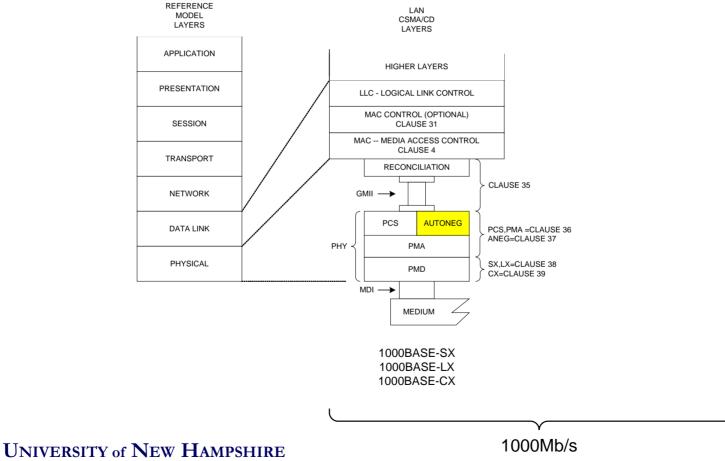


Clause 37 Auto-Negotiation

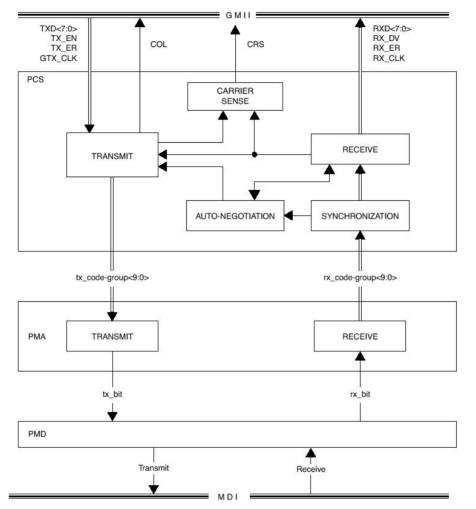
An introduction to the Auto-Negotiation process

© UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

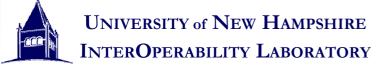
Presentation Overview:


- Location in the OSI Stack
- Interface to the PCS
- Auto-Negotiation functionality

OSI Stack


OS

Auto-Negotiation is located inside the PCS layer



INTEROPERABILITY LABORATORY

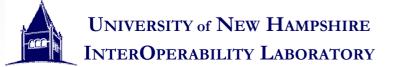
Inside the PCS

Inside the PCS

 Since Auto-Negotiation is located inside the PCS, it means that the device already needs to have established synchronization with the link partner at Gig speed (1.25 Gigabits/second on the line) before any information can be transferred

Inside the PCS

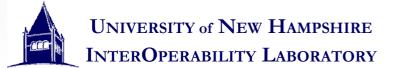
- Auto-Negotiation has control of what is sent while xmit = CONFIGURATION and IDLE
- The PCS controls what is sent when xmit = DATA
- PCS supplies link status information to the autonegotiation layer


What is Auto-Negotiation

- Auto-Negotiation is responsible for ensuring that the optimal link is resolved between two link partners
- Information is exchanged in a 16-bit word called a configuration register (Config_Reg), which is part of a /C/ Ordered Set
- Duplex and Pause modes are considered when determining the optimal link
- Auto-Negotiation is also responsible for exchanging remote fault and any additional information

Ordered Sets

- An ordered set is defined as a Special (K) code group followed by one or more Data (D) code groups
- There are four ordered sets that are used in Auto-Negotiation
- Two are Idle (/I/) Ordered Sets and two are Configuration (/C/) Ordered Sets


Idle Ordered Sets

- The two possible Idle Ordered Sets are known as
 I1 and I2
- I1 is /K28.5/D5.6/
- I2 is /K28.5/D16.2/
- I1 is used to flip Running Disparity, while I2 is used to maintain Running Disparity

/C/ Ordered Sets

- The two possible /C/ ordered sets are known as C1 and C2
- C1 is /K28.5/D21.5/Config_Reg
- C2 is /K28.5/D2.2/Config_Reg
- The Config_Reg is made of two additional Data code groups

Configuration Register

- The Config_Reg is a 16-bit word that contains the information to be transferred
- The Config_Reg can be used to create several types of pages, such as base pages and next pages

• The base page looks like: мsв

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

rsvd	rsvd	rsvd	rsvd	rsvd	FD	HD	PS1	PS2	rsvd	rsvd	rsvd	RF1	RF2	Ack	NP	
------	------	------	------	------	----	----	-----	-----	------	------	------	-----	-----	-----	----	--

Duplexes

- The supported duplexes are advertised in bits 5 and 6 of the base page
- There are two possible duplexes
 - Full Duplex Bit 5 information is passed bidirectionally
 - Half Duplex Bit 6 information can only be passed one way at a time

LSB

MSB

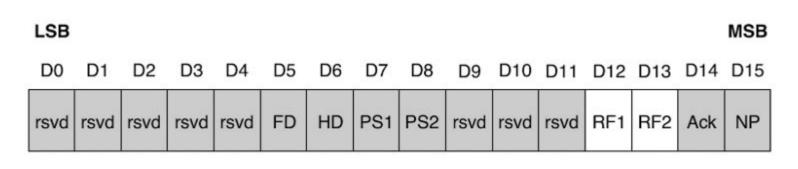
D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15	DO	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
---	----	----	----	----	----	----	----	----	----	----	-----	-----	-----	-----	-----	-----

rsv	d rsvd	rsvd	rsvd	rsvd	FD	HD	PS1	PS2	rsvd	rsvd	rsvd	RF1	RF2	Ack	NP

UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

Pause Modes

- The supported pause modes are advertised in bits 7 and 8 of the base page
- There are two possible pause modes
 - Symmetric pause Bit 7 The device can support pause frames flowing in both directions
 - Asymmetric pause Bit 8 The device can only support pause frames flowing in one direction
 LSB


D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15



UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

Remote Fault

- The remote fault bits are passed in bits 12 and 13 of the base page
- Remote Fault passes link failure information from one device to another

Acknowledge

- The Acknowledge bit is bit 14 of the base page
- The Acknowledge bit lets the link partner know that the device has received the link partner's config_reg
- There is an ability_match function that must be true before the Acknowledge bit can be set to one.

LSB															MSB
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
rsvd	rsvd	rsvd	rsvd	rsvd	FD	HD	PS1	PS2	rsvd	rsvd	rsvd	RF1	RF2	Ack	NP

UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

Next Page

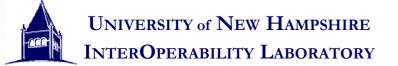
- Next page is a method of transferring additional information during the auto-negotiation process
- The Next Page bit is bit 15 of the base page
- The Next Page bit can only be set to one if the device supports next page exchange and wants to send a next page

LSB															MSB
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
rsvd	rsvd	rsvd	rsvd	rsvd	FD	HD	PS1	PS2	rsvd	rsvd	rsvd	RF1	RF2	Ack	NP

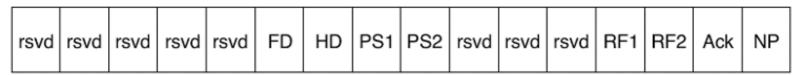
UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

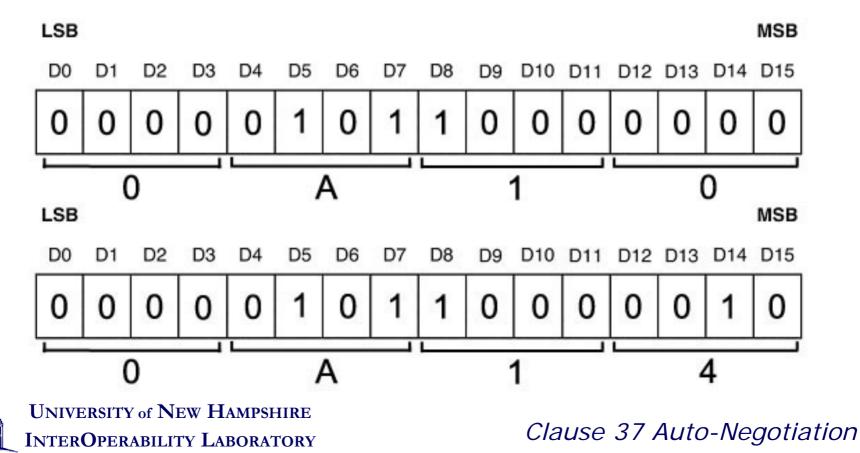
Reserved Bits

- The Reserved Bits are bits 0-4 and 9-11 of the base page
- These bits are reserved for future technologies to use
- All reserved bits must be set to zero until a new technology is implemented


LSB															MSB
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
rsvd	rsvd	rsvd	rsvd	rsvd	FD	HD	PS1	PS2	rsvd	rsvd	rsvd	RF1	RF2	Ack	NP

UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY


Config_reg in Hex


- To make it easier to specify a device's abilities, the config_reg can be encoded to hexadecimal
- This makes discussing a device's abilities much easier
- Instead of saying the device supports full duplex, symmetric pause, and asymmetric pause; one can say the device's abilities are 01a0

Config_Reg in Hex

• Here the mapping of 01a0 and 41a0 is illustrated

Breaklink

- A config_reg of all zeros is known as breaklink
- Breaklink is used to restart auto-negotiation
- A device responds to any error received during auto-negotiation by transmitting breaklink and restarting the entire auto-negotiation process

How Auto-Negotiation Works

- The four key functions in auto-negotiation are ability_match, acknowledge_match, consistency_match, and Idle_match
- The only timer for clause 37 auto-negotiation is link_timer

Ability_Match

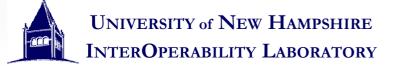
- Ability_match is responsible for ensuring that the device receives a reliable config_reg from the link partner
- Ability_match = TRUE when the device has received three consecutive and consistent (ignoring the ACK bit) config_regs from the link partner
- The device sets its ACK bit to one when ability_match = TRUE


Acknowledge_Match

 Acknowledge_match is similar to ability_match, except that the device must receive 3 consecutive and consistent config_regs with the ACK bit set to one

Consistency_Match

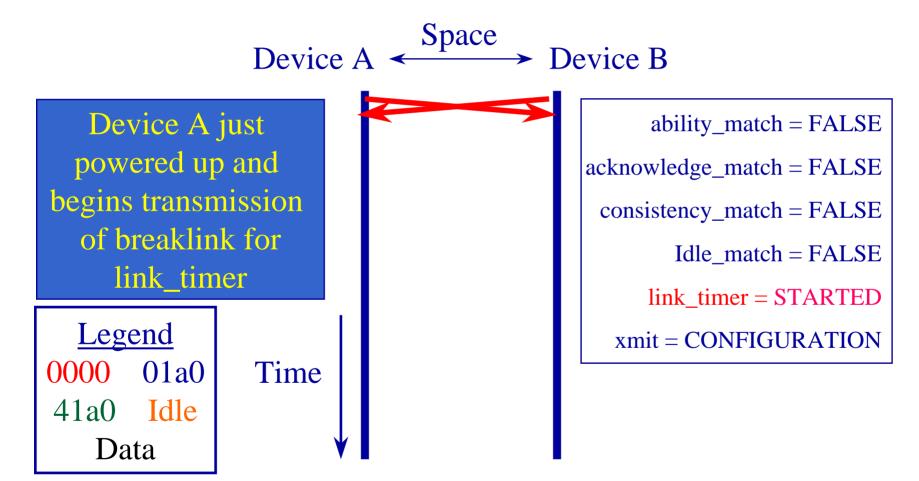
- Consistency_match ensures that the link partner transmitted the same abilities before and after it set its ACK bit
- Consistency_match compares the abilities that were used to set ability_match = TRUE to the abilities that were used to set acknowledge_match = TRUE
- All bits are examined except for the ACK bit


Idle_Match

- Idle_match is also similar to ability_match, except that it counts the Idle codes received
- The device cannot establish a link until it has successfully received 3 Idle codes from its link partner

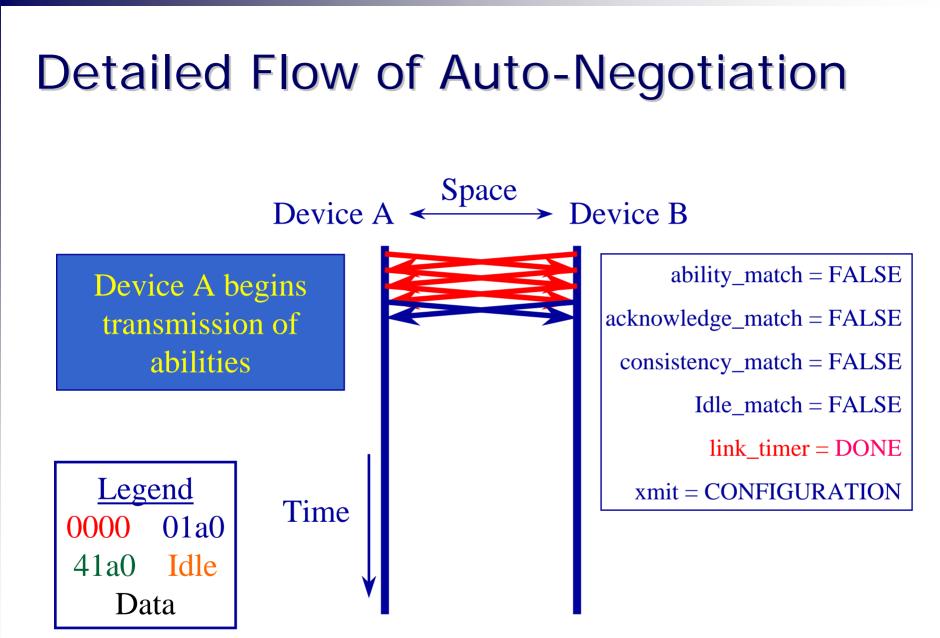
Link_Timer

- Link_timer is the only timer used in clause 37 auto-negotiation
- It is defined as 10 ms with a tolerance of +10 ms
- Link_timer is used throughout the autonegotiation process to help verify that the link partner has enough time to see everything that happens before the device transitions to the next state

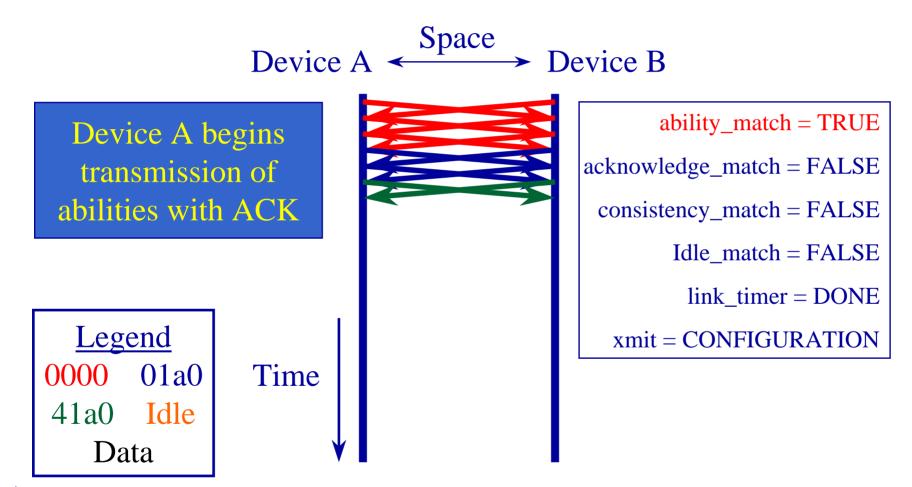


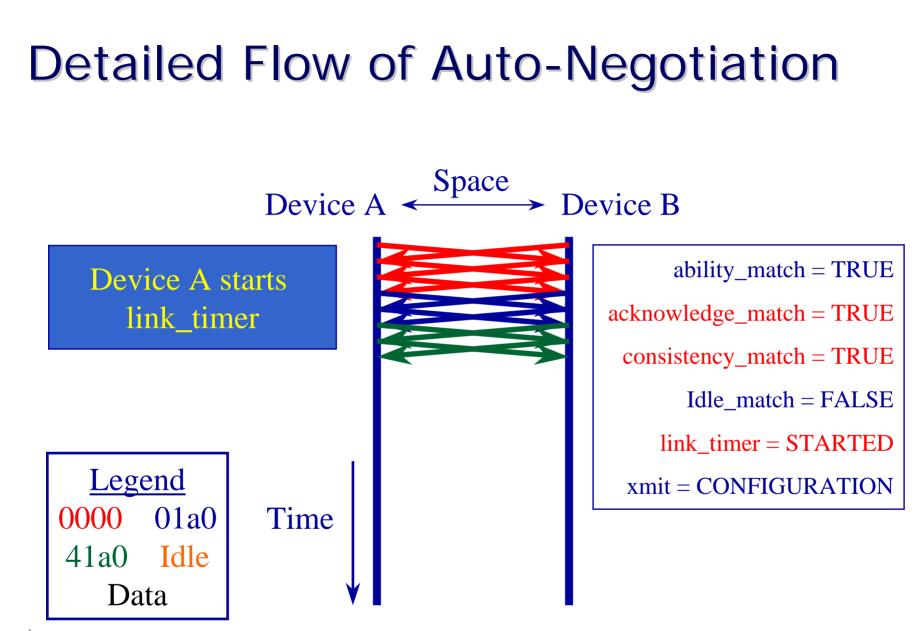
Basic Flow of Auto-Negotiation

- The basic flow of auto-negotiation is as follows:
 - Breaklink
 - Abilities
 - Abilities with the ACK bit set
 - Idle
 - PCS has control

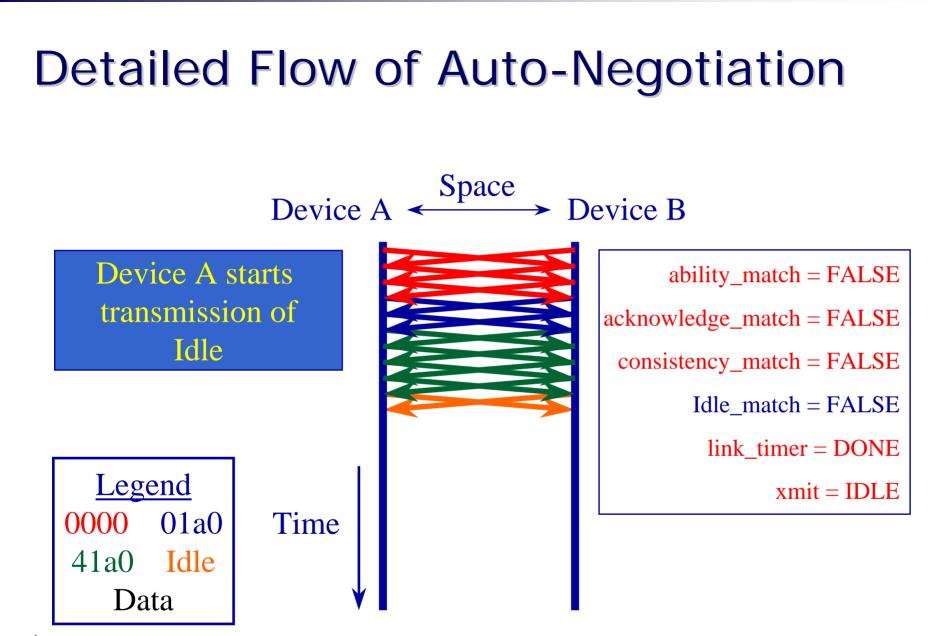


Detailed Flow of Auto-Negotiation


UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

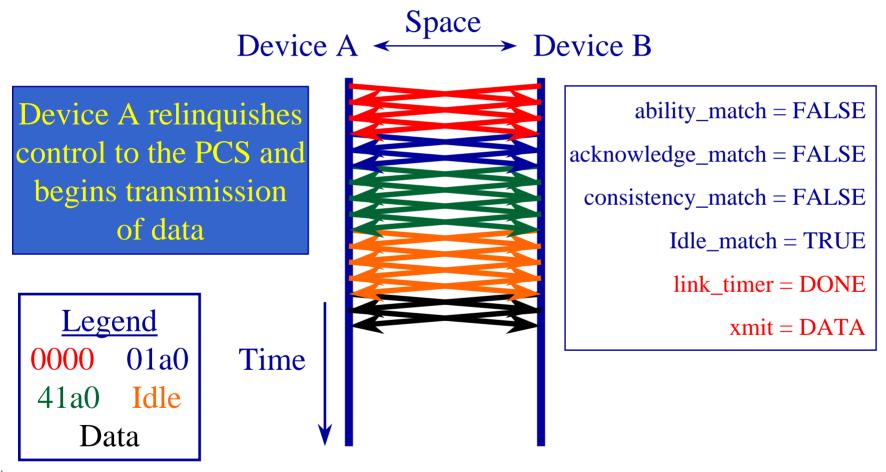

UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

Detailed Flow of Auto-Negotiation



UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

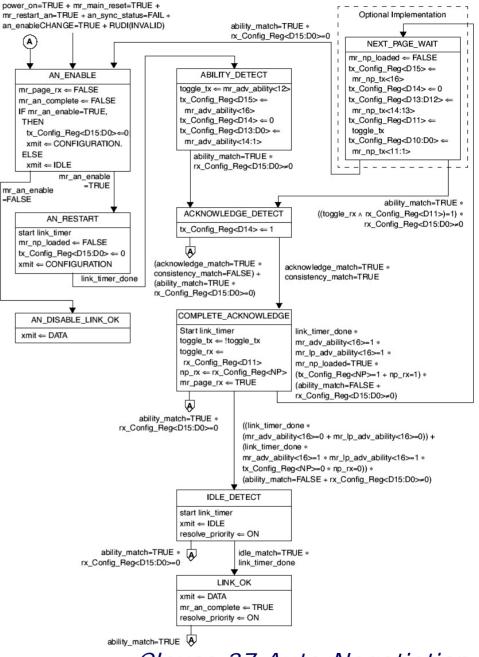
UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY


UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

Detailed Flow of Auto-Negotiation Space Device A ← \rightarrow Device B ability_match = FALSE **Device** A starts acknowledge_match = FALSE link_timer consistency_match = FALSE Idle match = TRUElink_timer = STARTED Legend xmit = IDLETime 01a0 ()()()() Idle 41a0 Data

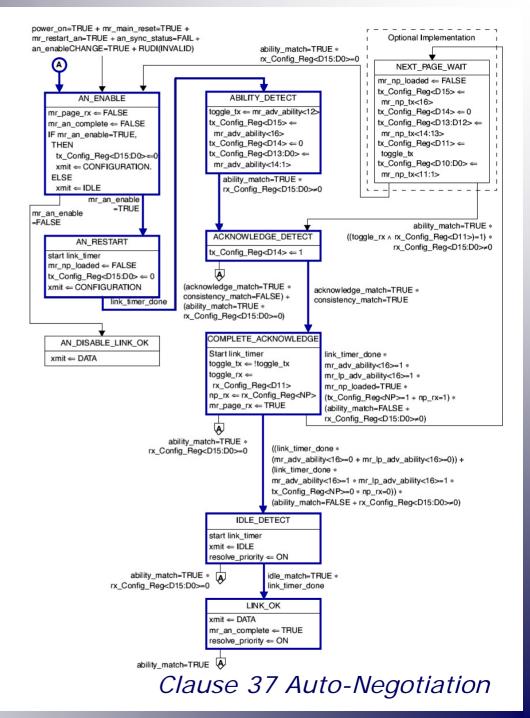
UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

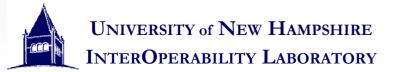
Detailed Flow of Auto-Negotiation

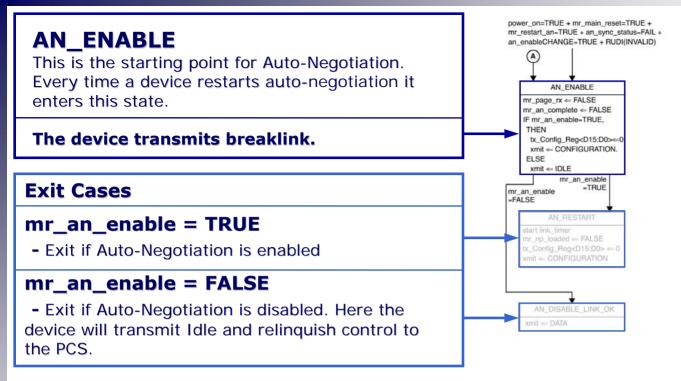


UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

State Diagram


 The Auto-Negotiation State Diagram is the basis of clause 37 auto-negotiation

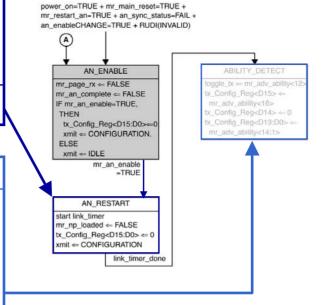


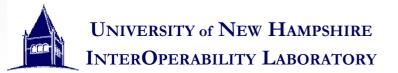

UNIVERSITY of New Hampshire INTEROPERABILITY LABORATORY

State Diagram

- The blue arrows are typically followed when two link partners autonegotiate
- The example shown here does not include next pages

AN_RESTART


This state ensures that the link partner sees that the device is restarting Auto-Negotiation


The device transmits breaklink for link_timer

Exit Cases

link_timer_done

- This is a status bit that indicates that the device has been in this state for a duration of link_timer. After link_timer is done, the device transitions to ABILITY_DETECT

ABILITY_DETECT

This state ensures that the device is receiving proper abilities from the link partner

The device transmits its own abilities

Exit Cases

ability_match = TRUE and rx_Config_Reg <D15:D0> ≠ 0

- Exit if the device has received 3 consecutive and consistent Config_Regs that are not breaklink

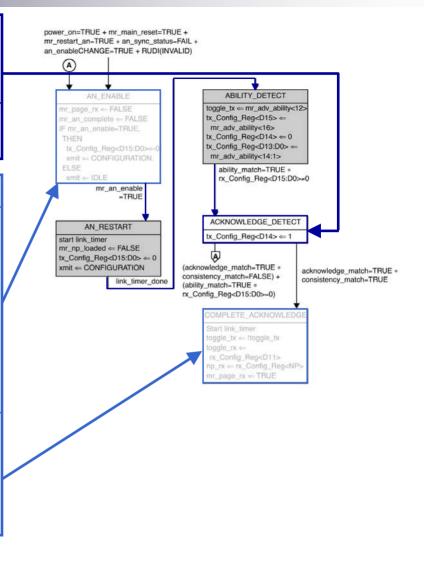
mr_restart_an=TRUE + an_sync_status=FAIL + an enableCHANGE=TRUE + RUDI(INVALID) AN ENABLE ABILITY_DETECT mr_page_rx ← FALSE toggle_tx <= mr_adv_ability<12> tx_Config_Reg<D15> ⇐ mr_an_complete - FALSE mr_adv_ability<16> IF mr an enable=TRUE. tx_Config_Reg<D14> == 0 THEN tx_Config_Reg<D13:D0> ⇐ tx_Config_Reg<D15:D0>=0 mr adv ability<14:1> xmit - CONFIGURATION. ELSE ability match=TRUE * xmit = IDLE rx Config Reg<D15:D0>=0 mr_an_enable -TRUE AN RESTART x_Config_Reg<D14> == 1 start link_timer mr_np_loaded ← FALSE tx Config Reg<D15:D0> ← 0 xmit = CONFIGURATION link_timer_done

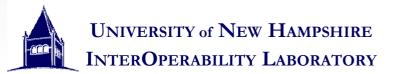
power on=TRUE + mr main reset=TRUE +

ACKNOWLEDGE_DETECT

This state ensures that the link partner has acknowledged that it has seen the devices abilities

The device transmits abilities with the ACK bit set to one.


Exit Cases


(acknowledge_match = TRUE and consistency_match = FALSE) or (ability_match = TRUE and rx_Config_Reg <D15:D0> = 0)

- Exit if the device receives 3 consecutive config_regs encoded with breaklink or if the abilities received in ACKNOWLEDGE_DETECT are different than the abilities that were received in ABILITY_DETECT

acknowledge_match = TRUE and consistency_match = TRUE

- Exit if the abilities received in ACKNOWLEDGE_DETECT are the same as the abilities that were received in ABILITY_DETECT

COMPLETE_ACKNOWLEDGE

This state ensures that the link partner has time to see that the device has set its ACK bit to one

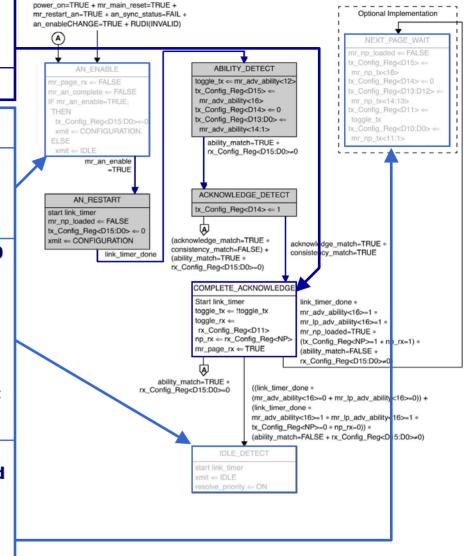
The device transmits abilities with the ACK bit set to one.

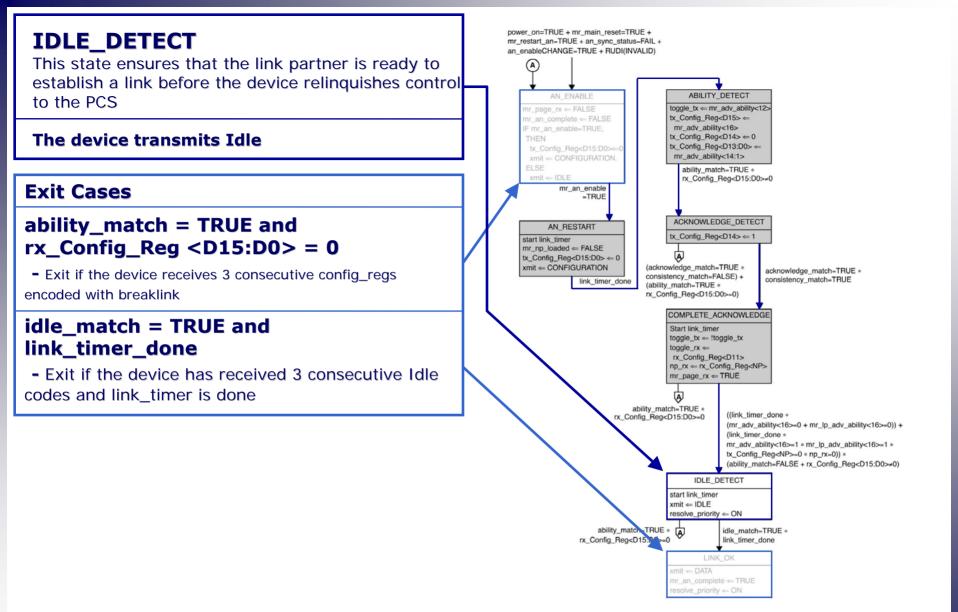
Exit Cases

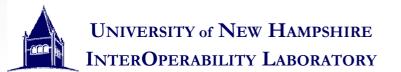
ability_match = TRUE and rx_Config_Reg <D15:D0> = 0

- Exit if the device receives 3 consecutive config_regs encoded with breaklink

```
((link_timer = DONE and (mr_adv_ability<16>=0
or mr_lp_adv_ability<16>=0)) or (link_timer =
DONE and mr_adv_ability<16>=1 and
mr_lp_adv_ability<16>=1 and
tx_Config_Reg<NP>=0 and np_rx=0)) and
(ability_match = FALSE or
rx_Config_Reg<D15:D0> ≠ 0)
```


- Exit if link_timer is done and one of the devices doesn't support next page exchange or both devices are done transmitting next pages and the device isn't receiving breaklink

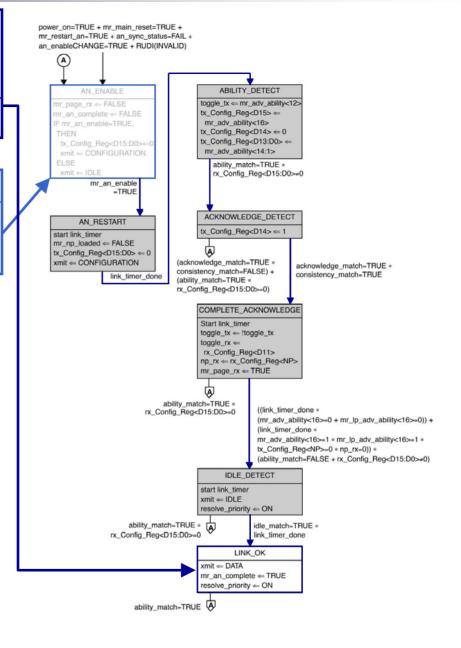

link_timer = DONE and mr_adv_ability<16>=1
and mr_lp_adv_ability<16>=1 and mr_np_loaded
= TRUE and (tx_Config_Reg<NP>=1 or np_rx=1)
and (ability_match = FALSE or
rx_Config_Reg<D15:D0> ≠ 0)


- Exit if link_timer is done and both devices support next page exchange and at least one device still has next pages to transmit and the device isn't receiving breaklink

UNIVERSITY of NEW HAMPSHIRE

INTEROPERABILITY LABORATORY

LINK_OK


Auto-Negotiation is now complete and the PCS now has control

The PCS determines what to transmit

Exit Cases

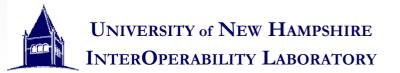
ability_match = TRUE

- Exit if the device has received 3 consecutive and consistent Config_Regs

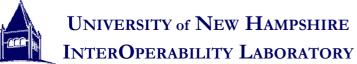

Next Page Exchange

- As shown earlier, the next page capability (desire) is advertised in bit 15 of the base page
- If the bit is set to one, the device supports next page exchange and wants to transmit a next page. If the bit is set to zero, either the device doesn't support next page exchange or doesn't want to transmit one.

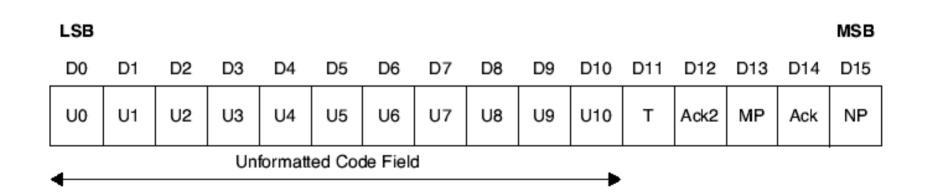
Why Next Page?

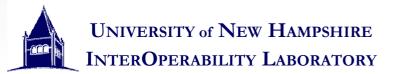

- Next page exchange allows two devices to transfer information that is not included in the base page
- This information could include additional modes of operation or remote fault information
- There are two kinds of next pages:
 - Message pages
 - Unformatted pages

Message Page

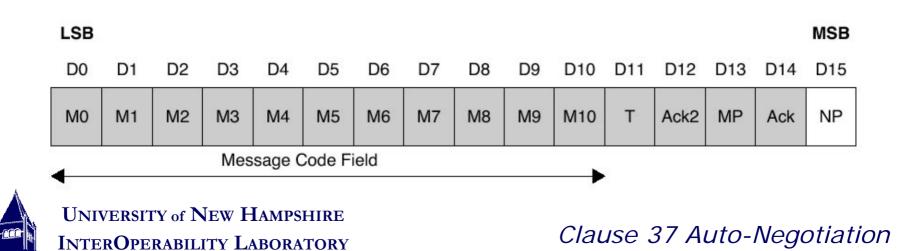

- The message page contains an 11-bit formatted Message Code Field
- The first message page determines how many unformatted pages will follow
- The encoding of the message page is:

LSB															MSB
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
MO	M 1	М2	МЗ	M4	M5	M6	М7	M8	M9	M10	т	Ack2	MP	Ack	NP
	Message Code Field														
•															


Encoding for the 11-bit message code at the beginning of a message page

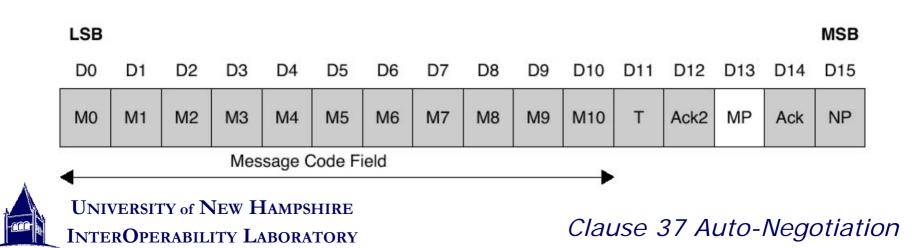

	Message Code #	M 10	М 9	M 8	M 7	M 6	M 5	M 4	М 3	M 2	M 1	М 0	Message Code Description		
(0	0	0	0	0	0	0	0	0	0	0	0	Reserved for future Auto-Negotiation use		
	1	0	0	0	0	0	0	0	0	0	0	1	Null Message		
1	2	0	0	0	0	0	0	0	0	0	1	0	One UP with Technology Ability Field follows		
2	3	0	0	0	0	0	0	0	0	0	1	1	Two UPs with Technology Ability Field follow		
ŕ	4	0	0	0	0	0	0	0	0	1	0	0	One UP with Binary coded Remote fault follows		
-	5	0	0	0	0	0	0	0	0	1	0	1	Organizationally Unique Identifier Tagged Message		
	6	0	0	0	0	0	0	0	0	1	1	0	PHY Identifier Tag Code		
,	7	0	0	0	0	0	0	0	0	1	1	1	100BASE-T2 Technology Message Code. 100BASE-T2 Ability Page to follow using Unformatted Next Page		
1	8	0	0	0	0	0	0	0	1	0	0	0	1000BASE-T Technology Message Code. Two 1000BASE-T Ability Pages to follow using Unformatted Next Pages.		
9	9	0	0	0	0	0	0	0	1	0	0	1	Reserved for future Auto-Negotiation use		
	2047	1	1	1	1	1	1	1	1	1	1	1	Reserved for future Auto-Negotiation use		

Unformatted Page


- The unformatted page contains an 11-bit Unformatted Code Field
- The first 11 bits can be any arbitrary value

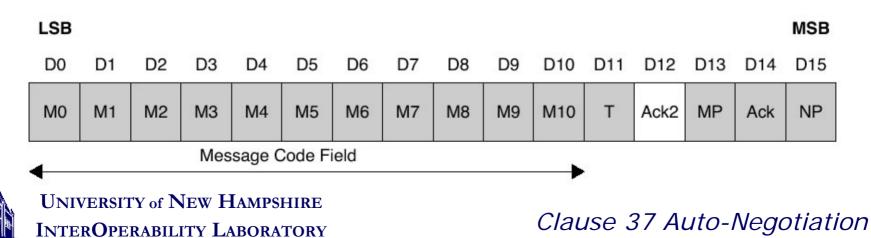
Next Page Bit

- The Next Page Bit is bit 15 of all next pages
- It is used to indicate if the current page is the last page that will be exchanged
- A zero is used to indicate that this is the last page that will be exchanged

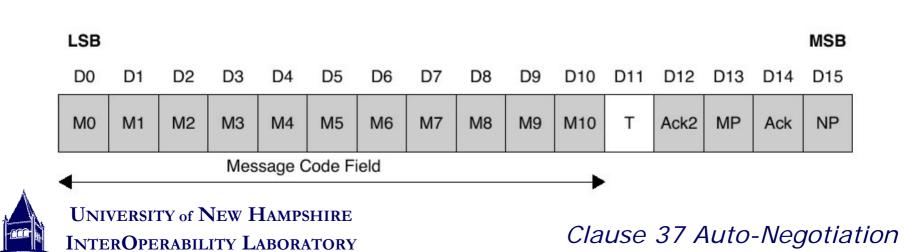

Acknowledge Bit

- The Acknowledge Bit is bit 14 of all next pages
- This acknowledge bit works like the acknowledge bit in the base page, ability_match must be true before the acknowledge bit is set to one
- This ensures that the link partner is correctly receiving the device's next page

LSB															MSB
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
MO	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	т	Ack2	MP	Ack	NP
-	Message Code Field														
l .	UNIVERSITY of NEW HAMPSHIRE										se 3	87 Aι	ıto-l	Vegc	otiatio


Message Page Bit

- The Message Page Bit is bit 13 of all next pages
- This bit is used to differentiate a message page from an unformatted page
- A one indicates a message page while a zero indicates an unformatted page

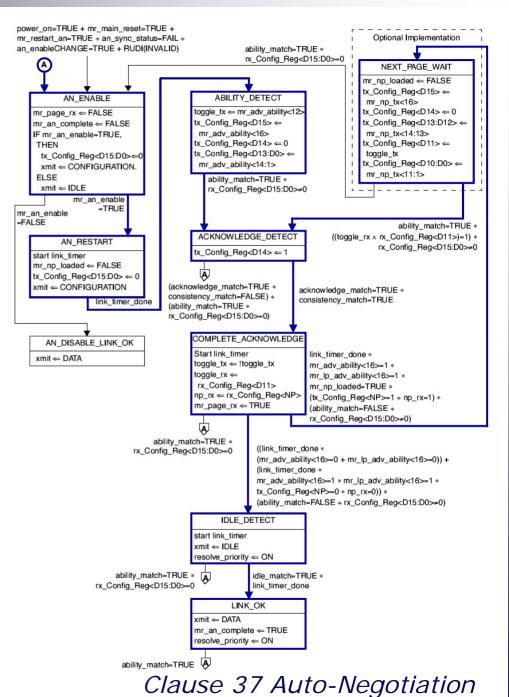

Acknowledge 2 Bit

- The Acknowledge 2 Bit is bit 12 of all next pages
- It is used to indicate if the link partner is capable of acting on the information that was transferred in the previous pages
- A one indicates that the link partner can comply with the message, while a zero indicates that the link partner cannot comply

Toggle Bit

- The Toggle bit is bit 11 for all next pages
- The Toggle Bit is used to ensure synchronization of next pages during next page exchange
- The value of the Toggle Bit is flipped for every new next page that is sourced from the device

State Diagram with Next Page


•The blue lines show how the device flows through the state diagram with next page exchange

•The loop consisting of the ACKNOWLEDGE_DETECT, COMPLETE_ACKNOWLEDGE, and NEXT_PAGE_WAIT states is entered once for each different next page exchanged

• In the following slides, the state transitions for a next page exchange will be examined, beginning in the COMPLETE_ACKNOWLEDGE state.

UNIVERSITY of NEW HAMPSHIRE INTEROPERABILITY LABORATORY

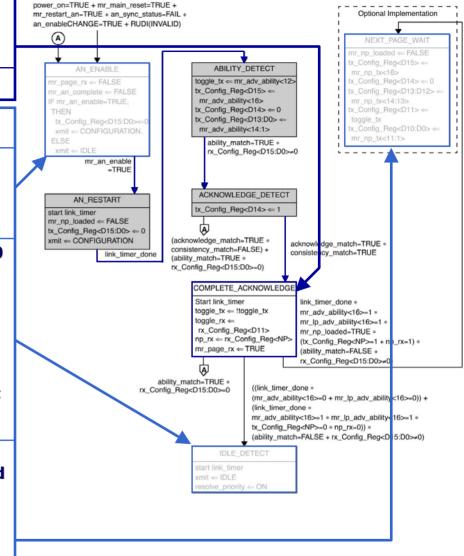
COMPLETE_ACKNOWLEDGE

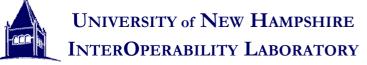
This state ensures that the link partner has time to see that the device has set its ACK bit to one

The device transmits abilities with the ACK bit set to one.

Exit Cases

ability_match = TRUE and rx_Config_Reg <D15:D0> = 0


- Exit if the device receives 3 consecutive config_regs encoded with breaklink


```
((link_timer = DONE and (mr_adv_ability<16>=0
or mr_lp_adv_ability<16>=0)) or (link_timer =
DONE and mr_adv_ability<16>=1 and
mr_lp_adv_ability<16>=1 and
tx_Config_Reg<NP>=0 and np_rx=0)) and
(ability_match = FALSE or
rx_Config_Reg<D15:D0> ≠ 0)
```

- Exit if link_timer is done and one of the devices doesn't support next page exchange or both devices are done transmitting next pages and the device isn't receiving breaklink

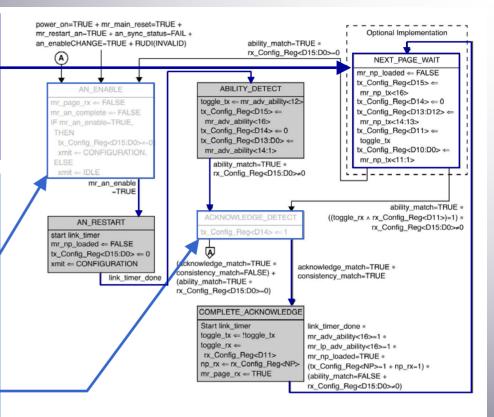
link_timer = DONE and mr_adv_ability<16>=1
and mr_lp_adv_ability<16>=1 and mr_np_loaded
= TRUE and (tx_Config_Reg<NP>=1 or np_rx=1)
and (ability_match = FALSE or
rx_Config_Reg<D15:D0> ≠ 0)

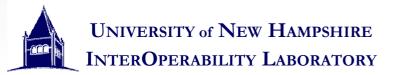
- Exit if link_timer is done and both devices support next page exchange and at least one device still has next pages to transmit and the device isn't receiving breaklink

NEXT_PAGE_WAIT

This state is similar to the ABILITY_DETECT state, the device stays in this state until it receives 3 consecutive and consistent Config_Regs

The device begins transmission of a next page


Exit Cases


ability_match = TRUE and rx_Config_Reg <D15:D0> = 0

- Exit if the device receives 3 consecutive Config_Regs encoded with breaklink

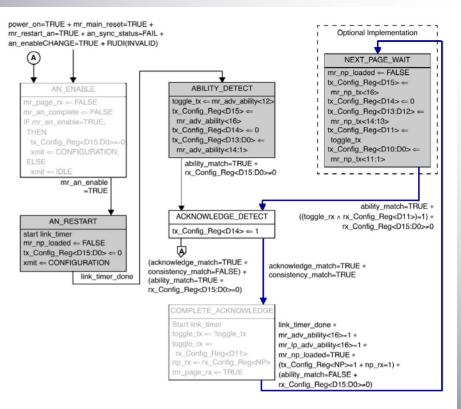
ability_match = TRUE and ((toggle_rx xor rx_Config_Reg<D11>)=1) and rx_Config_Reg<D15:D0> ≠ 0

- Exit if the device has received 3 consecutive and consistent next pages and the toggle bit has been changed since the previous next page and the device is not receiving breaklink

ACKNOWLEDGE_DETECT

This state ensures that the link partner has acknowledged that it has seen the devices Config_Reg

The device transmits abilities with the ACK bit set to one.


Exit Cases

(acknowledge_match = TRUE and consistency_match = FALSE) or (ability_match = TRUE and rx_Config_Reg <D15:D0> = 0)

- Exit if the device receives 3 consecutive config_regs encoded with breaklink or if the Config_Reg received in ACKNOWLEDGE_DETECT is different than the Config_Reg that was received in NEXT_PAGE_WAIT

acknowledge_match = TRUE and consistency_match = FALSE

- Exit if the Config_Reg received in ACKNOWLEDGE_DETECT is the same as the Config_Reg that was received in NEXT_PAGE_WAIT

COMPLETE_ACKNOWLEDGE

This state ensures that the link partner has time to see that the device has set its ACK bit to one

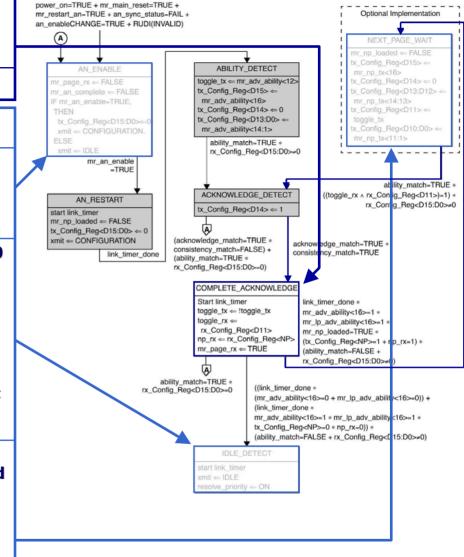
The device transmits abilities with the ACK bit set to one.

Exit Cases

ability_match = TRUE and rx_Config_Reg <D15:D0> = 0

- Exit if the device receives 3 consecutive config_regs encoded with breaklink

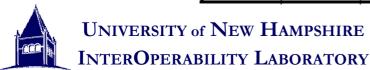
((link_timer = DONE and (mr_adv_ability<16>=0
or mr_lp_adv_ability<16>=0)) or (link_timer =
DONE and mr_adv_ability<16>=1 and
mr_lp_adv_ability<16>=1 and
tx_Config_Reg<NP>=0 and np_rx=0)) and
(ability_match = FALSE or
rx_Config_Reg<D15:D0> ≠ 0)


- Exit if link_timer is done and one of the devices doesn't support next page exchange or both devices are done transmitting next pages and the device isn't receiving breaklink

link_timer = DONE and mr_adv_ability<16>=1
and mr_lp_adv_ability<16>=1 and mr_np_loaded
= TRUE and (tx_Config_Reg<NP>=1 or np_rx=1)
and (ability_match = FALSE or
rx_Config_Reg<D15:D0> ≠ 0)

- Exit if link_timer is done and both devices support next page exchange and at least one device still has next pages to transmit and the device isn't receiving breaklink

UNIVERSITY of NEW HAMPSHIRE


INTEROPERABILITY LABORATORY

Remote Fault

- The remote fault bits of the base page are used to transmit link fault and error information to the link partner
- There are 4 possible encodings for the 2 bits:

RF1	RF2	Description
0	0	No error, link OK (default)
0	1	Offline
1	0	Link_Failure
1	1	Auto-Negotiation_Error

No Error, Link OK

- This is the default encoding for the remote fault bits
- It is used by devices that either don't support remote fault detection and devices that support remote fault detection but haven't detect any errors or faults

Offline

- The offline encoding is used to signal that the device is about the go offline
- An offline indication could be caused by the device powering off, running transmitter tests, or removing the device from the active configuration

Link_Failure

 The link_failure indication is used to signal either loss of synchronization or reception of breaklink for a duration longer than link_timer

Auto-Negotiation_Error

- The auto-negotiation_error encoding is used to indicate that the device could not resolve a mode of operation between the link partner and itself
- For example, if one device only supported full duplex and its link partner only supported half duplex then both devices would encode the remote fault bits with auto-negotiation_error

Summary

- Auto-Negotiation is located inside the PCS
- Auto-Negotiation transfers information to the link partner in a 16-bit Config_Reg to resolve the optimal link
- When Auto-Negotiation is complete, the PCS controls what is transmitted

