Classifying Triangles by Angles and Sides

Name: \qquad
Geometry
LESSON
41

Acute Triangle	Right Triangle	Obtuse Triangle	Equiangular Tri.

Classify each triangle by its angle measures. Remember, there are 180° in every triangle.

Classify: \qquad

third angle = \qquad
Classify: \qquad
3.

Classify:

third angle = \qquad
Classify: \qquad

Use the figure to classify each triangle by its angle measures.
4. $\triangle D F G$
\qquad
5. $\triangle D E G$
\qquad
6. $\triangle E F G$

LESSON

4-1

Equilateral Triangle	Isosceles Triangle	Scalene Triangle
all sides congruent	at least two sides congruent	no sides congruent

Step $1 \quad$ Find the value of x.

$$
\begin{aligned}
Q R & =R S & & \text { Def. of } \cong \text { segs. } \\
4 x & =3 x+5 & & \text { Substitution } \\
x & =5 & & \text { Simplify } .
\end{aligned}
$$

Step 2 Use substitution to find the length of a side.

$$
\begin{aligned}
4 x & =4(5) \\
& =20
\end{aligned}
$$

Substitute 5 for x.
Simplify.

Each side length of $\triangle Q R S$ is 20 .

Classify each triangle by its side lengths.

7. $\triangle E G F$ is \qquad
8. $\triangle D E F$ is \qquad
9. $\triangle D F G$ is \qquad

Find the side lengths of each triangle.

10.

Equation: \qquad
11.

Equation: \qquad
$x=$ \qquad Side lengths = \qquad ,

LESSON

$4-1$ Practice A

Match the letter of the figure to the correct vocabulary word in Exercises 1-4.

1. right triangle
2. obtuse triangle
\qquad
3. acute triangle
4. equiangular triangle
\qquad
\qquad
A.
B.

C.

D.

Classify each triangle by its angle measures as acute, equiangular, right, or obtuse.
(Note: Give two classifications on \# 7.)
5.

6.

7.

\qquad
\qquad a \qquad
b \qquad
8. An isosceles triangle has \qquad congruent sides.
9. $A(n)$ \qquad triangle has three congruent sides.
10. $A(n)$ \qquad triangle has no congruent sides.

Classify each triangle by its side lengths as equilateral, isosceles, or scalene.
(Note: Give two classifications on \#13.)
11.

12.

13.

Find the side lengths of the triangle.
Equation: \qquad

14. $A B=$ \qquad $A C=$ \qquad $B C=$ \qquad
15. The New York City subway is known for its crowded cars. If all the seats in a car are taken, passengers must stand and steady themselves with railings or handholds. How many hand straps could have been made from 99 inches of steel?

Classify each triangle by its angle measures.
(Note: Some triangles may belong to more than one class.)

1. $\triangle A B D$
2. $\triangle A D C$

Classify each triangle by its side lengths.
4. $\triangle G I J$
5. $\triangle H I J$
6. $\triangle G H J$
\qquad

7.

Equation: \qquad
$x=$ \qquad
$P Q=$ \qquad $Q R=$ \qquad $R P=$ \qquad
9. Use a ruler and a compass to draw a triangle with sides of $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm .

First draw a $5-\mathrm{cm}$ segment. Then, set your compass to 3 cm and make an arc from one end of the $5-\mathrm{cm}$ segment. Finally, set your compass to 4 cm and make an arc from the other end of the $5-\mathrm{cm}$ segment. Mark the point where the arcs intersect. Connect this point to the ends of the $5-\mathrm{cm}$ segment.

Choose the best answer.

1. Which list shows all the segments on $\overleftrightarrow{A C}$ that contain the point B ?

A $\overline{A C}$
B $\overline{A B}, \overline{B C}, \overline{B D}$
C $\overline{A B}, \overline{A C}, \overline{A D}, \overline{B C}, \overline{B D}$
D $\overline{A B}, \overline{A C}, \overline{A D}, \overline{B C}, \overline{B D}, \overline{C D}$
2. M is between R and S. If $R M=21$,
$R S=15 x-3$, and $M S=9 x+12$.

Draw and label a diagram.

Equation: \qquad $x=$ \qquad $R S=$ \qquad $M S=$ \qquad
3. K is the midpoint of $\overline{V W}$. If $K V=3 x$ and

Draw and label a diagram.

 $K W=5 x-10$.Equation: \qquad $x=$ \qquad $K V=$ \qquad $K W=$ \qquad
4. Which appears to be an obtuse angle?

F $\angle P Q R$
H $\angle R$
G $\angle P S Q$
J $\angle P$
5. Which two angles are supplementary to $\angle R L K$?

\leqslant \qquad and \qquad

