi =
1

2
m1v

2
1 + 0: (198)

The �nal kinetic energy

Tf =
1

2
(m1 +m2)V

2 =
1

2
(m1 +m2)

�
m1

m1 +m2
v1

�2
=
1

2

m2
1

(m1 +m2)
v21 <

1

2
m1v

2
1 : (199)

Thus there is a loss of kinetic energy in a �sticking�collision. The energy is converted into heat and/or
sound.

13 Collisions between bodies

These are very important in many branches of physics and chemistry.

13.1 With a rigid wall

If wall is smooth, i.e. no friction, then impulse given to the particle by the wall is perpendicular to the
wall, there is no component parallel to the wall�s surface. as in �g 35 Hence tangential component of
velocity is unaltered so

vi sin� = vf sin�: (200)

If collision is perfectly elastic, i.e. no loss of kinetic energy,

1

2
mv2i =

1

2
mv2f (201)

and so

vi = vf ; (202)

� = �: (203)

Thus the normal component of velocity is simply reversed in the collision.
In practice the normal component of velocity is reduced by a factor e < 1 (called coe¢ cient of

restitution), such that
vf cos� = evi cos�: (204)

Since
vf sin� � vi sin� (205)

and
tan� =

tan�

e
; (206)
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Figure 35: Collision of small mass with a rigid wall

so vf < vi and � > �. There is a loss of kinetic energy since

v2f = v2i (sin
2 �+ e2 cos2 �) = v2i + v

2
i

�
e2 � 1

�
cos2 � (207)

1

2
mv2f �

1

2
mv2i =

1

2
mv2i

�
e2 � 1

�
cos2 � < 0: (208)

For an elastic collision, e = 1, and kinetic energy is conserved

13.2 Between two bodies of �nite mass, one initially at rest

No external forces act during the collision so the total momentum is conserved (always true).

13.2.1 Head-on elastic collision (e = 1)

Figure 36: Head-on elastic collision

Conservation of momentum gives from �g 36

m1u1 + 0 = m1v1 +m2v2; (209)

v2 =
m1

m2
(u1 � v1) (210)
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Conservation of kinetic energy gives

1

2
m1u

2
1 + 0 =

1

2
m1v

2
1 +

1

2
m2v

2
2 (211)

m1u
2
1 = m1v

2
1 +m2

�
m1

m2
(u1 � v1)

�2
(212)

u21 = v21 +
m1

m2
(u1 � v1)2 (213)

u21 � v21 =
m1

m2
(u1 � v1)2 (214)

(u1 � v1) (u1 + v1) =
m1

m2
(u1 � v1)2 : (215)

Thus one solution is v1 = u1. The other is found from

(u1 + v1) =
m1

m2
(u1 � v1) ; (216)

v1 =
(m1 �m2)

(m1 +m2)
u1: (217)

The corresponding velocities for particle 2 are

v2 = 0; (218)

v2 =
m1

m2

�
u1 �

(m1 �m2)

(m1 +m2)
u1

�
(219)

v2 =
2m1u1

(m1 +m2)
: (220)

The solution v1 = u1, v2 = 0 corresponds to no collision. The non-trivial solution is

v1 =
(m1 �m2)

(m1 +m2)
u1 < u1 v2 =

2m1u1
(m1 +m2)

> 0: (221)

If m1 > m2 then v1 is positive; if m1 < m2 then v1 is negative. If m1 = m2 then v1 = 0 and v2 = u1,
the incident particle is brought to rest and the struck one moves of with the initial velocity. If m1 � m2

then v1 ' u1 and v2 ' 2u1. If m2 � m1 then v1 ' �u1 and v2 ' 0, i.e. collision with a "�xed" wall.

13.2.2 Glancing collision of two balls

We shall assume balls are smooth, so that the impulse on each ball can only be along line of their centres.
Suppose ball 2 is initially at rest as shown in �g 37. The impulse on it, I2 = m2v2, is along the line of
centres, so the direction of v2 is along line of ball centres at impact. Impulse on ball 1 is

I1 = �I2 = mv1 �m1u1: (222)

The direction of v2 is determined by angle �, the angle between line of centres and the initial direction
of u1.
Momentum is conserved in the collision, so

m1u1 + 0 = m1v1 +m2v2 (223)

If collision is elastic then kinetic energy is conserved and

1

2
m1u

2
1 + 0 =

1

2
m1v

2
1 +

1

2
m2v

2
2 : (224)

Expressing momentum in the x and y directions

m1u1 = m1v1 cos � +m2v2 cos�; (225)

m1v1 sin � �m2v2 sin� = 0: (226)
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Figure 37: Glancing collision

The angle � is determined by the geometry of the collision. Thus we have three equations to solve for
three unknowns v1, v2 and �. The solution is rather complicated for general masses m1 and m2 but is
quite simple for the special case of m1 = m2. Then conservation of momentum gives

mu1 = mv1 +mv2; (227)

u1 = v1 + v2: (228)

Kinetic energy conservation gives

1

2
mu21 =

1

2
mv21 +

1

2
mv22 (229)

u21 = v21 + v
2
2 (230)

But from the magnitude of u1

u1 � u1 = (v1 + v2) � (v1 + v2) (231)

u21 = v21 + v
2
2 + 2v1 � v2 (232)

Comparing equations eq(230) and eq(232) we see that

v1 � v2 = 0 (233)

and so v1 is perpendicular to v2, and � + � = �=2.

14 Motion in a plane expressed in plane polar coordinates

Particle of mass m is at position P de�ned by Cartesian coordinates (x; y) or polar coordinates (r; �) or
vector r as shown in �g 38. Let us introduce a unit radial vector br and unit transverse vector b�; br and b�
are orthogonal (perpendicular) to each other. The position P is r = rbr. In terms of unit vectors along
the �xed Cartesian axes

br = cos �bi+ sin �bj (234)b� = � sin �bi+ cos �bj: (235)

As the particle moves the directions of br and b� vary.
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Figure 38: Diagram for unit vectors for two-dimensional motion

Consider velocity of the particle,

v =
dr

dt
=
d

dt
(rbr) = dr

dt
br+ rdbr

dt
: (236)

An expression for dbr can be found algebraically or graphically as shown in �g 39. Algebraically we have
br = cos �bi+ sin �bj; (237)
dbr
dt

= � sin �d�
dt
bi+ cos �d�

dt
bj; (238)

=
d�

dt

�
� sin �bi+ cos �bj� ; (239)

dbr
dt

=
d�

dt
b�: (240)

So

v =
dr

dt
=
dr

dt
br+ rd�

dt
b�: (241)

The radial component of v is dr
dt ; transverse component is r

d�
dt .

An often used abbreviation for di¤erentiation with respect to time is to put a dot above the quantity,
so the above expression for v is written as

v =
�
r =

�
rbr+ r ��b� (242)

Speed of the particle is

v = jvj =
p
v � v =

q
:
r
2
+ r2

:

�
2
: (243)

Consider acceleration of the particle

a =
dv

dt
=
d

dt

�
dr

dt
br+ rd�

dt
b�� (244)

=
d2r

dt2
br+ dr

dt

dbr
dt
+
dr

dt

d�

dt
b� + rd2�

dt2
b� + rd�

dt

db�
dt
: (245)
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Figure 39: Time dependence of polar vectors

The time derivative db�
dt can be found also algebraically or graphically, as illustrated in �g 39.b� = � sin �bi+ cos �bj; (246)

db�
dt

= � cos �d�
dt
bi� sin �d�

dt
bj; (247)

db�
dt

= �d�
dt

�
cos �bi+ sin �bj� = �d�

dt
br: (248)

Hence the acceleration

a =
d2r

dt2
br+ dr

dt

d�

dt
b� + dr

dt

d�

dt
b� + rd2�

dt2
b� � rd�

dt

d�

dt
br; (249)

=

"
d2r

dt2
� r

�
d�

dt

�2#br+ �2dr
dt

d�

dt
+ r

d2�

dt2

� b�; (250)

a =

�
::
r � r

:

�
2
�br+ �2 :r :� + r::�� b�: (251)

The radial component of the acceleration is
�
::
r � r

:

�
2
�
, the transverse component is

�
2
:
r
:

� + r
::

�
�
.

14.1 Circular motion

Consider a particle moving in a circle of radius r as shown in �g 40. Then r is constant, so
�
r = 0,

��
r = 0.

Hence

v = r
�
�b� (252)
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Figure 40: Motion in a circle

and the velocity is purely transverse.

We sometimes write ! = d�
dt =

�
�, in which case

v = r!b�: (253)

The acceleration

a =

�
�r

:

�
2
�br+ r::�b�: (254)

If the angular velocity is constant,
�
! =

��
� = 0, and

a = �r
:

�
2br = �r!2br: (255)

Since v = r!b� then for the magnitudes v = !r and so
a = �v

2

r
br (256)

and the acceleration is directed towards the centre of the circle. This acceleration is called the centripetal
acceleration. It follows that there must be a force F = ma =�m!2rbr = �m v2

r
br acting radially.

15 Central force

A central force is one which is purely directed along a radius, either towards or away from the centre, so
that

F (r) = F (r)br: (257)

If F (r) is positive the force is repulsive or centrifugal; if F (r) is negative the force is attractive
or centripetal. Examples of central forces are

(a) electrostatic force between point or spherically symmetric charges; like charges repel and unlike
charges attract,

(b) gravitational force

F (r) = �GM1M2

r2
br (258)

between point or spherically symmetric masses; this is always attractive.

(c) tension in a string or spring.

The expressions above for velocity (see �g 41) and acceleration in plane polar coordinates are partic-
ularly important in the case of central forces. The equation of motion is

ma = F = F (r)br; (259)
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Figure 41: Vectors for rotational motion

m

��
::
r � r

:

�
2
�br+ �2 :r :� + r::�� b�� = F (r)br (260)

We see that that the force only enters into the radial component,

m

�
::
r � r

:

�
2
�
= F (r) (261)

and the transverse component

m
�
2
:
r
:

� + r
::

�
�
= 0: (262)

is independent of the nature of the force. Hence one may therefore make signi�cant deductions about the
motion regardless of the force. The radial component of velocity is vr =

�
r and the transverse component

is v� = r
�
�. We de�ne the magnitude of the angular momentum, L, of the particle about point O

as
L = (mv�) r = mr

2
�
�: (263)

[In general, to be discussed later, angular momentum L = r� p = mr� v. For r and v in the plane of
the paper, then L is out of the paper and perpendicular to it.] Thus

L = mr2
�
� (264)

dL

dt
=

d

dt

�
mr2

�
�

�
= m

�
2r

�
r
�
� + r2

��
�

�
(265)

= mr

�
2
�
r
�
� + r

��
�

�
= mra� (266)

where we have used the expression for the transverse acceleration a� = 2
�
r
�
� + r

��
�. But for a central force

the transverse acceleration must be zero, so

dL

dt
= 0; (267)

and hence the angular momentum L is constant during the motion for any central force.

15.1 Examples of central force motion

15.1.1 Motion in a circle

(1) Consider a planet, mass m, moving in a circular orbit about a star of mass M as in �g 42 The

35



Figure 42: Planet in circular motion about Sun

centripetal force is due to gravity,

F (r) = �GMm
r2
br (268)

�GMm
r2
br = m

�
�r

:

�
2
�br (269)

r
:

�
2
=

GM

r2
(270)

:

�
2
= !2 =

GM

r3
: (271)

The period of rotation T = 2�=!, so �
2�

T

�2
=

GM

r3
(272)

T 2 =
4�2

GM
r3 (273)

T 2 / r3; (274)

as expressed in Kepler�s third law of planetary motion.
Speed of the planet is v = r!, so

v =

r
GM

r
: (275)

(2) Consider a car of mass m moving in a circular path of radius r on a horizontal surface with
coe¢ cient of friction � as in �g 43. What is the maximum speed without skidding sideways (ignore
toppling over for the moment)? The centripetal force necessary for it to travel round the circular path is

Figure 43: Car in circular motion on horizontal track

F = m

�
�v

2

r

�br (276)
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and this must be provided by the frictional force between the wheels and the ground. So as the normal
reaction N = mg, then

m

�
�v

2

r

�br = �Ffriction (277)

m

�
v2

r

�
= �mg (278)

vmax =
p
�gr: (279)

If � = 1, g ' 10m s�2 then vmax '
p
10rms�1. Thus for r = 20m, vmax ' 14m s�1 ' 31 mph.

Example 11 (From 2000 exam paper, question 11.)

Particle of mass m moves on a smooth horizontal table subjected to a force

F = �K
r3
br: (280)

If particle is initially moving in a circle of radius r as in �g 44we will determine the speed of the particle
and its angular momentum. For this motion,

Figure 44: Motion in a circle

F = �K
r3
br = m��r :�2�br; (281)

so
�
� =

1

r2

r
K

m
: (282)

The initial value of the angular momentum at r = r0 is

L = mr2
�
� =

p
mK; (283)

is independent of r0 and so is the only possible value for the angular momentum for motion in a circle
under an inverse cube force law.
Suppose particle is given a radially outward impulse. The impulse does not change the angular

momentum so it remains at a value
p
mK for any subsequent motion. Radial equation of motion after

the impulse is

m

�
::
r � r

:

�
2
�
= �K

r3
: (284)

But
�
� = 1

r2

q
K
m so

m

24::r � r 1
r2

r
K

m

!235 = �K
r3
; (285)

m
::
r = 0: (286)

Hence
�
r is constant. So particle moves in a spiral with constant radial component of velocity as illustrated

in �g 45.
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Figure 45: Trajectory of particle

Example 12 Motion of a particle attached to a string and moving in a vertical circle, radius R, under
gravity, see �g 46. Assume string remains taut throughout the motion. At highest point, A, force is

Figure 46: Motion of mass on string swung in circle in vertical plane

F = � (TA +mg)br = m��R :

�
2

A

�br (287)

givingA
�
�A =

r
(TA +mg)

mR
: (288)

The velocity at A

vA = R
�
�A =

r
(TA +mg)R

m
: (289)

The minimum speed at A is when the tension TA = 0, i.e.

vAmin =
p
gR: (290)

By conservation of energy at lowest point B

1

2
mv2B =

1

2
mv2A +mg (2R) (291)

v2B = v2A + 4mgR: (292)
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At lowest point B the tension in the string TB, is given by

(�TB +mg)br = m

�
�R

:

�
2

B

�br (293)

TB �mg = m

�
R
:

�
2

B

�
= m

v2B
R

(294)

=
m

R

�
v2A + 4mgR

�
: (295)

If vA = vAmin =
p
gR then

TB = mg +
m

R
(gR+ 4mgR) = 6mg: (296)

16 Motion under inverse square law of force

Motion under an inverse square law of force has been extensively analyzed because gravitation is such a
force. This is a central force with

F =
K

r2
br: (297)

Thus the potential energy function is

V =
K

r
(298)

since

F = �rV = �br@V
@r

=
K

r2
br: (299)

Note V ! 0 as r ! 1. If K is positive the force is repulsive; if K is negative the force is attractive.
For the gravitational force K = �GMm and is always attractive. The gravitational constant G =
6:67� 10�11Nm2 kg�2. For the electrostatic force K = Q1Q2= (4�"0) where Q1 and Q2 are the charges
which can be of either sign. The equation of motion of the particle is (see eq(260) and �g 47)

Figure 47: Rotational motion in a plane

m

��
::
r � r

:

�
2
�br+ �2 :r :� + r::�� b�� = K

r2
br: (300)

Thus for the radial component

m

�
::
r � r

:

�
2
�
=
K

r2
(301)

and for the transverse component �
2
:
r
:

� + r
::

�
�
= 0: (302)
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It was noted earlier that
d

dt

�
r2

:

�
�
= 2r

�
r
:

� + r2
��
� = r

�
2
:
r
:

� + r
::

�
�
= 0: (303)

Thus as r 6= 0, then r2
:

� is constant, and so the angular momentum L = mr2
:

� is also constant. Hence

:

� =
L

mr2
(304)

and the radial equation can therefore be written in the form

m

�
::
r � L2

m2r3

�
=
K

r2
: (305)

Instead of solving for r and � as functions of time we will consider the shape of the orbit, i.e. determine
r as a function of �. To do this we de�ne u = 1=r. We then have

�
r =

dr

dt
=
d

dt

�
1

u

�
= � 1

u2
du

dt
= � 1

u2
du

d�

d�

dt
; (306)

�
r = � 1

u2
du

d�

�
L

mr2

�
= � L

m

du

d�
: (307)

Di¤erentiating again we get

::
r =

d
�
r

dt
=
d

dt

�
� L
m

du

d�

�
=
d

d�

�
� L
m

du

d�

�
d�

dt
= � L

m

d2u

d�2

�
L

mr2

�
(308)

::
r = � L

2

m2
u2
d2u

d�2
: (309)

In terms of u the radial equation (305)is

m

�
� L

2

m2
u2
d2u

d�2
� u3 L

2

m2

�
= Ku2: (310)

Multiplying through by �m=
�
L2u2

�
gives

d2u

d�2
+ u = �mK

L2
: (311)

In terms of the variable y = u+mK=L2 this is the equation of simple harmonic motion,

d2y

d�2
+ y = 0 (312)

with solution y = A cos (� � �0). Thus the general solution of eq(311) is

u = A cos (� � �0)�
mK

L2
=
1

r
: (313)

This is of the same form as the general equation of a conic section, (see eq(317))

u =
1

r
=
1

h
(1 + e cos �) : (314)

We can choose �0 = 0 as this de�nes the orientation of the trajectory.
If K is negative, i.e. attractive force, the trajectory is of the form shown in �g 48.
If K is positive, i.e. repulsive force, the trajectory is of this form in �g 49
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Figure 48: Trajectory for attractive inverse square force law, focus at O

Figure 49: Trajectory for repulsive inverse square law, focus at O
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Figure 50: De�nition of terms for conic section

16.1 Conic sections

A conic section is a locus of a point which moves in a plane such that its distance from a �xed point, the
focus, is a constant ratio e , the eccentricity, to the distance from a �xed straight line, the directrix, see
�g 50.
Consider an attractive force so that the relevant conic section is as in the diagram, �g50. The quantity

h is the value of r when � = �=2. From the geometry and de�nitions of e and h, we have

r cos � +
r

e
=
h

e
; (315)

and
r (1 + e cos �) = h; (316)

or in terms of u = 1=r,

u =
1

r
=
1

h
(1 + e cos �) : (317)

We shall see that possible forms of the trajectory depend on whether the force is repulsive or attractive.
For the attractive force it matters whether the total energy is positive, zero or negative.

16.1.1 Trajectories - Attractive force (K is negative)

For an attractive central force , such as gravity there are three types of orbit:

1. If total energy E > 0, eccentricity e > 1 the trajectory is a hyperbola, as in �g 51.

2. If E = 0, e = 0, the trajectory is a parabola, as in �g 52.

3. If E < 0, e < 1, the trajectory is an ellipse, as in �g 53.

A circle is a special case of an ellipse with zero eccentricity.
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Figure 51: Hyperbola trajectory, E > 0, e > 1

Figure 52: Parabola trajectory, E = 0, e = 0

Figure 53: Ellipse trajectory, E < 0, e < 1
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16.1.2 Determination of eccentricity

We shall determine the eccentricity of an orbit for given total energy E and angular momentum L. The
total energy of the particle is

E =
1

2
mv2 + V (318)

and constant throughout the motion (gravitation is a conservative force). So

E =
1

2
m

�
�
r
2
+ r2

:

�
2
�
+
K

r
: (319)

But
�
r = � L

m
du
d� , and

:

� = L
mr2 =

L
mu

2 so

E =
1

2
m

"�
L

m

du

d�

�2
+
1

u2

�
L

m
u2
�2#

+Ku (320)

=
1

2
m

"
L2

m2

�
du

d�

�2
+
L2

m2
u2

#
+Ku (321)

= [positive kinetic energy] + potential energy: (322)

Hence we have that
(i) if K is positive then E must also be positive.
(ii) if K is negative then E may be positive, zero or negative.

The equation of the orbit is (see eq(313))

u = A cos � � mK
L2

; (323)

so
du

d�
= �A sin � (324)

and the expression for the total energy becomes

E =
1

2
m

"
L2

m2
(�A sin �)2 + L2

m2

�
A cos � � mK

L2

�2#
+K

�
A cos � � mK

L2

�
: (325)

Since the energy is constant throughout the motion we can evaluate the expression for E at any convenient
point. Choose � = �=2. The energy is

E =
1

2
m

�
L2A2

m2
+
L2

m2

m2K2

L4

�
� mK

2

L2
(326)

=
A2L2

2m
� mK

2

2L2
: (327)

We can use this to determine the arbitrary constant A, since re-arranging

A2 =
2m

L2

�
E +

mK2

2L2

�
=
m2K2

L4

�
1 +

2EL2

mK2

�
; (328)

and

A =
m jKj
L2

s�
1 +

2EL2

mK2

�
: (329)

Thus the orbit is determined completely if the values of E and L are known for a given K and m.
The solution for the motion is

u = A cos � � mK
L2

(330)

and the general form of a conic section is

u =
1

h
(1 + e cos �) (331)

=
e

h
cos � +

1

h
: (332)
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Hence we have
e

h
= A; (333)

1

h
= �mK

L2
; (334)

e = �L
2A

mK
= �jKj

K

s�
1 +

2EL2

mK2

�
: (335)

For an attractive inverse square law (such as gravitation) K is negative and so

e =

s�
1 +

2EL2

mK2

�
: (336)

Clearly
(a) if E > 0 then e > 1 and the motion is a hyperbola,
(b) if E = 0 then e = 1 and motion is a parabola,
(c) if E < 0 then e < 1 and motion is an ellipse. In this case the particle cannot escape to in�nity

because at in�nity V = 0 and the kinetic energy � 0. Therefore to escape to in�nity requires E � 0.
Consider an elliptic orbit as in the diagram, If we know speed of particle at position of closest approach,

Figure 54: Parameters for an elliptical orbit

we know everything about the orbit. The angular momentum is

L = mrAvA (337)

and energy is

E =
1

2
mv2A �

jKj
rA
: (338)

We can determine the eccentricity e and the length of the semi-major axis, a. From general equation

r (1 + e cos �) = h (339)

we have for rA (� = 0) and rB (� = �),

rA (1 + e) = h; rB (1� e) = h; (340)

2a = rA + rB =
h

(1 + e)
+

h

(1� e) =
2h

(1� e2) ; (341)

a =
h

(1� e2) : (342)
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From the expressions for h and e above in terms of E and L,

a =
� L2

mK

� 2EL2

mK2

=
K

2E
=

���� K2E
���� : (343)

For the gravitational force, K = �GMm with G the gravitational constant, 6:67�10�11Nm2 kg�2. The
point A is the perihelion if the Sun is at the focus, and perigee if the Earth is at the focus. Similarly
point B is the aphelion (Sun at the focus) or apogee (Earth at the focus).
If origin of coordinates is taken at mid-point of the major axis, the focus is at (ae; 0) and the Cartesian

equation of the orbit is

x2h
h2

(1�e2)2

i + y2h
h2

1�e2

i = 1; (344)

x2

a2
+
y2

b2
= 1 (345)

with

a =
h

1� e2 ; b =
hp
1� e2

: (346)

16.2 Kepler�s laws of planetary motion

1. Planets move in elliptic orbits with Sun at a focus,

2. The radius vector sweeps out equal areas in equal times as illustrated in �g 55.

Figure 55: Areas for Kepler�s law

3. (Period of rotation)2 / (semi-major axis)3.

From �g 56, the area of triangle is

dA =
1

2
rv�dt =

1

2
rr

�
�dt (347)

dA

dt
=

1

2
r2

�
�: (348)

But the angular momentum L = mr2
�
� is a constant for any central force so
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Figure 56: Kepler�s law diagram

dA

dt
=
1

2

L

m
= const: (349)

Hence we have Kepler�s second law.
The third law was derived earlier for a circular orbit where a = r and will not be done again for the

general elliptical motion.

17 Equivalent one-dimensional equation of motion

The radial equation of motion for a central force is

m

�
::
r � r

:

�
2
�
= F (r) (350)

and
L = mr2

�
� = cons tan t: (351)

Thus
�
� =

L

mr2
(352)

and

m

 
::
r � r

�
L

mr2

�2!
= F (r) (353)

m
::
r � L2

mr3
= F (r) (354)

m
::
r = F (r) +

L2

mr3
: (355)

This is the same equation of motion for a particle moving in one-dimension under an e¤ective force

Feff = F (r) +
L2

mr3
: (356)

The second term L2

mr3 is called a centrifugal force

FC =
L2

mr3
: (357)
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If F (r) is a conservative force we can introduce a potential function V (r) such that

F (r) = �dV
dr
: (358)

We can also introduce the centrifugal potential

VC =
1

2

L2

mr2
(359)

so that

FC (r) = �
dVC
dr

: (360)

consider an attractive inverse square law, F (r) = � jKj =r2, then V = � jKj =r and the total e¤ective
potential function (see �g 57) is

Veff = �
jKj
r
+

L2

2mr2
: (361)

If total energy E < 0 then the energy line crosses Veff at r = rmin and r = rmax, with rmin + rmax = 2a,

Figure 57: E¤ective potential

as in �g 57. If total energy E > 0 then rmax is in�nite and orbit is a hyperbola. If E = 0, rmax is in�nite
but particle has zero kinetic energy at in�nity.

18 Reduced mass

When considering a planet orbiting the Sun we have assumed that the Sun is �xed at the focus. However
the mass of the Sun,M , is �nite and therefore the Sun and planet both move with respect to their overall
centre of mass. The centre of mass is at point O in �g 58 such that
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Figure 58: Rotation about centre of mass of two bodies

R =
M

(M +m)
r: (362)

The acceleration of m relative to O is

a =
d2R

dt2
=

M

(M +m)

d2r

dt2
: (363)

Thus the equation of motion of the planet is

F = ma =
mM

(M +m)

d2r

dt2
= �

d2r

dt2
: (364)

That is the same as a particle of mass

� =
mM

(M +m)
< m (365)

at a position r relative to the �xed point O (centre of mass). The real system in which both bodies
orbit about a common centre of mass is equivalent to a body of the reduced mass � orbiting at a distance
r from the (centre of mass) �xed point, see �g 59.

Figure 59: Equivalent system: reduced mass

Note that � = mM
(M+m) < m < M . If m�M , then � ' m; if m =M then � = m=2.

Now let�s look at the kinetic energy of the system. If velocity of mass M is V, that of mass m is v,
then the total kinetic energy is

E =
1

2
MV 2 +

1

2
mv2: (366)

Since from �g 58

R =
M

(M +m)
r (367)

and both masses must have the same angular velocity about the centre of mass, then

v = !R = !

�
M

m+M

�
r; V = !

�
m

m+M

�
r: (368)
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The kinetic energy of the system

E =
1

2
M!2r2

�
m

m+M

�2
+
1

2
m!2r2

�
M

m+M

�2
(369)

=
1

2
!2r2

�
1

m+M

�2 �
Mm2 +mM2

�
=
1

2
!2r2

�
1

m+M

�2
mM (m+M) (370)

=

�
mM

m+M

�
!2r2 =

1

2
�!2r2 (371)

is the same as that of a mass � orbiting the centre of mass at a radius r at angular velocity !. Thus the
reduced mass and the combined masses have the same kinetic energy.
Similarly if we look at the angular momentum of the system

L = m (!R)R+M! (r �R) (r �R) : (372)

Since

R =
M

(M +m)
r (373)

then
(r �R) = m

(m+M)
r (374)

and

L = m!

�
M

(M +m)
r

�2
+M!

�
m

(m+M)
r

�2
(375)

=
mM

(m+M)
2 (M +m) =

mM

(m+M)
!r2 = �!r2: (376)

The angular,omentum of the reduced mass particle is the same as that of the two particles.

19 Frames of reference

A frame of reference is de�ned by a set of coordinate axes (x; y; z) at rest relative to a particular
observer. The observer can express position, velocity and acceleration of a particle relative to this
frame of reference. We want to consider transformations of these quantities between di¤erent frames
of reference. This is particularly important in the theory of relativity.
Consider one frame of reference S, �xed relative to the Earth and another frame of reference S0 �xed

relative to a car moving with constant velocity v along the x-axis, as in �g 60. Suppose origins O and
O0 coincide at time t = 0. A point P has coordinates x at time t in S and x0 in S0, so that

x0 = x� vt: (377)

If the point P is not on the x-axis the y and z coordinates are the same in both frames, i.e.

x0 = x� vt; (378)

y0 = y; (379)

z0 = z: (380)

Now suppose the point P is a bird �ying at a constant velocity u along the x-axis relative to the Earth,
then

u =
dx

dt
: (381)

Velocity of the bird relative to the car is

u0 =
dx0

dt
=
dx

dt
� v = u� v: (382)
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Figure 60: Two Cartesian inertial frames of reference

Generally if the bird has velocity u and the car has velocity v relative to the Earth, the velocity of the
bird relative to the car is

u0 = u� v: (383)

In terms of components

u0x = ux � vx; (384)

u0y = uy � vy; (385)

u0z = uz � vz: (386)

The velocity diagram is (see �g 61)

Figure 61: Velocity diagram

Example 13 Rain falling vertically down with velocity u relative to the Earth; pedestrian is walking
horizontally with velocity v relative to the Earth. Velocity of rain relative to pedestrian is u0 = u� v =
u+(�v), see �g 62.

Example 14 Ship sailing north-east at velocity u0 relative to the water. Current of water �owing with
velocity v from east to west. What is velocity of ship relative to the Earth? Then u0 = u�v, so u = u0+v
is velocity of ship relative to the Earth, as in �g 63. Note ship is pointing in the direction of velocity u0

but is travelling along direction of velocity u.
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Figure 62: Velocity diagram fro rain and pedestrian

Figure 63: Velocity diagram for boat and water

19.1 Appropriate direction for interception

Consider two ships that want to intercept. Ship 1 is travelling with constant velocity u1 on a given
bearing. Ship 2 is travelling at a constant speed u2. We need to determine the bearing (direction)
of ship 2 such that the two ships will intercept, given that the ships are at known positions A and B
respectively at time t. What must angle � be for interception in �g 64? Consider motion of ship 2 relative
to ship 1, i.e. u02 = u2 � u1. For interception ship 2 must appear relative to ship 1 to be travelling along
the direction B to A. Thus u02 = u2 � u1 is in direction

��!
BA. Time to intercept is

t1 =
D

ju02j
: (387)

We can draw the velocity diagram with u1, u2, � given and use sine rule to determine �.

u1
sin�

=
u2
sin�

=
u02
sin 

: (388)

The problem could be solved in the Earth frame, since the positions of ship 1 and 2 are given by

rA (t) = rA + u1t; (389)

rB (t) = rB + u2t: (390)

Interception occurs when rB (t) = rA (t) i.e.

rB + u2t = rA + u1t; (391)

rA � rB = u2t� u1t; (392)

t =
ju2 � u1j
jrA � rB j

: (393)
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Figure 64: (a) Spatial and (b) velocity diagrams for interception

Thus u02 is along rA � rB and t is the time to interception.

Example 15 Q3 1B27 Exam 2003. u1 = 25 km=h, u2 = 35 km=h, distance AB = 10 km. Velocity
diagram �g 65. u02 must lie in direction of line BA, i.e. due N, and �+ � = 45

�. From sine rule

Figure 65: Space and velocity diagram for exam problem

u1
sin�

=
u2

sin 135 �
=

u2

1=
p
2
; (394)

sin� =
u1

u2
p
2
=

25

35
p
2
= 0:505; (395)

� = 30:34 �: (396)

Therefore � = 45� � = 14:66 �. Also

u02
sin�

=
u1
sin�

(397)

u02 = u1
sin�

sin�
=
25� 0:253
0:505

= 12:52 km=h: (398)
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Time to interception is

t =
10 km

12:52 km=h
= 0:80 h: (399)

19.2 Transformation of velocity and acceleration

Consider again a car travelling along the x-axis with velocity v and a bird �ying along the x-axis with
velocity u relative to the ground as in �g 66.

Figure 66: Diagram for acceleration as seen in two frames

Velocity of bird relative to car is (from x0 = x� vt),
u0 = u� v: (400)

Suppose v is constant but bird is accelerating relative to the ground, then

du0

dt
=
du

dt
(401)

and the acceleration of the bird is the same in both frames of reference. Suppose now that the car is
also accelerating relative to the Earth, then

du0

dt
=
du

dt
� dv
dt
; (402)

with du0

dt being the acceleration of the bird relative to the car, du
dt being the acceleration of the bird

relative to the Earth, and dv
dt being the acceleration of the car relative to the Earth. The force on the

bird necessary to accelerate it in frame S (Earth) is

F = m
du

dt
: (403)

The equation of motion of the bird in the reference frame of the car, S0, is NOT

F = m
du0

dt
: (404)

It is correctly

F0 = m
du

dt
�mdv

dt
; (405)

i.e. the e¤ective force on the bird in the car�s frame of reference, S0, is

F0 = F�ma; (406)

where a = dv
dt is the acceleration of the car (in frame S). Thus if we want to apply Newton�s laws of

motion in an accelerating frame we must add to the real force F the �ctitious force (�ma). An
accelerating frame of reference is also called a non-inertial frame. An inertial (or non-accelerating)
frame of reference is one in which Newton�s laws of motion apply without needing to introduce �ctitious
forces.
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20 Rotating frame of reference

Consider a person standing on a rotating roundabout as in �g 67. Real force of friction at the feet

Figure 67: Observer in a rotating frame

provides the centripetal acceleration r!2, therefore F = mr!2. Relative to the roundabout the
person is at rest under the in�uence of a real centripetal force F = mr!2 and a �ctitious centrifugal
force F = mr!2 acting through the centre of mass. If ! is large enough, the person may fall over
outwards under the in�uence of these two forces, which constitute a couple acting on the person (see
section on rotational motion and couples later).

20.1 Geostationary satellite

Satellite appears stationary relative to an observer on a rotating Earth as shown in �g 67. Real force on

Figure 68: Geostationary satellite

the satellite if the gravitational force (centripetal force)

F = �GMm
R2

= �mR!2: (407)

The observer on Earth thinks there is also a �ctitious centrifugal force

F = mR!2 = G
Mm

R2
(408)

so there is no net force, and so the satellite is at rest and in equilibrium in this frame.

20.2 Observing a moving body in a rotating frame

Consider a person B at rest on the roundabout observing a moving body, e.g. a �ying bird, as in �g
69 Consider the same bird being observed by a second person A at rest on the ground and not on
the roundabout. To observer A the path of the bird is a straight line. Relative to observer B on the
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Figure 69: Observers in rotaing and inertial frames

roundabout the path of the bird is curved. Hence observer B assumes there is a transverse horizontal
force Fcor acting on the bird de�ecting the bird to the right for the given sense of rotation. This is the
Coriolis force.
The general expression for the Coriolis force is

Fcor = �2m! � v; (409)

where ! is the angular velocity vector of rotating frame, v is velocity of particle of mass m relative to
the rotating frame of reference. Note Fcor is perpendicular to both ! and v and so always transverse to
the direction of motion. There are several interesting consequences of the Coriolis force:
Consider the e¤ect of the rotating Earth:
Throw a ball horizontally due East at three di¤erent places on the Earth�s surface, A, B, and C as in

�g 70 - dotted line is the local horizontal at each place on the Earth. In the northern hemisphere (point
A) the Coriolis force de�ects the ball to the right as it has a component in this direction. On the equator
(point B) the Coriolis force has no horizontal component so the ball is not de�ected. (Coriolis force is
vertical so a¤ects the local e¤ective force due to gravity.) In the southern hemisphere the ball is de�ected
to the left.
Weather systems are determined by the Coriolis force. Wind blows anticlockwise (clockwise) around

region of low pressure in the northern (southern) hemispheres. Winds blow approximately along isobars
instead of down the pressure gradient.
One should set the size of the Coriolis force on the rotating Earth into context. The maximum value

of the Coriolis acceleration is a = �2!v. Since ! = (2�) = (24� 60� 60) rad s�1 = 7: 272 2�10�5 rad s�1
then for a speed of 15m s�1 (' 33mph), a = 2:2 � 10�3ms�2, (quite small compared to the vertical
component of acceleration due to gravity on the Earth�s surface).

20.3 Simple derivation of expression for Coriolis force

Consider a massless smooth rod on which there is a small ring of mass m. The rod is rotating with
constant angular velocity ! in a horizontal plane. As the rod is smooth there can be no radial force (from
friction) on the ring. The only force on the ring is a transverse normal reaction force N as shown in �g
71.
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Figure 70: E¤ect of Coriolis force at Earth�s surface

Figure 71: Diagram for simple derivation of expression for Coriolis force

The equation of motion of the ring is, relative to the inertial reference frame,

ma = N (410)

m

��
::
r � r

:

�
2
�br+ �2 :r :� + r::�� b�� = Nb�: (411)

Therefore the radial equation of motion is

m

�
::
r � r

:

�
2
�
= 0 (412)

and the transverse one is
m
�
2
:
r
:

� + r
::

�
�
= N: (413)

But
:

� = ! = constant, so

m
�::
r � r!2

�
= 0; (414)

2m
�
r! = N: (415)
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Now consider the equation of motion of the ring relative to the rotating rod. In this frame the ring can
only move in one dimension along the rod. If we work in this frame we must add to the real forces the
�ctitious centrifugal force Fc and, because the ring is moving relative to the rotating frame, the Coriolis
force Fcor as in �g 72 In the rotating frame the equations of motion is radially

Figure 72: Forces on ring in inertial and rotating frames

m
��
r = Fc (416)

and transversely,
N � Fcor = 0 (417)

as there is no transverse motion in the rotating frame. Comparing eq(414) with eq(416) gives a centrifugal
force

Fc = mr!
2 (418)

and comparing eq(415) and eq(417) gives a Coriolis force

Fcor = 2m
�
r!: (419)

In the rotating frame the ring has only radial velocity v =
�
r . Thus the magnitude of the Coriolis force

Fcor = 2mv!: (420)

The direction of Fcor and its magnitude is consistent with the general expression quoted previously, i.e.

Fcor = �2m! � v (421)

as ! is out of the page and v is along the rod.

21 Angular momentum and torques

Particle of mass m has velocity v at position vector r as in �g 73. The angular momentum is de�ned
by

L = r� p = mr� v (422)

about point O. The direction of L is given by the usual right-hand rule for a vector product.
Consider a force F acting on the particle. The torque ormoment of force about point O is de�ned

by
� = r� F: (423)

But

F =m
dv

dt
(424)
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Figure 73: Position and velocity vectors for rotational motion

so

� = mr� dv
dt
: (425)

Consider

d (r� v)
dt

=
dr

dt
� v + r�dv

dt
(426)

= v � v + r�dv
dt
= 0 + r�dv

dt
(427)

d (r� v)
dt

= r�dv
dt

(428)

and therefore

� = mr� dv
dt
= m

d (r� v)
dt

=
d (mr� v)

dt
(429)

� =
dL

dt
: (430)

Hence torque is equal to the rate of change of angular momentum. This is analogous to the
linear case of force equal to rate of change of linear momentum, i.e. Newton�s second law. If � =0 then L
is constant in magnitude and direction. If � =0 then either force F = 0 or r�F in which case force F and
r are parallel and the force is a central force. Thus L is constant for any central force, F (r) = F (r)br.
For a system in equilibrium, L = 0 and constant so there is no net torque about any point. This is

the basis of taking moments to determine the magnitude of forces.

Example 16 A massless beam is supported at points A and B and masses m1and m2 are attached as in
the �g 74. Resolving vertically,

N1 +N2 = m1g +m2g = (m1 +m2) g: (431)

Take moments about A, (assume clockwise moment is positive, anti-clockwise moment is negative)

m1gx1 �N2x2 +m2gx3 = 0 (432)

N2 =
(m1x1 +m2x3) g

x2
; (433)

N1 = (m1 +m2) g �N2: (434)

Example 17 Motorcyclist with uniform acceleration such that front wheels lift o¤ the ground as in �g
75!The real forces are, weight mg, friction F = ma and normal reaction N = mg. In motorcyclists�own
frame of reference (which is accelerating relative to the ground) he is in equilibrium under in�uences of
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Figure 74: Masses on supported beam

Figure 75: Accelerating cyclist

real and �ctitious force F = ma acting through the centre of mass as shown. Taking moments about point
of contact of rear wheel with the ground,

mgd� Fh = 0: (435)

Example 18 An accelerating car as shown in �g 76:We will assume rear-wheel drive; that centre of mass
is at height h above the ground; distances d1 and d2 from wheels as shown in the diagram. Real forces
are: weight mg; friction F = ma at the driven rear wheels contact with the ground (There is also friction
between front wheels and the ground acting in the opposite sense causing the front wheels to turn rather
than skid.); normal reactions at wheels, N1and N2. We have

N1 +N2 = mg: (436)

In the car�s accelerating frame we add a �ctitious force F = ma as shown. In this frame the car is now
in equilibrium. Taking moments about point A,

mgd1 �N2 (d1 + d2)� Fh = 0; (437)

N2 =
1

(d1 + d2)
(mgd1 �mah) =

m

(d1 + d2)
(gd1 � ah) ; (438)
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Figure 76: Accelerating vehicle

and

N1 = mg �N2 = mg �
m

(d1 + d2)
(gd1 � ah) (439)

N1 =
m

(d1 + d2)
(gd2 + ah) : (440)

For a rear-wheel drive car the maximum acceleration of the car is either when (a) F = ma = �N1 where
� is coe¢ cient of friction, whence

a =
�

(d1 + d2)
(gd2 + ah) ; (441)

or (b) if � is large enough when N2 = 0 whence

a = g
d1
h
: (442)

(Hence the need for a low centre of mass in racing cars!) Any higher acceleration than this will cause the
car to somersault backwards. For a front-wheel drive car, maximum acceleration occurs for F = ma =
�N2. The front wheels can never leave the ground because they will skid �rst.

22 Systems of particles - properties of centre of mass

Consider a system of n particles of masses, mi (i = 1; 2; : : : ; n) at position vectors ri (i = 1; 2; : : : ; n) as
shown in �g 77. Total mass is

M =
nX
i=1

mi: (443)

The centre of mass is at position

R =

Pn
i=1miriPn
i=1mi

=

Pn
i=1miri
M

: (444)

The position R is such that if the total massM were at R it would have the same moment about origin
O as the actual system, i.e.

MR =
nX
i=1

miri: (445)

The centre of mass is therefore that point about which a rigid body will balance if in a uniform gravita-
tional �eld.
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Figure 77: System of particles acted on by forces

If the system of particles is not subjected to any external forces the centre of mass remains at
rest or in uniform motion, i.e. no acceleration of the centre of mass. This is true even if the particles
in the system are moving relative to each other and interact with each other. Also, if system of particles
is subjected to external forces the centre of mass behaves as if all the forces acted at that
position. In addition, any �ctitious force appears to act at through the centre of mass.
Proof. Let Fi be force on i-th particle, then

Fi = Fiext + Fiint; (446)

where Fiext is external force on particle i, and Fiint is the internal force on particle i due to internal
interactions with all other particles. The equation of motion of particle i is

Fi = mi
d2ri
dt2

(447)

and the resultant force on the system is

F =

nX
i=1

Fi =

nX
i=1

mi
d2ri
dt2

=
d2

dt2

 
nX
i=1

miri

!
(448)

F =
d2

dt2
(MR) =M

d2R

dt2
: (449)

Therefore the centre of mass moves as if all the forces act on a mass M at the position of the centre of
mass.
Since

F =

nX
i=1

Fi =

nX
i=1

Fiext +

nX
i=1

Fiint (450)

and
nX
i=1

Fiint = 0 (451)

by Newton�s third law, we have

F =
nX
i=1

Fi =M
d2R

dt2
: (452)
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Therefore only external forces in�uence the motion of the centre of mass. If F = 0 (no resultant external
force) then

d2R

dt2
= 0 (453)

and velocity of centre of mass dR
dt is constant.

23 Rigid bodies

23.1 Centre of mass

Rigid bodies can be considered as a system of particles rigidly joined together. An example is a uniform
thin rod of length L and mass M as in �g 78. We can determine the position of the centre of mass as

Figure 78: Uniform thin rod

follows:
Mass per unit length is

� =
M

L
(454)

so the mass of an element of length dx is dm = �dx. Therefore from the de�nition, the position of the
centre of mass is given by

X =

R L
0
xdmR L

0
dm

=

R L
0
x�dxR L

0
�dx

=
1
2�x

2jL0
M

=
1
2�L

2

M
=
1

2

�L2

M
=
1

2

M

L

L2

M
=
1

2
L (455)

as might have been expected. Note this procedure works even when � is not constant.

Example 19 Position of centre of mass of a thin wedge shaped rod (as shown in �g 79) where the mass
per unit length is proportional to distance from one end, i.e. � = kx with k a constant. Then mass of

Figure 79: Centre of mass of wedge rod

element of length dx is dm = �dx = kxdx and total mass is

M =

Z L

0

dm =

Z L

0

�dx =

Z L

0

kxdx =
1

2
kL2: (456)

The position of the centre of mass is

X =

R L
0
xdmR L

0
dm

=

R L
0
x�dx

M
=

R L
0
kx2 dx

M
=

1
3kL

3

1
2kL

2
=
2

3
L: (457)
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23.2 Rotation of a rigid body about a �xed axis

Consider rotation of a rigid body as depicted in �g 80, with the axis of rotation perpendicular to the
page. Let ! be the angular velocity. A mass element mi is at a perpendicular distance ri from the pivot.
The only velocity is transverse to this direction of magnitude vi = !ri. For a rigid body, all elements
must have the same angular velocity. The kinetic energy of rotation is

Figure 80: Rotating rigid body

KE =

nX
i=1

1

2
miv

2
i =

nX
i=1

1

2
mi (!ri)

2
=
1

2
!2

nX
i=1

mir
2
i : (458)

The last summation depends only on the distribution of mass within the body. We can de�ne the
moment of inertia, I, of the body about this axis by

I =
nX
i=1

mir
2
i ; (459)

and
KE =

1

2
I!2: (460)

For a continuous mass distribution with density � which may vary with position, an element of volume dv
has mass dm = �dv. If r? is the perpendicular distance from the axis, the moment of inertia is obtained
from

I =

Z
vol

r2?�dv: (461)

The value of the moment of inertia depends on the mass distribution in the body and the position of
the pivot. Later we will calculate the moment of inertia of various bodies.

23.3 Angular momentum of a rotating rigid body.

The angular momentum of a point mass m moving in a circle of radius r with angular velocity ! is

L = mr2! = mvr: (462)
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Therefore the angular momentum of an extended rigid body is

L =
nX
i=1

mir
2
i ! = !

nX
i=1

mir
2
i = I!: (463)

Angular momentum is a vector quantity so we should write

L = I! (464)

where direction of vector is along the axis of rotation in a sense given by a right-handed screw.

23.4 Correspondence between rotational and translational motion

The previous sections show that we can establish a table of correspondences between quantities related
to linear motion and to rotational motion.

Linear Rotation
mass m I moment of inertia
velocity v ! angular velocity
linear momentum p = mv L = I! angular momentum
linear kinetic energy 1

2mv
2 1

2I!
2 rotational kinetic energy

force F = dp
dt � = dL

dt torque
F = mdv

dt F = I d!dt

23.5 Compound pendulum

The mass of the body isM . The centre of mass is a distance ` from the pivot as shown in �g81. It will be
assumed that the moment of inertia, I, of this body about an axis through the pivot point A is known.
Torque of the weight about A is

Figure 81: Compound pendulum

� = �Mg` sin �: (465)

Note the negative sign as the torque is in the sense of decreasing �.
The equation of motion for rotation about the axis through A is

� =
dL

dt
=
d

dt
(I!) = I

d!

dt
= I

d2�

dt2
(466)

I
d2�

dt2
= �Mg` sin �: (467)
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If the angle � is always small, then sin � ' � (in radians) and

I
d2�

dt2
+Mg`� = 0; (468)

d2�

dt2
+
Mg`

I
� = 0; (469)

d2�

dt2
+ !2� = 0; (470)

where

! =

r
Mg`

I
: (471)

This is the equation for simple harmonic motion (in �) with a period

T =
2�

!
= 2�

s
I

Mg`
: (472)

If we express the moment of inertia by
I =Mk2 (473)

with k called the radius of gyration
�
k =

p
I=M

�
then

T = 2�

s
Mk2

Mg`
= 2�

s
k2

g`
: (474)

A simple pendulum is a point massM on the end of a massless inextensible string (!). The moment
of inertia of a point mass M at a distance ` from a pivot is I =M`2, so k = `. The period becomes

T = 2�

s
`2

g`
= 2�

s
`

g
: (475)

23.6 Determination of moment of inertia

The basic de�nition is

I =
nX
i=1

mir
2
i �!

Z
vol

r2?�dv: (476)

1. Point mass M at distance ` from axis of rotation, I =M`2.

2. Ring of mass M and of radius R about an axis through O, the centre of the ring as in �g 82, and
perpendicular to the plane of the ring. As all the mass is the same distance from O, then eq(476)

Figure 82: Moment of inertia of a ring

immediately gives I =MR2. It is important to note that for all other axes the moment of inertia
is di¤erent.
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Figure 83: Moment of inertia of a uniform rod

3. Uniform thin rod, mass M , length L about an axis through one end of the rod and perpendicular
to the rod, as in �g 83. Mass per unit length is � = M

L so mass of length dx is dm = �dx. Thus
from eq(476)

IA =

Z
x2 dm =

Z L

0

x2�dx =
1

3
�L3 =

1

3

M

L
L3 =

1

3
ML2: (477)

If the axis were through the centre of the rod, point O, and perpendicular to it then

IO =

Z L=2

�L=2
x2�dx =

1

3
�x3jL=2�L=2 =

1

24
�L3 +

1

24
�L3 =

1

12
�L3 =

1

12

M

L
L3 =

1

12
ML2: (478)

This clearly illustrates that the moment of inertia is not a �xed quantity for a rigid body but
depends on the choice of axis about which rotation is to occur. Two important theorems help us
determine moments of inertia. These theorems are called (a) the theorem of perpendicular axes
and (b) the theorem of parallel axes.

23.7 Theorem of perpendicular axes

It is important to note that this theorem only applies to plane lamina. Consider a lamina (sheet)
lying in the x� y plane, with mass per unit area � (not necessarily constant) as shown in �g 84. Mass
of an element of area dxdy is dm = �dxdy. Thus moment of inertia of lamina about the z-axis is

Iz =

ZZ
area

r2 dm =

ZZ �
�
�
x2 + y2

��
dxdy; (479)

=

ZZ �
�
�
x2 + y2

��
dxdy = (480)

=

ZZ
�x2 dxdy +

ZZ
�y2 dxdy (481)

=

Z
x

x2
�Z

y

�dxdy

�
+

Z
y

y2
�Z

x

�dxdy

�
: (482)

Since �Z
y

�dxdy

�
= dM (483)

is the mass of a strip of width dx parallel to the y-axis, the �rst integral on the right-hand sideZ
x

x2 dM = Iy; (484)

is the moment of inertia of the lamina about the y-axis as shown in �g 85. Similarly the second integral
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Figure 84: Diagram for perpendicular axes theorem of moments of inertia

Figure 85: Diagram for identi�cation of integrals

gives Ix the moment of inertia of the lamina about the x-axis. Therefore

Iz = Ix + Iy: (485)

Note the x and y axes can be chosen anywhere in the lamina, but the z-axis must be taken through the
point of intersection of the x and y axes.

23.8 Theorem of parallel axes

This theorem applies to any solid body. Consider any axis through the centre of mass. Let I0 be the
moment of inertia of the body about this axis. Now consider a parallel axis at a distance a from the
axis through the centre of mass (see �g 86). The moment of inertia about a given axis depends only
on the perpendicular distance from the axis of each mass element. Therefore we may squash the three-
dimensional body down onto a plane perpendicular to the axis. Suppose this is the x� y plane. Then
the distance of an element from the axis through O is r and

r2 = x2 + y2; (486)

and
a2 = a2x + a

2
y: (487)
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Figure 86: Diagram for parallel axes theorem of moments of inertia

Distance from A to mass element is R such that

R2 = (x+ ax)
2
+ (y + ay)

2
: (488)

Moment of inertia of body about axis through O perpendicular to the x� y plane is

I0 =

Z
vol

r2 dm =

Z
vol

�
x2 + y2

�
dm (489)

and the total mass

M =

Z
dm: (490)

Moment of inertia about parallel axis through A is

IA =

Z
vol

R2 dm (491)

=

Z
vol

h
(x+ ax)

2
+ (y + ay)

2
i
dm (492)

=

Z
vol

��
x2 + y2

�
+
�
a2x + a

2
y

�
+ 2xax + 2yay

�
dm (493)

IA =

Z
vol

�
x2 + y2

�
dm+ a2

Z
dm+ 2ax

Z
xdm+ 2ay

Z
y dm: (494)

But by de�nition of the centre of mass Z
xdm =

Z
y dm = 0 (495)

and so
IA = I0 +Ma

2: (496)

This theorem is true for any body.

Example 20 Consider previous example of a uniform rod of length L. We showed explicitly that I0 =
1
12ML

2. Thus by the parallel axes theorem the moment of inertia about a parallel axis through one end

of the rod is IA = I0 +M
�
L
2

�2
= 1

3ML
2 as explicitly shown previously.
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23.9 Kinetic energy of rigid body with rotation and translation

We shall �nd an expression for the kinetic energy of a body which is rotating through its centre of mass
and also is in rectilinear motion. Body has mass M and moment of inertia about axis through centre of

Figure 87: Rotational and translational motion

mass of I0. The kinetic energy of rotation about axis through centre of mass is 12I0!
2. Kinetic energy of

rectilinear motion is 1
2Mv

2. Thus the total kinetic energy is simply

KE =
1

2
I0!

2 +
1

2
Mv2: (497)

Consider a wheel rolling on a surface without skidding. As the point in contact with the surface is
not slipping, it must be momentarily stationary. Thus the speed of the centre of mass v = !R. The total

Figure 88: Rolling wheel

kinetic energy is

KE =
1

2
I0!

2 +
1

2
Mv2 (498)

=
1

2
I0!

2 +
1

2
M!2R2 (499)

=
1

2

�
I0 +MR

2
�
!2 (500)

=
1

2
IA!

2; (501)

where
IA = I0 +MR

2 (502)

is the moment of inertia of the wheel about an axis through A (the point of contact with the surface)
perpendicular to the plane of the wheel. Therefore the wheel can be considered as momentarily rotating
about point A (the point of contact with the surface) with angular velocity !. The moment of inertia
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about axis through centre of mass of the wheel (ring) perpendicular to the wheel is I0 = MR2. In this
case

KE =
1

2

�
I0 +MR

2
�
!2 =

1

2

�
MR2 +MR2

�
!2 =M!2r2 =Mv2: (503)

23.10 E¤ect of external force

We wish to see what is the e¤ect of an external force applied to a free rigid body if the force does not
act through the centre of mass of the body, see �g 89. If we now add forces F and �F acting through the

Figure 89: Left: External force not through C.o.M; Right: equivalent force system

centre of mass we now have a system with a force F through the centre of mass and a couple made up
from the force �F through the centre of mass and the original force F. Force acting through the centre
of mass accelerates the mass according to

F =M
d2R

dt2
: (504)

The couple, with a torque � = Fh, produces an angular acceleration

� =
dL

dt
= I0

d!

dt
(505)

about an axis through the centre of mass and perpendicular to the plane de�ned by the direction of the
force and the centre of mass.
Suppose force F is applied for a very short time dt to a system initially at rest. Then

Fdt =MV (506)

where V is velocity of centre of mass, and

�dt = I0!; (507)

where ! is the angular velocity about axis through the centre of mass. Immediately after the impulse is
applied the speeds of the points A and B (see �g 90) are

vA = V + `A! (508)

vB = V � `B!: (509)

It may be that vB = 0. The point at which the impulse is applied for which vB = 0 is called the centre
of percussion. If a body, e.g. a door is hinged at B and is struck at the centre of percussion there is no
impulsive reaction at the hinge. Similarly if a cricket bat or tennis racket is held at one end (i.e. B) and
the ball strikes the centre of percussion there is no painful jarring sensation at the player�s hand.
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Figure 90: Impulse given to body free to rotate

Determination of position of centre of percussion If vB = 0 then V = `B!. But

MV = Fdt (510)

and
I0! = �dt = Fhdt =MV h (511)

so

I0! = M`B!h (512)

h =
I0
M`B

: (513)

For a uniform rod of length L and mass M , we have I0 = 1
12ML

2 and `B = 1
2L, so h =

1
6L, i.e. 2/3 of

the length of the rod from B.

23.11 Simple theory of the gyroscope

Consider spinning a disc with moment of inertia I0 about an axis perpendicular to the disc, as in �g91.The
torque of the weight about O is � =Mgx. The direction of the torque vector � is into the paper. Since

� =
dL

dt
(514)

then in time dt the angular momentum of the spinning disc changes by an amount

dL = � dt (515)

in the direction of � . Thus viewed from above we have the vector diagram with L (t) the angular
momentum at time t. As can be seen from the diagram, the angular momentum vector L is rotated
through an angle d� in time dt but it is still horizontal and of the same magnitude. Hence

d� =
dL

L
=
�dt

L
=
Mgxdt

I0!
: (516)
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Figure 91: Spinning disc

Figure 92: Vector diagram

The rate of rotation of L, or rate of precession, is

d�

dt
=
�

L
=
Mgx

I0!
: (517)

This simple theory is valid if d�dt � !.
There are many applications of gyroscopes in maintaining stability of rotating bodies and in various

control systems.

24 Fluid Mechanics

A �uid is a substance that can readily be deformed, that �ows when an external force is applied. Obvious
examples are gases and liquids.
Hydrostatics - is study of �uids at rest and in equilibrium.
Hydrodynamics - study of �uids in motion.

24.1 Hydrostatics

Consider equilibrium of a small cube of liquid in a tank under gravity as in �g 93. Density of the liquid
is �. There is no horizontal net force so forces on each pair of opposite parallel vertical faces must cancel.
Hence if P1 is average pressure on face 1, and P2 is average pressure on face 2, then force on face 1 is

dF1 = P1dy dz (518)
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Figure 93: Small element of volume of a �uid

and force of face 2 is
dF2 = P2dy dz (519)

but dF1 = dF2 and hence P1 = P2. Therefore pressure is same at all points of same depth.
Consider forces on upper and lower horizontal faces. Downward force on top force is

dF5 = P dxdz: (520)

Upward force on bottom face is
dF6 = (P + dP ) dxdz: (521)

Therefore for equilibrium of mass of liquid � (dxdy dz),

dF6 � dF5 = � (dxdy dz) g; (522)

dP dxdz = � (dxdy dz) g (523)

dP = �g dy : (524)

On integrating
P = �gy + P0; (525)

where P0 is pressure at y = 0. Hence pressure in a static liquid under gravity varies only with the vertical
height.
Pressure is measured in Pascals (Pa), 1 Pa = 1 Nm�2.

24.1.1 Hydraulic press

Apply force F2 to piston 2 of area A2 as in �g 94 The pressure in the liquid P2 = F2=A2. Same pressure
under piston 1 of area A1 so upward force on piston 1 is

F1 = P1A1 =
A1
A2
F2: (526)

If A1 > A2 then F1 > F2.
Piston 2 moves a distance x2, piston 1 moves distance x2 then if liquid is incompressible,

A1x1 = A2x2 (527)

and

x1 =
A2
A1
x2: (528)
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Figure 94: Hydraulic press

Work done by force F1 is

F1x1 =
A1
A2
F2
A2
A1

= F2x2 (529)

if there are no dissipative forces such as friction at the pistons or viscosity of the liquid.

24.1.2 Buoyancy

Consider a cylinder of mass m with end-face area A �oating partially submerged in a liquid of density �
as in �g 95. Force on top face FT = P0A. Force on bottom face is FB = P1A = (P0 + �gy)A. Thus for

Figure 95: Floating cylinder

equilibrium
mg = FB � FT = �gyA = [(yA) �] g; (530)

i.e. upthrust = FB � FT is equal to the weight of liquid displaced.
Consider a fully immersed body. Let N be reaction of cylinder on legs as in �g 96. Force on top face

is
FT = P1A: (531)
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Figure 96: Submerged cylinder

Force on bottom face is
FB = P2A+ �g (lA) : (532)

Thus upthrust FB � FT = � (lA) g. Again upthrust equals weight of liquid displaced. For equilibrium

mg = upthrust +N: (533)

Whether body is partially or fully immersed there is an upthrust equal to weight of �uid displaced. This
is Archimedes�Principle. The result applies to any shape of body.

24.2 Hydrodynamics - �uids in motion

Consider an ideal liquid which is

1. incompressible,

2. non-viscous,

3. constant temperature throughout,

4. �owing steadily, i.e. no time variation in �ow pattern,

5. non-turbulent.

At each point with coordinates (x; y; z) the liquid has a velocity vector v and pressure p (scalar).
Consider following a small element of liquid as it travels along, as in �g 97. The velocity may change in
magnitude and direction along the path. This path of a �uid element is called a streamline. Consider
another �uid element. This will follow another streamline. Two streamlines can never cross because
it would mean that the velocity vector would have two di¤erent directions at the same point which is
impossible (see �g 98).
Flow along stream lines, with the velocity vector changing smoothly is called streamline �ow.

Consider a thin bundle of adjacent streamlines as in �g 99 forming a stream tube. Because streamlines
cannot cross any �uid that enters a stream tube at end A must exit through end B. There is no loss of
�uid through the side of the stream tube.
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Figure 97: A streamline

Figure 98: Two streamlines

Figure 99: A streamtube
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If density of �uid at A is �1 and density at B is �2, mass of �uid entering tube at A in time t is
m1 = �1v1tdA1 and the mass of �uid leaving through end B is m2 = �2v2tdA2. Since mass is conserved,
m1 = m2 and

�1v1tdA1 = �2v2tdA2; (534)

�1v1dA1 = �2v2dA2: (535)

This is the equation of continuity. This is true for liquids and gases. For an ideal liquid which is
incompressible, so �1 = �2, then

v1dA1 = v2dA2: (536)

Example 21 Hose-pipe nozzle of area A2; volume rate of �ow of water along the pipe of cross sectional
area A1 is v1A1 = v2A2, so v2 = v1A1=A2 at the nozzle, and hence v2 > v1 since A2 < A1.

24.2.1 Bernoulli�s equation

This is a most important equation relating to �uid �ow. Consider an ideal liquid �owing along under
gravity as in �g 100. Assume there is no viscosity (i.e. no dissipative forces) so that the total energy of
a small volume of liquid as it �ows along a stream tube must be conserved.

Figure 100: Diagram for Bernoulli�s eqaution

Consider the work done by the pressure in time dt. Work done by pressure at end A1 is

dW1 = (p1dA1) v1dt; (537)

and work done against pressure at end A2 is

dW2 = (p2dA2) v2dt: (538)

By the continuity equation, mass of liquid element dm is (note �1 = �2 = � as liquid is incompressible)

dm = �dA1v1dt = �dA2v2dt: (539)

Change of kinetic energy of this mass from end A1 to end A2 is

dW3 =
1

2
dm

�
v22 � v21

�
(540)

=
1

2
�dA1v1dt

�
v22 � v21

�
: (541)
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Work done against gravity in raising this mass of liquid from h1 to h2 is

dW4 = dmg (h2 � h1) (542)

= �dA1v1dt g (h2 � h1) : (543)

Therefore from conservation of energy

dW1 � dW2 = dW3 + dW4 (544)

(p1dA1) v1dt� (p2dA2) v2dt =
1

2
�dA1v1dt

�
v22 � v21

�
+ �dA1v1dt g (h2 � h1) : (545)

The continuity equation gives dA1v1 = dA2v2, so

p1 � p2 =
1

2
�
�
v22 � v21

�
+ �g (h2 � h1) (546)

p1 +
1

2
�v21 + �gh1 = p2 +

1

2
�v22 + �gh2: (547)

Thus in general along a stream tube

p+
1

2
�v2 + �gh = cons tan t: (548)

This is Bernoulli�s equation. This has been derived for an ideal liquid, but is approximately true for
gases if there is no great change in density, otherwise the equation becomesZ

dp

�
+
1

2
v2 + gh = cons tan t: (549)

If �uid is not moving, v = 0, then Bernoulli�s equation becomes

p+ �gh = cons tan t (550)

i.e. pressure increases with depth as derived earlier. as h is measured in upwards sense.

Example 22 Flow of water through a small hole in a tank, as in �g 101. At the surfaces p0 = p1 is the
atmospheric pressure and v ' 0 as the water level falls slowly(!) So

p0 +
1

2
�v21 + �gh1 = p0 + 0 + �gh2 (551)

v21 = 2g (h2 � h1) : (552)

This is the same speed as free fall under gravity through a height h = h2 � h1.
Rate of �ow (volume per second) through area A is Av.

Figure 101: Flow from ori�ce in tank
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24.2.2 Venturi meter

If the �ow is horizontal so with no change in height then

p+
1

2
�v2 = cons tan t (553)

and pressure is greater where speed of �ow is less. This is the basis of the Venturi meter as illustrated in
�g 102.

Figure 102: Venturi meter

From the diagram

p1 +
1

2
�v21 = p2 +

1

2
�v22 (554)

and
p1 � p2 = �0gh (555)

so
�0gh =

1

2
�v22 �

1

2
�v21 : (556)

But the continuity equation is v1A1 = v2A2 so v2 = v1A1=A2 so substituting for v2

�0gh =
1

2
�v21

�
A21
A22

� 1
�

(557)

v1 =

s
2�0ghA22
� (A21 �A22)

(558)

and volume rate of �ow along pipe is

A1v1 =

s
2�0ghA21A

2
2

� (A21 �A22)
: (559)

Example 23 Flow of air over an aircraft wing as in �g 103.Air �ow over the top of the wing, v1 is faster
than under the bottom, v2 so pressure above wing, p1 is less than than under the wing p2 which gives rise
to the upward force (lift) on the wing.
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Figure 103: Flow over an aerofoil

Figure 104: Ball suspended in upward air jet

Example 24 Stability of table-tennis ball suspended on air jet. The air speed v1 > v2 so p1 < p2
producing a resultant force pushing the ball towards the centre of the air jet (see �g 104).

Example 25 De�ection of a spinning rough ball. Ball moving at speed v through the air and spinning
about a vertical axis as in �g 105.

As ball is rough it slows down air at A and tend to increase speed of air at B, such that v1 < v2,
so that p1 > p2 producing a resultant force in direction from A to B. The ball is de�ected horizontally.
Note the ball is rough, a smooth ball does not drag the air round with it and the e¤ect is not observed.
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Figure 105: De�ection of spinning ball
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