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Use of fossil fuels is the main contributor to anthropogenic emissions of greenhouse 

gases (GHG). Biorefineries, which are facilities that produce a set of valuable products 

from biomass, have been suggested as alternatives to fossil refineries, for the production 

of fuels, chemicals and materials. Emerging biorefineries are introducing new 

technologies, which can lead to increased use of biomass not previously utilised for 

industrial processes, such as harvesting residues from agriculture and forestry. Biomass 

is a renewable resource, but production and processing of biomass are associated with 

environmental impacts. 

This thesis examined the climate impact and energy balance of emerging biorefinery 

systems, paying particular attention to the use of residues as feedstock. Three biorefinery 

systems were assessed and compared, all producing transportation fuels in combination 

with different co-products. These systems were: (1) co-production of ethanol, biogas, 

electricity and heat from straw in a lignocellulosic biorefinery; (2) co-production of 

ethanol, protein feed and briquettes from faba bean in a green crop biorefinery; and (3) 

co-production of biodiesel, biogas and electricity from straw in a lignocellulosic 

biorefinery. The analytical method used was life cycle assessment (LCA). 

Methodological issues when using LCA for assessing the climate impact of biorefinery 

systems were also discussed. 

Ethanol and biodiesel produced from straw and forest residues in emerging biorefinery 

systems were found to have a lower climate impact and better energy balance than fossil 

fuels. Moreover, the biorefinery system producing ethanol and co-products from straw 

had a lower climate impact and more beneficial energy balance than that producing 

biodiesel and co-products. However, when using residues from agriculture and forestry 

or when harvesting the whole crop as biorefinery feedstock, specific consideration of 

effects on soil organic carbon is needed. The study on faba bean showed that using a 

biorefinery feedstock that is currently used for other purposes, such as feed, can cause 

indirect effects that affect the overall climate performance of the system. To improve the 

potential value of LCA studies on biorefinery systems, selection of functional unit, 

allocation method and treatment of biogenic carbon fluxes over time need further 

attention. 
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Abstract 



 

 

Användning av fossila bränslen är den främsta källan till antropogena utsläpp av 

växthusgaser. Bioraffinaderier är anläggningar som per definition producerar ett flertal 

värdefulla produkter från biomassa. För produktion a bränslen, kemikalier och material 

har bioraffinaderier föreslagits som viktiga framtida alternativ till fossila raffinaderier. 

Introduktionen av nya bioraffinaderier leder till att ny teknik används samt en ökad 

användning av biomassa som traditionellt inte har används för industriella processer i 

stor utsträckning, såsom skörderester från jordbruk och skogsbruk. Biomassa är en 

förnyelsebar resurs, dock är produktion och bearbetning av biomassa förknippad med 

miljöpåverkan. 

Denna avhandling syftar till att bidra till en bättre förståelse av klimatpåverkan och 

energibalansen av nya bioraffinaderier, med ett särskilt fokus på användningen av jord- 

respektive skogsbruksrester som biomassa. Tre bioraffinaderisystem utvärderades, alla 

producerade transportbränslen i kombination med olika samprodukter. Systemen var: (1) 

samproduktion av etanol, biogas, el och värme från halm i ett lignocellulosa-

bioraffinaderi; (2) samproduktion av etanol, proteinfoder och briketter från åkerbönor i 

ett grönt-bioraffinaderi. (3) samproduktion av biodiesel, biogas och el med halm som 

råmaterial i ett lignocellulosa-bioraffinaderi. Metoden som användes var livscykelanalys 

(LCA), och användningen av LCA för att studera bioraffinaderisystem diskuterades 

också. 

Resultaten visar att etanol och biodiesel som produceras från halm och skogsrester i 

nya bioraffinaderier har lägre klimatpåverkan och mer fördelaktiga energibalanser än 

fossila bränslen. Bioraffinaderiet som producerar etanol med samprodukter från halm 

visade bättre klimatpåverkan och energibalanser än systemet som producerar biodiesel 

med samprodukter. När rester från jordbruk och skogsbruk används eller när man skördar 

hela grödan som bioraffinaderimaterial, krävs särskild försiktighet för att begränsa den 

negativa effekter på markkol. Studien på åkerböna visade att användning en gröda som 

bioraffinaderiråvara som för närvarande används för andra ändamål, kan ha indirekta 

effekter som är viktiga för klimatpåverkan från systemet. För att förbättra det potentiella 

värdet av LCA studier på bioraffinaderier bör hänsyn tas till val av funktionell enhet, 

allokeringsmetoder och hantering av biogena kolflöden över tid. 
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ALCA Attributional life cycle assessment 

CH4 Methane 

CHP Combined heat and power generation 

CLCA Consequential life cycle assessment 

CO2 Carbon dioxide 

CO2eq Carbon dioxide equivalents 

dLUC Direct land use change  

DM Dry matter 

EE Energy efficiency ratio 

EJ Exajoule 

FAME Fatty acid methyl ester 

FFRP Fossil fuel replacement potential 

FT-fuels Fischer-Tropsch fuels 

FU Functional unit 

GHG Greenhouse gases 

GWP Global warming potential 

Ha Hectare 

HVO Hydrotreated vegetable oil 
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LHV Lower heating value 

MJ Megajoule 
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PFAD Palm fatty acid distillate 

RED Renewable energy directive 

SOC Soil organic carbon 

TWh Terawatt hour 

 

Abbreviations 



12 

 

  



13 

 

Climate change is one of the greatest environmental challenges of our time. 

Global actions are needed to keep the average temperature increase below 2 °C 

relative to pre-industrial levels and one such action is to substantially lower 

emissions from energy systems (IPCC, 2014). Fossil resources are the main 

contributor to climate change, with combustion of these resources creating 

around two-thirds of anthropogenic emissions of greenhouse gases (GHG) 

(IPCC, 2014). 

Fossil resources are used in the energy sector and for producing multiple 

products, including fuels, chemicals and materials, e.g. plastics. The transport 

sector is the major user of fossil resources, with this sector alone using almost 

two-thirds of yearly crude oil production globally (IEA, 2015). Around 85% of 

the energy used in the Swedish transport sector is based on fossil resources, 

making it the sector with the highest fossil fuel dependency (SEA, 2016). The 

dependency on fossil resources is problematic, not only because of the 

environmental consequences, but also since fossil resources are finite. 

Therefore, good renewable alternatives with a lower environmental impact are 

needed. 

Biomass can replace fossil resources in the production of fuels, chemicals 

and materials (Keegan et al., 2013). In so-called biorefineries, biomass can be 

processed into many of the products that are currently produced from fossil 

resources. Biorefineries can therefore play a central role in creating a fossil-

independent society. When biomass is used for feed and food, or for paper and 

pulp, in combination with new uses for fuels, chemicals and materials, demand 

for biomass will increase. Although biomass is considered a renewable resource, 

it is also a limited resource that requires efficient utilisation. The biorefinery 

concept, involving efficient processing of biomass, is gaining increasing interest 

for efficient utilisation of biomass (IEA, 2009; Kamm et al., 2007). 

Biomass is often considered carbon-neutral, since the carbon dioxide (CO2) 

emitted during combustion was previously absorbed from the atmosphere by the 

plant. However, production and processing of biomass is associated with 

1 Introduction 
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environmental impacts, including climate impacts and land use change. Land 

use change can lead to changes in biogenic carbon stocks, resulting in climate 

impacts. All of these aspects need to be evaluated in an environmental 

perspective. Globally, agricultural production and land use change are important 

sources of global anthropogenic GHG emissions (IPCC, 2014), indicating that 

biomass production can be associated with substantial climate impacts. 

Conventional food and feed crops, such as wheat and maize, are the main 

feedstocks used for biofuel production today (REN21, 2017). The environmental 

gain of these so-called first-generation biofuels has been widely discussed in 

research and in the public debate (Brander et al., 2017). The main criticisms are 

the competing use for food and feed crops, the land use required for producing 

biofuels and the link to indirect land use change. As a consequence, 

lignocellulosic biomass has been suggested as an alternative feedstock to biofuel 

production. This type of biomass can be a residue from agriculture or forestry 

and therefore does not require additional land use. 

Biofuels are used with the intention of decreasing the climate impact and 

fossil fuel dependency of the heavily fossil fuel-dependent transport sector. With 

the increased demand for lignocellulosic biomass to produce e.g. transportation 

fuels, there is a need for increased understanding of the climate effect of 

increased biomass harvesting, meaning whole crop harvesting or harvesting of 

straw and forest residues, on the overall climate impact of biofuels and 

biorefinery systems. In addition, new technologies and, to some extent, new 

products are being introduced with the emerging biorefining concepts. Increased 

insights into the environmental impacts from new biorefinery systems and use 

of residues can help decision and policy making towards more efficient use of 

available resources and can assist in meeting future climate and environmental 

targets. 

Life cycle assessment (LCA) is a commonly used tool to assess the potential 

environmental impact of products and services. This approach can also be used 

to assess the environmental impact of biorefinery systems and their products and 

is currently used in policy for assessing the climate impact of biofuels. However, 

applying LCA to biological production systems is associated with several 

methodological challenges, including handling of land use change and changes 

in biogenic carbon stocks over time, and definitions of system boundaries. 

Moreover, in LCA studies on biorefineries that produce multiple products, 

definition of functional unit and allocation may be especially difficult. Hence, to 

improve LCA studies of biorefineries in both research and policy applications, 

method development and evaluation of LCA for use in assessing biorefinery 

systems are important. 



15 

 

2.1 Aim 

The general aim of this thesis was to provide a better understanding of the 

climate impact and energy balance of different emerging biorefinery systems 

producing transportation fuels in combination with different co-products. The 

main focus was on residues from agriculture and forestry as feedstock. Specific 

objectives were: 

 To evaluate, in terms of climate impact and energy balance, three 

different biorefinery systems: (1) co-production of ethanol, biogas, 

electricity and heat from straw and forest residues in a lignocellulosic 

biorefinery; (2) co-production of ethanol, protein feed and briquettes 

from faba bean in a green crop biorefinery; and (3) co-production of 

biodiesel, biogas and electricity from straw in a lignocellulosic 

biorefinery. 

 To analyse the effects of different methodological choices in LCA 

studies for biorefinery systems, by elaborating on how to handle co-

products, selection of functional unit and biogenic carbon changes in 

LCA, and by discussing how LCA results can be evaluated and 

compared for different biorefinery systems. 

  

2 Aim and structure 
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2.2 Structure of the thesis 

The structure of this thesis is illustrated in Figure 1. Based on the objectives 

(described above), two main themes were established, namely assessing the 

greenhouse gas performance and energy balance of biorefinery systems and 

their products and contributing to the discussion about LCA methodology for 

biorefineries. However, during the course of the work a third theme, impacts due 

to increased biomass harvesting1 on LCA results, was introduced, since this was 

found to have a large effect on the climate impact. The three themes are 

represented by the light grey boxes in Figure 1. All papers included in this thesis 

cover at least one of these themes.  

Paper I presents a review of LCA methodology for biorefinery systems and 

includes recommendations on critical methodical issues. Paper II assesses the 

GHG performance and energy balance of ethanol and biogas produced from 

lignocellulosic feedstock, using two different LCA calculation methodologies. 

Paper III describes a consequential LCA (CLCA) on the use of faba beans as 

biorefinery feedstock and on the impact of changed use of current faba bean 

production. 

Papers IV and V are presented together in this thesis, since these publications 

refer to the same biorefinery system. Paper IV describes the process design, mass 

and energy balance of a newly developed biorefinery system that uses straw as 

feedstock for producing biodiesel by using oleaginous yeast. The greenhouse gas 

performance of the biodiesel and co-products is assessed in Paper V. 

The third theme, impacts due to increased biomass harvesting on LCA 

results, is covered to different extents in Papers II, III and V. In Paper II, soil 

organic carbon and nitrogen removal are included, using literature values. Paper 

III assesses the impact of whole crop harvesting of faba bean by modelling the 

impact on soil organic carbon, including effects on nitrogen leaching, nitrous 

oxide emissions and nitrogen fertiliser demand. Paper V includes nitrogen 

removal and soil organic carbon changes due to straw harvesting. The soil 

organic carbon impact is modelled and a method to assess the time-dependent 

temperature impact from increased biomass harvesting on global mean surface 

temperature change over time is tested. Paper V also investigates to what extent 

soil organic carbon decrease can be mitigated by returning part of the lignin 

residues from the biorefinery to the field.  

                                                        
1Increased biomass harvesting covers: crop residue harvesting, forest residue harvesting and 

whole crop harvesting. 
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balance of biorefinery 
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LCA methodology for 

biorefineries 
Impacts of increased 

biomass harvesting on 

LCA results 

Paper I. Review of 

methodological choices in LCA 

of biorefinery systems - key 

issues and recommendations 

Paper IV. A systems analysis of biodiesel production from wheat straw using oleaginous yeast: 
Process design, mass and energy balance 
Paper V. Greenhouse gas performance of biodiesel production from straw- soil organic carbon changes and time-

dependent climate impact 

Paper II. Ethanol production in biorefineries using lignocellulosic feedstock – 

greenhouse gas performance and energy balance 

Paper III. Faba bean for feed or biorefinery feedstock? Greenhouse gas and energy balances of 

different applications 

Figure 1. Illustration of the structure of the studies performed in this thesis work.  
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2.2.1 Definitions 

Biorefinery systems 

Several definitions of the term ‘biorefinery’ have been proposed, with the 

common feature that biorefineries are facilities for producing a spectrum of 

products from biomass. The definition by the International Energy Agency 

(Bioenergy Task 42 on Biorefineries), that biorefineries are “…the sustainable 

processing of biomass into a spectrum of marketable products and energy” (IEA, 

2009, p. 7), is commonly cited. 

The term biorefinery system as used in this thesis refers to the larger 

biorefinery system, including the foreground system with biomass production, 

harvesting and transport and the biorefinery plant, but also the background 

system supplying inputs of energy and materials. Furthermore, potential effects 

of replacing equivalent products are included in the LCA studies (Papers II, III 

and V) (Figure 2). This definition of biorefinery system is also used in Paper I. 

The term emerging biorefinery systems is used to describe newly or not yet 

commercialised biorefinery concepts. Further definitions of biorefinery systems 

are provided in section 3.3 of this thesis. 

 

Figure 2. Illustration of the larger biorefinery system, including biomass production, harvesting 

and transport and effects on the surrounding system by substitution of equivalent products. 

Products 

Biorefinery 

VOLVO BM 

Energy and 

materials 

Production of 

equivalent 

products 

Straw 



19 

 

Straw and forest residues 

The term residue is often used to describe biomass from agriculture and forestry 

that is not the main product, including straw and forest residues (tops and 

branches). Therefore this term is also used in this thesis. However, the term 

residue can indicate that the side-stream product is more or less a waste or that 

it lacks economic value. Therefore it is important to emphasise that crop residues 

are a valuable resource that has an economic value in many cases, and is also 

valuable in terms of carbon and nutrient sources for the production system from 

which it originates. 

 

Biofuels 

The term biofuels is used in this thesis to describe liquid and gaseous fuels 

produced from biomass, primarily intended for the transport sector. There are 

several types of biofuels produced from a variety of different forms of biomass. 

In this thesis, the term first-generation biofuels is used to describe fuels that are 

produced from primarily starch, sugar and oilseed crops. Second-generation 

biofuels are defined as fuels produced from lignocellulosic materials. These 

definitions are in line with those presented in Saladini et al. (2016). 

 

Biodiesel 

Diesel-like fuels produced from biomass are given different names in the 

literature, depending on process and feedstock. In this thesis, the term biodiesel 

is used for all diesel-like fuels produced from biomass. When needed, different 

biodiesel fuels are divided into: fatty acid methyl esters (FAME), rapeseed 

methyl esters (RME), fatty acid ethyl esters (REE), hydrotreated vegetable oils 

(HVO), dimethyl ether (DME) and Fischer-Tropsch diesel (FT-diesel). 

 

Biogenic carbon 

In this thesis, biogenic carbon is defined as carbon bound in biomass and in soil 

organic matter. 
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3.1 Biomass 

3.1.1 Biomass for bioenergy today 

Globally, biomass is the largest renewable energy source, accounting for 10% of 

the energy supply (WEC, 2016). Fuelwood is the single largest biomass 

resource, comprising 68% of the energy supply from biomass, while liquid 

biofuel makes up a relatively small proportion of the total energy supply from 

biomass, e.g. ethanol (4%), biodiesel (2%), biogas (2%) and HVO (0.3%) 

(figures for 2013) (WEC, 2016). 

In Sweden, biomass provides approximately 30% of the total energy supply 

(in 2014), and the majority of biomass is used directly in industry or for 

combined heat and power production (SEA, 2016). 

3.1.2 Biomass potential 

Biomass potential, especially for the bioenergy sector, has been estimated in 

many previous studies (see e.g. Creutzig et al., 2015; BEE, 2011; Berndes et al., 

2003). Future biomass potential depends on several factors. Hoogwijk et al. 

(2003) listed six factors affecting biomass availability for bioenergy: future food 

demand depending on population growth and diet, future crop production 

systems, productivity in forestry and energy cropping, use of biomass for 

material production, amount of degraded land that can be used for bioenergy 

cropping and competing uses of land, such as using surplus land for 

reforestation. 

Börjesson et al. (2013a) reviewed a number of studies on the potential for 

increased biomass production and harvesting for biofuel production in Sweden. 

The largest potential was found for stump harvesting and forest residues, while 

straw contributed approximately 4 TWh (0.014 EJ) out of an estimated total 

3 Background 
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potential of 56-69 TWh (0.20-0.25 EJ) per year in a short-term perspective. In a 

longer-term perspective (30-50 years), the potential was estimated to be 80-98 

TWh (0.29-0.35 EJ) per year or higher (177-195 TWh (0.64-0.70 EJ)), where 

the higher potential assumed increased stem wood production and fertilisation 

of forest land (Börjesson et al., 2013a). 

Estimates of future biomass potential for bioenergy in Europe also vary 

greatly, with one review reporting a variation from approximately 2.8 to 24 EJ 

by 2020 (BEE, 2011). Another review on global biomass potential found 

estimates in the literature ranging from less than 50 EJ per year to more than 

1000 EJ per year, and concluded that there is good agreement that up to 100 EJ 

per year is the sustainable technical potential (Creutzig et al., 2015). For 

comparison, total primary energy use globally was 400 EJ in 2015 (IEA, 2017). 

Competition for use of biomass by other emerging sectors is sometimes not 

considered in biomass availability studies (Keegan et al., 2013; Berndes et al., 

2003). Novel uses of biomass, in combination with conventional uses for food, 

feed, building material, pulp and paper etc., will increase the pressure on 

available biomass resources (Keegan et al., 2013). Efficient use of available 

biomass resources is therefore crucial in meeting the future demands for 

biomass. 

3.1.3 Liquid transportation fuels from biomass 

Globally, the transport sector is dependent on fossil fuels to 90% and road 

transport is even more dependent, with fossil fuels representing 95% of total 

energy use (2012) (IEA, 2015). In 2015, biofuel use for road transport accounted 

for 2.6% of final energy use. Ethanol is the most important liquid biofuel 

globally, with 72% (in energy terms) of total production, while FAME accounted 

for 23% and HVO 4% of total biofuel production in 2016. Although second-

generation biofuel production is now starting to be commercialised, the vast 

majority of biofuels are produced from starch, sugar and oilseed crops (REN21, 

2017). 

In Sweden, the share of biofuels is higher than the global average, e.g. in 

2016 biofuel use in the Swedish transport sector was 18.8%, HVO is the most 

common biofuel, followed by biodiesel (FAME) and ethanol (SEA, 2017a). Use 

of HVO has increased greatly in Sweden during recent years, e.g. it increased 

15-fold from 2015 to 2016 (SEA, 2017a). The HVO sold in Sweden is mainly 

produced from residues from the food industry (38%), while around 23% of the 

raw material is palm fatty acid distillate (PFAD), a residue from palm oil 

production. The three most common biofuels in Sweden (HVO, FAME and 

ethanol) are either imported as fuels or produced from imported raw material to 

a great extent (96% of raw material for HVO, 98% for FAME and 84% for 
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ethanol was imported in 2016). Sweden has substantial domestic ethanol 

production and the reason for the low rate of domestically produced ethanol in 

the fuel mix is exports to Germany (SEA, 2017a). 

To increase the use of residues and wastes in the production of liquid 

biofuels, these type of fuels are double counted towards the 10% goal in the 

Renewable Energy Directive (RED) of the European Union (EC, 2009). The 

effect of this regulation can now be seen in the Swedish biofuel mix. In 2011, 

19% of the raw materials used for liquid biofuel production could be classified 

as residues or waste according to the RED, while the rate had increased to 66% 

in 2016 (SEA, 2017a). 

3.2 Biorefinery systems 

The term biorefinery system is defined in section 2.2.1. 

3.2.1 Biorefinery classification 

Considering all available biomass types, processing technologies and end-

products, there are many ways in which a biorefinery can be structured. 

Biorefineries have been categorised differently (see e.g. Cherubini et al., 2009; 

Kamm & Kamm, 2004). For example, Cherubini et al. (2009) suggest a 

nomenclature for biorefineries based on the platforms (intermediate products), 

feedstock and products. This nomenclature is suitable for describing individual 

biorefineries. To discuss and describe biorefinery concepts, the four types of 

biorefinery concepts suggested by Kamm and Kamm (2007) are applicable: 

 Lignocellulosic biorefineries, using lignocellulosic feedstock such as 

straw, wood and grass  

 Whole crop biorefineries, using e.g. whole crop cereals and maize 

 Green biorefineries, using fresh or conserved non-dried biomass such 

as grass, clover, immature cereals and alfalfa 

 A biorefinery two-platform concept, which includes a sugar platform 

and a syngas platform. 

The concepts described above are not comprehensive and additional 

biorefinery concepts have been suggested, including conventional biorefineries 

(based on sugar and starch feedstocks), marine biorefineries, liquid-phase-

catalytic processing biorefineries and forest-based biorefineries (Cherubini et 

al., 2009). 

Sections 3.2.2 and 3.2.3 describe in detail the two different biorefinery 

concepts covered in this thesis: lignocellulosic biorefineries and green 

biorefineries. 
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3.2.2 Lignocellulosic biorefineries 

In a lignocellulosic biorefinery, lignocellulosic materials are used as feedstock 

to produce e.g. ethanol, chemicals or bioplastics. Lignocellulosic materials  

include e.g. straw, paper waste and forest residues, which are relatively 

inexpensive feedstocks (Kamm & Kamm, 2007). The lignocellulosic biorefinery 

is considered to be one of the most promising biorefinery concepts, for two main 

reasons: the relatively cheap substrate and the fact that the products which can 

be produced in lignocellulosic biorefineries are already established on the 

current market. 

For lignocellulosic materials there are two main process routes, 

thermochemical and biochemical. The thermochemical process involves 

gasification or pyrolysis. The biochemical process route is outlined below, since 

it was studied in Papers II, IV and V. 

Lignocellulosic materials consists of three main components: cellulose, 

hemicellulose and lignin. When processing lignocellulosic materials, it is 

important to gain access to the carbohydrates in the lignocellulose, in particular 

glucose, from which a wide variety of products can be produced (Kamm & 

Kamm, 2004) (Figure 3). Cellulose can be hydrolysed to glucose using enzymes 

or strong acids such as sulphuric acid. Hemicellulose can also be hydrolysed 

using enzymes (hemicellulases) or acids to yield a mix of pentoses and hexoses 

(xylose, arabinose, galactose, glucose and/or mannose) (Zheng et al., 2009). 

Lignocellulosic 

biomass 
Cellulose 

Products: 

Fuels 

Chemicals 

Materials 

Polymers 

Combined heat and 

power 

Glucose  

Hemicellulose Pentoses (C5) and 

some hexoses (C6) 

Lignin Lignin as raw 

material 

Solid fraction 

Liquid fraction 

Figure 3. Schematic picture of a lignocellulosic biorefinery. The dotted circles represent the 

fractions after steam explosion as a pre-treatment (developed from Kamm & Kamm, 2007). 
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Before the hydrolysation step, the lignocellulosic biomass is pre-treated. The 

primary aim of the pre-treatment is to disrupt the structure of the biomass, so 

that it can be hydrolysed, e.g. by enzymes (Galbe & Zacchi, 2012). The 

monomeric sugars released can then be used for e.g. ethanol or lipid production 

using yeast. Lignin is a by-product from this process. Lignin is one of the three 

major polymers in biomass, and in woody biomass the lignin content may be as 

high as 30%. Today, most of the lignin generated industrially is from the pulp 

and paper industry. With the introduction of lignocellulosic biorefineries, 

substantial amounts of lignin would be generated and this lignin would have 

different chemical properties than that from the pulp and paper industry (Pye, 

2010). Lignin can be used for the production of high-value products such as 

aromatic chemicals and fuels, which could improve the viability of 

lignocellulosic biorefineries (Azadi et al., 2013). 

3.2.3 Green biorefineries 

In a green biorefinery, fresh or ensiled biomass is used to produce a variety of 

high-value products (Kromus et al., 2010). Green crops (e.g. perennial grasses, 

immature cereals, legumes, forage leys etc.) are rich in carbohydrates, proteins, 

lipids and lignin. The yield may be as high as 20 metric tonnes (ton) of dry matter 

(DM) per hectare (ha) and year, and the protein harvest can be up to 4 ton/ha 

(Kromus et al., 2010). Consequently, in a green biorefinery there is great 

potential to produce large amounts of protein and organic material that can be 

further processed into high-value products. 

By processing green crops, the protein content, which is conventionally only 

accessible to ruminants, can be converted to a form that is accessible to humans 

and monogastric animals. 

In the first step of processing, the green biomass is separated into a fibre-rich 

press cake and a nutrient-rich green juice (Kamm & Kamm, 2007) (Figure 4). 

The green juice contains proteins, among other compounds. Using different 

technologies, the protein can be separated out from the green juice. This can be 

done e.g. by heat, acid treatment, anaerobic digestion and centrifugation 

(Carlsson, 1997). Apart from protein products, other target products from the 

green juice include lactic acid and ethanol. The press cake can be further 

processed to e.g. feed pellets or syngas, or used for biogas production (Kamm & 

Kamm, 2007). 
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3.3 Life cycle assessment (LCA) 

Life cycle assessment is a method for 

quantifying the potential 

environmental impact of a product or 

a service from cradle to grave, i.e. 

from resource extraction to waste 

management via manufacturing, 

transport, use and maintenance of the 

product or service. Among several 

environmental assessment tools 

available, LCA is unique for its focus 

on products and services while 

considering the whole life cycle 

(Finnveden et al., 2009). 

The LCA method is standardised 

in International Standardisation 

Organisation standards ISO 14040 

and ISO 14044 (ISO, 2006b; ISO, 
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Lignin Lignin as raw 
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Green/brown  
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Figure 4. Schematic picture of a green biorefinery. The dotted circles represent the fractions after 

pressing the biomass (developed from Kamm & Kamm, 2007). 
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2006a). Several steps are involved in LCA, including goal and scope definition, 

inventory analysis, impact assessment and interpretation (Figure 5). In the goal 

and scope definition step, the aim of the study is stated, together with 

specifications for the modelling. The inventory analysis is where data on 

resource use and emissions are collected. In the impact assessment step, 

individual emissions and resource use are grouped into different environmental 

impact categories by applying impact assessment methods. The purpose is to 

describe potential environmental impacts for different environmental impact 

categories. Interpretation of the results is carried out with regard to the initial 

aim of the study, the data and the impact assessment method used. 

At least two different modelling approaches in LCA can be distinguished, 

namely accounting (or attributional) LCA (ALCA) and consequential LCA 

(CLCA). ALCA describes all immediate physical flows to and from a life cycle 

(Ekvall & Weidema, 2004) and one common use of ALCA is in product 

declarations and hotspot analysis (Weidema, 2003). CLCA “aims at describing 

how the environmentally relevant physical flows to and from the technical 

system will change in response to changes in the life cycle” (Ekvall & Weidema, 

2004, p. 161). CLCA is suitable for assessing the impact of changes, for example 

from the current situation to potential future situations. 

3.3.1 LCA of biorefineries 

Life cycle assessment is commonly used to assess the environmental 

performance of bioenergy and biorefinery systems. It is well known that the 

results depend not only on the production system itself, but also on 

methodological choices (see e.g. Borrion et al., 2012; Börjesson & Tufvesson, 

2011; Whitaker et al., 2010; Gnansounou et al., 2009). Paper I identifies six key 

issues for LCA studies on biorefinery systems: (1) goal definition, (2) choice of 

functional unit (FU), (3) allocation issues with biorefinery outputs, (4) allocation 

issues with the production of biomass feedstock, (5) land use and (6) biogenic 

carbon and timing of emissions. Some of these key issues are more general and 

applicable to basically all LCA studies, such as goal definition, choice of 

functional unit and allocation issues (i.e. partitioning of the environmental 

impact between co-products), while others relate more specifically to the use of 

biomass, in particular land use issues, including indirect land use changes, 

biogenic carbon changes and timing of emissions. 

The term biorefinery per se implies that more than one product is generated 

in the same production plant. When analysing biorefineries using LCA, two of 

the general key issues are therefore particularly relevant due to the multi-

functionality of the system. First, the choice of functional unit becomes very 

important. The functional unit is the function of the system under study and 
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serves as a basis for the calculations. For biorefineries, it can be difficult to 

identify one main product or function (Paper I). Second, an allocation or multi-

functionality problem arises when several products or services share or partly 

share a production system. The fact that biorefineries do not produce a main 

product, but rather a set of valuable co-products that can have different functions 

and physical attributes, can complicate the handling of multi-functionality 

problems (Paper I). The biomass used in emerging biorefineries is often a residue 

or in some cases can be categorised as a waste. For this reason, allocation is also 

important for the biomass used in a biorefinery (Paper I). 

General principles for handling allocation problems in LCA are specified in 

the ISO standard (2006b): 

 If possible, allocation of the environmental impact between co-products 

should be avoided. This can be done by increasing the level of detail in 

the modelling (identifying product-specific flows) or by system 

expansion. 

 If allocation cannot be avoided, the multi-functionality problem can be 

handled by first partitioning the inputs and outputs based on physical 

relationships between the products. If this cannot be done, partitioning 

should be based on other characteristics such as economic value, mass 

or energy. 

3.3.2 LCA methodology in biofuel policies 

Life cycle assessment is used in biofuel policies, for example the European 

Union’s Renewable Energy Directive (RED) (EC, 2009), the UK Renewable 

Transport Fuel Obligation, the US Environmental Protection Agencies 

Renewable Fuel Standard and the California Air Resources Board’s Low Carbon 

Fuel Standard (McManus et al., 2015). In policies, LCA is used mainly for GHG 

accounting, i.e. to assess whether a biofuel gives climate impact savings in 

relation to fossil fuels. The use of LCA for this purpose accentuates several 

important issues such as land use, market effects and time aspects in relation to 

e.g. carbon storage and technological development (McManus & Taylor, 2015). 

These are examples of aspects that the original LCA was not designed to deal 

with and LCA use in biofuel policy is therefore associated with several 

challenges (McManus et al., 2015). McManus and Taylor (2015) argue that 

biofuel policies are driving many of the changes seen in current LCA 

methodology development, particularly the increased use of consequential LCA 

studies, including indirect land use change (iLUC) and prospective studies 

looking at future scenarios. This is exemplified by the much debated issue of 

land use and indirect land use change focusing on biofuel production, despite 
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land use being a much wider issue that is related to land management and to 

production of food and particularly animal feed. 

The present thesis focuses on the RED (Papers II and V), and therefore it is 

described in brief below. In the RED, LCA methodology is applied for GHG 

accounting of biofuels. The RED includes a mandatory target for biofuel use in 

the transport sector of 10% of total energy consumption in the EU by 2020 and 

GHG reduction requirements from a fossil fuel reference including the current 

requirement of 50% and forthcoming 60% reduction requirements in 2018 for 

installations that started operation after January 2017 (EC, 2009). The RED is 

currently under revision and a proposal has been presented (EC, 2017b). Some 

of the changes to the original directive include: the inclusion of GHG reduction 

targets for solid biomass used for heat and electricity, removal of the 10% target 

for the transport sector, a cap on biofuels produced from food and feed crops, 

continued promotion of advanced biofuels and the introduction of a new fossil 

reference (EC, 2017b). In the proposal for a new RED, the reduction targets are 

set to 50% for installations in operation before October 2015, 60% for 

installations starting operation from October 2015 and 70% for installations 

starting operation after January 2021 (EC, 2017b).  

The method used to calculate the climate impact of fuels is based on the LCA 

methodology, with standardised procedures for system boundaries, functional 

unit and allocation. The GHG performance is included in the sustainability 

criteria for liquid and gaseous biofuels listed in the RED and these criteria must 

be met in order for the biofuel to count towards the target (10% target). Due to 

this, the calculation method in the RED is potentially highly influential for the 

European biofuel market. 

Although CLCA has been argued to be the most suitable LCA approach for 

policy applications (Brander, 2017; McManus & Taylor, 2015; Plevin et al., 

2014), the LCA method in RED is largely based on an ALCA approach. 

However, the RED is moving towards a consequential approach, for example 

iLUC factors have been introduced into the directive (EC, 2015).  

3.3.3 Assessing biogenic carbon stock changes in LCA 

The amount of soil organic carbon (SOC) depends on carbon inputs and 

decomposition rate, and the balance between inputs and decomposition is altered 

when a larger proportion of the crop is harvested. Losses of SOC increase GHG 

emissions from the system, but also affect the long-term productivity (Cowie et 

al., 2006). There are three mechanisms by which higher biomass removal 

influences SOC (Cowie et al., 2006): 
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 Lower biomass input results in a decrease in SOC 

 Biomass contains nutrients and therefore lower biomass input decreases 

nutrient availability, leading to lower productivity and resulting in lower 

biomass residue input from roots etc. 

 Lower SOC in itself decreases soil productivity. 

 

Biogenic carbon is commonly considered to be climate-neutral in LCA, as it 

is assumed that the carbon from CO2 sequestered during growth of the biomass 

equals the carbon released when the biomass is combusted. However, this 

assumption has been questioned for being too simplistic, since there is a time lag 

between CO2 sequestration and CO2 release (Brandão et al., 2013). This 

becomes especially relevant for biomass systems with long rotation times. The 

terrestrial environment, e.g. vegetation and soil, is one of the major reservoirs of 

carbon, containing around 2-3 times the amount of carbon in the atmosphere (of 

which two-thirds is in the soil) (Houghton, 2003). Therefore it is perhaps not 

surprising that LCA studies which include changes in carbon stocks in soils and 

living biomass often find that these changes have a great influence on the climate 

impact (see e.g. Hammar et al., 2014; Whittaker et al., 2014; Cherubini & 

Jungmeier, 2010). 

However, including changes in carbon stocks in soils and living biomass in 

LCA studies is challenging, for two main reasons. First, LCA normally accounts 

for point emissions that occur within the same year, so gradual emissions and 

uptake that can occur over decades, as in the case of SOC changes or a growing 

forest, are difficult to assess using common LCA methodology. Although 

several methods have been proposed to improve  assessment of the climate 

impact of changes in biogenic carbon pools, there is no consensus on how to 

handle this in LCA (Brandão et al., 2013). Second, SOC changes are long-term 

processes occurring over many years and there is a lack of data on SOC changes 

over time. For this reason, SOC changes are often modelled. There is no 

generally accepted method for estimating SOC changes in LCA and different 

methods are currently used, including emission factors, simple models, dynamic 

crop-climate-soil models and measurements (Goglio et al., 2015). Soil organic 

carbon has been found to be one of the most important sources of uncertainty in 

biofuel LCAs (Whitaker et al., 2010). 

Apart from climate effects, decreases in SOC have an impact on soil quality 

and, in the long run, the productivity of the soil, and therefore wide-scale 

harvesting of crop residues has been questioned (Lal, 2004). The effect on soil 

quality was not examined in this thesis, but it is of critical importance for the 

long-term sustainability of agroecosystems. 
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3.4 Climate impact and energy performance of bioenergy 
and biorefinery systems 

3.4.1 Biofuels on the market today 

There are numerous LCA studies on first-generation biofuels produced from 

oilseed, sugar and starch crops. Many of these studies show a favourable climate 

impact and energy balance for first-generation biofuels compared with fossil 

fuels, especially when effects of direct land use changes (dLUC) and indirect 

land use changes (iLUC) are excluded from the assessment (see e.g. Edwards et 

al., 2014; Khatiwada et al., 2012; Souza et al., 2012; Wang et al., 2012; 

Börjesson et al., 2010; Dias De Oliveira et al., 2005). When dLUC and iLUC 

are included, studies sometimes show a less favourable or even negative climate 

impact for first-generation biofuels compared with fossil fuels (Malça et al., 

2014; Dunn et al., 2013; Hertel et al., 2010; Searchinger et al., 2008). Land use 

change effects, combined with concerns about competition between food and 

fuels, are the main criticism of first-generation biofuels. This, and the relatively 

high cost of food and feed crops, has led to a search for new raw materials for 

biofuel production. 

3.4.2 Lignocellulosic biofuels 

A review by Morales et al. (2015) found that second-generation ethanol 

(produced from lignocellulose) has a more favourable climate impact and energy 

balance than fossil fuels and first-generation ethanol. Reviewing 53 studies 

mainly on biochemical conversion of lignocellulose to ethanol, Borrion et al. 

(2012) found climate impact reductions for lignocellulosic ethanol of 46-90% 

compared with fossil fuel, with energy savings ranging from 56% to nearly 

100%. Alongside biochemical conversion, the other main process route to 

produce liquid biofuel from lignocellulose is thermochemical conversion, 

involving the Fischer-Tropsch process. The climate impact of Fischer-Tropsch 

diesel is estimated to be 61-115% lower than that of fossil diesel (Sunde et al., 

2011). 

Lignocellulosic biomass can be either a dedicated energy crop or a residue 

such as straw and forest residues. Dedicated energy crops are associated with 

land use and can thereby be associated with direct and indirect land use changes. 

Residues, on the other hand, are not associated with dedicated land use and 

thereby not linked to possible indirect land use change. Consequently, all 

lignocellulosic biomass (both dedicated energy crops and residues) can result in 

direct land use change, meaning that it can cause changes in biogenic carbon 

stocks and in SOC. In the case of harvest residues, a larger proportion of the 

target crop in agriculture and tree in forestry is harvested (Papers II, III and V), 
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which affects the carbon balance as it decreases the amount of carbon added to 

the soil. When these effects are included in assessments of lignocellulosic 

biofuels, they have a large influence on the overall climate impact (Liska et al., 

2014; Whittaker et al., 2014) and the effects of biorefinery systems (Cherubini 

& Ulgiati, 2010). 

3.4.3 Biorefinery systems 

Assessing the climate impact of entire biorefinery systems, and not allocating 

impacts between the different co-products, is sometimes done in order to e.g. 

perform hotspot analysis (González‐García et al., 2011) or identify the best use 

of side-streams in biorefineries (Gilani & Stuart, 2015). When studying the 

whole biorefinery (without allocating), the portfolio of products can be 

compared with a reference system with conventionally produced products 

(Cherubini & Jungmeier, 2010). 
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4.1 System descriptions 

The three different biorefinery processes studied in this thesis are described 

below. Two of the biorefineries used lignocellulosic biomass and can therefore 

be classified as lignocellulosic biorefineries. Whole crop faba bean was used as 

feedstock in Paper III. The faba bean was not dried but ensiled before being 

processed, so this concept may be classified as a green biorefinery. All biofuel 

production systems included were biochemical processes, meaning that 

microorganisms were used to convert the substrate to valuable products (in this 

case sugars to fuels). 

The following sections describe the methods used in Papers II-V in more 

general terms. For detailed descriptions, please see the respective papers. 

4.1.1 Lignocellulosic biorefineries 

Ethanol, biogas and electricity from straw and forest residues 

The biorefinery system studied in Paper II is illustrated in Figure 6. Straw and 

forest residues were used as feedstock, and were analysed in two different 

scenarios. The feedstock was first impregnated with diluted acid and pre-treated 

using steam explosion, followed by simultaneous saccharification and 

fermentation where hemicellulose and cellulose were converted to sugars using 

enzymes and ethanol was produced using yeast and then distillation to separate 

out the ethanol. The liquid remaining after distillation and filtration was 

anaerobically digested to produce biogas. In the scenario using forest residues, 

the liquid fraction from the pre-treatment containing the majority of the pentose 

sugars was assumed to be fed directly to the anaerobic digester, as represented 

by the dotted line in Figure 6. In the scenario using straw, all sugars, hexoses 

and pentoses, were assumed to be fermented into ethanol, although in practice 

4 Methods 
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this would require a genetically modified yeast strain that can utilise both 

hexoses and pentose sugars for ethanol production. The solid fraction containing 

most of the lignin was combusted in a combined heat and power (CHP) plant to 

supply heat and electricity for the refinery. Both scenarios generated excess heat 

that could be used e.g. in district heating and excess electricity that could be sold.  

 

 

Pre-treatment 

Distillation 

Anaerobic digestion CHP 

Ethanol Electricity 

and heat 
Biogas 

Solids 

Simultaneous saccharification and fermentation 

Straw/forest 
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Separation of solids and liquids 
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Figure 6. The biorefinery system considered in Paper II (modified from Börjesson et al., 2013b). 

The dotted arrow represents feeding of pentose sugars from the pre-treatment directly to the 

anaerobic digestion (forest residue scenario) as opposed to all sugars going to the hydrolysis and 

fermentation (straw scenario). 
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Biodiesel, biogas and electricity from straw 

The biorefinery system studied in Papers IV and V is illustrated in Figure 7. 

Paper IV studied plant design and the energy balance of biodiesel produced from 

straw, while Paper V assessed the climate impact of the same system. The straw 

was first pre-treated using steam explosion of dilute acid-impregnated straw, 

followed by enzymatic hydrolysation (saccharification). The solid fraction 

containing most of the lignin was then separated out and combusted in a CHP 

plant, to produce electricity and heat required in the process. The sugars were 

used to produce lipids, using oleaginous yeast grown in a bioreactor for lipid 

accumulation (Figure 7). Under nitrogen limitation, many oleaginous yeast can 

naturally utilise both pentoses and hexoses to accumulate lipids, and therefore 

all sugars were assumed to be used for lipid production. The lipids were 

extracted using hexane and the lipids were transesterified to produce FAME 

Pre-treatment 

Separation of solids and liquids 
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Biodiesel Electricity Biogas 

Solids 
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Bioreactor lipid 

accumulation 

Straw 

Lipid extraction 

Transesterification 

Cell mass 

Glycerol 

Liquids 

Figure 7. The biorefinery system considered in Papers IV and V. 



36 

 

(biodiesel). The cell mass remaining after lipid extraction was anaerobically 

digested, together with the glycerol generated in the transesterification process, 

to produce biogas. The solid fraction remaining after liquid/solid separation 

contains most of the lignin and was assumed to be combusted in a CHP plant. 

This generated all process electricity and heat needed in the refinery, and excess 

electricity that could be sold.  

4.1.2 Green biorefineries 

Paper III analysed the climate impact, land use and energy balance of a green 

biorefinery system using ensiled faba bean as feedstock. The biorefinery concept 

is illustrated in Figure 8. In the plant, the beans were first separated from the rest 

of the plant mechanically. The starch and protein in the beans were then 

separated and the starch was used for ethanol production and the protein for 

animal feed. The remaining biomass was rolled to extract a juice that is high in 

protein, which was used as animal feed. The press cake remaining after rolling 

was used for production of solid biofuels in the form of briquettes. 

 

Mechanical separation of 

beans from other plant 

material 

Rolling 

Briquette 

production 

Coagulation and 

separation of 

proteins 

Separation of 

protein and 

starch 

Ethanol 

production 

Coagulation and 

separation of 

proteins 

Ethanol Protein feed Briquettes 

Beans Straw 

Green juice Press cake Protein in liquid Starch 

Faba bean (whole crop) 

Figure 8. The green crop biorefinery considered in Paper III (Figure from Paper III). 
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4.1.3 Biorefinery design and performance 

In Paper II, the plant design, input requirements and production of energy 

carriers were based on two earlier studies: Ekman et al. (2012) for the straw 

scenario and Barta et al. (2010) for the forest residues scenario. In Paper III, the 

whole biorefinery system, including the plant, was modelled in Microsoft Excel 

2013. The biorefinery plant in Papers IV and V was modelled in Aspen PlusTM 

(see Paper IV) and the greater surrounding system was modelled in Microsoft 

Excel 2013 (Papers IV and V). Energy AnalyserTM was used to model the heat 

exchange system in the biorefinery (Papers IV and V). 

4.2 LCA methodology 

Different LCA methods were used in the different papers. A summary of method 

choices is presented in Table 1. 

Table 1. Life cycle assessment (LCA) method applied in Papers II, III and V. RED = Renewable 

Energy Directive, ISO = International Standardisation Organisation, CLCA= consequential 

LCA, ALCA = attributional LCA 

 Paper II Paper III Paper V 

Type of LCA RED & ISOa CLCA ALCA & RED 

Functional unit 1 MJ ethanol 1 ha faba bean 

cultivation 

1 kg of straw and 1 MJ 

biodiesel 

Handling of 

multifunctionality 

Energy allocation & 

system expansion 

System expansion Energy allocationc & 

GHG substitution 

potential 

Choice of data Average Marginal Average 

System boundaries Cradle to gateb Cradle to gate Cradle to gateb 
aThis method uses the preferred method to handle multifunctionality in LCA according to ISO (ISO, 

2006b), system expansion and includes upstream impacts from residue harvesting. 
bIn the RED method, residues from agriculture and forestry are considered to be ‘free’ up to the 

point of harvest. 
cUsed for allocating impact between the energy carriers produced when the function unit 1 MJ 

biodiesel was used.  

 

In all papers (II-V), the LCA model was built in Excel 2013.  

4.2.1 Goal and scope of the LCA studies 

Methodological choices in LCA are guided by the objective of the study. The 

objective in Paper II was to estimate the climate impact and energy balance of 

ethanol produced from two different feedstocks and to analyse the impact of 

using two different calculation methods. One of the calculation methods was 

based on the RED (described in section 4.2.2.) (EC, 2009) with Method I (ISO), 
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which uses system expansion to avoid allocation in accordance with ISO (ISO, 

2006b) and includes upstream impacts from harvesting residues. The intended 

audience and application were companies looking for guidance on how the RED 

calculation method is applied and policy makers reviewing the impact of 

methodological choices in climate impact assessments. 

The objective of Paper III was to assess the climate impact and change in 

arable land use and fossil energy use of changing from the current use of faba 

bean as a protein feedstuff to two types of whole faba bean plant utilisation: 

biorefinery processing and roughage feed. The specific objective was to 

determine the most environmentally beneficial use of available faba bean 

production of the three scenarios assessed and with regard to the three impact 

categories assessed. Since the aim was to analyse impacts of a change in use of 

the same biomass, CLCA was applied. In CLCA, allocation is generally avoided 

by system expansion and data from the technologies affected (marginal data) 

should be included, rather than average data. The intended audience was 

researchers interested in CLCA and its applications, but also biorefinery owners, 

faba bean producers and policy makers. 

The objective of Paper V was to assess the climate impact and energy balance 

of biodiesel produced from straw using oleaginous yeast. The study focused on 

whether the return of parts of the lignin fraction could mitigate the effect of SOC 

change due to straw harvesting, which was analysed in different scenarios. 

ALCA was judged as being the most suitable method for the goal of the study. 

In addition, to my knowledge Paper V is the first LCA study on biodiesel 

produced from straw using oleaginous yeast, which is why it was interesting to 

identify hotspots in the system. For this purpose, ALCA is most suitable (Paper 

I). The intended audience was policy makers within biofuels and biorefineries 

and researchers within LCA and biorefinery process and design. 

4.2.2 Renewable energy directive methodology 

The calculation method from the RED (EC, 2009) was used in Paper II and Paper 

V. To facilitate comparison between different fuels, the RED has standardised 

procedures for setting the functional unit (1 MJ biofuel), system boundaries and 

energy allocation (based on the lower heating value (LHV) of the products). The 

LCA calculation method assumes that crop and forest residues are free from 

impact up to harvesting. For the systems studied in Papers II and V, climate 

impact was also calculated using the RED method, but including upstream 

impact from residue harvesting in the form of SOC changes and compensation 

for nitrogen removed with the residues. This method was called RED+SOC in 

this thesis. 
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4.2.3 Climate impact 

Global warming potential 

The commonly used climate impact indicator Global Warming Potential (GWP) 

was used in Papers II, III and V. It describes the cumulative radiative forcing of 

a pulse emission of a greenhouse gas relative to the cumulative radiative forcing 

of CO2 for a specific time period, (most commonly 100 years (GWP100) 

(Fuglestvedt et al., 2003). 

 

Time-dependent climate model 

A time-dependent climate model described by Ericsson et al. (2013) was used 

in Paper V. The model accounts for the timing of emissions (or uptake) of the 

three major greenhouse gases (CO2, nitrous oxide (N2O) and methane (CH4)) 

and estimates climate impact as temperature response over time. Yearly 

emissions were estimated over 100 years (Paper V). For straw used for liquid 

fuel production, uptake and release of CO2 in living biomass were assumed to 

occur during the same year, and therefore these changes were not accounted for. 

However, changes in SOC due to straw harvesting occur over several years and 

were estimated by modelling (see section 4.3.1 of this thesis). 

4.2.4 Energy balance indicators and GHG substitution potential 

There are several energy performance indicators available (Djomo et al., 2011). 

In Papers IV and V, three different energy balance indicators were used to show 

the energy balance of the system in different perspectives (Figure 9). These 

were: 1) Energy efficiency ratio (EE), calculated as energy carriers produced 

(LHV) divided by the energy in the feedstock (LHV), which shows the 

proportion of the energy in the feedstock that is converted to the final product; 

2) net energy ratio (NER), calculated as total primary energy input divided over 

the energy carriers produced, which shows the amount of fossil energy used in 

production of the biofuel; and 3) fossil fuel replacement potential (FFRP), 

calculated by subtracting the primary energy in the products that could 

potentially be replaced by the biofuel(s) from the total use of primary fossil 

energy in the whole production chain for 1 kg of dry matter (DM) feedstock 

input into the biorefinery. A positive value of FFRP indicates that use of fossil 

energy in the biorefinery system exceeds the bioenergy produced, while a 

negative value indicates the proportion of fossil fuels that could be replaced. In 

Paper II the energy balance was calculated, using the NER indicator (Method II 

RED). 

The three different energy balance indicators were calculated as follows (see 

also Figure 9, taken from Paper IV): 
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EE = (Eprod1 + Eprod2 + Eprod3) / Ebiomass 

NER = Einputs / (Eprod1 + Eprod2 + Eprod3) 

FFRP = Einput - (Erepl1 + Erepl2 + Erepl3) 

 

 

 

 

Paper V used an indicator called substitution potential. For clarity, it is 

referred to here as GHG substitution potential. It was calculated by subtracting 

the impact of the reference system from that of the system studied (Figure 10). 

The reference system in this case represents a collection of products equivalent 

to the products produced in the biorefinery. A negative value for the GHG 

substitution potential indicates that the system under study has a lower climate 

impact than the reference system. 
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Figure 9. Variables for energy balance indicators used in Paper V. Ebiomass and Eprod.1-3 are given in lower 

heating value (LHV) and Erepl.1-3 are given in primary fossil energy. 
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Figure 10. Method used to calculate the greenhosue gas (GHG) substitution potential of emissions from the 

reference system, with equal amounts of conventional comparable products deducted from the emissions of 
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Reference system 
GHG substitution 

potential 



41 

 

4.3 Methods for assessing the effects of increased 
biomass harvesting 

4.3.1 Soil organic carbon changes 

Soil organic carbon changes resulting from increased biomass harvesting, i.e. 

using a larger proportion of the crop or tree, were accounted for in Papers II, III 

and V. In Paper II emission factors from the literature were used, while in Papers 

III and V the Introductory Carbon Model (ICBM) (Andrén & Kätterer, 1997) 

was used to model SOC losses due to increased biomass harvesting. The ICBM 

is a two-compartment model that considers two soil carbon pools, one young 

and one old. The model can be adapted to handle different types of biomass with 

different humidification rates. Paper III used three types of biomass, namely 

aboveground and belowground crop biomass from faba bean and manure. Paper 

V also included three different types of biomass, aboveground and belowground 

biomass of wheat and the lignin residues from the biorefinery process.  

Apart from estimating the effect on soil carbon contribution from different 

biomass fractions, another advantage with using a soil carbon model is that it 

allows site-specific factors such as climate to be accounted for. Furthermore, it 

gives yearly changes in the carbon pool so that climate impact effects over time 

can be estimated (Paper V). This was used in the time-dynamic climate 

modelling described in section 4.2.2 of this thesis. In the GWP calculations in 

Paper III and Paper V, results from the ICBM were used to calculate emission 

factors, i.e. dividing the total loss of carbon over a selected number of years to 

get an estimate of yearly emissions over that period. 

4.3.2 Nutrient losses 

In comparison with the reference land use with no residue harvesting, more 

carbon but also more nutrients are removed from the field or forest when 

residues are harvested. In Paper II and V this was handled by compensating for 

all the nitrogen removed in the biomass.  

In Paper III, where CLCA that included the whole agricultural system of faba 

bean production and other crops in the crop rotation was performed, the 

following effects on the nitrogen cycle were included: 1) Effects on direct (and 

indirect) N2O losses; 2) effects on nitrogen leaching; and the nitrogen fertiliser 

effect on the succeeding crop. 
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4.4 Scenarios 

In order to help the reader to follow the results and discussion presented in 

Chapter 5, the different scenarios used in Papers II-V are briefly summarised in 

Table 2. 

Table 2. Description of the scenarios used in Papers II-V. 

 Scenario Description 

Paper II Straw Ethanol production in a lignocellulosic biorefinery co-

producing ethanol, biogas, electricity and heat using straw 

as feedstock 

 Forest residues Ethanol production in a lignocellulosic biorefinery co-

producing ethanol, biogas, electricity and heat using forest 

residues as feedstock 

Paper III Base case Use of faba beans (only the beans) as cattle feed (scenario 

1) 

 Biorefinery Whole crop harvesting and use of the whole faba bean 

plant in a green biorefinery (scenario 2) 

 Roughage Whole crop harvesting and use of the whole faba bean 

plant as roughage for cattle (scenario 3) 

Paper IV Base case Biodiesel, biogas and electricity produced from straw  

 DRY 10/5% Drying the yeast before lipid extraction, with 10% or 5% 

lipid loss 

 LIPID 60/40% Assumed lipid content of the yeast after lipid 

accumulation phase of 60 and 40% (base case assumed 

50%) 

 SUGAR+/-10% Sugar concentration in the hydrolysate varied by +/- 10% 

 TIME+/-1 Residence time for lipid accumulation varied by +/- 1 day 

in relation to base case 

Paper V Base case Biodiesel, biogas and electricity produced from straw as 

described in Paper IV  

 No excess el Combusting only the lignin needed to satisfy plant 

demand for electricity. The remaining lignin was returned 

to soil 

 Biogas for internal 

H&P 

Biogas combusted to meet heat and electricity demand in 

the plant  

 External el prod. Combusting only the lignin needed to satisfy plant 

demand for heat. The remaining lignin was returned to the 

soil and electricity was produced from natural gas 
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In this section, the three themes of the thesis (Figure 1) are dealt with in three 

separate sections. Section 5.1 presents and discusses the climate impact and 

energy balance of the biorefinery systems and products studied, section 5.2 

discusses the impact of methodological choices in LCA, with examples from the 

studies included in the thesis, and section 5.3 describes the impacts due to 

increased biomass harvesting on LCA results and how changes in biogenic 

carbon stocks can be included in LCA. All three sections are interlinked. There 

might therefore be some overlap between the sections. 

  

5 Results and discussion 



44 

 

5.1 Climate impact and energy balance of bioenergy 
systems and products 

5.1.1 Conversion efficiencies 

Production of energy carriers (Papers II, III, IV and V) and protein feed (Paper 

III) from 1 kg dry weight feedstock for all biorefinery systems studied is shown 

in Table 3. Due to the different fuel efficiencies, comparison between different 

fuels is best done using vehicle km driven as the basis (Gnansounou et al., 2009). 

Ethanol and biogas from forest residues (Paper II) generated the most passenger-

vehicle km (6.41 km), followed by ethanol and biogas production from straw 

(6.02 km) (Paper II) and biodiesel and biogas production (5.50 km) (Papers IV 

and V) (Table 3). Electricity was not included as a transportation fuel in these 

comparisons. Processing of 1 kg faba bean (whole crop) (Paper III) generated 

some ethanol with a driving distance of 1.85 km. Comparing the values in Paper 

III with those in Papers II, IV and V is difficult, since ethanol was produced from 

faba beans in Paper III but lignocellulosic material was used for fuel production 

in the other studies. In Paper III, other valuable products including protein feed 

and briquettes were produced, but these products are not included in the 

comparison when vehicle km is used as the basis of comparison. Table 3 also 

presents climate impact and fossil energy use per km (for Papers II, IV and V). 

The climate impact presented in Table 3 was calculated using two methods, one 

following the RED method and adding SOC changes and nitrogen replacement 

(RED+SOC), and one that strictly followed the RED methodology (RED). The 

climate impact per km was not calculated for Paper III, for the methodological 

reasons listed above. 

The results in Papers IV and V on production of energy carriers are largely 

the same, but vary some due to changes in the CHP model. Values from the later 

study (Paper V) are presented in Table 3. 
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Table 3. Production of energy carriers and other products per kg dry matter (DM) of feedstock for the base case scenarios in Papers II, III and V  

Feedstock kg DM/kg wet Products 

in: 

L kg MJ Km1 Total 

km 

Fossil 

energy 

(MJ/km) 

CO2eq/km 

RED+SOC/

RED 

CO2eq/MJ 

RED+SOC/

RED 

Straw  

(Paper II) 

1 kg DM/1.22 kg Ethanol 0.37 0.29 7.88 5.71 6.022  0.183  37.5/10.34 24.7/6.78 

    Biogas 0.00 0.01 0.46 0.32       

    Electricity     0.82         

Forest residues 

(Paper II) 

1 kg DM/1.85 kg Ethanol 0.25 0.19 5.22 3.78 6.412  0.253  69.4/18.64 45.4/9.6 

    Biogas 0.00 0.07 3.80 2.62     

    Electricity     0.77         

Straw  

(Paper V) 

 1 kg DM/1.22 kg FAME 0.12 0.11 4.02 3.40 5.502  0.443  51.2/21.74 38.5/16.3 

    Biogas 0.00 0.05 3.05 2.10     

    Electricity     0.24         

Faba bean 

(Paper III) 

1 kg DM/2.27 kg Ethanol 0.12 0.10 2.56 1.85 1.85      

    Protein 

feed 

  0.27           

    Briquettes   0.41 7.07         
1Vehicle km (assuming 138.6 MJ/100km for E85, 137.9 MJ/100km for E100 (estimated based on values for E85 and petrol), 142.4 MJ/100 

km for petrol, 145.1 MJ/100km biogas (estimated from values for compressed natural gas) and 118.5 MJ/100km for fatty acid methyl ester 

(FAME) (Huss et al., 2013)) 
2Total vehicle km for ethanol/biodiesel and biogas.  
3Renewable energy directive (RED) calculations including nitrogen (N) compensation. The fossil reference (diesel) is 170 MJ fossil energy/km, assuming 

118.5 MJ/km (Huss et al., 2013) and 1.19  

MJ fossil per MJ diesel (Edwards et al., 2011).  
4RED+SOC are calculations with soil organic carbon (SOC) changes and N compensation. While RED follows the calculation in the Directive (EC, 

2009). The fossil reference (diesel) is 99.3 g CO2-eq/km assuming 118.5 MJ/km (Huss et al., 2013) and 83.8gCO2eq/MJ (EC, 2009).  
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5.1.2 Lignocellulosic biorefineries 

Ethanol, biogas and electricity from straw and forest residues 

Ethanol production from straw and forest residues was assessed in Paper II. The 

co-products biogas, electricity and heat were handled using either energy 

allocation (Method II; RED) or system expansion (Method I; ISO). 

The study was published in 2014 (Paper II), but since then there has been 

considerable development regarding enzyme production. The climate impact of 

enzymes has decreased from around 8 kg CO2eq/kg enzyme product to around 

1 kg CO2eq/enzyme product and, although the dose of the most recently 

developed products is higher, the overall contribution to fossil energy use from 

enzyme production has decreased by around 70%. The lower carbon footprint of 

the newly developed enzyme products is explained by a reduction in processing 

steps when producing the less concentrated product and by a considerable 

increase in the amount of renewable energy used in the production plant (Jesper 

Kløverpris, personal communication 2016). In this thesis, the results from Paper 

II were recalculated with the new enzyme product and dose2. 

In Paper II, literature values were used to estimate the impact on SOC of 

harvesting straw (75 g C/kg straw) and forest residues (90 g C/kg forest 

residues). However, in Paper V SOC changes due to straw harvesting were 

modelled using the ICBM and yearly emissions were calculated as the average 

SOC loss over 100 years (36 g C/kg straw). To facilitate comparison between 

the ethanol (Paper II) and biodiesel (Paper IV and V) produced from straw, the 

results for straw-based ethanol were recalculated using average SOC losses over 

100 years from Paper V. In the forest residues scenario, SOC losses over 120 

years were kept as in Paper II. Furthermore, nitrogen compensation due to straw 

removal was calculated with the assumption that 17% of the straw came from 

oilseeds, which have a higher nitrogen content than cereal straw (Paper II). In 

this thesis, nitrogen compensation was accounted for in the same way as in Paper 

V, where only wheat straw was used. 

The new results are presented in Figure 11. Calculated per MJ ethanol, 

climate impact was estimated to be 87-96% lower than the fossil fuel reference 

from the RED (83.8 CO2eq/MJ). Net energy ratio was estimated to be -0.83-0.14 

MJ primary energy use per MJ ethanol. These were considerable changes to the 

results in Paper II, particularly for straw-based ethanol, due to the changed value 

used for SOC changes (as discussed in section 5.3 of this thesis), and the climate 

impact decreased in total by 75-35%. The contribution of SOC changes in the 

straw scenario decreased by around 50%. 

                                                        
2The new product and dose was used in Paper V. 
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The impacts from enzymes decreased by 79%, which explained some of the 

decreased climate impact for Method I (ISO), and all of the decrease when using 

Method II (RED). For the forest residues scenario, changing the enzyme product 

resulted in enzymes no longer being the most important contributor to the total 

climate impact of all process inputs, which was instead nitrogen used in the 

biorefinery process. For straw-based ethanol, enzymes were still the most 

important contributor of all process inputs to both climate impact and primary 

energy use. Changing the enzyme dose altered the conclusion in Paper II that 

ethanol from forest residues generally has a lower climate impact than ethanol 

from straw. Using the RED method, ethanol from forest residues showed a 

slightly higher impact than ethanol from straw. The reason for this was that the 

enzyme dose in the forest residues scenario was slightly lower, and was therefore 

not affected to the same extent when the enzyme product was changed. However, 

the difference between the climate impact for straw-based and forest residue-

based ethanol was small for the RED method. 
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Enzyme production is known to be energy-intensive and previous studies 

have shown that enzymes can have a large impact in the life cycle of 

lignocellulosic ethanol (MacLean & Spatari, 2009; Slade et al., 2009). Despite 

this, many previous studies on lignocellulosic ethanol have not included 

production of inputs such as chemicals and enzymes (Borrion et al., 2012; 

MacLean & Spatari, 2009). The potential high influence of enzyme production 

on overall climate and energy balance has been increasingly recognised. A recent 

study assessed the effect of on-site production of enzymes on overall climate 

impact and found that this decreased the climate impact of ethanol (Olofsson et 

al., 2017). However, the climate impact of the off-site enzyme product 

considered in that study had a higher impact than the newly developed enzyme 

product. Therefore, the gain from on-site production of enzymes may be smaller 

if the new enzyme product is already used. 

 

Biodiesel, biogas and electricity from straw 

The climate impact for biodiesel produced from straw was estimated to be 54% 

(RED+SOC) and 81% (RED) lower than the fossil fuel reference (83.8 

CO2eq/MJ from the RED) and NER was estimated to be 0.33 MJ primary energy 

use per MJ biodiesel (base case) (Paper V). 

Mass and energy balance in a systems perspective of biodiesel production 

from lignocellulose using oleaginous yeast is poorly described in the literature. 

Therefore, in Paper IV a thorough analysis of potential process design and mass 

and energy balances covering the whole system was performed, including 

biomass harvesting and biorefinery processes. It was found that the lipid 

accumulation step, which is the stage where the oleaginous yeast utilises the 

sugars from the biomass and accumulates lipids, is energy demanding, since it 

requires aeration and agitation. Approximately 66% of the total electricity use in 

the plant was used for this step (Paper IV). By burning the lignin residues, 

process heat and electricity requirements could be satisfied, with some excess 

electricity that could be sold (Paper IV). Biogas was produced from the residual 

yeast biomass, which greatly increased the energy yield. In total, 41% of the 

energy in the biomass was converted to energy products. 

In Paper V, the time-dependent climate impact was calculated for four 

scenarios. Figure 12 shows the time-dependent climate impact for the base case 

with reference scenario (comprising equivalent fossil products). The impact 

from the biorefinery system including SOC is represented by the solid black line, 

while the reference with equivalent amounts of fossil products is represented by 

the dashed line. The potential avoided warming from using the biorefinery 

products instead of fossil products (the reference) is represented by the black 
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dotted line. During the first seven years, the climate impact from the biorefinery 

system was higher than that of the reference due to the SOC losses. After seven 

years, the climate impact of the biorefinery system fell below that of the 

reference and potential avoided warming could be achieved by replacing fossil 

products with the products from the biorefinery (Figure 12). 

Comparing ethanol and biodiesel from straw 

Figure 13 compares the energy yield of the straw scenario in Paper II with the 

base case in Papers IV and V. Biodiesel from straw showed lower energy yield 

per kg straw processed in the biorefinery (Figure 13). 
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Direct comparison of ethanol and diesel based on energy content (MJ) is not 

completely accurate, since fuel efficiency differs between these two fuels. As 

discussed earlier (section 5.1.1), climate impact per vehicle km is more suitable 

for comparing different fuels and when this was done the difference between the 

two fuels was lower (Figure 13). However, climate impact per km driven by a 

passenger vehicle gave a 62-90% reduction for straw-based ethanol and 48-81% 

reduction for straw-based biodiesel compared with fossil fuels (Table 3). The 

lower reduction was achieved when SOC and nitrogen replacement were 

included (method RED+SOC). When comparing the climate performance of 

these two production systems, it is important to highlight that there has been 

considerable research on optimisation of the process for ethanol production from 

lignocellulose, while production of biodiesel from straw using oleaginous yeast 

is not described and optimised to the same extent in the literature. Consequently, 

there might be considerable potential for improvement in biodiesel production 

from straw using oleaginous yeast. 

 

 

Figure 13. Results for the straw scenario in Paper II and for the base case in Papers IV and V. 

Energy yield (left axis) in MJ (LHV)/kg straw and CO2/km (right axis) driven in a passenger vehicle 

(climate impact calculated according to RED+SOC, see Table 3). The fossil fuel reference (diesel) 

is 99.3 g CO2/km (Table 3). 
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5.1.3 Green biorefinery 

Ethanol, protein feed and solid biofuels from faba beans 

Paper III analysed the impact of changing from the current use of faba beans as 

animal feed to use of the whole crop in a green biorefinery for the production of 

ethanol, protein feed and solid biofuels. To do this, CLCA was used.  

The difference in climate impact from the base case with faba beans for feed 

compared with whole crop faba beans used in a green biorefinery is shown in 

Figure 14. Substitution of petrol and solid fuel resulted in avoided CO2 

emissions, but the increased need for grain when the faba beans were no longer 

used for feed, in combination with the higher impact from the cropping stage 

(mainly from soil carbon changes due to increased biomass harvesting), resulted 

in an net increase in GWP for the biorefinery compared with the base case. 

Arable land use and energy use, on the other hand, decreased by 20 and 100% 

respectively, for the biorefinery scenario compared with the base case (Paper 

III). 

This type of analysis (CLCA of a change in use of biomass) highlights that 

changing the use of a crop that is currently used as feed can have effects on 

animal feed demand, which can be important for the overall climate impact and 

energy balance of the system. The feed rations and the degree to which the new 

protein feed products produced in the biorefinery replace concentrate feed and 
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other products are important for this assessment. It is important to highlight that 

this type of analysis assumes constant feed demand, but changes in e.g. dietary 

habits could change the demand for milk and meat and thereby change the 

demand for animal feed. 

Choice of marginal technologies is challenging and can have large impact on 

the results. Sensitivity analyses were performed where the avoided technology 

was changed (Paper III). The most influential assumption concerned the product 

that the briquettes replaced, wood chips, assuming replacement of oil instead 

would notably decrease the climate impact of the biorefinery system, with 

overall lower climate impact than the base case (Paper III).  

The functional unit of the study was one hectare of land. This functional unit 

is suitable for comparing best use of land or biomass (Paper I). However, the use 

of this FU makes it difficult to compare the results with those of other studies 

that have output functional units, as discussed in section 5.2.1. 

5.1.4 Comparing fuels from residues and dedicated energy crops 

The results in this thesis calculated using the RED methodology (Papers II and 

V) can be compared against the default values in the RED, since similar 

methodology was used. The values calculated using the RED methodology are 

shown in Table 3. For straw-based and forest residue-based ethanol, the climate 

impact (6.8 and 9.6 g CO2eq/MJ ethanol, respectively) was substantially lower 

than the climate impact for sugar cane, wheat and sugar beet ethanol in the RED, 

and in line with the default values for second-generation biofuels in the RED 

(EC, 2009). The climate impact of biodiesel from straw (16.3 g CO2eq/MJ 

biodiesel) was also in line with the default values for second-generation ethanol 

in the RED, but higher than the climate impact reported for diesel-like fuels 

produced from lignocellulosic biomass, which ranges from 4.2 g CO2eq/MJ for 

FT-diesel and DME produced from forest residues to 6.7 g CO2eq/MJ for DME 

from wood (EC, 2009). 

When the system boundaries were widened from those of the RED to include 

changes in SOC due to harvesting of residues and compensation for nitrogen 

removed, the climate impact of the biofuels assessed in this thesis increased (see 

RED+SOC in Table 3). Ethanol from straw then had a climate impact of 25 g 

CO2eq/MJ, ethanol from forest residues a climate impact of 45 g CO2eq/MJ and 

biodiesel from straw a climate impact of 39 g CO2eq/MJ. In comparison with 

the default values in the RED (EC, 2009), straw-based ethanol was then in line 

with sugar cane ethanol, while sugar beet and wheat ethanol had a higher impact. 

Ethanol produced from forest residues had a higher impact than sugar cane and 

sugar beet ethanol, but a lower impact than wheat ethanol. The climate impact 
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of biodiesel from straw, calculated according to RED+SOC, was lower than the 

default climate impact for rapeseed biodiesel, soybean biodiesel, palm oil 

biodiesel and rapeseed HVO, but higher than e.g. the default values of climate 

impact for palm oil HVO and sunflower HVO in the RED (iLUC factors are not 

included) (EC, 2009). 

Management changes such as increased straw harvesting is a direct land use 

change (dLUC). Other types of dLUC include conversion of forest land into 

agricultural land and changes from one crop to another, such as from grassland 

to annual crops (Figure 15). Therefore climate impacts that include dLUC effects 

(SOC changes and nitrogen compensation, i.e. RED+SOC) due to residue 

harvesting are perhaps best compared with those reported in studies on first-

generation biofuels that assess dLUC. 

Börjesson et al. (2010) used two different land use references to assess the 

impact of direct land use change, grain cultivation and unfertilised grassland. 

For rapeseed biodiesel, they found that the climate impact ranged from around 

30-60 g CO2eq/MJ biodiesel when unfertilised grassland was used as a reference 

to 0-30 g CO2eq/MJ biodiesel with grain as a reference (the variation within the 

results when using the same land use reference can be explained by different 

allocation methods) (Börjesson et al., 2010). For ethanol, the values ranged from 

20-50 g CO2eq/MJ when unfertilised grassland was used as a reference to 5-30 

g CO2eq/MJ when grain was used (Börjesson et al., 2010). Again, the results 

varied depending on allocation method and feedstock. These results show that 

dLUC can also be important for the climate impact of first-generation biofuels 

(Börjesson et al., 2010). 

The results in this thesis suggest that the climate impact of second-generation 

biofuels is lower than that of first-generation biofuels when dLUC effects due to 

residue removal are not included. When these effects are included the picture 

becomes more complicated and second-generation biofuels sometimes have 

lower and sometimes higher climate impacts than first-generation biofuels. 

When comparing the results, it is important to emphasise that dLUC effects 

are not always included in studies on first-generation biofuels. Furthermore, 

using residues for feedstock has a clear advantage over first-generation biofuels, 

since the use of residues does not demand extra land and is therefore not 

associated with iLUC (Figure 15). Overall, however, iLUC can be very 

important for the climate performance of biofuels (Dunn et al., 2013; Hertel et 

al., 2010; Searchinger et al., 2008). 
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5.2 Effect of methodological choices in LCA 

5.2.1 Functional units 

The functional unit defines and quantifies the function(s) of the product under 

study (ISO, 2006a). The choice of functional unit is closely connected with the 

aim of the study, and different types of functional units are suitable for different 

research questions (Paper I). Paper I identified four different categories of 

functional units: use of feedstock, single product, function of single product and 

multifunctional. Two of these types of functional units were used here, use of 

feedstock FU and single product FU. The single product FU used in Papers II 

and V allows for comparison between products with the same function, i.e. 

ethanol produced from different types of feedstock or biodiesel produced in 

different processes. When making these comparisons, it is important to 

remember that other methodological choices, such as type of LCA (ALCA or 

Figure 15. Illustration of direct (dLUC) and indirect (iLUC) land use changes associated with 

biomass production of residues and dedicated energy crops. 
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CLCA), allocation methods, data choice etc. are important to consider. In 

addition, selecting a single product FU for a multifunctional biorefinery system 

involves handling co-products using allocation by partitioning (Papers II and V) 

or by system expansion (Method I (ISO) in Paper II).  

The use of feedstock FU can be used to assess the best use of land or biomass 

(Paper I). In Paper III, one hectare of faba bean cultivation was used as the FU, 

in order to assess the consequences of different uses of (the same) hectare of faba 

beans. In Paper V, a different type of use of feedstock FU, one kg of straw was 

used. Using this FU allowed for comparison of the biorefinery performance as a 

whole (the combination of products), which could then also be compared with a 

reference system with the same amounts of conventionally produced products 

(i.e. Earles et al., 2011; Cherubini & Jungmeier, 2010; Cherubini & Ulgiati, 

2010), here called GHG substitution potential  (see section 4.2.4).  

Figure 16 shows the GHG substitution potential for the FU one kg straw for 

the biorefinery systems studied in Papers II and V. The transport service that can 

be provided by the products ethanol, biodiesel and biogas was calculated (Table 

3) and was assumed to replace the same distance using petrol as a reference. 

Potential substitution of petrol was calculated based on MJ/km for the respective 

fuels in relation to petrol (Huss et al., 2013), while climate impact for fossil fuels 

was assumed to be 83.8 g CO2/MJ (EC, 2009). Some of the results in Figure 16 

are included in Figure 11 and Table 3, but are presented in a different way in 

Figure 16. 
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This way of presenting results shows the benefit of co-products such as 

electricity or feed without using the system expansion (substitution) that is 

commonly employed in LCA. The use of substitution can sometimes result in 

relatively strange results, such as when a single product is associated with a 

negative environmental impact when its co-products are assumed to replace 

heavily polluting products (see energy balance results for ethanol from forest 

residues, Fig. 2 in Paper II). This can be difficult to interpret. The advantage of 

using a reference system to calculate GHG substitution potential is that it is easy 

to interpret and that it allows for comparison of different biorefinery concepts 

and sets of co-products. However, similarly to the use of system expansion, it is 

associated with a rather arbitrary selection of reference product (or avoided 

product). To improve evaluation and comparison with existing systems and 

products, it may be good idea to use several reference systems, e.g. Brander 

(2017) used several scenarios with different marginal technologies in a CLCA. 

Biorefinery 1 kg straw 

Ethanol replaces petrol      -680 g CO2eq 

Biogas replaces petrol         -38 g CO2eq 

El replaces natural gas el     -99 g CO2eq  

230 g CO2eq 

-590 g CO2eq/kg straw 

Biorefinery 1 kg straw 

Biodiesel replaces petrol    -410 g CO2eq 

Biogas replaces petrol         -250 g CO2eq 

El replaces natural gas el      -29 g CO2eq  

280 g CO2eq 

-400 g CO2eq/kg straw 

Figure 16. Greenhouse gas (GHG) substitution potential for ethanol (Paper II) and biodiesel (Paper 

V) from straw. el = electricity. 
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5.2.2 Handling multifunctionality 

How to handle multifunctionality is one of the most discussed issues within LCA 

methodology (Finnveden et al., 2009). Paper I recommends allocation by 

partitioning, i.e. allocation based on e.g. energy content is applicable mainly for 

ALCA studies, while system expansion is applicable mainly for CLCA studies. 

However, divergence from these rather general recommendations may be 

necessary for several reasons (Paper I). In Paper II, two different methods, 

substitution (Method I (ISO)) and allocation based on LHV (Method II (RED)), 

were used. Choice of method for handling multi-functionality clearly influenced 

the results (see Figs. 2 and 3 in Paper II), as also shown by e.g. Sandin et al. 

(2015) and Xie et al. (2011). The fact that this choice is very important for the 

results calls for careful consideration of what method to use in relation to the 

aim of the study (Paper I) and the decision context (Sandin et al., 2015). Paper I 

also recommends that the same allocation method be used for the biorefinery 

feedstock in cases where this originates from a multifunctional system (a similar 

recommendation is made by Sandin et al. (2015)). This is especially important 

for studies using system expansion (Sandin et al., 2015), since it is reasonable to 

consider indirect effects using system expansion for feedstock supply when this 

method is used for co-product production. If, for example, the co-products are 

assumed to replace equivalent products, but the impact from feedstock 

production is allocated based on mass, one part of the system is credited for 

producing co-products (i.e. replacing equivalent production) while indirect 

effects, such as alternative uses of the feedstock, are not included. 

How system expansion should be carried out for residues depends on whether 

the residue is fully utilised or not (Weidema et al., 2009). In Papers II, IV and V 

it was assumed that straw and forest residues were not fully utilised. Straw and 

forest residues are dependent co-products, meaning that the production volume 

is not determined by the demand for the co-product, but by the demand for the 

main product (timber and cereals in the case of forest residues and straw, 

respectively). According to Weidema et al. (2009), the following processes 

should then be considered when performing system expansion for not fully 

utilised dependent co-products: (i) the intermediate treatment of the co-product 

(i.e. harvesting and chopping the biomass); (ii) ‘waste treatment’ of the co-

product, which was assumed to be the alternative treatment when the straw forest 

residues are not harvested, i.e. SOC changes due to residue harvesting were 

included here; and (iii) where the dependent co-product is used, i.e. the 

biorefinery process. This corresponds to how straw and forest residues are 

handled in Paper II (Method II (ISO)), straw in Paper V and the forest residues 

in the avoided process in the biorefinery scenario in Paper III. It also corresponds 
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to the direct land use effects when harvesting straw, which according to Paper I 

should always be included. 

If, on the other hand, the residues are fully utilised, increased demand for the 

residues would increase the demand for a different product (Weidema et al., 

2009), which in this case could be a different kind of biomass resource. 

5.2.3 The RED method used on biorefineries 

Use of LCA for policy applications is associated with several challenges, as 

described in section 3.3.2 of this thesis. Whether or not current LCA 

methodology is suitable to use for policies in general and how it should be 

developed to better suit that purpose was beyond the scope of this thesis. 

Interesting discussions on this can be found elsewhere (e.g. McManus & Taylor, 

2015; McManus et al., 2015; Plevin et al., 2014). This section focuses on the 

use of the current RED methodology on emerging biorefinery systems that use 

residues as feedstock. 

The RED promotes the use of biofuels produced from for residues, waste, 

non-food cellulosic materials and algae (EC, 2009). These type of fuels are likely 

to be produced in emerging biorefinery systems, with multiple co-products and 

using residues as feedstock, to a greater extent than has been the case to date. 

Handling of system boundaries and functional unit in the RED are discussed 

below. 

 

 

System boundaries 

Increased use of residues can have effects on SOC that have a potentially large 

influence on the overall climate impact of the fuel (Papers II and V). In the 

current RED (EC, 2009) and the proposal (EC, 2017b)3 residues (including straw 

and forest residues) are considered to be free from environmental impact up to 

harvest. Figure 17 shows how a change in system boundaries to include SOC 

effects would affect the overall climate impact of ethanol produced from straw 

and forest residues (Paper II) and biodiesel produced from straw (Paper V). The 

climate impact was calculated in the same way as in Table 3. Applying the RED 

                                                        
3The proposal is currently under discussion. 
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methodology, climate impact reductions (compared with the current fossil fuel 

reference in the RED, 83.8g CO2eq/MJ), were found to be 92% for straw-based 

ethanol, 89% for forest residue-based ethanol and 81% for biodiesel produced 

from straw. When SOC changes and nitrogen compensation were included, the 

corresponding reductions were 71% for straw-based ethanol, 46% for forest 

residue-based ethanol and 54% for biodiesel produced from straw. The reduction 

targets shown in Figure 17 are relative to the RED today (83.8g CO2eq/MJ), and 

the suggested fossil reference (94 g CO2eq/MJ) in the proposal for the new RED 

(Edwards, 2017).  

Efforts to use residues for biofuel production can have large effects on how 

agricultural and forest land is managed. Therefore it is important to further study 

and evaluate these effects and to somehow consider the effects of residue 

harvesting in policy making. 

 

Handling of multifunctionality 

In the RED method, allocation is based on LHV of the products, which means 

that energy is the determining characteristic of all products (Paper I). For 

biorefineries this might be problematic, especially when not all co-products are 

Figure 17. Global warming potential (GWP) for ethanol and biodiesel produced from straw, 

including soil organic carbon (SOC) and nitrogen replacement and the Renewable Energy 

Directive (RED) calculation method. 60% reduction from a fossil fuel reference represents the 

current fossil reference in the RED (83.8 g CO2/MJ) and in the forthcoming version (94 g 

CO2/MJ). 
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produced for energy purposes (Paper I; Cherubini et al., 2011; Gnansounou et 

al., 2009). In policy applications, it is difficult to avoid allocation between co-

products, and for comparability reasons it is unavoidable to have some type of 

standard on how the allocation should be done. This is a great challenge when 

using LCA as a policy instrument. It is important that the standards are 

applicable to the systems they are assessing, which is challenging with the 

diversity of biorefinery systems now being proposed. In the case of the RED, the 

use of energy allocation perhaps favours production of high energy outputs 

(more production output over which to allocate the environmental burden), and 

disfavours production of chemicals, protein feed etc. that can have a lower 

energy content. 

5.3 Impacts due to increased biomass harvesting 

5.3.1 Effects of increased biomass harvesting on climate impact 

In Papers II, III and V, impacts on SOC due to residue removal and 

compensation (mineral fertiliser production) for the nitrogen removed with the 

harvested residues were included in the assessment. Paper III also included 

effects on N2O emissions and nitrogen leaching over the whole crop rotation. In 

this section, results and overall impact from increased biomass harvesting are 

discussed. Methods for modelling SOC changes and for accounting for changes 

in biogenic carbon pools in climate impact assessments are further discussed in 

section 5.3.3. 

 

Soil organic carbon changes 

In line with earlier studies (see e.g. Whittaker et al., 2014; Cherubini & Ulgiati, 

2010), it was found that SOC changes due to residue harvesting were highly 

influential for the overall climate impact (Papers II, III and V). The SOC changes 

contributed 59% (straw-based ethanol) and 73% (forest residue-based ethanol) 

of total GWP (Figure 11). For biodiesel (base case, Paper V), SOC changes 

contributed 48% to total GWP, while SOC changes due to whole crop harvesting 

of faba beans were responsible for 36% of the total GWP (Paper III). In all of 

the above results, SOC changes were estimated using a SOC model and average 

changes over 100 years (104 years in Paper III) were calculated (except for forest 

residues, for which literature values were used (Paper II)). The potential climate 

impact was calculated using GWP100 (as described in section 4.3.1). 

Returning part of the process residues from the biorefinery to the field or 

forest site could be one option to mitigate the impact on SOC. This would return 
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nutrients and some of the carbon in the biomass, potentially decreasing the effect 

of SOC losses and nutrient replacement. Paper V investigated to what extent this 

effect could be mitigated by returning part of the lignin to the soil. Figure 18 

shows the time-dependent global mean surface temperature change comparing 

the base case with no lignin recycling and the scenario with no excess electricity 

and instead recycling the lignin to the field. The results show that the impact 

(solid lines) was higher in the base case due to the higher SOC emissions, 

although on accounting for the potential substitution (dotted lines) the potential 

avoided warming was higher for the base case than for the no excess electricity 

scenario. This is because the excess electricity replaced natural gas electricity. 

By replacing electricity produced from natural gas, more GHG emissions were 

avoided than when returning the lignin to the field (Paper V). The difference 

between the scenarios was small, due to the relatively small fraction of lignin 

residue that could be returned. Almost all of the lignin was used to satisfy the 

electricity demand in the plant. 

-20

-15

-10

-5

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

T
em

p
er

at
u

re
 r

es
p

o
n

se
 (

1
0

-1
5

  
K

/k
g
 s

tr
aw

)

Time (yr)

Base Case No Excess El

Figure 18. Temperature response from process emissions, including harvesting, processing 

and soil organic carbon (SOC) changes due to straw harvesting for 1 kg straw (solid lines) 

and potential avoided warming from replacement of equivalent products for each scenario 

(biodiesel and biogas replaced diesel and electricity replaced natural gas electricity) (dotted 

lines). Reference system: 1MJ biodiesel was assumed to equal 1 MJ fossil diesel, 1 MJ biogas to 

equal 0.82 MJ fossil diesel and 1 MJ electricity to equal 1 MJ natural gas electricity. 
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Nutrients removed with the biomass 

The impact of nutrient removal with crop residues was only assessed in this 

thesis for nitrogen removal (Papers II, III and V). The overall contribution varied 

from 5% (forest residue-based ethanol, using calculation Method I (ISO), Paper 

II) to 12% (straw-based ethanol (Paper II)) of total GWP per MJ fuel. In fact, 

numerous nutrients are removed with crop residues, including potassium and 

phosphorus, which are significant plant nutrients. In Papers II, III and V, part of 

the biomass was assumed to be burned in the CHP plant, and in that case any 

potassium and phosphorus present will mainly be recovered in the ash (as 

opposed to nitrogen), and can thus be returned to the production site 

(Obernberger et al., 1997).  

In Papers II and V, it was assumed that all nitrogen removed with the residues 

was replaced with mineral nitrogen. As discussed in Paper II, it is not likely that 

all the nitrogen removed will need to be replaced. One alternative method to 

estimate the nitrogen compensation required is to relate nitrogen requirement to 

expected decreases in grain yield, as done by Gabrielle and Gagnaire (2008). 

Nitrous oxide emissions were estimated based on the method in IPCC (2006). 

When assuming that all nitrogen removed is compensated for, as was done in 

Papers II and V, the nitrous oxide emissions are the same for residue removal 

and non-residue removal, as nitrogen added in the form of crop residues and 

fertilisers has the same emissions factor according to IPCC (2006). 

In Paper III, a decrease in the nitrogen effect to the following crop in the crop 

rotation was assumed when more of the legume biomass was harvested for the 

biorefinery. Instead of compensating for all nitrogen removed with the biomass, 

it was assumed that roughly 36% (Nyberg & Lindén, 2008) of the nitrogen in 

the biomass contributed to the decrease in nitrogen fertiliser demand. When 

applying this method, harvesting of crop residues decreased nitrous oxide 

emissions compared with return of crop residues. 

5.3.2 Carbon stock changes over time in biofuel LCAs 

Biogenic carbon fluxes, including SOC changes, are difficult to handle in LCA. 

This is because the emissions vary from year to year (as described above). 

In Papers II, III and V, average SOC changes over a selected period were 

calculated. This involved an arbitrary selection of number of years over which 

the SOC was distributed. This choice was important for the results, e.g. in Paper 

V, GWP of 1 MJ biodiesel increased by 51% if 10 years were used instead of 

100 years (base case). Figure 19 shows how this choice can influence the results 

for straw-based fuels. The average SOC over 10 years (year 1 is when the 
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management change started) was around 280 g CO2 losses/kg straw, while 

average SOC losses over 100 years were 130g CO2/kg straw, corresponding to 

approximately 76 and 37 g C/kg straw, respectively. These values can be 

compared against previously published estimates on SOC losses due to straw 

harvesting, for example: 108 g C/kg straw over 20 years and 50 g C/kg straw 

over 100 years (Powlson et al., 2011), 50-100 g C over 30 years (Gabrielle & 

Gagnaire, 2008) and 40 g C/kg straw over 20 years (Cherubini & Ulgiati, 2010). 

For estimating the climate impact of systems with changes in biogenic carbon 

stocks, a climate impact model such as the time-dependent climate model 

(Ericsson et al., 2013) used in Paper V can be especially useful. The advantages 

of the time-dependent climate model compared with a single score climate 

impact indicator such as GWP (used in Papers II, III and V) are: First, the choice 

of two arbitrator time horizons is partly avoided, i.e. the time horizon for the 

cumulative radiative forcing used to estimate GWP (commonly 100 years) and 

the time over which SOC changes are allocated. Second, using the time-

dependent climate model gives the shape of the climate impact over time, 

providing additional information that can be an important complement to the use 

of e.g. GWP (Ericsson et al., 2013). 

5.3.3 SOC modelling 

Soil organic carbon changes due to management changes often have a large 

impact on the results of LCA studies. Despite this, there is no agreement in the 

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

g
 C

O
2

/M
J 

b
io

fu
el

Years accounted for in SOC loss estimations

Ethanol (Paper II) Biodiesel (Paper V)

Figure 19. Climate impact per MJ ethanol (paper II) and biodiesel (Paper V), calculated with the 

Renewable Energy Directive (RED) methodology (allocation based on lower heating value) but 

including soil organic carbon (SOC), estimated as average SOC losses over 10-100 years. 



64 

 

LCA community on how to estimate SOC changes included in LCA assessments 

(Goglio et al., 2015). 

To include SOC changes in LCA, the effect on SOC due to land use changes 

or management changes is often modelled (Goglio et al., 2015). This is because 

SOC changes occur over long periods and therefore measuring them is time-

consuming and costly. Although some long-term field studies have measured 

SOC effects due to management changes (see e.g. Kätterer et al., 2011), there is 

a lack of data, making modelling necessary in many cases. However, SOC 

changes are difficult to model, as SOC can depend on many factors, such as 

conditions at the site, e.g. climate and soil type (Cowie et al., 2006). In addition, 

formation of SOC is complex and to some extent unknown (Schmidt et al., 

2011). For example, there is evidence that persistence of organic matter is largely 

governed by complex interactions between organic compounds and the 

environment, and that decomposition rate is less dependent on chemical 

structure of the biomass than previously believed (Schmidt et al., 2011). 

Regarding impacts on SOC formation from crop residues, it has been found that 

belowground residues (roots) contribute more to SOC formation than 

aboveground residues (Kätterer et al., 2011). On sandy soil in particular, 

aboveground residues may contribute little to the SOC pool (Poeplau et al., 

2015). Future models need to incorporate new scientific results to better predict 

SOC formation (Schmidt et al., 2011). In short, the challenge with modelling 

SOC arises not only in LCA studies. However, since SOC changes have been 

shown to have large impacts on the results, the uncertainty associated with SOC 

estimates should be discussed and preferably analysed in sensitivity analysis 

(Paper V). 
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6.1 Biofuels and environmental impact conflicts 

Climate impact, as studied in the present thesis, is one of the two core planetary 

boundaries identified by Steffen et al. (2015), together with biodiversity loss, 

due to their large importance for the Earth’s system. It is clearly vitally important 

to lower the human impact on the global climate. This thesis showed that biofuel 

produced in emerging biorefineries from agricultural and forestry residues can 

have a smaller climate impact than fossil fuels. However, production of biofuels 

may have other environmental impacts, including impacts on biodiversity. A full 

sustainability assessment of biorefinery systems and biofuels needs to account 

for all relevant environmental, social and economic impacts related to the whole 

production chain. The following section focuses on conflicting environmental 

impacts in biofuel production. 

Many studies on first-generation and second-generation biofuels report lower 

GWP and fossil energy use compared with fossil fuels (Borrion et al., 2012; von 

Blottnitz & Curran, 2007). For other environmental impacts, such as 

eutrophication potential, acidification potential, ozone depletion and human 

toxicity, previous studies have reached differing conclusions, with some 

reporting a decreased impact and some an increased impact compared with fossil 

fuels (Borrion et al., 2012; von Blottnitz & Curran, 2007).  

Several studies have shown that there are environmental conflicts. For 

example, a study on switchgrass ethanol showed lower impact with respect to 

GWP, abiotic depletion and ozone layer depletion potential, but a higher impact 

than petrol for other impact categories assessed, including photochemical 

oxidation potential, human toxicity potential, eco-toxicity potential, 

acidification potential and eutrophication potential (Bai et al., 2010). Using 

straw or maize stovers as biorefinery feedstock has been found to have a lower 

6 Outlook 
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impact than a fossil reference system for all impact categories (including human 

toxicity, GWP, ozone depletion acidification etc.) except eutrophication, where 

the impact was higher for both maize stovers and straw. 

There are concerns that biofuel production may affect biodiversity 

negatively. Land use change is one of the main drivers of biodiversity change 

(MEA, 2005), which is why land use change has been a frequent focus in studies 

on biodiversity impacts due to bioenergy production. However, not all land use 

change leads to negative impacts on biodiversity. A review by Immerzeel et al. 

(2014) showed that impacts from bioenergy production on biodiversity are 

mostly negative but that there are several trade-offs, for example perennial crops 

such as energy grasses or short-rotation woody crops such as willow can 

potentially increase biodiversity on field scale in agroecosystems dominated by 

annual crops.  

Intensification of cultivation can lead to negative effects on biodiversity.  

Pedroli et al. (2013) identified increased pressure on land, leading to 

intensification of current agricultural or forestry production and conversion of 

habitat-rich land for the production of bioenergy, as threats to biodiversity, as a 

consequence of bioenergy production. 

Second-generation biofuels from e.g. energy grasses and crop residues can 

potentially be produced on marginal land or do not require extra land (residues) 

and are therefore likely to have lower impacts on biodiversity (Koh & Ghazoul, 

2008). In a review by Immerzeel et al. (2014), it was concluded that second-

generation biomass tends to be less negative for biodiversity than first-

generation crops. However, residue harvesting can have a negative effect on 

biodiversity. For example, harvesting of forest residues may reduce biodiversity 

due to decreased amounts of dead wood and impacts on soil biodiversity in 

forests (Pedroli et al., 2013). A study by Degens et al. (2000) showed that 

decreased soil organic carbon can negatively influence soil microbial diversity. 

This implies that increased withdrawal of crop residues may impact soil 

biodiversity negatively. 

There are several drivers of biodiversity loss, of which climate change is one 

important factor (MEA, 2005). Consequently, biofuels can contribute to 

biodiversity loss mitigation by mitigating climate change. 

 

Local air quality 

The effect on urban air quality from diesel emissions is increasingly being 

discussed. Compared with diesel, biodiesel has been shown to decrease 

emissions of hydrocarbons, carbon monoxide and fine particle matter, while 

increasing emissions of nitrogen oxides (Robbins et al., 2011). These results 
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refer to tailpipe emissions, which of course are interesting for local air quality. 

In a life cycle perspective, looking not at only tailpipe emissions but also 

emissions from biomass production and processing, Wu et al. (2006) found that 

cellulosic fuels produced from switchgrass increased emissions of volatile 

organic compounds and nitrogen oxides. However, when looking at where these 

emissions occur, those authors found that emissions of nitrogen oxides, volatile 

organic compounds and particles decreased in urban areas compared with diesel 

and petrol for nearly all cellulosic fuels studied. 

6.2 Future potential for biofuel production from residues 

In 2016, the transport sector in Sweden used approximately 95 TWh for 

domestic transport alone, while total energy use for transport was 129 TWh 

(SEA, 2017b). Looking at the future biomass potential values for Sweden 

presented in section 3.2.1 of this thesis, the biorefinery producing ethanol and 

biogas (Paper II) could produce 26-33 TWh in a short-term perspective 

(assuming 47% conversion to ethanol and biogas). The biorefinery concept 

producing biodiesel and biogas (Paper V) as transportation fuels could produce 

22-27 TWh in a short-term perspective (assuming 40% conversion to biodiesel 

and biogas). Consequently, in the short term, the biorefinery concepts assessed 

in Paper II could supply a maximum of one-third of the total Swedish energy 

demand for domestic transport, if all available lignocellulosic biomass were 

used. 

Temperature responses from using 1 kg straw in the biorefinery concept 

producing biodiesel, biogas and electricity was assessed in Paper V. If all 

available straw globally were used in this biorefinery concept, the temperature 

response would be considerable. Searle and Malins (2015) estimated that 10% 

of all crop residues globally could be used for bioenergy. This corresponds to 

460 million tons, or 8 EJ per year. Using all of these crop residues could supply 

approx. 3.4 EJ, corresponding to approx. 3% of the 110 EJ used for transport 

globally (U.S. Energy Information Administration, 2016). Extrapolating the 

results in Paper V to cover global production, the temperature response would 

be approx. 0.007 degrees K lower in 100 years compared with using fossil fuels. 

Assuming that 50% of all crop residues could be used as biorefinery feedstock 

(in the biorefinery concept presented in Paper V), approximately 15% of the 

current energy use for transport could be supplied, with 0.04 degrees K lower 

temperature response than the reference system with fossil fuels. These 

calculations are of course very simplified. For example the SOC changes due to 

straw harvesting assumed Swedish conditions. However, the calculations 
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indicate that substantial amounts of bioenergy could be produced from crop 

residues only, with considerable climate mitigation potential compared with the 

use of fossil fuels. It should be noted that crop residues have been estimated to 

be of lower importance when it comes to biomass potential for bioenergy 

production globally (Hoogwijk et al., 2005) and in Sweden (Börjesson et al., 

2013a). Therefore, other sources of lignocellulosic materials such as grasses or 

short-rotation forestry could significantly increase the potential. 

6.3 The role of biofuels for a sustainable transport sector 

Biofuels, particularly advanced biofuels, are important in order to decrease 

climate impact and fossil fuel dependency in the transport sector (EC, 2017a; 

EC, 2013). The main advantage with liquid biofuels is that several can be used 

in low blends with fossil fuels, which means that they can be used within the 

existing infrastructure and vehicle fleet, and thus directly replace fossil fuels. 

Some biofuels, such as HVO, can be used in diesel engines in any blend. 

Biofuels are also the main renewable alternative to fossil fuels in aviation and 

marine transport (EC, 2013). 

However, biomass is projected to be used not only for fuel production, but 

also for materials and chemicals. Thus to reach a fossil fuel-free transport sector, 

biofuels from lignocellulosic biomass will have to be combined with decreased 

energy use in the transport sector and other energy sources such as electricity, as 

discussed below. 

Currently, there is much interest in electric vehicles (EC, 2017a; REN21, 

2017). Today, electricity use in the transport sector is around 1% of the total 

energy use for transport in Europe, whereas biofuels supply around 4% of the 

energy used in transport (EU, 2016). Use of both electricity and biofuels is 

predicted to increase within the transport sector (EU, 2016). There are several 

advantages with electric vehicles, such as decreased local air pollution. 

However, the climate impact gain will depend on the electricity grid mix (EC, 

2017a). 

The following section compares the use of biofuels or electricity from straw. 

For comparison, the driving distance (passenger vehicle) using 1 kg straw was 

calculated for the biorefinery systems in Paper II and V and for electricity 

production from straw. It was assumed that an electric vehicle uses 33% of the 

energy used by a car running on petrol, and that the conversion efficiency from 
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biomass to electricity is 33%4. The results indicate that the driving distance is 

almost twice as long if the biomass is converted to electricity compared with the 

biorefinery systems in Papers II and V. This is primarily because of the high 

efficiency of electric engines. However, for electricity to be a viable option for 

the road transport sector, a large change in the vehicle fleet towards more electric 

vehicles and infrastructure for charging the vehicles are needed. 

It is important to highlight that, in order to reach climate goals, several 

different fuels will be needed, in combination with efficiency improvements 

(EC, 2013) and changes in travel habits. As mentioned earlier, biomass is a 

renewable resource that can replace fossil resources, not only in the transport 

sector but also to produce materials and chemicals. When it comes to materials 

and chemicals, biomass is the main alternative. 

  

                                                        
4Calculated based on three comparable car models using either petrol or electricity. The average 

energy use for the electric version of these models was found to be 33% of that of an equivalent car 

running on petrol. Data from: www.bilsvar.se were used. Conversion efficiency from biomass to 

electricity was assumed to be 33%. Energy use for driving a passenger vehicle was assumed to be: 

petrol 142.4 MJ/100km, biodiesel 118.5 MJ/100km, ethanol: 137.9 MJ/100km, biogas 145.1 based 

on (Huss et al., 2013) and electricity 47 MJ/100km. 

http://www.bilsvar.se/
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7.1 Conclusions 

7.1.1 Climate impact and energy balance 

The conclusions presented in this section refer to the first specific objective of 

this thesis work, which was to evaluate three biorefinery systems in a climate 

impact and energy balance perspective. The conclusions are given for each 

biorefinery system separately. 

 

Ethanol, biogas and electricity production from lignocellulose 

 The results in Paper II were updated using new data for SOC changes, 

nitrogen replacement and enzyme production. The new results using the 

ISO method showed that the climate impact for lignocellulosic ethanol 

ranged between 11.3 g CO2eq/MJ for straw-based ethanol and 3.3 g 

CO2eq/MJ for forest residue-based ethanol. 

 Applying the RED methodology, the climate impact reduction 

compared with fossil fuels was 92% and 89% for straw- and forest 

residue-based ethanol, respectively. When SOC changes and nitrogen 

compensation were included in the RED calculations (RED+SOC), the 

corresponding reduction potential was 71% and 46%, respectively. 

 Primary energy use was between -0.83 and 0.14 for MJprim/MJ ethanol. 

 SOC changes had a large influence on the results, as did biorefinery 

inputs including enzymes (the straw scenario) and nitrogen (the forest 

residues scenario). 

 

 

7 Conclusions and future research 



72 

 

Biodiesel, biogas and electricity production from lignocellulose 

 Applying the RED methodology, the reduction in climate impact 

compared with fossil fuels was 81%. When SOC changes and nitrogen 

compensation were included (RED+SOC), the reduction potential was 

54% (base case). 

 Primary fossil energy use was 0.33-0.80 MJprim/MJ biodiesel. 

 Strain development for oleaginous yeast should aim for shorter 

residence times for lipid accumulation, since this step requires energy 

for agitation and aeration. 

 SOC changes and biorefinery inputs including enzymes and ammonia 

had large effects on the results. 

 Returning lignin from the biorefinery process to the field to mitigate 

SOC changes was not preferable in a climate perspective when the 

alternative use of the lignin was combustion in a CHP plant to produce 

electricity, replacing natural gas electricity. 

 

Ethanol, protein feed and briquette production from faba beans 

 Processing whole faba beans in a green biorefinery increased the 

climate impact by 25% compared with a base case where faba beans 

were used as dairy cow feed. Land use and primary energy use 

decreased by 20% and 100%, respectively. 

 In a climate impact perspective, ethanol production from starch 

extracted from faba beans was not beneficial when the starch was 

replaced by marginal grain in dairy cow feed. 

 Therefore, maintaining the current use of faba beans for feed, while 

exploring other uses of faba bean crop residues, might be interesting to 

improve the climate impact. However, when harvesting the whole crop, 

it is important to consider the effects on SOC. 

 

7.1.2 LCA methodology 

The conclusions presented in this section refer to the second specific objective 

of this thesis work, which was to analyse the effects of different methodological 

choices in LCA studies on biorefinery systems. 

 Choice of method to handle co-products and system boundaries (i.e. 

inclusion of upstream impacts in the form of SOC changes) both proved 

to have a large influence on the results. 

 Comparison between LCA results is difficult. Using a use of feedstock 

FU in combination with a reference system (producing the same 
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functions as the biorefinery) enabled comparison of different 

biorefinery designs and biorefinery systems using the same biomass. 

 Use of time-dependent modelling or GWP did not change the ranking 

between different scenarios. However, the time-dependent model 

provided additional information about climate effects over time, which 

could be important especially in relation to climate target deadlines. 

7.1.3 General conclusions 

Below, general conclusions in relation to the three themes of the thesis (see 

section 2.2) are presented. 

 

Greenhouse gas emissions and energy balance of biorefinery systems and 

products 

This thesis showed that lignocellulosic ethanol and biodiesel produced from 

straw and forest residues in emerging biorefinery systems have a lower climate 

impact and a more beneficial energy balance than fossil fuels. The biorefinery 

producing ethanol and co-products from straw showed a lower climate impact 

and more beneficial energy balance than the biorefinery producing biodiesel and 

co-products from straw. However, biochemical biodiesel production from 

lignocellulose is a very new concept and much less research has been conducted 

on process and strain development of oleaginous yeast, making comparison 

between the two biorefinery systems difficult.  

The consequential LCA showed that when the biorefinery feedstock is a form 

of biomass that is currently used for other purposes, such as feed, there can be 

indirect effects that affect the overall climate performance of the system. 

 

LCA methodology for biorefineries 

Within LCA, it is well known that methodological choices affect the results of 

the study. For studies on biorefineries, methodological choices regarding 

functional unit, impact allocation and handling of biogenic carbon changes are 

especially crucial. Although methodological choices are essentially guided by 

the goal of the study, use of different functional units and allocation methods 

and different methods to estimate the climate impact from changes in biogenic 

carbon stocks can give different insights into the system under study, and can 

therefore be recommended for future LCA studies on biorefinery systems. LCA 

is a tool for assessing the potential environmental impact of products and 

services. It is also a useful tool for learning about the potential environmental 

impact of different production systems, for which using different methods is 

very valuable. This is needed to interpret, evaluate and compare LCA results. 
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An increasing share of biofuels can be expected to be produced in 

biorefineries and from lignocellulosic biomass. Therefore policy instruments, 

such as the RED, will need to become compatible with these systems. This will 

involve careful consideration of allocation methods and the handling of residues 

from agricultural and forestry in the RED. Including upstream impacts from 

harvesting residues in the RED should be considered. When SOC changes and 

nitrogen compensation due to residue harvesting were included in the RED 

calculations in this thesis, the biodiesel produced from straw and the ethanol 

produced from forest residues did not meet the 60% reduction target stipulated 

in the RED. 

 

Influence of increased biomass harvesting on LCA results 

The introduction of biorefineries can result in increased recovery of biomass 

from forestry and agriculture. As already mentioned, SOC changes proved to 

have large impact on climate impact in this thesis. However, it is important to 

remember that effects on SOC changes are difficult to predict, resulting in large 

uncertainties. In addition, LCA methodology is currently under development to 

handle timing of emissions and there is no consensus on how to deal with this 

issue. SOC changes are important not only for the climate impact of the system, 

but also for the sustainability of agricultural systems as a whole. Therefore, this 

issue deserves special attention within LCA. 
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7.2 Future research 

To improve climate impact assessments of biorefinery systems using residues as 

feedstock, it is important to improve SOC change estimations and to find 

methods to deal with changes in biogenic carbon stocks in climate impact 

assessments. Furthermore, in order to assess the sustainability of biorefinery 

systems in a broader perspective, inclusion of more, and more relevant, 

environmental impact categories and social and economic assessments is 

needed. 

The use of oleaginous yeast to produce valuable products from 

lignocellulosic biomass is relatively poorly described in the literature. In a 

systems perspective, more research is needed on the effects of different co-

products, including food or feed, chemicals and pigments (such as carotene). 

Production of HVO from the lipids could be interesting in a Swedish perspective, 

as this application has increased significantly in recent years. 

For all biorefinery systems studied in this thesis, there are several alternative 

process routes for the intermediate products. This thesis focused on 

transportation fuels, where the use of fossil fuels is generally high. However, 

there could be great potential for substitution of fossil resources when producing 

materials such as plastics or chemicals. 

To evaluate the best use of biomass, alternative processes and process designs 

should be studied from an environmental perspective. 
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Background 

Climate change caused by increased concentrations of greenhouse gases in the 

atmosphere is one of the greatest environmental problems facing the planet. Use 

of fossil resources is the single largest source of emissions, but other activities 

such as deforestation and food production also cause greenhouse gas emissions. 

Fossil resources are used in a variety of sectors, such as for transport, 

materials and chemical production and electricity and heat production. In order 

to counteract climate change, it is important to find alternatives to fossil 

resources. Biomass is a renewable resource that can be used to produce e.g. 

liquid fuels, materials such as plastics, chemicals, electricity and heat. Therefore, 

biomass can be a viable alternative to fossil resources in many sectors. Biomass 

is a renewable resource that is said to be carbon-neutral because the carbon 

dioxide it releases was taken recently from the atmosphere during growth of the 

biomass. In contrast, fossil fuels have been formed for millions of years, thus 

adding greenhouse gases to the atmosphere (see diagram). 

Popular science summary 

Combustion of fossil fuels adds greenhouse gases to the atmosphere. In an ideal biomass 

system, the carbon dioxide released during combustion is absorbed by biomass as it grows. 
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However, energy and resources are used in the production of biomass, which 

gives rise to emissions of climate gases. In order to produce biomass, land is also 

needed, which can lead to land use changes, for example deforestation, in order 

to increase the production area. Land use changes can alter the stocks of carbon 

bound in biological materials (plants and soil). Reducing the amount of carbon 

bound in biomass and soil leads to increased concentrations of greenhouse gases 

in the atmosphere. 

Most biomass used today in order to produce biofuels for the transport sector 

is grown primarily for energy, for example, wheat or maize for ethanol or 

rapeseed for biodiesel. This type of biofuel production has been criticised for 

using land that could otherwise be used for animal feed or food production. One 

alternative is to use by-products from agriculture (e.g. straw) and forestry (forest 

residues, tops and branches), so-called lignocellulosic material. The advantage 

of using by-products is that no extra land is needed to produce the biomass. 

However, increased harvesting of straw and forest residues leads to less biomass 

being added to agricultural and forestry systems. This can lead in turn to a 

reduced amount of carbon in the soil (resulting in carbon dioxide emissions). 

Lignocellulosic materials can be transformed into several of the biofuels used 

today, including ethanol and biodiesel. The transformation of lignocellulosic 

materials into liquid fuels (and other products) has several similarities with the 

current production of crop-based fuels. However, there are some differences, e.g. 

the lignocellulosic material needs to be pre-treated in several steps. Production 

plants that co-produce several valuable products, such as biomass fuels, 

materials and chemicals, are called biorefineries. 

 

What did I do? 

The purpose of this thesis work was to increase knowledge about the climate 

impact and energy balance of three new types of biorefinery systems, in 

particular biorefineries that produce fuels together with other products and 

biorefineries that use agricultural and forestry by-products as feedstock. The 

three systems were: 1) Co-production of ethanol and biogas from straw and 

forest residues (tops and branches); 2) co-production of ethanol, protein feed and 

solid fuel from faba beans (whole plant); and 3) co-production of biodiesel, 

biogas and electricity from straw. 

In order to estimate the environmental impact of these biorefinery systems, 

life cycle assessment (LCA) was used. LCA is a method that is now widely used 

to estimate the environmental impact of a variety of products and services, 

including bioenergy. It is also used in biofuel policies such as the EU Renewable 

Energy Directive. This thesis examined how LCA can be used to estimate the 
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environmental impact of biorefineries and the methodological difficulties with 

these types of studies. 

 

What did I discover? 

The climate impact of an ethanol-fuelled (ethanol produced from straw) 

passenger car was 62% lower than that of a fossil-fuelled car. The climate impact 

was 30% lower if, instead of ethanol produced from forest residues, the car was 

instead powered by straw-based biodiesel, for which the climate impact was 

48% lower than for fossil diesel (see diagram). Effects on soil organic carbon 

were included in the climate impact assessment. Comparing the two biorefinery 

systems using straw as feedstock, the biorefinery system which produced 

ethanol, biogas and straw electricity had a higher climate gain than the 

biorefinery system which produced biodiesel, biogas and electricity. 

Today faba beans are used mainly as an animal feed. The study on faba beans 

as a biorefinery input showed that using the crop for this purpose, instead of as 

feed, could have indirect effects on feed demand, which can be important for the 

results. Using whole faba beans as biorefinery feedstock increased the climate 

impact compared with using the beans themselves as feed and returning the rest 

of the plant to the field. 

The aspect that proved to be very important for the climate balance of all 

biorefinery systems was a decrease in the amount of carbon in the soil due to 

increased harvesting of straw and forest residues and harvesting of the whole 

faba bean crop. 

In LCA studies on biorefineries, several methodological choices are 

important for the results, particularly: allocation of environmental impacts 

Climate impact of ethanol and biodiesel produced from lignocellulosic material compared 

with that of fossil diesel. 
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between biorefinery products, selection of a functional unit describing the 

function of interest to the study, and how changes in the biogenic carbon stocks 

are handled. In order to interpret the results of LCA studies of various biorefinery 

systems, it is important to be aware that the method can be important for the 

results. 

Finally, the results showed that ethanol produced from straw and forest 

residues and biodiesel from straw had a lower climate impact and better energy 

balance than fossil fuels and diesel. Therefore, biofuels produced from straw and 

forest residues can play an important role in reducing the climate impact of the 

transport sector. However, in order to get the best possible climate benefit, it is 

important to take into account changes in soil organic carbon as a result of 

increased harvesting of straw and forest residues, and to design systems with less 

potential impact on soil carbon stocks. 
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Bakgrund 

Klimatförändringen som orsakas av den ökade koncentrationen av växthusgaser 

i atmosfären, är en av vår tids största miljöproblem. Användningen av fossila 

resurser är den enskilt största utsläppskällan, men även andra aktiviteter så som 

avskogning och matproduktion orsakar utsläppen av växthusgaser. 

Fossila resurser används inom en mängd sektorer, t.ex. för transporter, 

material och kemikalieproduktion samt för produktion av el och värme. För att 

motverka klimatförändringen är det viktigt att hitta alternativ till fossila resurser. 

Biomassa är en förnyelsebar resurs som kan användas för att producera t.ex. 

flytande bränslen, plast, kemikalier, samt el och värme. Därför kan biomassa 

vara ett alternativ till fossila resurser i många sektorer. Biomassa är en 

förnyelsebar resurs och sägs vara koldioxidneutral. Detta eftersom den 

koldioxiden som släpps ut nyligen har tagits upp från atmosfären under 

biomassans tillväxt. Detta kan jämföras med fossila bränslen som har bildats 

under miljontals år, och därmed ger ett tillägg av klimatgaser till atmosfären (se 

figur).  

Populärvetenskaplig sammanfattning 

Förbränningen av fossila bränslen adderar klimatgaser till atmosfären, i motsatts till 

ett idealt biomassasystem där lika mycket koldioxid som släpps under förbränningen tas 

upp av biomassan när den växer. 
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Produktionen av biodrivmedel är dock inte koldioxidneutral. I produktionen 

av biomassa används energi och resurser, vilket ger upphov till utsläpp av 

klimatgaser. För att producera biomassa behövs också mark, vilket kan leda till 

markanvändningsförändringar, t.ex. avskogning, för att öka produktionsarealen. 

Den förändrade markanvändningen orsakar förändringar i de pooler av kol som 

finns i biologiskt material, både växter och mark. Att minska mängden kol 

bundet i biomassa och mark leder till en ökad koncentration av växthusgaser i 

atmosfären. 

För att producera biodrivmedel för transportsektorn används idag mest 

grödor som odlas enbart för energiändamål, t.ex. vete eller majs till etanol eller 

raps till biodiesel. Denna typ av biodrivmedelsproduktion har fått kritik för att 

mark som annars används till foder- eller matproduktion tas i anspråk för att 

producera drivmedel. Ett alternativ är att istället använda vissa biprodukter från 

jordbruk (t.ex. halm) och skogsbruk (skogsrester), så kallat 

lignocellulosamaterial. Fördelen med att använda biprodukter är att ingen extra 

mark behövs för att producera biomassan. Ett ökat uttag av halm och skogsrester 

leder dock till att mindre biomassa tillförs jordbruks- och skogsbrukssystemen. 

Detta kan bland annat leda till minskad mängd kol i marken (vilket leder till 

utsläpp av koldioxid). Lignocellulosamaterial kan omvandlas till flera av de 

biodrivmedel som används idag, bland annat etanol och biodiesel. 

Omvandlingen av lingnocellulosamaterial till flytande bränslen (och andra 

produkter), har flera likheter med dagens produktion av grödbaserade bränslen. 

Dock finns det några skillnader, t.ex. så behöver lignocellulosamaterialet 

förbehandlas i flera steg. Anläggningar som samproducerar flera värdefulla 

produkter så som bränslen, material och kemikalier från biomassa, benämns med 

ett namn som bioraffinaderier. 

 

Vad har jag gjort? 

Syftet med denna avhandling var att öka kunskapen om klimatpåverkan och 

energibalanser för tre nya typer av bioraffinaderisystem. Särskilt fokus var på 

bioraffinaderier som producerar drivmedel tillsammans med andra produkter, 

samt bioraffinaderier som använder biprodukter från jord- och skogsbruk som 

råmaterial. De tre studerade systemen var: 1. Samproduktion av etanol, biogas 

och el från halm och skogsrester (toppar och grenar), 2. Samproduktion av 

etanol, proteinfoder och fast bränsle från åkerböna (hela växten), 3. 

Samproduktion av biodiesel, biogas och el från halm. 

För att uppskatta miljöpåverkan från bioraffinaderisystemen användes 

livscykelanalys (LCA). LCA är en metod som numera är flitigt använd för att 

uppskatta miljöpåverkan av en mängd olika produkter och tjänster, inklusive 
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bioenergi. Metoden används även inom biobränslepolicys som t.ex. EU’s 

förnyelsebart direktiv. Syftet med denna avhandling var även att bidra till 

diskussionen LCA som verktyg för att uppskatta miljöpåverkan av 

bioraffinaderier och vad det finns för metodologiska svårigheter. 

 

Vad kom jag fram till? 

Klimatpåverkan för en etanoldriven (etanol producerad från halm) personbil 

var 62 % lägre än för fossila bränslen och 30 % lägre om etanolen produceras 

från skogsrester. Om bilen istället drivs med biodiesel producerad från halm var 

klimatpåverkan 48 % lägre än med fossil diesel (se graf). Inverkan på markkol 

är medräknat. Vid en jämförelse av två bioraffinaderisystem som använde halm 

som råvara visade det sig att bioraffinaderisystemet producerade etanol, biogas 

och el från halm hade en högre klimatvinst än bioraffinaderisystemet som 

producerade biodiesel, biogas och el.  

 

Åkerböna används idag till framförallt foder. Studien på åkerböna som 

bioraffinaderiråvara visade att användningen av en gröda som idag har en 

användning, som t.ex. foder, som bioraffineriråvara kan ha indirekta effekter på 

efterfrågan på foder. Detta visade sig vara viktigt för resultatet. Att använda hela 

åkerbönan som bioraffinaderiråvara ökade klimatpåverkan, jämfört med att 

använda själva bönan som foder och återföra resten av växten till marken. 

Den aspekt som visade sig vara mycket viktigt för klimatbalansen för alla 

studerade bioraffinaderisystem den minskade mängden kol i marken på grund 

av ett ökat uttag av halm och skogsrester, samt på grund av helskörd av åkerböna.  

Klimatpåverkan för etanol och biodiesel producerad av lignocellulosamaterial, jämfört 

med fossil diesel. Markkolseffekter är medräknade. 
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För LCA-studier på bioraffinaderier är flera metodval viktiga för resultatet: 

fördelningen av miljöpåverkan mellan bioraffinaderiets produkter, val av 

funktionell enhet som beskriver den funktionen som är intresset för studien, och 

hur förändringar i mängden kol bundet i biomassa och mark hanteras. För att 

tolka resultaten från LCA-studier av olika bioraffinaderisystem är det viktigt att 

vara medveten om att val av metod kan vara betydelsefullt för resultatet. 

Slutligen, resultaten visade att etanol producerad från halm och skogsrester, 

samt biodiesel från halm, hade lägre klimatpåverkan och bättre energibalanser 

än fossil bensin och diesel. Därför kan biodrivmedel producerade från halm och 

skogsrester spela en viktig roll i att minska klimatpåverkan från transportsektorn. 

För att få bästa möjliga klimatnytta, är det dock viktigt att ta hänsyn till 

markkolsförändringar till följd av ett ökat uttag av halm och skogsrester, och 

utforma system med minsta möjliga effekt på markens kollager. 
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