Classifying Triangles by Angles and Sides

Name: ____ Geometry

Acute Triangle	Right Triangle	Obtuse Triangle	Equiangular Tri.
72° 50° 58° all acute angles	53° 37° one right angle	31° 104° one obtuse angle	60 60 all angles ≅

Classify each triangle by its angle measures. Remember, there are 180° in every triangle.

1.

3.

Classify:

Classify: _

Classify:_

third angle = _____

third angle = _____

third angle = _____

Classify:____

Classify: _____

Classify:_____

Use the figure to classify each triangle by its angle measures.

4. △*DFG*

5. △*DEG*

6. △*EFG*

Equilateral Triangle	Isosceles Triangle	Scalene Triangle
4 4	8 8	7
	at least two sides	
all sides congruent	congruent	no sides congruent

Step 1 Find the value of
$$x$$
.

$$QR = RS$$
 Def. of \cong segs.
 $4x = 3x + 5$ Substitution
 $x = 5$ Simplify.

Step 2 Use substitution to find the length of a side. 4x = 4(5)Substitute 5 for *x*.

$$4x = 4(5)$$

= 20

Simplify.

Each side length of $\triangle QRS$ is 20.

Classify each triangle by its side lengths.

- **7.** △*EGF* is _____
- **8.** △*DEF* is _____
- **9.** △*DFG* is _____

Find the side lengths of each triangle.

Equation: _____

Equation: _____

LESSON Practice A

Match the letter of the figure to the correct vocabulary word in Exercises 1-4.

1. right triangle

3. acute triangle

3. acute triangle _____

C. \ D. \

4. equiangular triangle

Classify each triangle by its angle measures as acute, equiangular, right, or obtuse. (Note: Give two classifications on # 7.)

5.

6

7.

a _____

b _____

8. An isosceles triangle has _____ congruent sides.

9. A(n) _____ triangle has three congruent sides.

10. A(n) _____ triangle has no congruent sides.

Classify each triangle by its side lengths as equilateral, isosceles, or scalene.

(Note: Give two classifications on #13.)

11.

12

13.

Find the side lengths of the triangle.

Equation:

h

x = _____

AC =

BC =

15. The New York City subway is known for its crowded cars. If all the seats in a car are taken, passengers must stand and steady themselves with railings or handholds. How many hand straps could have been made from 99 inches of steel?

Classify each triangle by its angle measures.

(Note: Some triangles may belong to more than one class.)

2. △*ADC*

Classify each triangle by its side lengths.

5. △*HIJ*

Equation: _____

$$PQ = QR = RP =$$

9. Use a ruler and a compass to draw a triangle with sides of 3 cm, 4 cm, and 5 cm.

First draw a 5-cm segment. Then, set your compass to 3 cm and make an arc from one end of the 5-cm segment. Finally, set your compass to 4 cm and make an arc from the other end of the 5-cm segment. Mark the point where the arcs intersect. Connect this point to the ends of the 5-cm segment.

Choose the best answer.

1. Which list shows all the segments on \overrightarrow{AC} that contain the point *B*?

- $\mathbf{A} \overline{AC}$
- \mathbf{B} \overline{AB} , \overline{BC} , \overline{BD}
- \mathbf{C} \overline{AB} , \overline{AC} , \overline{AD} , \overline{BC} , \overline{BD}
- \mathbf{D} \overline{AB} , \overline{AC} , \overline{AD} , \overline{BC} , \overline{BD} , \overline{CD}
- **2.** M is between R and S. If RM = 21, RS = 15x - 3, and MS = 9x + 12.

Draw and label a diagram.

Equation: _____ *X* = ____ *MS* = ____ *MS* = ____

3. *K* is the midpoint of \overline{VW} . If KV = 3x and KW = 5x - 10.

Draw and label a diagram.

Equation:

4. Which appears to be an *obtuse* angle?

- **F** ∠*PQR*
- $H \angle R$
- **G** ∠*PSQ*
- **J** ∠*P*
- **5.** Which *two* angles are supplementary to $\angle RLK$?

____ and