
1

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:13694  | https://doi.org/10.1038/s41598-020-70660-4

www.nature.com/scientificreports

Classification of femur fracture 
in pelvic X‑ray images using 
meta‑learned deep neural network
Changhwan Lee1, Jongseong Jang2, Seunghun Lee3, Young Soo Kim4, Hang Joon Jo5 & 
Yeesuk Kim6*

In the medical field, various studies using artificial intelligence (AI) techniques have been attempted. 
Numerous attempts have been made to diagnose and classify diseases using image data. However, 
different forms of fracture exist, and inaccurate results have been confirmed depending on condition 
at the time of imaging, which is problematic. To overcome this limitation, we present an encoder‑
decoder structured neural network that utilizes radiology reports as ancillary information at 
training. This is a type of meta‑learning method used to generate sufficiently adequate features for 
classification. The proposed model learns representation for classification from X‑ray images and 
radiology reports simultaneously. When using a dataset of only 459 cases for algorithm training, the 
model achieved a favorable performance in a test dataset containing 227 cases (classification accuracy 
of 86.78% and classification F1 score of 0.867 for fracture or normal classification). This finding 
demonstrates the potential for deep learning to improve performance and accelerate application of AI 
in clinical practice.

In general, X-ray images and radiology reports offer complementary information to a physician who wants to 
make an informed decision. In the classical diagnosis process, the radiologist reads the image and notes the 
findings, and then the physician makes a corresponding diagnosis and appropriate decision. However, due to 
the success of deep learning, recent attempts to achieve a high-performance classifier with a deep neural network 
(DNN) that only inputs images have increased. Since GoogLeNet outperformed humans in  20141, efforts to 
develop a high-performance classifier in various areas have continued.

The deep learning method is currently popular; however, application to medical fields remains challenging. In 
particular, protection of patient medical information and unwillingness to share information between hospitals 
causes difficulty in acquiring a sufficient number of medical images to adequately train DNNs. This leads to per-
formance degradation of DNNs with a relatively large number of parameters, thus requiring a more sophisticated 
learning algorithm. In addition, the numerous parameters require tuning based on physician assumptions and 
experience against concrete problems and training datasets, a tedious and resource-intensive task. Meta-learning 
is a recent technique to overcome (i.e., automate) this problem. The task is also known as “learning to learn” 
and aims to design models that can learn new tasks rapidly. Several studies have been proposed to apply meta-
learning techniques to medical  images2,3. Kim et al.2 used few-shot learning, which is a type of meta-learning 
method for early diagnosis of glaucoma in fundus images. The authors developed a predictive model based on 
matching neural network  architecture4, and showed that the model obtained greater effectiveness than vanilla 
DNNs. Maicas et al.3 presented a simple experiment to demonstrate use of meta-learning for fine-tuning a medi-
cal image dataset and demonstrated better classification performance than the current state-of-the-art method.

Recently, the combined modality was shown to be capable of simultaneous use to produce better classifiers 
than either modality  alone5–7. In particular, many attempts have been presented to use other image modalities as 
ancillary information in object detection tasks. In the study by Hoffman et al.6, the authors proposed an additional 
representation learning algorithm that incorporates ancillary information in the form of an additional image 
modality at training to produce a more informed single-image modality model. Xu et al.7 presented pedestrian 
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detection from RGB images with ancillary thermal imaging data. However, these networks require an additional 
network for hallucination of additional image modality inputs and extensive computation and memory.

A radiology report contains a radiologist’s analysis of findings and is a reflection of the radiologist’s experience 
and expertise. The report is directly related to the image and serves as a complement to possible missed informa-
tion from deep learning-based model when using only the image. Therefore, using information that contains 
both images and radiology reports will improve decision making. To the best of our knowledge, use of radiology 
reports as additional information in the medical image classification task has not been reported. Thus, we first 
present an algorithm that uses available paired image-text training data (meta-training set) to learn features from 
both modalities without an additional hallucination network. When using this approach, a novel deep learning 
model is produced to operate only over the single-image modality input and outperforms the standard network 
trained only on image data. Thus, the new method transfers information commonly extracted from text train-
ing data to a network that can extract associated information from image counterparts. In a preliminary study, 
the effectiveness of the proposed meta-learning method at classifying an X-ray image as femur fracture type 
based on the the Arbeitsgemeinschaft Osteosynthese foundation/Orthapaedic Trauma Association (AO/OTA) 
classification standard was demonstrated.

Related works
In several studies, classification of bone fractures based on conventional machine learning pipelines consisting 
of preprocessing, feature extraction, and classification steps has been addressed. Preprocessing methods include 
noise reduction, edge  detection8, and feature extraction methods including Gabor filter to extract textural fea-
tures of an  image9. In the classification step, a method using random  forest9 and support vector machine (SVM) 
was  proposed10.

With the advent of deep learning models over recent years, several approaches to classify bone fractures have 
been proposed. Chung et al.11 studied classification of the proximal humerus with the ResNet 152  network12, 
and Lindsey et al.13 showed the effectiveness of the 13k wrist X-ray data set for wrist fracture classification. Kazi 
et al.14 attempted to classify proximal femurs based on AO classification standard, which is similar to the model 
proposed in the present study. These studies have demonstrated the potential of deep learning models, but they 
require large amounts of data.

In the present study, a meta-learning model that incorporates ancillary information in the form of an addi-
tional modality at training time was established. In addition, the model was validated using standard evaluation 
metrics including accuracy and F1 score, t-distributed stochastic neighbor embedding (t-SNE) to visualize 
representation vectors, and lesion visualization using gradient-weighted class activation mapping (Grad-CAM).

Materials and methods
This retrospective study was approved by the Institutional Review Board (IRB) of Hanyang University Medical 
Center with a waiver of informed consent (HYUH 2019-06-003). All experiments were performed in accordance 
with relevant guidelines and regulations.

X‑ray images and the radiology reports dataset. The institutional review board of our institution 
approved this study. A total of 786 anterior–posterior pelvic X-ray images and 459 radiology reports acquired 
from 400 patients was obtained from our institution. From our institutional research database, X-rays were 
screened to identify cases with or without femur fracture. A digital radiographic examination (CKY Digital 
Diagnost; Philips, Eindhoven, The Netherlands) included anterior–posterior views of the hip obtained for the 
patients. The X-ray images and the radiology report from January 1, 2018 through December 31, 2018 were col-
lected separately, and matched by patient ID and study date. The paired data (459 X-ray images and the radiology 
reports) was used as training sets, and 327 X-ray images which did not match to the reports were used as valida-
tion and test sets. The validation and test sets were divided randomly. An experienced surgeon and radiologist 
reviewed the initially identified cases and confirmed 410 fracture cases and 376 normal cases to be included in 
the overall dataset. Within the dataset, 59 fracture and 41 normal cases were randomly selected for use as valida-
tion data, while 239 fracture and 220 normal cases and the radiology reports were used to train the models. For 
model testing, 112 fracture cases and 115 normal cases were used (Fig. 1).

The images had varying dynamic range and resolution, and the radiology reports were in a descriptive format. 
An experienced orthopedic surgeon manually selected the sentences after excluding sentences not written in 
English and those that contained typos. The radiology reports contain a description of the locations and type 
of the fractures in the examination. Of a total of 457 overall words from the text dataset, only the 300 most fre-
quent were used. The dataset was annotated into seven classes by an experienced orthopedic surgeon following 
the AO/OTA classification standard (Supplementary Fig. 1). Several examples of paired X-ray image-radiology 
report datasets for training are shown in Table 1. In addition, Global Vectors for Word Representation (GloVe) 
was used to obtain vector representations for words in the radiology  reports15. GloVe is an unsupervised learn-
ing algorithm for generating word vectors by aggregating global word-to-word co-occurrence matrix from a 
corpus. The resulting vectors show linear substructures of the word vector space. Briefly, the model automatically 
converts each word in a given sentence to a vector representation. The data distribution between classes was 
highly unbalanced, with 5 cases for class B3 and 376 for normal class. To balance the training dataset, simple 
data augmentation was used based on rotation, flipping, and scaling, resulting in four-times images per class, 
except for the normal class. The augmentation technique was applied only to the training set. To ensure the 
clinical value of the results, the models were trained on 1,176 augmented datasets and report performances on 
227 completely separate test datasets.
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AO/OTA classification standard. The AO/OTA classification of fractures is a system for classifying bone 
fractures by categorizing injuries according to theragnosis of patient anatomical and functional  outcome16,17 
(Supplementary Fig. 1). Fractures of the proximal femur are divided into A type (trochanteric region), B type 
(neck), and C type (head) based on fracture position. Each type is divided into subcategories (A1, A2, A3, B1, B2, 
B3, C1, and C2) based on fracture shape. In the present study, C type femur fracture data were not used because 
they are extremely rare.

Deep learning model for disease classification in medical images with ancillary informa‑
tion. In the present study, two deep learning architectures for use of radiology reports as ancillary informa-
tion were proposed (Fig. 2). Each has an encoder-decoder architecture and uses the latent representation from 
both modalities. Our main assumption was that the encoder can compress the input image and use this com-
pressed vector for complete restoration as corresponding text using a decoder to produce a latent representation 
containing both image and text information. Figure 2a illustrates the first architecture of the proposed model 
(M1). GoogLeNet (inception v3) was used in the encoder and has been successfully validated for these particular 
tasks in medical  applications1. Each input image was resized to 512 × 512 pixels. A bi-directional long/short-
term memory (Bi-LSTM)  network18 was used as the decoder architecture. Each set of text was decomposed by 
words and then transformed by one-hot encoded vectors to be fed to the input layer of the decoder. The one-hot 
encoded vectors were converted into 128-dimensional (D) word representation vectors that contained semantic 
meaning (i.e. “image of a blue car” −  “blue” +  “red” produces vectors close to that produced by “image of a red 
car”) in the embedding layer and then transferred to the Bi-LSTM cells. The shared representation vector (64-D) 
from the encoder was used as the initial hidden state of the Bi-LSTM cells, and the number of hidden layers was 
40 (i.e., maximum word length of the text in the dataset). After the encoder-decoder structure was trained, an 
additional classification network was trained using the shared latent representation from the encoder. Empiri-
cally, we found that using each dimensions of vector results in the best classification performance. Figure 2b 
illustrates the second architecture of model (M2). The structure of encoder, decoder, and classification network 
as in the first architecture was used. The second architecture jointly trained classification task and radiology 
report restoration task from the same latent representation. At testing, given only an X-ray image, the image 
was passed through the encoder network and the classifier network to produce scores per category, which were 
subjected to softmax to produce the final predictions. Specific structures of each module are presented in Fig. 3.

Network training. In this section, optimization details for the architecture are described. In M1, the 
encoder-decoder and the classifier were trained separately. A cross-entropy loss between decoder output and the 
one-hot encoded vector was used; encoder-decoder loss was defined using the following equation:

Figure 1.  Data characteristics. Number of X-ray images and radiology reports for training, X-ray images for 
validating, and X-ray images for testing the system.
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where Ydec , Ldec and C are the decoder output vector, the one-hot encoded vector, and the number of hidden 
units, respectively. Cross-entropy loss for a classifier network was defined as follows:

where Ycls , Lcls and C are the classifier output vector, the target vector, and the number of class, respectively. The 
M2 jointly learns decoder and classifier from latent representation. The loss function was defined as follows:

where Lcls, Lencoder−decoder and � are the classification loss, the encoder-decoder loss, and weight for encoder-
decoder loss, respectively. All models were trained with the Adam optimization algorithm with a learning rate 
of 0.000119.  Dropout20, which helps regularize data to reduce overfitting by ignoring several nodes in each layer, 
was applied to every layer in both the encoder and decoder at a rate of 0.5. We empirically set to 0.5. The training 
of the architecture included back-propagation and stochastic gradient descent. We also used focal  loss21 to cope 
with the imbalance of positive and negative samples. When vanilla cross-entropy is used as the loss function 
for imbalanced classification, the model is more likely to be affected by a large number of samples, which leads 
to deviation in the overall learning direction of the model. Details of the loss function is described in Supple-
mentary method.

(1)Lencoder−decoder(Y
dec , Ldec) = −

C∑

i

Ldeci log(Ydec
i )

(2)Lcls(Y
cls , Lcls) = −

C∑

i

Lclsi log(Ycls
i )

(3)L = Lcls + �Lencoder−decoder

Table 1.  Training examples of X-ray images and the radiology reports.

Label 3A2A1A

X-ray 
image 

Radiology 
report 

“Trochanteric fracture in 

the Rt. proximal femur.” 

“Comminuted fracture in 

the right proximal femur 

with displacement.” 

“Right intertrochanteric 

and subtrochanteric femur 

fracture with comminution 

of greater and lesser 

trochanteric lesion. Soft 

tissue swelling of right 

thigh.” 

Label lamroN2B1B

X-ray 
image 

Radiology 
report 

“Subcapital femur neck 

fracture, Lt.” 

“Rt. transcervical femur 

neck fracture with 

impaction.” 

“No gross acute bony 

fracture or dislocation. 

Osteoarthritis of right hip 

joint. Subchondral cystic 

change of femoral head and 

acetabular roof, right.” 
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Training data augmentation. Data augmentation was performed for the training data by applying geo-
metric transformation (rotation, scaling, and translation) to allow models to learn features invariant to geomet-
ric perturbation. Rotation angles ranged from − 10° to 10° with a 1° interval, scaling ratios of heights and widths 
ranged from 90 to 110% with a 1% interval, and translation parameters ranged from − 10 to 10 pixels in x and y 
directions with a 1-pixel interval. All parameters were randomly selected in the predefined ranges.

Experimental environments. The operating system used was Microsoft Windows 7 64-bit professional, 
and the CPU was an Intel i7-4770k. The main memory size was 32 GB, and an GTX1080TI graphics accelerator 
with 11 GB RAM was used for parallel processing. The deep learning framework was TensorFlow (version 1.80, 
Google Brain Team)22.

Gradient‑weighted class activation mapping (Grad‑CAM). For the test datasets, the Grad-CAM 
 technique23, which generates attention maps highlighting the important regions in images for model prediction 
to a target label c, was performed. The class discriminative localization map Grad-CAM LcGrad−CAM ∈ R

u×v of 
width u and height v for any class c, yc (before the softmax), with respect to feature maps Ak of a convolutional 
layer, i.e. ∂y

c

∂Ak
ij

 , was obtained. The gradients flowing back were global-average-pooled to obtain the neuron impor-
tance weights αc

k:

(4)αc
k =

1

Z

∑

i

∑

j

∂yc

∂Ak
ij

Figure 2.  Overview of the proposed models. (a) First architecture (M1). The encoder-decoder and the classifier 
were trained separately. (b) Second architecture (M2). The classifier and the decoder were jointly trained from 
the same latent representation.
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This weight αc
k : represents a partial linearization of the deep network downstream from A, and captures the 

importance of the feature map k for a target class c. Next, a weighted combination of forward activation maps 
was performed, followed by a ReLU to obtain the following:

Figure 3.  Detail structures of our proposed model. (a) Block diagrams of the encoder network topologies with 
last fully connected layers for Inception-V31. Inception-V3 comprised of a sequence of convolution, pooling 
layers, and several inception modules. (b) Diagrams of the decoder network topologies with preprocessing. (c) 
Classifier model structure, which is comprised of two fully connected layer.
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Notably, this results in a coarse heat-map of the same size as the convolutional feature map. A ReLU was 
applied to the linear combination of maps because only the features that have positive influence on the class of 
interest were relevant i.e. pixels whose intensity should be increased to increase yc.

Experiments and results
The dataset consisted of 786 X-ray images and 459 radiology reports and was split into training (paired 459 
X-ray images and the reports), validation (100 X-ray images), and test (227 X-ray images) sets, and the ratio of 
fracture to non-fracture cases was similar among datasets. The results were compared using three architectures 
for the test dataset. The first was GoogLeNet-inception v3 (base network)1 used in the encoder of the proposed 
architectures, and the others were the two proposed architectures (M1 and M2). For the overall classification 
experiment that was comparable to a prior  study14, three levels of discrimination were evaluated: (1) fracture 
versus normal, (2) classification among three groups (normal, A, and B), and (3) classification among seven 
subgroups (normal, A1, A2, A3, B1, B2, and B3).

Figure 4 shows a confusion matrix that represents the actual and predicted classes, where columns are pre-
dicted classes and rows are actual classes. The true-positive (TP) measure for each class is the number of positive 
examples correctly classified using the model, which is each diagonal element of the matrix. The false-positive 
(FP) measure for each class is the number of classes that are incorrectly classified as positive. The false-negative 
(FN) for each class is the number of positive classes incorrectly classified as negative, while true-negative (TN) 
is the number of negative classes correctly classified using the classification model. For evaluation, classification 
performance was calculated using the following quantitative metrics:

(5)LcGrad−CAM = ReLU(
∑

k

αc
kA

k)

Figure 4.  Confusion matrix obtained for 7-class classification in (a) GoogLeNet (inception V3), (b) proposed 
model #1 (M1), and (c) proposed model #2 (M2).
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The performance of the conventional and proposed methods for classification are summarized in Table 2. The 
base network achieved an overall accuracy of 79.30% on the 2-class discrimination task and an overall accuracy of 
66.08% on the 7-class discrimination task. The proposed methods (M1 and M2) showed favorable performance 
for all the performance metrics. Specifically, M2 showed the highest accuracy (74.89%) for the 7-class task and 
improved the performance of the conventional method by more than 8.8%. M1 was similar to the conventional 
method for classification performance in the 7-class discrimination task but showed greater performance for 
simple tasks (2-class and 3-class). The receiver operating characteristic (ROC) curves for the performance of the 
three models (base, M1, and M2) for the 7-class discrimination task are shown in Supplementary Fig. 2. Area 
under the ROC curve (AUC) values obtained for the base model, M1, and M2 were 0.73–0.86, 0.81–0.88, and 
0.72–0.90, respectively, after excluding the very rare B3.

We also performed five-fold cross validation with paired dataset(459 X-ray images and the radiology reports), 
not images only. The results are shown in Supplementary Fig. 3 and Supplementary Table 1. The overall per-
formance decrease occurred because the number of training data small, but M1 and M2 still showed better 
performance than the base model.

Supplementary Fig. 4 is visualization of the latent representation vector embedded in 2D space by the t-SNE 
for the three models. There was a total of 227 vectors from the test sets, and each class is represented by a differ-
ent color in the figure. The latent representation vectors from the base network are dispersed, while those from 
M2 are relatively separate with respect to class label. This indicates that features with greater discrimination are 
learned using meta-learning methods with radiology reports.

While performing inference on a test image, a Grad-CAM23 was used to generate a heatmap of hip fracture 
to provide evidence of fracture site recognition. Figure 5 shows examples of Grad-CAM-assisted images for the 
three models (base network, M1, and M2). Figure 5a show a case in which all three models produced correct 
predictions. In Fig. 5b,c, only M2 correctly detected the incorrectly predicted image in the base network and 
M1. Figure 5d shows a case in which all three models produced incorrect predictions.

Discussion
In the present study, radiology reports were used as ancillary information for improved classification performance 
compared to that of X-ray images alone, and deep learning architectures were proposed for incorporating the 
ancillary information during training. As a preliminary study, the proposed method was effective for classifying 
an X-ray image as femur fracture type based on the AO/OTA classification standard.

Our work is related to transfer learning and domain adaptation through learning information shared from 
one task to another. Classical methods consider learning to adapt across distributions through some combination 
of parameter  updates24 and transformation  learning25,26. Christoudias et al.27 introduced a method for hallucina-
tion of missing modality at training; however, this only applies to weak recognition. Recently, a transformation 
learning approach has been proposed to use depth information at training for RGB image  detection28. Similar 
to our approach, the study learned a single representation from joint modality space.

Our method can also be viewed from the learning with extra or privileged information perspective, which is 
a type of learning algorithm to generate a stronger model by providing additional information x* about train-
ing example x. In this regard, several studies have explored theoretical  frameworks29, a max-margin framework 
using bounding boxes and attributes as extra  information30, and the effects of surface normal during training 
on detection  improvement31.

Literature review showed the use of deep learning for classification of femur fractures with the AO/OTA 
classification standard in only one study. Kazi et al.14 presented a method to classify femur fractures on X-ray 
images using deep learning with an attention module. The method achieved averaged F1-scores of 0.82 in 2-class 

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 score = 2× Precision× Recall/(Precision+ Recall)

Table 2.  Results for the different models and levels of hierarchical discrimination (2-, 3-, and 7-class).

Model Measure 2 Class 3 Class 7 Class

Base network (Inception v3)
Overall accuracy 79.30% 73.13% 66.08%

Avg. F1 score 0.792 0.717 0.458

M1
Overall accuracy 85.02% 79.74% 69.60%

Avg. F1 score 0.845 0.791 0.493

M2
Overall accuracy 86.78% 82.38% 74.89%

Avg. F1 score 0.867 0.817 0.501
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Figure 5.  Examples of Grad-CAM-assisted images with the three models. (a) For the pelvic radiograph labeled 
as A1, all models were predicted correctly. (b) For the first normal image, only M2 was predicted correctly. (c) 
For the fracture image labeled A2, only M2 was predicted correctly. (d) For the second normal image all models 
were predicted incorrectly. The red boxes are fracture lesions.
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(fracture and normal) and 0.44 in 7-class (A1, A2, A3, B1, B2, B3, and normal) datasets. Based on the results, 
the performance of their proposed method was not significantly different from that of the basic model that does 
not integrate the attention module (only uses Inception V3 network), even in the 7-class task. Conversely, our 
models showed favorable performance despite using less image data. The results of the present study indicate 
that the architectures can potentially improve classification performance with high accuracy, F1 score, and AUC 
value. The first architecture (M1) did not show favorable performance in the complex task (7-class) because the 
radiology reports contain little information regarding presence and location of fractures. The second architecture 
(M2) can also be viewed as multi-task learning. In several studies, multi-task learning was helpful to improve 
generalization  performance32,33. Although our small dataset is valid, class B3, which is extremely rare compared 
to other classes, was incorrectly predicted in the three models, indicating that training with very small datasets 
remains challenging even with ancillary data.

To be more intuitive, we visualize the latent representation vectors from the three models with t-SNE for 
the training set as shown in Supplementary Fig. 4. In our datasets, B class images have strong edges that are not 
clearly visible relative to A class images, so that there is a possibility to predict B class images as other classes. 
In the t-SNE map, the base network does not sufficiently classify the normal class and the B class feature vector 
region, but the latent representation vectors from the M2 network are sufficiently separated with respect to their 
class label. We also found that learning with classification task helps to extract grouped latent representation 
vectors by each class. As can be seen in Supplementary Fig. 4b,c, the representation vectors of the M2 network 
are more discriminative than the M1 network.

Understanding how a DNN makes predictions is an active research topic in the medical field and may 
convince doctors the results obtained are valid even though the model may use an incorrect part of the image 
rather than the true lesion site to produce the answer. Therefore, feature visualization helps in understanding the 
underlying mechanism of  DNNs34. In the present study, X-ray images and radiology reports were used for train-
ing and X-ray images for testing. Then, Grad-CAM was performed to visualize the class discriminative regions 
as the fracture sites recognized by the DNN in the images. In Fig. 5a, the three models accurately predicted the 
fracture class. However, the class discriminative region of the base network did not contain the fracture site, and 
the confidence score (after softmax) was low. Conversely, in the proposed M1 and M2, the class discriminative 
regions contained the fracture site and showed relatively higher confidence scores than those of the base network. 
The images in Fig. 5b do not have femur fractures but have a strong edge due to overlap with abdominal fat. The 
base network and M1 identified the input images as fracture cases because the class discriminative region was 
shown with edges from overlap of abdominal fat. However, M2 did not identify that region and predicted the 
fracture correctly. In Fig. 5c, only the class discriminative region of M2 contains the fracture region. As shown 
in Fig. 5d, the normal images with strong edges (e.g., overlap of buttocks, pubic tubercles, and sacroiliac joint) 
distributed in several regions might not be well predicted.

Exploring the relationship between images and natural language has recently attracted significant inter-
est among researchers due to the importance in various applications such as bi-directional image and text 
 retrieval35,36, natural language object  retrieval37, image  captioning38,39, and visual question answering (VQA)40,41. 
However, using radiology reports as additional information in medical image classification tasks has not been 
previously reported. We first performed a disease classification task in medical images using the radiology report 
as ancillary information and showed its effectiveness.

Although the proposed models showed favorable performance, the present study had several limitations. First, 
the dataset was highly imbalanced. Several methods can be used to reduce this problem, such as oversampling 
with a data augmentation technique and generating synthetic  data42. Data augmentation was applied in the pre-
sent study, and there is a plan to adapt generated synthetic data using a generative adversarial network (GAN) in 
future research. Second, the generalizability of the system at different institutions was not tested; however, pelvic 
X-ray images and radiology reports tend to have similar constrained language and content in clinical practice.

In conclusion, we proposed two deep learning architectures for using radiology reports as ancillary infor-
mation. The model can extrapolate information missing from X-ray images using radiology reports, which is 
similar to the clinician’s decision making process. Using the general evaluation method for classification and 
Grad-CAM, the efficiency of the proposed model was demonstrated, and the proof-of-concept solution can be 
extended to various clinical applications.

Data availability
The datasets generated for this study contain protected patient information. Some data may be available for 
research purposes from the corresponding author upon reasonable request.

Code availability
The deep learning models were developed using standard libraries and scripts available in TensorFlow. Custom 
codes for deployment of the system are available for research purposes from the corresponding author upon 
reasonable request.
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