CLiCC Webinar II

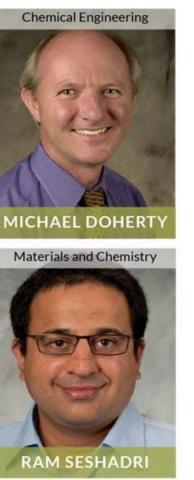
September 30, 2016

CLiCC Webinar 2 QSAR, Release, Fate & Transport

Mengya Tao, Dingsheng Li, Runsheng Song, Rucha Thakar, Kendra Garner, Dillon Elsbury

CLiCC Webinar Series

•Webinar 1, September 14th, 10am - 11am PDT. CLiCC Life-Cycle Inventory module


•Webinar 2, September 30th, 10am - 11am PDT. CLiCC QSAR, Release, and Fate & Transport modules

•Webinar 3, October 7th, 10am - 11am PDT. CLiCC Predictive Life Cycle Impact Assessment, Exposure, Toxicity, and Uncertainty modules

> All webinars are recorded and will be available for viewing on clicc.ucsb.edu <u>clicc@list.bren.ucsb.edu</u>

UCSB Team Leadership

Fate and Transport

Life Cycle Assessment

Key Team Members

Stefano Cucurachi Tool Management & Architecture

Dingsheng Li Exposure Module

Jessica Perkins Output Visualization & Pilot Testing

Yiting Ju Ontology Module

Jeff Frumkin Chemical Production Module

Runsheng Song Predictive LCI Module

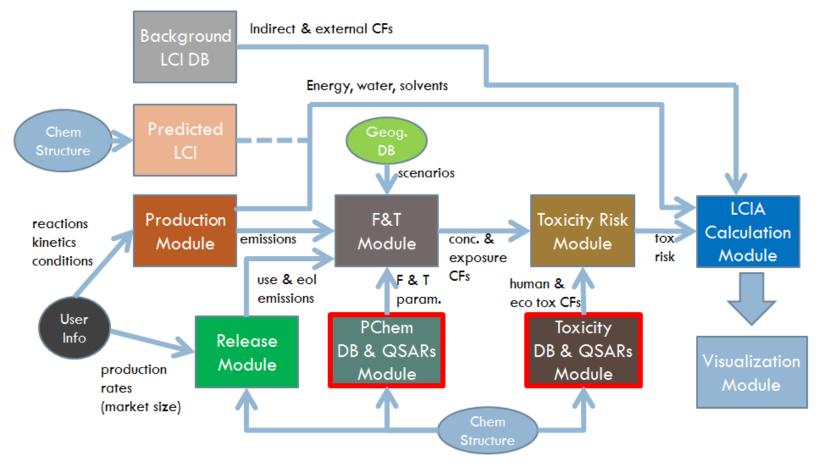
Kendra Garner Fate & Transport Module

Mengya Tao QSAR Module

Yuwei Qin Uncertainty Module

Dillon Elsbury Fate & Transport Module

Rucha Thakar Fate & Transport Module


Webinar 2 Discussion

- QSAR Module (Mengya Tao, PhD Student)
- Release Module (Dr. Dingsheng Li)
- Fate and Transport Module (Dr. Kendra Garner)

QSAR MODULE <u>Quantitative</u> <u>Structure</u> <u>Activity</u> <u>Relationship</u>

Mengya Tao mengya@umail.ucsb.edu

CLiCC Workflow

Overview of QSAR Models

9

- Goal: Fill in the data gap from available chemical information by QSAR model predictions
 - QSARs have been well-developed over the past 50 years and it grows exponentially due to 1) more chemical databases available 2) more advanced statistical techniques
 - Assumption: similar chemical structures lead to similar biological activities

QSAR Module Data Sources

Chemical Databases (Evaluated over 30 sources)

QSAR Tools (Evaluated over 20 tools)

Environmental and Ecotoxicological

PubChem, ChemSpider, ECHA CHEM, ACToR, TOXNET, Enhanced NCI Database Browser, DSSTox, ECOTOX

EPI Suite, T.E.S.T, ECOSAR, VEGA, OpenTox, Demetra, QSAR Toolbox

Human Health Effect

PubChem, ECHA CHEM, ACToR, TOXNET, DSSTox

T.E.S.T, Toxtree, VEGA, Lazar, OpenTox, OncoLogic, QSAR Toolbox

Selected QSAR Tools

EPI Suite - US EPA

T.E.S.T - US EPA, Dr. Todd Martin

 VEGA - Istituto di Ricerche Farmacologiche Mario Negri Milano, Dr. Emilio Benfenati & Dr. Alberto Manganaro

Current Endpoints & Prediction Tools

	Endpoint	Unit	Prediction Tool
	Molecular Weight	g/mol	EPI Suite
	Density	g/cm^3	T.E.S.T
	BCF	L/kg wet-wt	EPI Suite, T.E.S.T, VEGA
	Octanol/water partition coefficient (Kow)	unitless	EPI Suite, VEGA
	Organic carbon/water partition coefficient (Koc)	unitless	EPI Suite
Physico-chemical and	Air/water partition coefficient (Kaw)	unitless	EPI Suite
Environmental Fate	Aerosol/air partition coefficient (Koa)	unitless	EPI Suite
Environmental rate	Degradation rate in air (halflife)	h	EPI Suite
	Degradation rate in water (halflife)	h	EPI Suite
	Degradation rate in soil (halflife)	h	EPI Suite
	Degradation rate in sediment (halflife)	h	EPI Suite
	Vapor Pressure	mmHg	EPI Suite, T.E.S.T
	Water Solubility	mg/L	EPI Suite, T.E.S.T
	Total Removal	%	EPI Suite
WWTP Process	Total Biodegradation	%	EPI Suite
WWWIF FIOLESS	Total Sludge Adsorption	%	EPI Suite
	Total to Air	%	EPI Suite
	Fish Acute LC50	mg/L	VEGA
Ecological Effect	Fathead Minnow LC50 96h	mg/L	T.E.S.T, VEGA
	Daphnia Magna LC50 48h	mg/L	T.E.S.T, VEGA
	Mutagenicity	Yes/NO	T.E.S.T, VEGA
	Carcinogenicity	Yes/NO	VEGA
Human Health Effect	Developmental Toxicity	Yes/NO	T.E.S.T, VEGA
numali neatti cilett	Estrogen Receptor	Yes/NO	VEGA
	Skin Sensitization	Yes/NO	VEGA
	Oral Rat LD 50	mg/kg	T.E.S.T

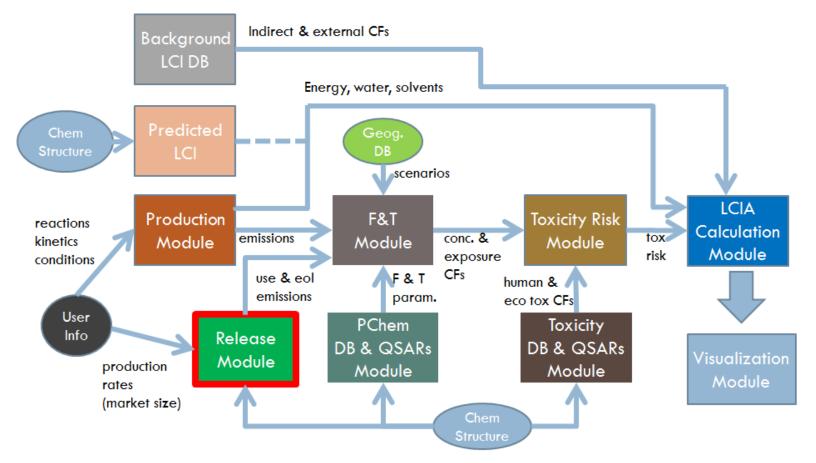
Current Endpoint Selection Criteria

- ¹³Minimum, maximum, arithmetic mean, standard deviation are obtained:
 - **Step 1: Experimental values**
 - Step 2: VEGA with High reliability/TEST Consensus
 - **Step 3: VEGA with moderate reliability/EPI Suite**

Step 4: VEGA with low reliability

QSAR Example - Phthalic anhydride (CAS 85-44-9)

			Avg	MAX	MIN	Sample Size	SD	Note	Source	Unit
Fate & Transport		MD	1.53E+00	1.53E+00	1.53E+00	4	0	exp	TEST	g/cm^3
		MW	1.48E+02	1.48E+02	1.48E+02	1	0	NA	EPI	g/mol
		DegAero	5.13E-03	5.13E-03	5.13E-03	1	0	est	EPI	1/day
		DegAir	4.85E-02	4.85E-02	4.85E-02	1	0	est	EPI	1/day
		DegSSed	5.13E-03	5.13E-03	5.13E-03	1	0	est	EPI	1/day
		DegSed	5.13E-03	5.13E-03	5.13E-03	1	0	est	EPI	1/day
•	7	DegSoil	2.31E-02	2.31E-02	2.31E-02	1	0	est	EPI	1/day
Module		DegWater	4.62E-02	4.62E-02	4.62E-02	1	0	est	EPI	1/day
		kAerAir	5.97E+07	5.97E+07	5.97E+07	1	0	est	EPI	NA
		kAirWater	6.67E-07	6.67E-07	6.67E-07	1	0	est	EPI	NA
		kOctWater	3.98E+01	3.98E+01	3.98E+01	4	0	exp	VEGA & EPI	NA
		kOrgWater	1.62E+01	2.25E+01	1.00E+01	2	6.23E+00	est	EPI	NA
Release Module -		VP	6.80E-07	6.80E-07	6.80E-07	2	6.58E-10	exp	EPI & VEGA	atm
		WS	6.20E+03	6.20E+03	6.20E+03	2	1.59E+00	exp	EPI & VEGA	mg/L
		BCF	2.43E+00	5.28E+00	5.20E-01	5	2.17E+00	est moderate	VEGA & EPI	L/kg wet-wt
		Orat LD50	1.53E+03	1.53E+03	1.53E+03	3	2.27E-13	exp	TEST	mg/kg
Toxicity Module -	\prec	dmLC50	2.33E+00	3.72E+00	9.48E-01	2	1.39E+00	est low	VEGA	mg/L
5		fishLC50	8.32E+01	8.32E+01	8.32E+01	1	0	est good	VEGA	mg/L
	L	fmLC50	1.92E+01	1.92E+01	1.92E+01	1	0	est moderate	VEGA	mg/L
			Avg	# of N	# of P	# of NC	SS	Note	Source	
		ER	negative	2	0	0	2	est good	VEGA	
		carciTox	negative	4	0	0	4	exp	VEGA	
Direct Output -	\prec	deveTox	negative	1	0	0	1	est	TEST	
		mutaTox	negative	5	0	0	5	exp	VEGA & TEST	
	L	skinSensi	negative	1	0	0	1	est good	VEGA	


est: estimated

exp: experimental

RELEASE MODULE

Dingsheng Li dli@ucsb.edu

CLiCC Workflow

Sources of Release

Outdoor

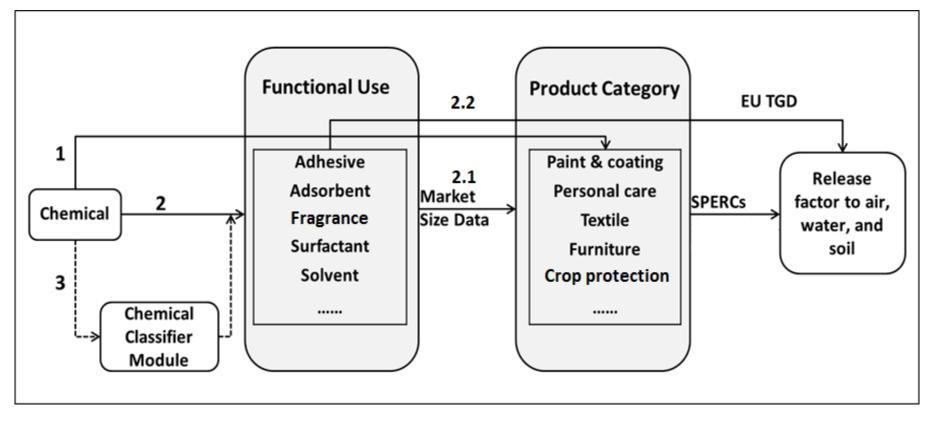
□ Point sources: stacks, pipes, etc.

□ Area sources: open burning, runoff, etc.

Indoor

 Stoves
 Consumer products Assessing the release of chemicals from consumer products is most challenging

Estimating Release


Bottom-up approach

- Study the specific type of consumer product and use patterns
- Need to know the detail information of the ingredients, which may not be available

Top-down approach

- Linking the chemicals' functional uses, product categories, and release factors
- Able to perform screening of many chemicals

Release Framework

Functional uses Product categories Aerosol Solvents Surfactants Biocides propellants Paints & coatings 62.0% 3.0% 13.0% 17.0% Printing inks 10.0% Pharmaceuticals 7.5% Cosmetics/Personal Care 3.5% 12.0% 35.0% 20.0% Adhensives 2.5% Construction 4.0% Home care 45.0% 30.0% Industrial & institutional cleaners 4.0% Food processing 3.5% Oilfield chemicals 4.0% Agricultural chemicals 4.0% 18.0% Textile 2.5% 20.0% Water treatment Food & beverage 21.0% 10.0% Wood preservation 16.0% Medical 5.5% Other 14.5% 10.0% 2.5%

Samples of market size data (numbers are not accurate due to confidentiality)

Market Size Data (Samples)

Release Factors Data Sources

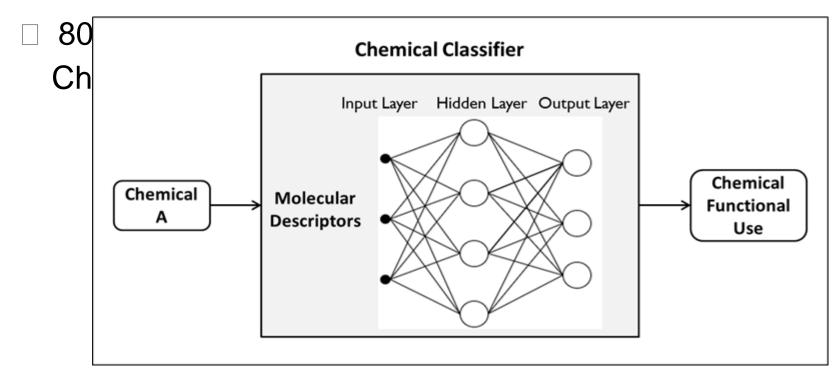
SPERCs <u>SPecific Environmental Release Categories</u>

- Developed by a variety of European trade groups and sector organizations
- More than 190 SPERCs have been developed in a standardized format by 13 industry sectors

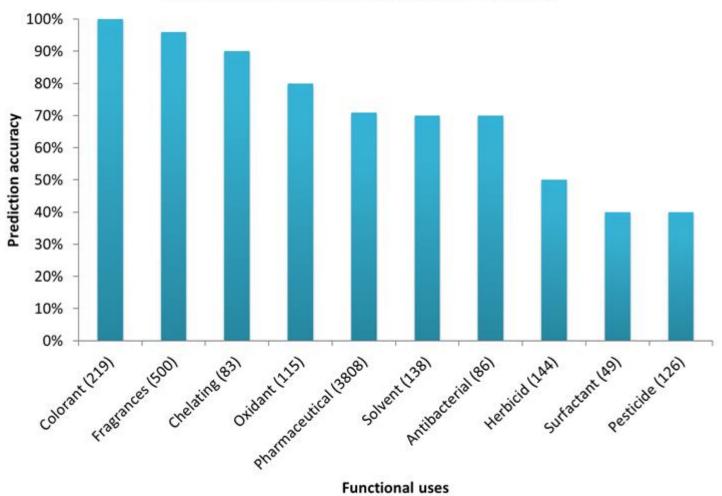
EUTGD - European Union Technical Guidance Documents

Mainly for functional use

Note that these release factors are for use phase only, mass balance may not add up to 1 - there may be release in disposal phase


SPERC Data Samples

Samples of SPERC release factor data


Product Category	SPERC Code	Use Type	Application Type	Indoor/ Outdoor	Closed/ Open System	Physical Property	Release fraction to air	Release fraction to waste water	Release fraction to soil	Release fraction to waste
Hair and Skin Care Products	Cosmetics Europe SPERC 8a.1.a.v2	Wide Dispersive Use	Down the drain	NA	NA	NA	0	1	0	0
	Cosmetics Europe SPERC 8a.1.b.v2	Wide Dispersive Use	Aerosol (Propellants)	NA	NA	NA	1	0	0	0
	Cosmetics Europe SPERC 8a.1.c.v2	Wide Dispersive Use	Aerosol (Non Propellants)	NA	NA	NA	0	1	0	0
	ECPA SPERC 8d.1.v2	All Uses	Solids	Both	NA	NA	0	0	1	0
Crop Protection Products	ECPA SPERC 8d.2.v2	All Uses	Spray	Both	NA	Vapor Pressure	VP > 0.01 Pa = 1; VP 0.001-0.01 Pa = 0.5; VP 0.0001- 0.001 Pa = 0.2; VP 0.00001-0.0001 Pa = 0.1; VP <= 0.00002 Pa = 0.01	0	VP > 0.01 Pa = 0; VP 0.001-0.01 Pa = 0.5; VP 0.0001- 0.001 Pa = 0.8; VP 0.00001-0.0001 Pa = 0.9; VP <=0.00001 Pa = 0.99	0

Chemical Classifier Module

Using Artificial Neural Networks (ANNs) as the modelling basis

Classifier Accuracy

Performance of the Chemical Classifier Module

Release Example - Phthalic anhydride

Mainly used as an intermediate in the production of plasticizer

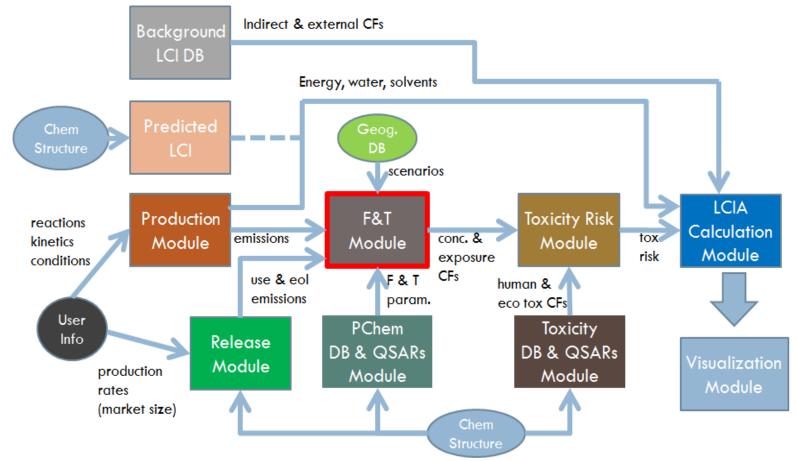
CAS	85-44-9			
SMILES	O=C(OC(=O)c1cccc2)c12			
Vapor pressure	5.17*10-4 mm Hg at 25 C			
Water solubility	6000 mg/L at 25 C			
Boiling point	295 C			

Release Example

- Pathway 1
 - Product category known as intermediate
 - No release data currently available to proceed
- Pathway 2.1
 - Functional use known as intermediate
 - No market size data to determine product application streams to proceed

Release Example

- Pathway 2.2
 - Functional use known as intermediate
 - Based on EU TGD #55 Others
 - Considering the vapor pressure and solubility
 - Release fraction to air: 0.00075
 - Release fraction to wastewater: 0.1
 - Release fraction to soil: 0.2
 - Release fraction to landfill: 0.69925


Release Example

- Pathway 3
 - Classifier decides it is a pharmaceutical
 - Based on EU TGD #41 Pharmaceutical
 - Release fraction to air: 0
 - Release fraction to wastewater: 0.05
 - Release fraction to soil: 0
 - Release fraction to landfill: 0.95

Fate and Transport for Chemicals

Kendra Garner & Arturo Keller <u>kegarner@bren.ucsb.edu</u> <u>keller@bren.ucsb.edu</u>

CLiCC Workflow

CLiCC Fate & Transport Model

- Mass balance model

 Non-steady state model
- Predicts time-dependent <u>daily</u> concentrations
- Uses regionally specific climate data
- Release scenario is fully customizable

Other Models

Steady-state

Output is average value at steady state

Low resolution

Rigid structure

Model Capabilities

Traditional Fate and Transport Models also only accurately predict fate for organic chemicals

Different types of chemicals are subject to different biogeochemical processes

We have separate models for:

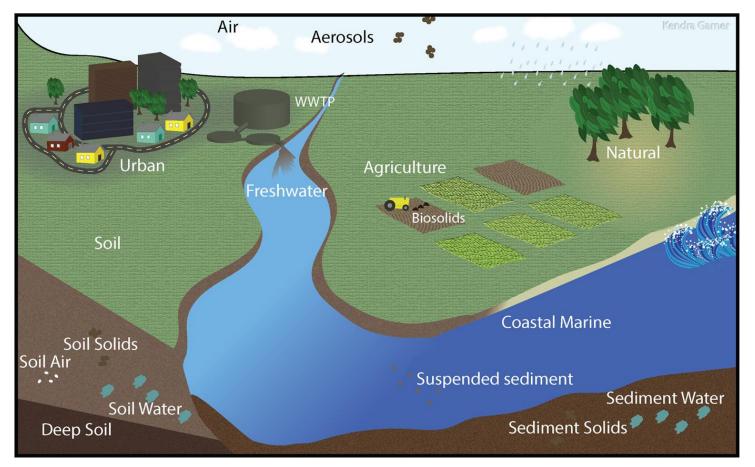
Organic Chemicals

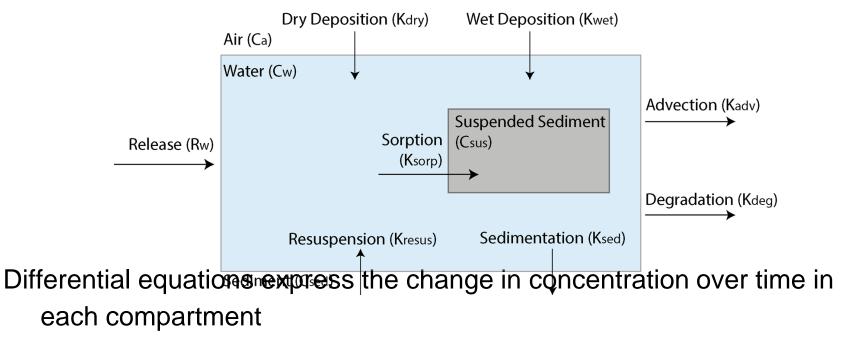
Nanomaterials

Inorganics including metals (In Development)

Dolymore (In Doyalonmont)

Each location is unique


- Hydro-Climatic conditions
 - Rainfall
 - Wind speed
 - Temperature
 - Surface water flow
- Land Use Types
 - Urban land
 - Agricultural land
 - Natural land
 - Freshwater
 - Seawater


Population

Sample geographical region: San Francisco, CA

Conceptual Environment

Each environmental compartment is a box which can gain or lose mass

26 Compartments

Land use patterns change the properties of soil and release quantities

Some products are disproportionately used only in only some regions ex. pesticides, paints

Sludge from WWTPs (biosolids) is applied to only 5% of agricultural soils

<u>Air</u> Air Aerosols	<u>Urban Soil</u> Urban Soil Solids Urban Soil Water Urban Soil Air Urban Deep Soil
<u>Freshwater</u> Freshwater Column Freshwater Suspended Freshwater Sediment Solids Freshwater Sediment Water	Natural Soil Solids Natural Soil Water Natural Soil Air Natural Deep Soil
<u>Seawater</u> Seawater Column Seawater Suspended Sediment Seawater Sediment Solids Seawater Sediment Water	<u>Agricultural Soil</u> Agricultural Soil Solids Agricultural Soil Water Agricultural Soil Air Agricultural Deep Soil

26 Compartments

Freshwater and marine water (and their benthic regions) are distinct ecosystems. Chemical releases have different impacts on different species

Land-locked regions will not have a marine compartment

Release of treated water from WWTP to water bodies varies depending on the WWTP locations

<u>Air</u> Air Aerosols	<u>Urban Soil</u> Urban Soil Solids Urban Soil Water Urban Soil Air Urban Deep Soil
Freshwater	<u>Natural Soil</u>
Freshwater Column	Natural Soil Solids
Freshwater Suspended	Natural Soil Water
Freshwater Sediment Solids	Natural Soil Air
Freshwater Sediment Water	Natural Deep Soil
<u>Seawater</u>	<u>Agricultural Soil</u>
Seawater Column	Agricultural Soil Solids
Seawater Suspended Sediment	Agricultural Soil Water
Seawater Sediment Solids	Agricultural Soil Air
Seawater Sediment Water	Agricultural Deep Soil

Customizable Release Scenarios

Consistent (Constant)

Toothpaste

Increasing/decreasing with time
 ENMs, CFCs

Seasonal

Pesticide, sunscreen

Single Event Accidental chemical spill

Sporadic

occurring at irregular intervals or only in a few places; scattered or isolated Release to freshwater or marine based on WWTP locations Based on urban planning

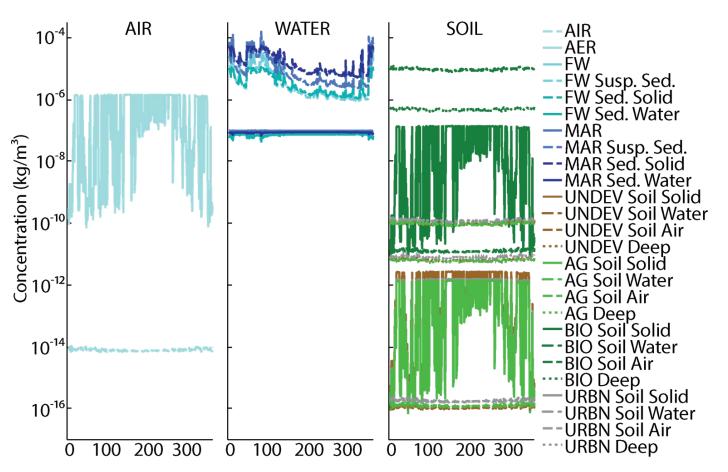
Case Study: Phthalic Anhydride in San Francisco

Information Provided by CLiCC Modules (or User)

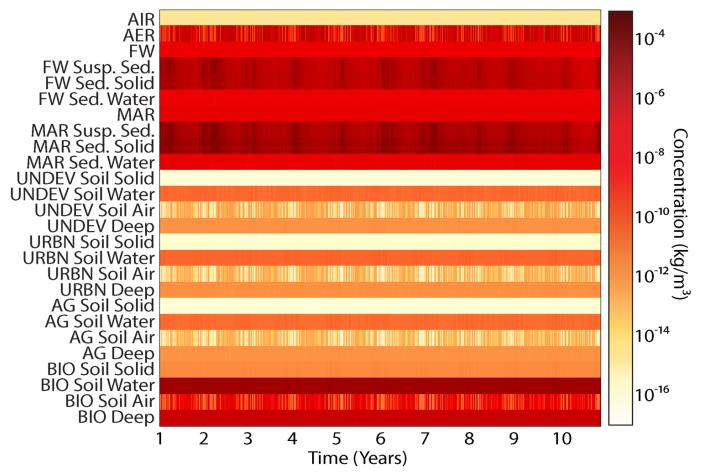
Chemical Properties from QSARS Module

Release Ratios from Release Module

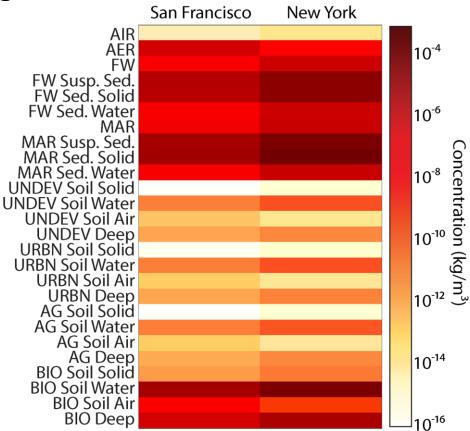
Direct Model Input


Background concentrations assumed zero

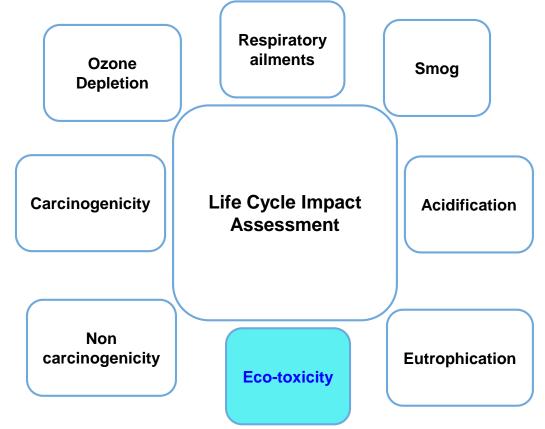
Use mass/volume of chemical 100 kg/day


0.075 kg/day to Air

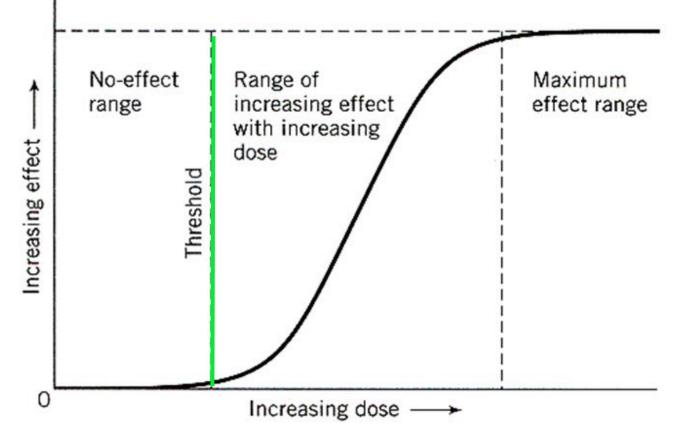
20 kg/day to agricultural soils through biosolids application


Long Term Variability - Phthalic Anhydride

Comparison between Regions

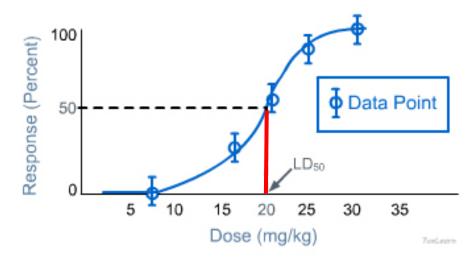

New York:

- smaller region
- higher population density
- very high impervious areas and urban land
- has much more precipitation

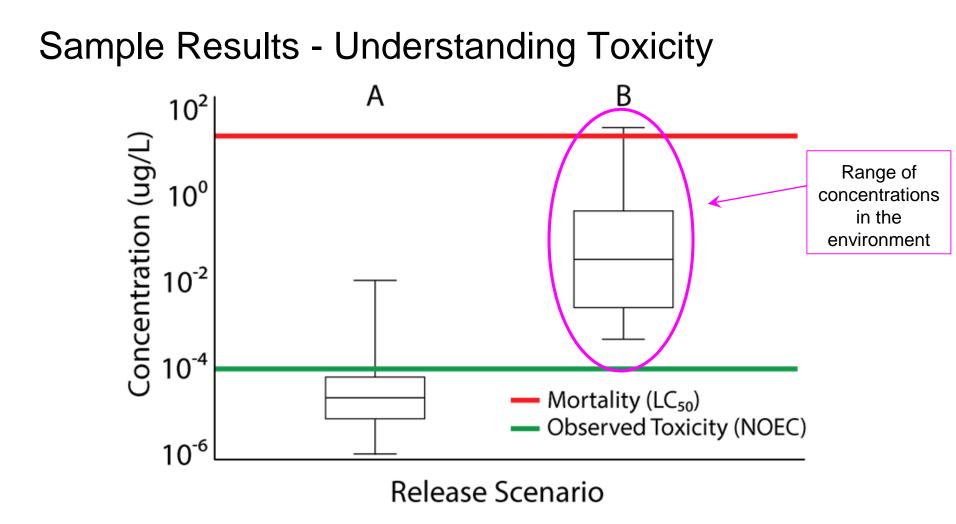


Relating chemical presence to impacts

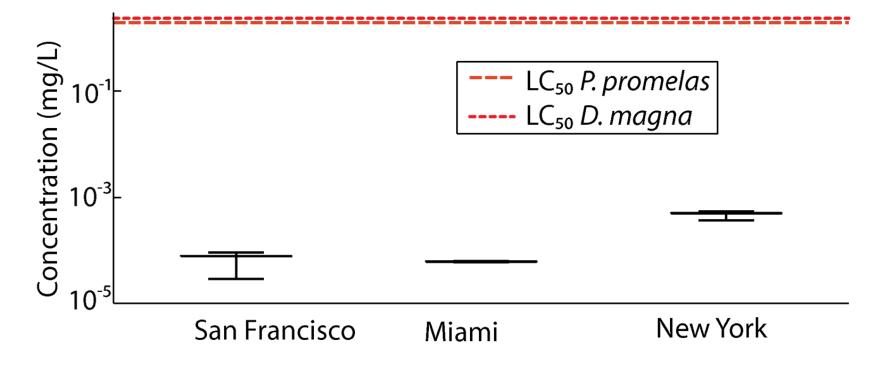
- Life Cycle Impact Assessment is the "so what" stage of the LCA
- EcoToxicity can be further understood as: Freshwater aquatic ecotoxicity marine aquatic ecotoxicity freshwater sediment ecotoxicity marine sediment ecotoxicity terrestrial ecotoxicity human toxicity



Understanding Acute Toxicity from F&T results



If the examined effect is death...


Dose-Response Graph

"mg/kg" refers to the amount of the chemical in milligrams per kilogram of body weight of the subject

Phthalic Anhydride

Limitations of the Fate and Transport Model

Limitations

Limited by data availability and uncertainty

What does this mean for such studies in other parts of the world?

Chronic toxicity and phytotoxicity information is rarely available

Assumptions about environmental parameters

Difficult to determine if the model is it too simple or too complex

Lakes and groundwater are more complex - not YET modelled in CLiCC

Model Validation

Chemical concentrations in all compartments are difficult to measure

Limited abaam ad data painta (aingle abaam atian)

Thank you for your patience

Any questions can be directed to module experts or <u>clicc@list.bren.ucsb.edu</u>

Next CLiCC webinar will be held on October 7, 2016, 10 - 11 am, PDT