Classifying Triangles

Warm Up

Lesson Presentation

Lesson Quiz

Classifying Triangles

Warm Up

Classify each angle as acute, obtuse, or right.

3.
obtuse
4. If the perimeter is 47 , find x and the lengths of the three sides.

Objectives

Classify triangles by their angle measures and side lengths.
Use triangle classification to find angle measures and side lengths.

Classifying Triangles

Vocabulary

acute triangle equiangular triangle right triangle obtuse triangle equilateral triangle isosceles triangle scalene triangle

Recall that a triangle (\triangle) is a polygon with three sides. Triangles can be classified in two ways: by their angle measures or by their side lengths.

4-2 Classifying Triangles

$\overline{A B}, \overline{B C}$, and $\overline{A C}$ are the sides of $\triangle A B C$. A, B, C are the triangle's vertices.

4-2 Classifying Triangles

Triangle Classification By Angle Measures

Acute Triangle

Three acute angles

4-2 Classifying Triangles

Triangle Classification By Angle Measures

Equiangular Triangle

Three congruent acute angles

4-2 Classifying Triangles

Triangle Classification By Angle Measures

Right Triangle

One right angle

4-2 Classifying Triangles

Triangle Classification By Angle Measures

Obtuse Triangle

One obtuse angle

4-2 Classifying Triangles

Example 1A: Classifying Triangles by Angle Measures

Classify $\triangle B D C$ by its angle measures.

$\angle B$ is an obtuse angle.
$\angle B$ is an obtuse angle. So $\triangle B D C$ is an obtuse triangle.

4-2 Classifying Triangles

Example 1B: Classifying Triangles by Angle Measures

Classify $\triangle A B D$ by its angle measures.

$\angle A B D$ and $\angle C B D$ form a linear pair, so they are supplementary.

Therefore $\mathrm{m} \angle A B D+\mathrm{m} \angle C B D=180^{\circ}$. By substitution, $\mathrm{m} \angle A B D+100^{\circ}=180^{\circ}$. So $\mathrm{m} \angle A B D=80^{\circ} . \triangle A B D$ is an acute triangle by definition.

4-2 Classifying Triangles

Check It Out! Example 1

Classify $\triangle \boldsymbol{F H G}$ by its angle measures.

$\angle E H G$ is a right angle. Therefore $\mathrm{m} \angle E H F+\mathrm{m} \angle F H G=90^{\circ}$. By substitution, $30^{\circ}+\mathrm{m} \angle F H G=90^{\circ}$. So $\mathrm{m} \angle F H G=60^{\circ}$.
$F H G$ is an equiangular triangle by definition.

4-2 Classifying Triangles

Triangle Classification By Side Lengths

Equilateral Triangle

Three congruent sides

4-2 Classifying Triangles

Triangle Classification By Side Lengths

Isosceles Triangle

At least two congruent sides

4-2 Classifying Triangles

Triangle Classification By Side Lengths

Scalene Triangle

No congruent sides

Classifying Triangles

Remember!

When you look at a figure, you cannot assume segments are congruent based on appearance. They must be marked as congruent.

Classifying Triangles

Example 2A: Classifying Triangles by Side Lengths

Classify $\triangle E H F$ by its side lengths.

From the figure, $\overline{E F} \cong \overline{H F}$. So $H F=10$, and $\triangle E H F$ is isosceles.

Classifying Triangles

Example 2B: Classifying Triangles by Side Lengths

Classify $\triangle E H G$ by its side lengths.

By the Segment Addition Postulate, $E G=E F+F G=$ $10+4=14$. Since no sides are congruent, $\triangle E H G$ is scalene.

Classifying Triangles

Check It Out! Example 2

Classify $\triangle A C D$ by its side lengths.

From the figure, $\overline{A B} \cong \overline{A C}$. So $A C=15$, and $\triangle A C D$ is scalene.

Classifying Triangles

Example 3: Using Triangle Classification

Find the side lengths of $\triangle J K L$.
Step 1 Find the value of x.

$$
\underbrace{4 x-10.7 K 2 x+6.3}_{5 x+2} L
$$

$$
\begin{array}{rlrl}
\overline{J K} & \cong \overline{K L} & & \text { Given. } \\
J K & =K L & & \text { Def. of } \cong \text { segs. } \\
4 x-10.7 & =2 x+6.3 & & \text { Substitute }(4 x-10.7) \text { for } \\
& & \text { JK and }(2 x+6.3) \text { for } K L . \\
2 x & =17.0 & & \text { Add } 10.7 \text { and subtract } 2 x \\
x & =8.5 & & \text { from both sides. } \\
\text { Divide both sides by } 2 .
\end{array}
$$

Classifying Triangles

Example 3 Continued

Find the side lengths of $\triangle J K L$.
Step 2 Substitute 8.5 into the expressions to find the side lengths.

$$
\begin{aligned}
J K & =4 x-10.7 \\
& =4(8.5)-10.7=23.3 \\
K L & =2 x+6.3 \\
& =2(8.5)+6.3=23.3 \\
J L & =5 x+2 \\
& =5(8.5)+2=44.5
\end{aligned}
$$

4-2 Classifying Triangles

Check It Out! Example 3

Find the side lengths of equilateral $\triangle F G H$.

Step 1 Find the value of y.

$$
\begin{array}{cl}
\overline{F G} \cong \overline{G H} \cong \overline{F H} & \text { Given. } \\
F G=G H=F H & \text { Def. of } \cong \text { segs. } \\
3 y-4=2 y+3 & \begin{array}{ll}
\text { Substitute } \\
(3 y-4) \text { for } F G \text { and } \\
(2 y+3) \text { for } G H .
\end{array} \\
y=7 & \begin{array}{l}
\text { Add } 4 \text { and subtract } \\
2 y \text { from both sides. }
\end{array}
\end{array}
$$

Classifying Triangles

Check It Out! Example 3 Continued

Find the side lengths of equilateral $\triangle \boldsymbol{F G H}$.

Step 2 Substitute 7 into the expressions to find the side lengths.

$$
\begin{aligned}
F G & =3 y-4 \\
& =3(7)-4=17 \\
G H & =2 y+3 \\
& =2(7)+3=17 \\
F H & =5 y-18 \\
& =5(7)-18=17
\end{aligned}
$$

Example 4: Application

A steel mill produces roof supports by welding pieces of steel beams into equilateral triangles. Each side of the triangle is 18 feet long. How many triangles can be formed from 420 feet of steel beam?

The amount of steel needed to make one triangle is equal to the perimeter P of the equilateral triangle.
$P=3$ (18)
$P=54 \mathrm{ft}$

Example 4: Application Continued

A steel mill produces roof supports by welding pieces of steel beams into equilateral triangles. Each side of the triangle is 18 feet long. How many triangles can be formed from 420 feet of steel beam?
To find the number of triangles that can be made from 420 feet of steel beam, divide 420 by the amount of steel needed for one triangle.
$420 \div 54=7 \frac{7}{9}$ triangles
There is not enough steel to complete an eighth triangle. So the steel mill can make 7 triangles from a 420 ft . piece of steel beam.

4-2 Classifying Triangles

Check It Out! Example 4a

Each measure is the side length of an equilateral triangle. Determine how many 7 in. triangles can be formed from a 100 in. piece of steel.

The amount of steel needed to make one triangle is equal to the perimeter P of the equilateral triangle.
$P=3(7)$
$P=21$ in.

Classifying Triangles

Check It Out! Example 4a Continued

Each measure is the side length of an equilateral triangle. Determine how many 7 in. triangles can be formed from a 100 in. piece of steel.

To find the number of triangles that can be made from 100 inches of steel, divide 100 by the amount of steel needed for one triangle.
$100 \div 7=14 \frac{2}{7}$ triangles
There is not enough steel to complete a fifteenth triangle. So the manufacturer can make 14 triangles from a 100 in . piece of steel.

4-2 Classifying Triangles

Check It Out! Example 4b

Each measure is the side length of an equilateral triangle. Determine how many 10 in. triangles can be formed from a 100 in. piece of steel.

The amount of steel needed to make one triangle is equal to the perimeter P of the equilateral triangle.
$P=3(10)$
$P=30$ in.

Classifying Triangles

Check It Out! Example 4b Continued

Each measure is the side length of an equilateral triangle. Determine how many 10 in. triangles can be formed from a 100 in. piece of steel.

To find the number of triangles that can be made from 100 inches of steel, divide 100 by the amount of steel needed for one triangle.
$100 \div 10=10$ triangles
The manufacturer can make 10 triangles from a 100 in . piece of steel.

Classifying Triangles

Lesson Quiz

Classify each triangle by its angles and sides.

1. $\triangle M N Q$ acute; equilateral
2. $\triangle N Q P$ obtuse; scalene
3. $\triangle M N P$ acute; scalene
4. Find the side lengths of the triangle.

