
Classification - Basic Concepts

Lecture Notes for Chapter 4
Slides by Tan, Steinbach, Kumar adapted by Michael Hahsler

Look for accompanying R 

code on the course web site.



Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Supervised Learning

▪ Examples
—Input-output pairs: E = 𝑥1, 𝑦1 , … , 𝑥𝑖 , 𝑦𝑖 , … , 𝑥𝑁, 𝑦𝑁 .
—We assume that the examples are produced iid (with noise and errors) from a 

target function 𝑦 = 𝑓(𝑥).

▪ Learning problem
—Given a hypothesis space H
—Find a hypothesis ℎ ∈ 𝐻 such that ො𝑦𝑖 = ℎ(𝑥𝑖) ≈ 𝑦𝑖
—That is, we want to approximate 𝑓 by ℎ using E. 

▪ Includes
—Regression (outputs = real numbers).  Goal: Predict the number accurately.

E.g., x is a house and 𝑓(𝑥) is its selling price.
—Classification (outputs = class labels).  Goal: Assign new records to a class.

E.g., 𝑥 is an email and 𝑓(𝑥) is spam / ham

𝑓

You already know linear regression. We focus on Classification.

𝑓



Illustrating Classification Task

𝑦 = ℎ(𝑥)

yxE



Examples of 
Classification Task

▪ Predicting tumor cells as benign or 
malignant

▪ Classifying credit card transactions 
as legitimate or fraudulent

▪ Classifying secondary 
structures of protein 
as alpha-helix, beta-sheet, 
or random coil

▪ Categorizing news stories 
as finance, weather, enter-
tainment, sports, etc



Classification Techniques

Decision Tree based Methods

Rule-based Methods

Memory based reasoning

Neural Networks / Deep Learning

Naïve Bayes and Bayesian Belief Networks

Support Vector Machines



Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Example of a Decision Tree

Tid 
 

Refund Marital 

Status 

Taxable 

Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 

10 
 

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Splitting Attributes

Induction

Training Data Model:  Decision Tree



Another Example of Decision Tree

Tid Refund Marital
Status

Taxable
Income Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes
10

MarSt

Refund

TaxInc

YESNO

NO

NO

Yes No

Married
Single, 

Divorced

< 80K > 80K

There could be more than one tree that fits 
the same data!

Induction



Decision Tree: Deduction

Decision 

Tree



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data
Start from the root of tree.



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

MarriedSingle, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data



Apply Model to Test Data

Refund

MarSt

TaxInc

YESNO

NO

NO

Yes No

Married Single, Divorced

< 80K > 80K

Refund Marital 
Status 

Taxable 
Income Cheat 

No Married 80K ? 
10 

 

Test Data

Assign Cheat to “No”



Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Decision Tree: Induction

Decision 

Tree



Decision Tree Induction

Many Algorithms:

▪ Hunt’s Algorithm (one of the earliest)

▪ CART (Classification And Regression Tree)

▪ ID3, C4.5, C5.0 (by Ross Quinlan, information gain)

▪ CHAID (CHi-squared Automatic Interaction Detection) 

▪ MARS (Improvement for numerical features)

▪ SLIQ, SPRINT

▪ Conditional Inference Trees (recursive partitioning using statistical 
tests)



Hunt’s Algorithm

mixed

Refund

Don’t 
Cheat

mixed 

Yes No

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

Cheat

Single,
Divorced

Married

Taxable
Income

Don’t 
Cheat

< 80K >= 80K

Refund

Don’t 
Cheat

Yes No

Marital
Status

Don’t 
Cheat

mixed

Single,
Divorced

Married

"Use attributes to split the data recursively, till 
each split contains only a single class."  



Example 2: Creating a Decision Tree

x1

x2

o

o

o

o
o o

o

o

o

x
x x

x

x
x

x

x

0



Example 2: Creating a Decision Tree

x1

x2

o

o

o

o
o o

o

o

o

x
x x

x

x
x

x

x

0

2.5

X2 < 2.5

Blue circle Mixed

Yes No



Example 2: Creating a Decision Tree

x1

x2

o

o

o

o
o o

o

o

o

x
x x

x

x
x

x

x

0

2.5

X2 < 2.5

Blue circle Mixed

pure

Yes No



Example 2: Creating a Decision Tree

x1

x2

o

o

o

o
o o

o

o

o

x
x x

x

x
x

x

x

0

2.5

2

o

o

x

2

X2 < 2.5

Blue circle X1 < 2

Blue circle Red X

Yes No

Yes No



Tree Induction

▪ Greedy strategy
—Split the records based on an attribute test that optimizes a certain criterion.

▪ Issues
—Determine how to split the record using different attribute types.

—How to determine the best split?

—Determine when to stop splitting



Tree Induction

▪ Greedy strategy
—Split the records based on an attribute test that optimizes a certain criterion.

▪ Issues
—Determine how to split the record using different attribute types.

—How to determine the best split?

—Determine when to stop splitting



How to Specify Test Condition?

▪ Depends on attribute types
—Nominal

—Ordinal

—Continuous (interval/ratio)



Splitting Based on Nominal Attributes

▪ Nominal Attribute:  Divides values into two subsets. 
Need to find optimal partitioning.

▪ Ordinal Atribute:  Divides values into two subsets. 
Need to find optimal partitioning.

▪ What about this split?

CarType
{Family, 

Luxury} {Sports}

CarType
{Sports, 

Luxury} {Family} OR

Size
{Medium, 

Large} {Small}

Size
{Small, 

Medium} {Large}
OR

Size
{Small, 

Large} {Medium}



Splitting Based on Continuous Attributes
Binary split Multi-way split

Discretization to form an ordinal categorical attribute:

• Static – discretize the data set once at the beginning (equal interval, 
equal frequency, etc.). 

• Dynamic – discretize during the tree construction.
• Example: For a binary decision (𝐴 < 𝑣) or (𝐴 ≥ 𝑣) consider all possible 

splits and finds the best cut. This can be done efficiently.



Tree Induction

▪ Greedy strategy
—Split the records based on an attribute test that optimizes a certain criterion.

▪ Issues
—Determine how to split the record using different attribute types.

—How to determine the best split?

—Determine when to stop splitting



How to determine the Best Split

Before Splitting: 10 records of class 0,
10 records of class 1

Which test condition is the best?

C0: 10
C1: 10



How to determine the Best Split

▪ Greedy approach: 
—Nodes with homogeneous class distribution are preferred

▪ Need a measure of node impurity:

Non-homogeneous,

High degree of impurity

Homogeneous,

Low degree of impurity

C0: 5

C1: 5
C0: 9

C1: 1



Find the Best Split -General Framework

Attribute B

Yes No

Node N3 Node N4

Attribute A

Yes No

Node N1 Node N2

Before Splitting:

C0 N10

C1 N11

C0 N20

C1 N21

C0 N30

C1 N31

C0 N40

C1 N41

C0 N00

C1 N01
M0

M1 M2 M3 M4

M12 M34

Gain = M0 – M12 vs  M0 – M34   → Choose best split 

Assume we have a measure M that tells us how "pure" a node is. 



Measures of Node Impurity

Gini Index Entropy Classification 
error



Measures of Node Impurity

Gini Index Entropy Classification 
error



Measure of Impurity: GINI

▪ Gini Index for a given node t :

𝑝( 𝑗 | 𝑡) is estimated as the relative frequency of class j at node t

▪ Gini impurity is a measure of how often a randomly chosen element from 
the set would be incorrectly labeled if it was randomly labeled according to 
the distribution of labels in the subset.

▪ Maximum of 1 – 1/𝑛𝑐 (number of classes) when records are equally 
distributed among all classes = maximal impurity.

▪ Minimum of 0 when all records belong to one class =  complete purity.

▪ Examples:

C1 0

C2 6

Gini=0.000

C1 2

C2 4

Gini=0.444

C1 3

C2 3

Gini=0.500

C1 1

C2 5

Gini=0.278

𝐺𝐼𝑁𝐼 𝑡 = ෍

𝑗

𝑝 𝑗 𝑡)(1 − 𝑝 𝑗 𝑡)) = 1 −෍

𝑗

𝑝 𝑗 𝑡 )2



Examples for computing GINI

C1 0 

C2 6 
 

 

C1 2 

C2 4 
 

 

C1 1 

C2 5 
 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Gini = 1 – P(C1)2 – P(C2)2 = 1 – 0 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Gini = 1 – (1/6)2 – (5/6)2 = 0.278

P(C1) = 2/6          P(C2) = 4/6

Gini = 1 – (2/6)2 – (4/6)2 = 0.444

Maximal impurity here is ½ = .5

𝐺𝐼𝑁𝐼 𝑡 = 1 −෍

𝑗

𝑝 𝑗 𝑡 )2



Splitting Based on GINI

When a node p is split into k partitions (children), the quality of the split is 
computed as a weighted sum:

where 𝑛𝑖 = number of records at child i, and n  = number of records at node p.

Used in the algorithms CART, SLIQ, SPRINT.

𝐺𝐼𝑁𝐼(𝑝) − 𝑛

𝐺𝐼𝑁𝐼(1) − 𝑛1 𝐺𝐼𝑁𝐼(2) − 𝑛2 𝐺𝐼𝑁𝐼(𝑘) − 𝑛𝑘
...

𝐺𝐼𝑁𝐼𝑠𝑝𝑙𝑖𝑡 = ෍
𝑖

𝑘 𝑛𝑖
𝑛
𝐺𝐼𝑁𝐼(𝑖)



Binary Attributes: Computing GINI Index

▪ Splits into two partitions

▪ Effect of weighing partitions: Larger and purer partitions are sought 
for.

B?

Yes No

Node N1 Node N2

Parent

C1 6

C2 6

Gini = 0.500

N1 N2

C1 5 1

C2 3 3

Gini=0.438

Gini(N1) 
= 1 – (5/8)2 – (3/8)2

= 0.469

Gini(N2) 
= 1 – (1/4)2 – (3/4)2

= 0.375

Gini(Children) 
= 8/12 * 0.469 + 

4/12 * 0.375
= 0.438

GINI improves!



Measures of Node Impurity

Gini Index Entropy Classification 
error



Measure of Impurity: Entropy

▪ Entropy at a given node t:

𝑝( 𝑗 | 𝑡) is the relative frequency of class j at node t; 
0 log(0) = 0 is used!

▪ Measures homogeneity of a node (originally a measure of 
uncertainty of a random variable or information content of a 
message). 

▪ Maximum: log(𝑛𝑐) when records are equally distributed among all 
classes = maximal impurity.

▪ Minimum: 0 when all records belong to one class = maximal purity. 

Entropy t = −෍

𝑗

𝑝 𝑗 𝑡) log(𝑝 𝑗 𝑡))



Examples for computing Entropy

C1 0 

C2 6 
 

 

C1 3

C2 3

C1 1 

C2 5 
 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Entropy = – 0 log 0 – 1 log 1 = – 0 – 0 = 0 

P(C1) = 1/6          P(C2) = 5/6

Entropy = – (1/6) log2 (1/6) – (5/6) log2 (1/6) = 0.65

P(C1) = 3/6          P(C2) = 3/6

Entropy = – (3/6) log2 (3/6) – (3/6) log2 (3/6) = 1

Entropy t = −෍

𝑗

𝑝 𝑗 𝑡) log(𝑝 𝑗 𝑡))



Information Gain

Parent Node, p is split into k partitions;

𝑛𝑖 is number of records in partition i

▪ Measures reduction in Entropy achieved because of the split. Choose 
the split that achieves most reduction (maximizes GAIN)

▪ Used in ID3, C4.5 and C5.0

▪ Disadvantage: Tends to prefer splits that result in large number of 
partitions, each being small but pure.

𝐺𝐴𝐼𝑁𝑠𝑝𝑙𝑖𝑡 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝 − ෍

𝑖=1

𝑘
𝑛𝑖
𝑛
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑖)



Gain Ratio

Parent Node, p is split into k partitions;

𝑛𝑖 is number of records in partition i

▪ Adjusts Information Gain by the entropy of the partitioning 
(SplitInfo). Higher entropy partitioning (large number of small 
partitions) is penalized!

▪ Used in C4.5

▪ Designed to overcome the disadvantage of Information Gain.

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑜𝑠𝑝𝑙𝑖𝑡 =
𝐺𝐴𝐼𝑁𝑠𝑝𝑙𝑖𝑡
𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 = −෍

𝑖=1

𝑘
𝑛𝑖
𝑛
𝑙𝑜𝑔

𝑛𝑖
𝑛



Measures of Node Impurity

Gini Index Entropy Classification 
error



Splitting Criteria based on Classification Error

▪ Classification error at a node t :

𝑝( 𝑗 | 𝑡) is the relative frequency of class j at node t

▪ Measures misclassification error made by a node. 

▪ Maximum: 1 −
1

𝑛𝑐
when records are equally distributed among all 

classes = maximal impurity (maximal error).

▪ Minimum: 0 when all records belong to one class = maximal purity 
(no error)

𝐸𝑟𝑟𝑜𝑟 𝑡 = 1 −max
𝑖

𝑝 𝑖 𝑡)



Examples for Computing Error

C1 0 

C2 6 

 

 

C1 3 

C2 3 

 

 

C1 1 

C2 5 

 

 

P(C1) = 0/6 = 0     P(C2) = 6/6 = 1

Error = 1 – max (0, 1) = 1 – 1 = 0 

P(C1) = 1/6          P(C2) = 5/6

Error = 1 – max (1/6, 5/6) = 1 – 5/6 = 1/6

P(C1) = 3/6          P(C2) = 3/6

Error = 1 – max (3/6, 3/6) = 1 – 3/6 = .5

𝐸𝑟𝑟𝑜𝑟 𝑡 = 1 −max
𝑖

𝑝 𝑖 𝑡)



Comparison among Splitting Criteria
For a 2-class problem: Probability of the majority class p is always > .5

Note: The order is the same no matter what splitting criterion is used, 
however, the gain (differences) are not.

Probability of majority class



Misclassification Error vs Gini

A?

Yes No

Node N1 Node N2

Parent

C1 7

C2 3

Gini = 0.42
Error = 0.30

N1 N2

C1 3 4

C2 0 3

Gini=0.342
Error = 0.30

Gini(N1) = 1 – (3/3)2 – (0/3)2 = 0 
Gini(N2) = 1 – (4/7)2 – (3/7)2 = 0.489

Gini(Split) = 3/10 * 0 + 7/10 * 0.489 = 0.342

Gini improves!
Error does not improve!!!

Error(N1) = 1-3/3=0
Error(N2)=1-4/7=3/7

Error(Split)= 3/10*0 + 7/10*3/7 = 0.3 



Tree Induction

▪ Greedy strategy
—Split the records based on an attribute test that optimizes a certain criterion.

▪ Issues
—Determine how to split the record using different attribute types.

—How to determine the best split?

—Determine when to stop splitting



Stopping Criteria for Tree Induction

▪ Stop expanding a node when all the records belong to the same 
class. Happens guaranteed when there is only one observation left in 
the node (e.g., Hunt's algorithm).

▪ Stop expanding a node when all the records in the node have the 
same attribute values. Splitting becomes impossible.

▪ Early termination criterion (to be discussed later with tree pruning)



Advantages of Decision Tree Based 
Classification

INEXPENSIVE TO CONSTRUCT EXTREMELY FAST AT 
CLASSIFYING UNKNOWN 

RECORDS

EASY TO INTERPRET FOR 
SMALL-SIZED TREES

ACCURACY IS COMPARABLE TO 
OTHER CLASSIFICATION 
TECHNIQUES FOR MANY 

SIMPLE DATA SETS



Example: C4.5

▪ Simple depth-first construction.

▪ Uses Information Gain (improvement in Entropy).

▪ Handling both continuous and discrete attributes (cont. attributes are 
split at threshold).

▪ Needs entire data to fit in memory (unsuitable for large datasets).

▪ Trees are pruned.

▪ Code available at
—http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

—Open Source implementation as J48 in Weka/rWeka

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz


Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Model Selection: Bias vs. Variance

Low    Variance: difference in the model due to slightly different data.   high

High                 Bias: restrictions by the model class                     Low

Two samples 
from the 
same 
function 𝑓
(points) with 
the learned 
function ℎ
(lines).

ConsistencySimplicity

Overfitting 
to training 
data

Note: This trade-off applies to any model.



Example: Underfitting and Overfitting

500 circular and 500 
triangular data points.

Circular points:
0.5 ≥ 𝑠𝑞𝑟𝑡 𝑥1

2+ 𝑥2
2 ≤ 1

Triangular points:

𝑠𝑞𝑟𝑡 𝑥1
2+ 𝑥2

2 < 0.5 or 
𝑠𝑞𝑟𝑡(𝑥1

2+ 𝑥2
2) > 1



Example: Underfitting and Overfitting

Overfitting

Underfitting: when model is too simple, both training and test errors are large 

Underfitting

Resubstitution Error

Generalization Error



Overfitting due to Noise 

Decision boundary is distorted by noise point



Overfitting due to Insufficient Examples

Lack of training data points in the lower half of the diagram makes it difficult 
to predict correctly the class labels of that region 

test



Generalization Error

▪ Overfitting results in decision trees that are more complex than 
necessary.

▪ Training error does not provide a good estimate of how well the tree 
will perform on previously unseen records (e.g., test data).

▪ Need new ways for estimating errors → Generalization Error



Estimating Generalization Errors

▪ Re-substitution errors: error on training set e

▪ Generalization errors: error on testing set e’

Methods for estimating generalization errors:

1. Optimistic approach:  e’ = e

2. Pessimistic approach: 
— e’ = e + N x 0.5 (N: number of leaf nodes)
— For a tree with 30 leaf nodes and 10 errors on training (out of 1000 

instances):
Training error (rate) = 10/1000 = 1%
Estimated generalization error (rate )= (10 + 30 x 0.5)/1000 = 2.5%

3. Validation approach:
— uses a validation (test) data set (or cross-validation) to estimate 

generalization error.

Penalty for
model complexity!

0.5 per leave node is often 
used for binary splits.



Occam’s Razor (Principle of parsimony)

"Simpler is better"

▪ Given two models of similar generalization errors, one should prefer 
the simpler model over the more complex model.

▪ For complex models, there is a greater chance of overfitting (i.e., it 
fitted accidentally errors in the training data).

Therefore, one should include model complexity when evaluating a 
model.



How to Address Overfitting in Decision Trees

Pre-Pruning (Early Stopping Rule): Stop the algorithm before it 
becomes a fully-grown tree.

▪ Typical stopping conditions for a node:
— Stop if all instances belong to the same class

— Stop if all the attribute values are the same

▪ More restrictive conditions:
— Stop if number of instances is less than some user-specified threshold 

(estimates become bad for small sets of instances)

— Stop if class distribution of instances are independent of the available 
features (e.g., using a 𝜒2 test)

— Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).



How to Address Overfitting in Decision Trees

Post-pruning

1. Grow decision tree to its entirety

2. Try trimming sub-trees of the decision tree in a bottom-up fashion

▪ If generalization error improves after trimming a sub-tree, replace 
the sub-tree by a leaf node (class label of leaf node is determined 
from majority class of instances in the sub-tree)

▪ You can use MDL instead of error for post-pruning



Refresher: Minimum Description Length (MDL)

▪ 𝐶𝑜𝑠𝑡 𝑀𝑜𝑑𝑒𝑙, 𝐷𝑎𝑡𝑎 = 𝐶𝑜𝑠𝑡 𝐷𝑎𝑡𝑎 𝑀𝑜𝑑𝑒𝑙 + 𝐶𝑜𝑠𝑡 𝑀𝑜𝑑𝑒𝑙 → 𝑚𝑖𝑛
—Cost is the number of bits needed for encoding.

▪ 𝐶𝑜𝑠𝑡(𝑀𝑜𝑑𝑒𝑙) encodes each node (splitting condition and children).

▪ 𝐶𝑜𝑠𝑡(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) encodes information to correct misclassification 
errors.

A B

A?

B?

C?

10

0

1

Yes No

B1 B2

C1 C2

X y

X1 1

X2 0

X3 0

X4 1

… …
Xn 1

X y

X1 ?

X2 ?

X3 ?

X4 ?

… …
Xn ?

mistakes

𝐶𝑜𝑠𝑡(𝑀𝑜𝑑𝑒𝑙)

𝐶𝑜𝑠𝑡(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙)



Example of Post-Pruning

A?

A1

A2 A3

A4

Class = Yes 20

Class = No 10

Error = 10/30

Before split:
Training Error = 10/30
Pessimistic error = (10 + 1 x 0.5)/30 = 10.5/30

After split:
Training Error = 9/30
Pessimistic error = (9 + 4 x 0.5)/30 = 11/30

Pessimistic error increases! PRUNE!

Class = Yes 8

Class = No 4

Class = Yes 3

Class = No 4

Class = Yes 4

Class = No 1

Class = Yes 5

Class = No 1
Error = 9



Other issues:
Data Fragmentation and Search Strategy

Data Fragmentation

▪ Number of instances gets smaller as you traverse down the tree and 
can become too small to make a statistically significant decision 
(splitting or determining the class in a leaf node)

→ Many algorithms stop when a node has not enough instances.

Search Strategy

▪ Finding an optimal decision tree is NP-hard

→ Most algorithm use a greedy, top-down, recursive partitioning 
strategy to induce a reasonable solution.



Other issues: Tree Replication

P

Q R

S 0 1

0 1

Q

S 0

0 1

▪ Same subtree appears in multiple branches

▪ Makes the model more complicated and harder to interpret 



Expressiveness of Decision Trees

▪ Decision tree can learn discrete-valued functions to separate classes.

▪ This function represents the decision boundary.

▪ Issues
—Not expressive enough for modeling continuous variables directly (need to 

be discretized for the split).

—Do not generalize well to certain types of Boolean functions like the parity 
function (Class = 1 if there is an even number of Boolean attributes with 
truth value = True and 0 otherwise). These functions lead to excessive tree 
replication.



Decision Boundary

▪ Border line between two neighboring regions of different classes is known as 
decision boundary

▪ Decision boundary is parallel to axes because test condition involves a single 
attribute at-a-time



Oblique Decision Trees

x + y < 1

Class = + Class =     

▪ Test condition may involve multiple attributes

▪ More expressive representation

▪ Finding optimal test condition is computationally expensive -> Not used in 
practice.



Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Metrics for Performance Evaluation: 
Confusion Matrix

▪ Focus on the predictive capability of a model (not speed, scalability, etc.)

▪ Here we will focus on binary classification problems!

Confusion Matrix

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a 

(TP)

b 

(FN)

Class=No c 

(FP)

d 

(TN)

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)



Metrics for Performance Evaluation:
Statistical Test

From Statistics: Null Hypotheses H0 is that the actual class is yes

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes Type I error

Class=No Type II error

Type I error: 𝑃(𝑁𝑂 | 𝐻0 𝑖𝑠 𝑡𝑟𝑢𝑒) → Significance α
Type II error: 𝑃(𝑌𝑒𝑠 | 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒) → Power 1-β



Metrics for Performance Evaluation:
Accuracy

Most widely-used metric: How many do we predict correct (in 
percent)?

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a
(TP)

b
(FN)

Class=No c
(FP)

d
(TN)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑎 + 𝑑

𝑎 + 𝑏 + 𝑐 + 𝑑
=
𝑇𝑃 + 𝑇𝑁

𝑁



Limitation of Accuracy

Consider a 2-class problem
—Number of Class 0 examples = 9990

—Number of Class 1 examples = 10

If model predicts everything to be class 0, accuracy is 9990/10000 = 
99.9 %

—Accuracy is misleading because the model does not detect any class 1 
example

→ Class imbalance problem!



Cost Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) Class=Yes Class=No

Class=Yes C(Yes|Yes) C(No|Yes)

Class=No C(Yes|No) C(No|No)

C(i|j): Cost of misclassifying class j example as class i

Different types of error can have different cost!



Computing Cost of Classification

Cost 
Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|j) + -

+ -1 100

- 1 0

Model M1 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 150 40

- 60 250

Model M2 PREDICTED CLASS

ACTUAL
CLASS

+ -

+ 250 45

- 5 200

Accuracy = 80%

Cost = -1*150+100*40+ 
1*60+0*250 = 3910

Accuracy = 90%

Cost = 4255

Missing a + case is
really bad!



Cost vs Accuracy

Count PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes a b

Class=No c d

Cost PREDICTED CLASS

ACTUAL
CLASS

Class=Yes Class=No

Class=Yes p q

Class=No q p

N = a + b + c + d

Accuracy = (a + d)/N

Cost = p (a + d) + q (b + c)

= p (a + d) + q (N – a – d)

= q N – (q – p)(a + d)

= N [q – (q-p) x Accuracy] 

Accuracy is only proportional to cost if
1. C(Yes|No)=C(No|Yes) = q 
2. C(Yes|Yes)=C(No|No) = p



Cost-Biased Measures

▪ Precision is biased towards C(Yes|Yes) & C(Yes|No)

▪ Recall is biased towards C(Yes|Yes) & C(No|Yes)

▪ F-measure is biased towards all except C(No|No)

Weighted Accuracy =
w1 a+w4 d

w1 a+w 2b+w3 c+w 4 d

PREDICTED CLASS

ACTUAL
CLASS

Class
Yes

Class
No

Class
Yes

a
(TP)

b
(FN)

Class
No

c
(FP)

d
(TN)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑝 =
𝑎

𝑎 + 𝑐

𝑅𝑒𝑐𝑎𝑙𝑙 𝑟 =
𝑎

𝑎 + 𝑏

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝐹 =
2𝑟𝑝

𝑟 + 𝑝
=

2𝑎

2𝑎 + 𝑏 + 𝑐



Kappa Statistic PREDICTED CLASS

ACTUAL
CLASS

Class
Yes

Class
No

Class
Yes

a
(TP)

b
(FN)

Class
No

c
(FP)

d
(TN)

Idea: Compare the accuracy of the 
classifier with a random classifier. The 
classifier should be better than random!

𝜅 =
𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝐹𝑃 × 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑁 + 𝑇𝑁 × 𝐹𝑃 + 𝑇𝑃

𝑁2



ROC (Receiver Operating Characteristic)

▪ Developed in 1950s for signal detection theory to analyze noisy 
signals to characterize the trade-off between positive hits and false 
alarms.

▪ Works only for binary classification (two-class problems). The classes 
are called the positive and the other is the negative class.

▪ ROC curve plots TPR (true positive rate) on the y-axis against FPR 
(false positive rate) on the x-axis.

▪ Performance of each classifier represented as a point. Changing the 
threshold of the algorithm, sample distribution or cost matrix 
changes the location of the point and forms a curve.



ROC Curve

At threshold t:

TPR=0.5, FNR=0.5, FPR=0.12, FNR=0.88

▪ Example with 1-dimensional data set containing 2 classes (positive and negative)

▪ Any points located at x > t is classified as positive

FPR=0.12

TPR=0.5

▪ Move t to get the other points on the ROC curve.

P
ro

b



ROC Curve

(TPR,FPR):

▪ (0,0): declare everything
to be negative class

▪ (1,1): declare everything
to be positive class

▪ (1,0): ideal

Diagonal line:
—Random guessing

—Below diagonal line: 
prediction is opposite of the 
true class

Ideal classifier



Using ROC for Model Comparison

No model consistently 
outperform the other

-M1 is better for small FPR

-M2 is better for large FPR

Area Under the ROC curve (AUC)

-Ideal: 

• AUC = 1

-Random guess:

• AUC = 0.5



Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Learning Curve

Learning curve shows how 
accuracy on unseen examples 
changes with varying training 
sample size

Training data (log scale)

Variance for 
several runs

Accuracy and variance between runs depend on the size of the training data.



Training and Test Data

▪ Separate data into a set to train and a set to test.

▪ Holdout testing/Random splits: Split the data randomly 
into, e.g., 80% training and 20% testing.

▪ k-fold cross validation: Use training & validation data 
better

—split the training & validation data randomly into k folds.
—For k rounds hold 1 fold back for testing and use the remaining k-

1 folds for training.
—Use the average the error/accuracy as a better estimate.
—Some algorithms/tools do that internally.

▪ LOOCV (leave-one-out cross validation): k = n used if very 
little data is available. 

Very important: the algorithm can never look at the test set 
during learning!

Test
Data

Training
Data



Training and Testing with Hyperparameters

Hyperparameters: Many algorithms allow choices for 
learning. E.g., 

—maximal decision tree depth
—selected features

1. Train: Learn models on the training data 
(without the validation data) using different 
hyperparameters.

—A grid of possible hyperparameter combinations 
—greedy search 

2. Model Selection: Evaluate the models using the 
validation data and choose the hyperparameters 
with the best accuracy. Rebuild the model using 
all the training data.

3. Test the final model using the test data.

Test
Data

Training
Data

Validation
Data



How to Split the Dataset

▪ Random splits: Split the data randomly in 60% 
training, 20% validation, and 20% testing.

▪ k-fold cross validation: Use training & validation data 
better

—split the training & validation data randomly into k folds.

—For k rounds hold 1 fold back for testing and use the 
remaining k-1 folds for training.

—Use the average the error/accuracy as a better estimate.

—Some algorithms/tools do that internally. 

Test
Data

Training
Data

Validation
Data



Confidence Interval for Accuracy

▪ Each prediction can be regarded as a Bernoulli trial: A Bernoulli trial 
(a biased coin toss) has 2 possible outcomes:

heads (correct) or tails (wrong)

We use 𝑝 for the true chance that prediction is correct (= true 
accuracy).

▪ Predictions for a test set of size 𝑁 are a collection of N Bernoulli 
trials. The number of correct predictions 𝑥 has a Binomial 
distribution: 

𝑋 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑁, 𝑝

Example: Toss a fair coin 50 times, how many heads would turn up? Expected 
number of heads 𝐸[𝑋] = 𝑁𝑝 = 50 × 0.5 = 25

▪ Given we observe 𝑥 correct predictions (an observed accuracy of
Ƹ𝑝 = 𝑥/𝑁 ): 

Can we give bounds for the true accuracy of model 𝑝?



Confidence Interval 
for Accuracy

For large test sets (𝑁 > 30) we 
can approximate the Binomial 
distribution by a Normal distribution: 

𝑋 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑁𝑝,𝑁𝑝 1 − 𝑝 )

Confidence Interval for 𝑝 = 𝑋/𝑁 (Wald Method):

ො𝑝 ± 𝑧𝛼/2
ො𝑝 1 − ො𝑝

𝑁

𝐴𝑟𝑒𝑎 = 1 − 𝛼

−𝑧𝛼/2 𝑧𝛼/2



Confidence Interval for Accuracy

Consider a model that produces an accuracy of 80% when evaluated 
on 100 test instances:

—N = 100, acc = 0.8

—Let 1 − 𝛼 = 0.95 (95% confidence)

—From probability table, 𝑧𝛼/2 = 1.96

1 − 𝛼/2 𝑧𝛼/2

0.99 2.58

0.98 2.33

0.95 1.96

0.90 1.65
N 50 100 500 1000 5000

p(lower) 0.689 0.722 0.765 0.775 0.789

p(upper) 0.911 0.878 0.835 0.825 0.811

Table or R 𝑞𝑛𝑜𝑟𝑚(1 − 𝛼/2)

Ƹ𝑝 ± 𝑧𝛼/2
Ƹ𝑝 1 − Ƹ𝑝

𝑁



Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Comparing Performance between 2 Models

Given two models, say 𝑀1 and 𝑀2, which is better?

For large test sets (𝑁 > 30) we have approximately:
𝑎𝑐𝑐1 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑝1, 𝑁𝑝1 1 − 𝑝1 )
𝑎𝑐𝑐2 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑝2, 𝑁𝑝2(1 − 𝑝2))

Perform a paired t-test with:

H0: There is no difference in accuracy between the models.

H1: There is a difference.

Comparing multiple models: You need to correct for multiple 
comparisons! For example using Bonferroni correction.



Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Feature Selection

Univariate feature 
importance score

• measures how related 
each feature is to the class 
variable.

• E.g., chi-squared statistic, 
information gain.

Feature subset selection

• tries to find the best set of 
features. 

• Often uses a black box 
approach where different 
subsets are evaluated 
using a greedy search 
strategy.

What features should be used in the model?



Topics

▪ Introduction

▪ Decision Trees

—Overview

—Tree Induction

—Overfitting and other Practical Issues

▪ Model Evaluation

—Metrics for Performance Evaluation

—Methods to Obtain Reliable Estimates

—Model Comparison (Relative Performance)

▪ Feature Selection

▪ Class Imbalance



Class Imbalance Problem

Consider a 2-class problem
—Number of Class 0 examples = 9990
—Number of Class 1 examples = 10

A simple model: 
—Always predict Class 0
—accuracy =  9990/10000 = 99.9 %
— error =  0.1%

Issues:

1. Evaluation: accuracy is misleading.

2. Learning: Most classifiers try to 
optimize accuracy/error. These 
classifiers will not learn how to 
find examples of Class 1!



Class Imbalance Problem: Evaluation

Do not use accuracy to evaluate for problems with strong class 
imbalance!

Use instead:

▪ ROC curves and AUC (area under the curve)

▪ Precision/Recall plots or the F1 Score

▪ Cohen's Kappa

▪ Misclassification cost



Class Imbalance Problem: Learning

▪ Do nothing. Sometimes you get 
lucky!

▪ Balance the data set: Down-sample 
the majority class and/or up-sample 
the minority class (use sampling 
with replacement). Synthesize new 
examples with SMOTE.
This will artificially increase the 
error for a mistake in the minority 
class.

▪ Use algorithms that can deal with 
class imbalance (see next slide).

▪ Throw away minority examples and 
switch to an anomaly detection 
framework.



Class Imbalance Problem: Learning

Algorithms that can deal with class imbalance:

▪ Use a classifier that predict a probability and lower the decision 
threshold (from the default of .5). We can estimate probabilities for 
decision trees using the positive and negative training examples in 
each leaf node.

▪ Use a cost-sensitive classifier that considers a cost matrix (not too 
many are available).

▪ Use boosting techniques like AdaBoost.



Conclusion

▪ Classification is supervised learning with the goal to 
find a model that generalizes well.

▪ Generalization error can be estimated using test 
sets/cross-validation.

▪ Model evaluation and comparison needs to take 
model complexity into account.

▪ Accuracy is problematic for imbalanced data sets.


