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Dynamic System Response

• Solution of Linear, Constant-Coefficient, Ordinary 
Differential Equations
– Classical Operator Method
– Laplace Transform Method

• Laplace Transform Properties
• 1st-Order Dynamic System Time and Frequency 

Response
• 2nd-Order Dynamic System Time and Frequency 

Response
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Laplace Transform Methods
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• A basic mathematical model used in many areas of 
engineering is the linear ordinary differential equation with 
constant coefficients:

• qo is the output (response) variable of the system
• qi is the input (excitation) variable of the system
• an and bm are the physical parameters of the system

a
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• Straightforward analytical solutions are available no matter 
how high the order n of the equation.

• Review of the classical operator method for solving linear 
differential equations with constant coefficients will be 
useful.  When the input qi(t) is specified, the right hand 
side of the equation becomes a known function of time, 
f(t).

• The classical operator method of solution is a three-step 
procedure:
– Find the complimentary (homogeneous) solution qoc for the 

equation with f(t) = 0.
– Find the particular solution qop with f(t) present.
– Get the complete solution qo = qoc + qop and evaluate the constants 

of integration by applying known initial conditions.
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• Step 1
– To find qoc, rewrite the differential equation using the differential 

operator notation D = d/dt, treat the equation as if it were 
algebraic, and write the system characteristic equation as:

– Treat this equation as an algebraic equation in the unknown D and 
solve for the n roots (eigenvalues) s1, s2, ..., sn.  Since root finding 
is a rapid computerized operation, we assume all the roots are 
available and now we state rules that allow one to immediately 
write down qoc:

– Real, unrepeated root s1:

– Real root s2 repeated m times:

a D a D a D an
n

n
n+ + + + =−
−

1
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q c e bt c te btoc
at at= + + + +0 0 1 1sin sinφ φa f a f

– When the a’s are real numbers, then any complex roots that might 
appear always come in pairs a ± ib:

– For repeated root pairs a ± ib, a ± ib, and so forth, we have:

– The c’s and φ’s are constants of integration whose numerical 
values cannot be found until the last step.

q ce btoc
at= +sin φa f
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• Step 2
– The particular solution qop takes into account the "forcing 

function" f(t) and methods for getting the particular solution 
depend on the form of f(t).

– The method of undetermined coefficients provides a simple 
method of getting particular solutions for most f(t)'s of practical 
interest.  

– To check whether this approach will work, differentiate f(t) over 
and over.  If repeated differentiation ultimately leads to zeros, or 
else to repetition of a finite number of different time functions, 
then the method will work.  

– The particular solution will then be a sum of terms made up of 
each different type of function found in f(t) and all its derivatives, 
each term multiplied by an unknown constant (undetermined 
coefficient). 
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– If f(t) or one of its derivatives contains a term identical to a term in 
qoc, the corresponding terms should be multiplied by t.

– This particular solution is then substituted into the differential 
equation making it an identity.  Gather like terms on each side,
equate their coefficients, and obtain a set of simultaneous algebraic 
equations that can be solved for all the undetermined coefficients. 

• Step 3
– We now have qoc (with n unknown constants) and qop (with no 

unknown constants).  The complete solution qo = qoc + qop. The 
initial conditions are then applied to find the n unknown constants.
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• Certain advanced analysis methods are most easily 
developed through the use of the Laplace Transform.

• A transformation is a technique in which a function is 
transformed from dependence on one variable to 
dependence on another variable. Here we will transform 
relationships specified in the time domain into a new 
domain wherein the axioms of algebra can be applied 
rather than the axioms of differential or difference 
equations.

• The transformations used are the Laplace transformation 
(differential equations) and the Z transformation 
(difference equations).

• The Laplace transformation results in functions of the time 
variable t being transformed into functions of the 
frequency-related variable s.
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• The Z transformation is a direct outgrowth of the Laplace 
transformation and the use of a modulated train of 
impulses to represent  a sampled function mathematically.

• The Z transformation allows us to apply the frequency-
domain analysis and design techniques of continuous 
control theory to discrete control systems.

• One use of the Laplace Transform is as an alternative 
method for solving linear differential equations with 
constant coefficients.  Although this method will not solve 
any equations that cannot be solved also by the classical 
operator method, it presents certain advantages:
– Separate steps to find the complementary solution, particular 

solution, and constants of integration are not used.  The complete 
solution, including initial conditions, is obtained at once.
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– There is never any question about which initial conditions are 
needed.  In the classical operator method, the initial conditions are 
evaluated at t = 0+, a time just after the input is applied.  For some 
kinds of systems and inputs, these initial conditions are not the 
same as those before the input is applied, so extra work is required 
to find them.  The Laplace Transform method uses the conditions 
before the input is applied; these are generally physically known 
and are often zero, simplifying the work.

– For inputs that cannot be described by a single formula for their 
entire course, but must be defined over segments of time, the 
classical operator method requires a piecewise solution with 
tedious matching of final conditions of one piece with initial 
conditions of the next.  The Laplace Transform method handles 
such discontinuous inputs very neatly.

– The Laplace Transform method allows the use of graphical 
techniques for predicting system performance without actually 
solving system differential equations.
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• All theorems and techniques of the Laplace Transform 
derive from the fundamental definition for the direct 
Laplace Transform F(s) of the time function f(t):

• This integral cannot be evaluated for all f(t)'s, but when it 
can, it establishes a unique pair of functions, f(t) in the 
time domain and its companion F(s) in the s domain.  
Comprehensive tables of Laplace Transform pairs are 
available.  Signals we can physically generate always have 
corresponding Laplace transforms. When we use the 
Laplace Transform to solve differential equations, we must 
transform entire equations, not just isolated f(t) functions, 
so several theorems are necessary for this.

L f t F s f t e dt

s i

st( ) ( )= =

= = +

−∞za f 0
   t > 0

 a complex variable σ ω
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• Linearity Theorem:

• Differentiation Theorem:

– f(0), (df/dt)(0), etc., are initial values of f(t) and its derivatives 
evaluated numerically at a time instant before the driving input is 
applied.
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• Integration Theorem:

– Again, the initial values of f(t) and its integrals are evaluated 
numerically at a time instant before the driving input is applied. 
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• Delay Theorem:
– The Laplace Transform provides a theorem useful for the dynamic 

system element called dead time (transport lag) and for dealing 
efficiently with discontinuous inputs. 
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• Final Value Theorem:
– If we know Q0(s), q0(∞) can be found quickly without doing the 

complete inverse transform by use of the final value theorem.

– This is true if the system and input are such that the output 
approaches a constant value as t approaches ∞.

• Initial Value Theorem:
– This theorem is helpful for finding the value of f(t) just after the 

input has been applied, i.e., at t = 0+. In getting the F(s) needed to 
apply this theorem, our usual definition of initial conditions as 
those before the input is applied must be used.

lim ( ) lim ( )t sf t sF s→∞ →= 0

lim ( ) lim ( )t sf t sF s→ →∞=0
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• Impulse Function

– The step function is the integral of the impulse function, or 
conversely, the impulse function is the derivative of the 
step function.

– When we multiply the impulse function by some number, 
we increase the “strength of the impulse”, but “strength” 
now means area, not height as it does for “ordinary” 
functions.
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• An impulse that has an infinite magnitude and zero 
duration is mathematical fiction and does not occur in 
physical systems.

• If, however, the magnitude of a pulse input to a system is 
very large and its duration is very short compared to the 
system time constants, then we can approximate the pulse 
input by an impulse function.

• The impulse input supplies energy to the system in an 
infinitesimal time.
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• Inverse Laplace Transformation
– A convenient method for obtaining the inverse Laplace 

transform is to use a table of Laplace transforms. In this 
case, the Laplace transform must be in a form 
immediately recognizable in such a table.

– If a particular transform F(s) cannot be found in a table, 
then we may expand it into partial fractions and write 
F(s) in terms of simple functions of s for which inverse 
Laplace transforms are already known.

– These methods for finding inverse Laplace transforms 
are based on the fact that the unique correspondence of 
a time function and its inverse Laplace transform holds 
for any continuous time function.
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Mechatronics 
Time Response & Frequency Response

1st-Order Dynamic System
Example: RC Low-Pass Filter

R

Cein eout

iin iout
Dynamic System Investigation

of the
RC Low-Pass Filter
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Zero-Order Dynamic System Model
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Validation of a Zero-Order
Dynamic System Model
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1st-Order Dynamic System Model
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τ = time constant
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• How would you determine if an experimentally-
determined step response of a system could be 
represented by a first-order system step response? 
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– This approach gives a more accurate value of τ since the 
best line through all the data points is used rather than just 
two points, as in the 63.2% method.  Furthermore, if the 
data points fall nearly on a straight line, we are assured 
that the instrument is behaving as a first-order type.  If the 
data deviate considerably from a straight line, we know the 
system is not truly first order and a τ value obtained by the 
63.2% method would be quite misleading.

– An even stronger verification (or refutation) of first-order 
dynamic characteristics is available from frequency-
response testing.  If the system is truly first-order, the 
amplitude ratio follows the typical low- and high-
frequency asymptotes (slope 0 and –20 dB/decade) and the 
phase angle approaches -90° asymptotically.



Mechatronics
Dynamic System Response 

K. Craig
26

– If these characteristics are present, the numerical value 
of τ is found by determining ω (rad/sec) at the 
breakpoint and using τ = 1/ωbreak. Deviations from the 
above amplitude and/or phase characteristics indicate 
non-first-order behavior. 
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• What is the relationship between the unit-step 
response and the unit-ramp response and between 
the unit-impulse response and the unit-step 
response?
– For a linear time-invariant system, the response to the 

derivative of an input signal can be obtained by 
differentiating the response of the system to the original 
signal.

– For a linear time-invariant system, the response to the 
integral of an input signal can be obtained by 
integrating the response of the system to the original 
signal and by determining the integration constants 
from the zero-output initial condition.
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• Unit-Step Input is the derivative of the Unit-Ramp 
Input.

• Unit-Impulse Input is the derivative of the Unit-
Step Input.

• Once you know the unit-step response, take the 
derivative to get the unit-impulse response and 
integrate to get the unit-ramp response.
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System Frequency Response
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Bode Plotting of 
1st-Order

Frequency 
Response

dB = 20 log10 (amplitude ratio)
decade = 10 to 1 frequency change
octave = 2 to 1 frequency change
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Time Response to Unit Step Input
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• Time Constant τ
– Time it takes the step response to reach 63% of 

the steady-state value
• Rise Time Tr = 2.2 τ

– Time it takes the step response to go from 10% 
to 90% of the steady-state value

• Delay Time Td = 0.69 τ
– Time it takes the step response to reach 50% of 

the steady-state value
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R = 15 KΩ

C = 0.01 µFFrequency Response
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• Bandwidth
– The bandwidth is the frequency where the 

amplitude ratio drops by a factor of 0.707 = -3dB 
of its gain at zero or low-frequency.

– For a 1st -order system, the bandwidth is equal to 
1/ τ.

– The larger (smaller) the bandwidth, the faster 
(slower) the step response.

– Bandwidth is a direct measure of system 
susceptibility to noise, as well as an indicator of 
the system speed of response.
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MatLab / Simulink Diagram
Frequency Response for 1061 Hz Sine Input
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Mechatronics 
Time Response & Frequency Response

2nd-Order Dynamic System
Example: 2-Pole, Low-Pass, Active Filter
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Dynamic System Investigation
of the Two-Pole, Low-Pass, Active Filter
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Step Response
of a

2nd-Order System
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Frequency Response
of a

2nd-Order System
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Frequency Response
of a

2nd-Order System
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-40 dB per decade slope

Frequency Response
of a

2nd-Order System
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Some Observations
• When a physical system exhibits a natural 

oscillatory behavior, a 1st-order model (or even a 
cascade of several 1st-order models) cannot 
provide the desired response.  The simplest model 
that does possess that possibility is the 2nd-order 
dynamic system model.

• This system is very important in control design.
– System specifications are often given assuming that the 

system is 2nd order.
– For higher-order systems, we can often use dominant 

pole techniques to approximate the system with a 2nd-
order transfer function.
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• Damping ratio ζ clearly controls oscillation; ζ < 1 
is required for oscillatory behavior.

• The undamped case (ζ = 0) is not physically 
realizable (total absence of energy loss effects) but 
gives us, mathematically, a sustained oscillation at 
frequency ωn.  

• Natural oscillations of damped systems are at the 
damped natural frequency ωd, and not at ωn.

• In hardware design, an optimum value of ζ = 0.64 
is often used to give maximum response speed 
without excessive oscillation.

2
d n 1ω = ω −ζ
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• Undamped natural frequency ωn is the major factor 
in response speed.  For a given ζ response speed is 
directly proportional to ωn.  

• Thus, when 2nd-order components are used in 
feedback system design, large values of ωn (small 
lags) are desirable since they allow the use of larger 
loop gain before stability limits are encountered.

• For frequency response, a resonant peak occurs for 
ζ < 0.707.  The peak frequency is ωp and the peak 
amplitude ratio depends only on ζ.

2
p n 2

K1 2                peak amplitude ratio
2 1  

ω = ω − ζ =
ζ −ζ
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• Bandwidth
– The bandwidth is the frequency where the amplitude 

ratio drops by a factor of 0.707 = -3dB of its gain at 
zero or low-frequency.

– For a 1st -order system, the bandwidth is equal to 1/ τ.
– The larger (smaller) the bandwidth, the faster (slower) 

the step response.
– Bandwidth is a direct measure of system susceptibility 

to noise, as well as an indicator of the system speed of 
response.

– For a 2nd-order system:
2 2 4

nBW 1 2 2 4 4= ω − ζ + − ζ + ζ
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– As ζ varies from 0 to 1, BW varies from 1.55ωn to 
0.64ωn.  For a value of ζ = 0.707, BW = ωn.  For most 
design considerations, we assume that the bandwidth of a 
2nd-order all pole system can be approximated by ωn.
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2
n

2 2
n n

2
1,2 n n

1,2 d

KG(s)
s 2 s

s i 1
s i

ω
=

+ ςω +ω

= −ςω ± ω −ς

= −σ± ω

( )

( )

2

r
n

s
n

1
p

1.8t   rise time

4.6t  settling time

M e   0 1   overshoot

1      0 0.6
0.6

−πς

−ς

≈
ω

≈
ςω

= ≤ ζ <

ζ ≈ − ≤ ζ ≤ 
 

Location of Poles
Of 

Transfer Function

General All-Pole
2nd-Order 

Step Response

( ) t
d d

d

y t 1 e cos t sin t−σ  σ
= − ω + ω ω 
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Time-Response Specifications vs. Pole-Location Specifications

n
r

1.8
t

ω ≥

( )p0.6 1 M      0 0.6ζ ≥ − ≤ ζ ≤

s

4.6
t

σ ≥
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Experimental Determination of ζ and ωn

• ζ and ωn can be obtained in a number of ways 
from step or frequency-response tests.

• For an underdamped second-order system, the 
values of ζ and ωn may be found from the 
relations:

( )

21
p 2

e p

2 d
d n n 2 2

1M e

1
log M

21
1 T 1

πζ
−

−ζ= ζ =
 π

+ 
 
 

ω π
ω = ω −ζ ω = =

⇒

−ζ −ζ
⇒

d

2T π
=
ω
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( )
( ) ( )

( )

nT
n

n n

2 2
d n

2 2

1

n 1

x t
ln ln e T

x t T

2 2 2

1 1

2

B1 ln
n B

ζω

+

 
δ = = = ζω  + 

ζω π ζω π πζ
= = =

ω ω −ζ − ζ

δ
ζ =

π + δ

δ =

Free Response of a 2nd-Order System

( ) ( )n t
dx t Be sin t−ζω= ω + φ

d

2T π
=
ω

• Logarithmic Decrement δ is the natural logarithm 
of the ratio of two successive amplitudes.
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– If several cycles of oscillation appear in the record, it is 
more accurate to determine the period T as the average 
of as many distinct cycles as are available rather than 
from a single cycle.

– If a system is strictly linear and second-order, the value 
of n is immaterial; the same value of ζ will be found for 
any number of cycles.  Thus if ζ is calculated for, say, n
= 1, 2, 4, and 6 and different numerical values of ζ are 
obtained, we know that the system is not following the 
postulated mathematical model.

• For overdamped systems (ζ > 1.0), no oscillations 
exist, and the determination of ζ and ωn becomes 
more difficult. Usually it is easier to express the 
system response in terms of two time constants.
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– For the overdamped step response:

– where

( )

( )

2
n

2
n

1 2

2 1 t

2

o is
2 1 t

2

t t
o 1 2

is 2 1 2 1

1
1 e

2 1
q Kq          1

1
                    e

2 1

q e e 1
Kq

−ζ+ ζ − ω

−ζ− ζ − ω

− −
τ τ

 ζ + ζ −
− 

ζ − 
= ζ > 

ζ − ζ − + ζ − 

τ τ
= − +
τ − τ τ − τ

( ) ( )1 2
2 2

n n

1 1          
1 1

τ τ
ζ − ζ − ω ζ + ζ − ω
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– To find τ1 and τ2 from a step-function response curve, we 
may proceed as follows:

• Define the percent incomplete response Rpi as:

• Plot Rpi on a logarithmic scale versus time t on a linear scale.  
This curve will approach a straight line for large t if the system is 
second-order.  Extend this line back to t = 0, and note the value P1
where this line intersects the Rpi scale.  Now, τ1 is the time at 
which the straight-line asymptote has the value 0.368P1.

• Now plot on the same graph a new curve which is the difference 
between the straight-line asymptote and Rpi.  If this new curve is 
not a straight line, the system is not second-order.  If it is a 
straight line, the time at which this line has the value       
0.368(P1-100) is numerically equal to τ2.

• Frequency-response methods may also be used to find τ1 and τ2.

o
pi

is

q
R 1 100

Kq
 
− 

 
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Step-Response 
Test for 

Overdamped 
Second-Order 

Systems
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Frequency-Response 
Test of Second-Order 

Systems
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