Climate Smart Agriculture: What, Why, and How

Southern Rocky Mountain Ag Conference Monte Vista, Colorado

February 6 , 2019

Brad Udall Senior Scientist Colorado Water Institute

Colorado State University

The Three Pillars of Climate Smart Agriculture

Talk Outline

- Climate Events of 2018
- Colorado Agriculture Overview
- Climate Smart Agriculture: Why and What
- Impacts, Risks and Vulnerabilities to Ag
- Soil Carbon and Health
- Greenhouse Gas Mitigation of Ag
- Ending Comments
- Resources

You can put climate change on a t-shirt!

2018 was the fourth warmest year on record -- and more evidence of a 'new normal,' scientist group reports

By Chris Mooney

January 24 at 11:28 AM

Global warming will happen faster than we think

Three trends will combine to hasten it, warn **Yangyang Xu**, **Veerabhadran Ramanathan** and **David G. Victor**.

- 1. Continued High Emissions
- 2. Cleaner Air
- 3. Ocean Circulations

Nature, 2018

IPCC Special Report on Impacts of 1.5° C Warming October 7, 2018

- 0.8° C warming already
- 1.5° C warming would be damaging
- 2.0° C could approach intolerable in places
- Current Promises to cut emissions lead to 3.5 ° C by 2100
- To avoid 1.5°C
 - Unprecedented actions needed
 - Steep Downward emissions by 2030
 - No historical analog to needed actions
- Takeaway 1: every 0.1° C warming is important. There is no 'cliff' beyond which is it 'too late to act.'
- Takeaway 2: Focus on temperature obscures the most important goal. We must get to net 0 emissions as soon as possible. Negative emissions will become important.

Global Warming of 1.5°C

INTERGOVERNMENTAL PANEL ON Climate chance

An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

4th National Climate Assessment November 23, 2018

3 years in the making400 co-authors29 Chapters

4 Major Findings (of 12)

- Impacts already being felt
 - Fires, Floods, Droughts, Hurricanes
- Future impacts will disrupt many areas of life
- Without substantial and sustained mitigation and adaptation, will cause growing losses to infrastructure, property and impede economic growth
- Quality and Quantity of water changing

Fourth National Climate Assessment

J.S. Global Change

Volume II Impacts, Risks, and Adaptation in the United States

2018 was a brutal year for Colorado Agriculture

Lowest Precipitation on Record 4 Corners Area

Warmest Temps on Record in Many Parts of the State

WestWide Drought Tracker, U Idaho/WRCC Data Source: PRISM (Prelim), created 11 OCT 2018

Acre-Feet x 1000

Colorado Agriculture

- Important to Colorado
 - 100% of Economy in many places
 - Huge Amenity Values elsewhere
- Climate Challenges
 - Too Much Water
 - Too Little Water
 - Heat
 - Fires
 - Odd Weather Patterns
- US Ag is ~10% of US Greenhouse Gas Emissions
 - Methane
 - Nitrous Oxide
 - Some CO2

Cash Receipts for Colorado Agricultural Products,

\$8B / Year in Cash Receipts all Ag Products

Colorado Ag Products by Location

Hay Barley Sheep/Lambs Sunflowers Cattle Millet Wheat Corn Dairy Hogs and Pigs Dry Beans Sorghum Vegetables Oats Grass Seeds Rye Nursery **Other Grains** Eggs Potatoes Silage Apples Sugar Beets Peaches

San Luis Valley: Wheat, Potatoes, Barley, Cattle, Alfalfa Carrots, lettuce, spinach, quinoa, cover crops, rye, canola, irrigated forage

Source: Colorado Foundation for Agriculture

Where our Ag Products are Grown or Raised

Not every crop or type of livestock is shown on this map. This is a simplified representation for educational purposes.

Map created by the Colorado Foundation for Agriculture, www.growingyourfuture.com

0	hay	0	dairy products	-	nursery/green house crops	,	barley	愍	hogs and pigs	-	all other grain
1	sheep lambs	9	dry beams	٣	eggs	۲	sunflowers	0	sorghum	0	potatoes
-	cattle		vegetables	1	silage	۲	millet	139	oats.	۲	apples
0	wheat		feed/grass seeds	Ø	sugar beets		corn and corn for grain	0	rye	0	peaches

Climate Smart Agriculture

- What is it?
 - A framework for ag to handle/manage climate change
 - ~ 40% of the land surface
 - ~ 20% of Emissions worldwide, ~10% US
 - Adopted by CSU ~2016
 - Very much a work in progress

• 3 Pillars

- Sustainable Intensification Grow more food on same land base 9B people in 2050, 11B in 2100
- 2. Adaptation to climate change Technology Farm Production Practices Farm Financial Management Govt Programs & Insurance
- 3. Mitigation (Reduction) of Greenhouse Gasses

Colorado Water

CLIMATE SMART AGRICULTURE

2016 Colorado Water Institute Newsletter

Why Climate Smart Agriculture at CSU?

- 2016 Extension Listening Sessions
 - Pueblo, Akron, Adams County
 - Total of ~30 Agents
- Findings
 - Producers and Agents aware of climatic changes
 - But great reluctance to tie these changes to human actions
 - Agents want more information
 - Support for new CSU Climate Smart Ag Initiative

Alamosa temperature increase mirrors US and Worldwide increase

CSU CSA Activities

- CSA Web Page
- Interface with Governor's Staff
 - Colorado Department of Agriculture
- USDA Climate Hub Activities
 - E.g., GrassCast
 - Workshops
- Outreach
 - Western Dairy, Farm Bureau, Wheat Growers, Farm Show, etc
- Newsletters
- Online Courses
- Best Management Practices
- Conferences
- Drought Activities

Colorado State University

🚢 VPE Staff 🛛 🔟 Contact VPE 🧜 💆

CSU Online CSU Extension Colorado Water Institute Northeast Regional Engagement Center

International Center for German-Russian Studies Community & Economic Development International Initiatives Climate-Smart Agriculture

More University Outreach

Climate-Smart Agriculture

Climate Smart Agriculture at Colorado State University

The Climate Smart Agriculture initiative is a collaboration through the CSU Office of Engagement to provide research-based information for agricultural producers. The goal is to improve the resiliency of farms and ranches, and the overall food system, in a changing climate. Climate Smart tackles three main objectives: sustainably increasing agricultural productivity and incomes; adapting and building resilience to <u>climate change</u>; and reducing and/or removing greenhouse gas emissions.

The recent <u>Colorado Climate Report</u> focuses on seven main sectors including water, public health, energy, transportation, agriculture, tourism and recreation, and ecosystems.

Climate Smart Agriculture Partners at CSU

The Office of Engagement includes the Colorado Water Institute, Colorado State Extension, Colorado State University Online, the Office of Community and Economic Development and the Northeast Regional Engagement Center. These units offer a diverse opportunity for reaching across the state to deliver information on climate and other issues.

> tributor to climate smart agriculture. CWI, an affiliate of Colorado State using the water expertise of higher education on the evolving water concerns in the 21st century.

> ı for university research, information, education, expertise and youth I education designed to assist and inform Coloradans living in both urban and

ries efforts-gain-momentum/

Secretary Vilsack at CSU CSA Event

Secretary Vilsack

USDA Climate Hubs

Established 2013 by Sec. Vilsack

Led by:

ARS USFS

With help from USDA Agencies:

APHIS
NRCS
FSA
RMA

Mission:

Develop and Deliver sciencebased regionally specific information and technology that enables climate-informed decision making

U.S. DEPARTMENT OF AGRICULTURE

Original Site About Us **Contact Us**

Q

REGIONAL HUBS

TOPICS CLIMATE IMPACTS **ACTIONS & RESOURCES** *

WELCOME TO THE USDA **CLIMATE HUBS WEBSITE!**

Our new national and regional websites are designed to ensure that stakeholders from around the Nation can quickly and easily find the information they need to manage climate change risks and ensure the resilience of their production systems. a the state allows and

The Effects of Drought on **Recreation and Wilderness**

Drought conditions present challenges for managing recreation opportunities on national forests and grasslands by affecting ecosystem functions that drive demand for recreation.

Planning for Planting

Design an effective riparian buffer during the offseason by using AgBufferBuilder to aid against intense rain events in the future.

The Future of Winter Roads

Recent warmer and shorter winters mean that winter freeze and spring thaw periods for roads are less dependable. Learn how this variability impacts industry, management and communities, and how a new tool can now better assess roadway freeze-thaw conditions.

Where are the Regional Climate Hubs located?

Colorado is in Northern Plains Region but Southwest and Southern Plains Hub may also be useful

Danelle Peck

What do the Climate Hubs do?

Research and Science Information Synthesis

- Provide periodic regional assessments of risk and vulnerability to production sectors and rural economies. This
 includes writing portions of or contributing to the National Climate Assessment prepared by the United States
 Global Change Research Program (USGCRP).
- Support applied research and development and innovation partnerships for risk management and climate change response.
- Work closely with extension organizations, universities, technical service providers, and the private sector to be a source of user-friendly information developed from a wide variety of sources.

Tool Development, Technology Exchange, and Implementation Assistance

- Deliver science-based agriculture, forestry, and land management tools and strategies for responding to impacts of a changing climate such as drought, extreme weather events, and changing growing seasons.
- Improve access to usable regional data and climate change projections and forecasts in support of risk management and climate adaptation planning.
- Provide coordinated technical support to supplement USDA agriculture and land management program delivery, especially to underserved and vulnerable communities, tribes, and individuals.

Stakeholder Education, Outreach, and Engagement

- Provide outreach and education to farmers, ranchers, and forest landowners on science-based risk management.
- Educate natural and agriculture resource managers on the latest understanding of climate science and the effects of climate change on working lands.
- Engage with our stakeholders and partners in innovative and interactive ways to help lower the barriers to adaptation, manage risk, and enhance rural productivity.

Overview Document for the Northern Plains Climate Hub

Climate Overview Past and Future Cropping and Grazing Systems Risks Vulnerabilities Adaptation Strategies Greenhouse Gasses Emissions Profile and Mitigation Opportunities USDA Northern Plains Regional Climate Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies

Photo Credit: David Augustine, ARS

Authors: Justin Derner (ARS), Northern Plains Hub Lead; Linda Joyce (Forest Service) Northern Plains Hub; Rafael Guerrero (NRCS), Northern Plains Hub; Rachel Steele, National Climate Hubs Coordinator

Northern Plains Climate Hub USDA ARS, Natural Resources Research Center 2150 Centre Avenue Fort Collins, CO 80526

May 2015

Contributors: Our thanks to Juliet Bochicchio, RD; Wendy Hall and Marlene Cole, APHIS; Sharon Hestvik, RMA; Aaron Krauter, FSA; Dana Coelho and Trey Schillie, Forest Service; Michele Schoeneberger and Gary Bentrup, National Agro-forestry Center (Forest Service); Sharon Papiernik, Ann Heckart, and Lee Panella, ARS; and David Buland, Elise Boeke, Joyce Swartzendruber, Neil Dominy, Ted Alme, Jeffrey Zimprich, and Dennis Kimberlin, NRCS. We acknowledge ICF International for their contributions to the Greenhouse Gas Profile.

Edited By: Terry Anderson, ARS.

Climate-Smart Ag Newsletter - 2016

Colorado Water Marchi/April 2016 I CSU Water Conter

CLIMATE SMART AGRICULTURE

Editorial LOU SWANSON

am writing this note at a hotel in downtown Beijing — one of the global posterchildren for the ecological crises and the political, economic and social complexities for addressing climate change. Here, all of your senses vividly register the consequences of human activity on the atmosphere, water, and soils. The Chinese government is feverishly ramping up efforts to mitigate pollution, including nitrate and chemical associated with their agricultural practices. At the end of last year a remarkable event occurred in Paris. After over twenty years of discussions, one failed agreement, and five major scientific assessments involving thousands of scientists, 195 countries agreed

to reduce their emissions of carbon to avoid harmful climate change. One hundred ninety-five countries actually agreed to recognize our common dependency on our planet.

Over my career, including as a Peace Corps Volunteer in western Tunisia, I have watched the climate change issue unfold with major impacts on the ground and have watched the science of climate dynamics mature. Concerns about the future resiliency of agriculture, in Colorado and globally, have led the Office of Engagement to undertake a new initiative on Climate Smart Agriculture to help producers plan for a future with a changing climate and the resulting social and economic adaptations. The goal of this initiative is to reduce the vulnerability of agriculture to a changing climate, including

Features— Climate Smart Agriculture

- 2 Global and Local Climate Change: What We Know and Expect By Bradley H. Udall
- 8 State of Colorado Climate Change Actions By Taryn Finnessey and John Stulp
- 10 Climate Trends in Colorado over the Past Century By Nolan Doesken
- 14 Greenhouse Gases and Agriculture By Bradley H. Udall
- 17 Agricultural Climate Change Impacts and Adaptation Opportunities for Colorado By Reagan Waskom and Dennis Olima
- 24 Farm and Ranch Carbon Footprints Made Easy By Keith Paustian, Kevin Brown, Mark Easter, and Matt Stermer
- 29 Climate Smart Agriculture By Louis Longchamps and Rajiv Khosla
- 31 Looking at Climate Chaper and Global Food Security
- By PotenciaCklund Solving the Climate Change Riddle: Reasons for Optimism By Bradley H. Udall
- 36 Further Reading

On the cover: Akron, Colorado Photo by Bryce Bradford

Ralph Parshall, one of Colorado's water leaders and an internationally-celebrated member of the CSU faculty, gave a speech in 1957 at the Rotary Club in Fort Collins where he talked about how greenhouse gases emitted by humans could change the climate. Climate has since grown to be a significant international concern. Courtesy of Water Resources Archive, CSU Libraries

Colorado Water » March/April 2016

Ralph Parshall's speech to the Rotary Club in 1957 about climate change Reagan Waskom & Dennis Ojima Article

Short, Simple Introduction to Ag Impacts and Adaptation Opportunities

Agricultural Climate Change Impacts and Adaptation Opportunities for Colorado

Reagan Waskom, Colorado Water Institute, Colorado State University Dennis Ojima, Ecosystem Science and Sustainability, Colorado State University

SYNOPSIS

Photo by Flickr User Let Ideas Compete

Agriculture in Colorado already adapts to a wide variety of stressors, but additional planning may be needed to prepare for climate-related changes like extreme weather events, longer and hotter growing seasons, and extreme drought.

griculture is appropriately recognized as one of the most weather-sensitive sectors, and protecting Colorado's food production capacity should figure prominently in discussions about climate adaptation. Adaptation and risk management is what crop and livestock producers are engaged in on a daily basis—they adapt to changing markets, technology, regulations, consumer demand and preference. Flood, drought, hail, wind, untimely freezes or heat are the abiotic stresses that cause most crop failure and livestock losses.

Agriculture is very well equipped to adjust to long-term shifts in average temp, humidity, evapotranspiration (ET), rainfall, frost-free days, and other typical variations in climate. However, a key difference frompast adaptations may be changes in the frequency and intensity of extreme weather events, a more rapid rate of change in regional weather conditions, and seasonal shifts in precipitation patterns and extended drought. Climate adaptation in agriculture is already occurring, but in an unplanned manner for the most part.

Expected Climate Impacts in Colorado

The Colorado Water Plan recognizes that average temperatures have increased in Colorado by 2° F in the past 30 years, affecting snownelt timing and peak runoff. While there are potential benefits associated with these trends, such as earlier green-up of mountain and range forage for livestock, agricultural scientists and hydrologists are concerned that increased vulnerabilities that producers may face include longer, hotter growing seasons; extreme weather events; and drought.

Longer, Hotter Growing Seasons

Earlier arrival of spring results in longer growing seasons and prolonged hot periods during the growing season can affect the selection of crops and crop varieties. Longer, warmer growing seasons may enhance the growth of non-native weeds (for example, cheat grass, smooth brome, Kentucky bluegrass and Dalmatian toadflax). Warmer and drier summers will likely reduce forage production and crop yields as precipitation or irrigation are inadequate to keep up with crop ET demands. The Colorado Climate Center documented record reference ET rates during the hot summer of 2012 in Colorado. Longer and more intense fire seasons pose a risk to agriculture by reducing grazing lands available for livestock, altering critical wildlife habitat, and impacting water quantity and quality from forest watersheds

Extreme Weather Events

Extreme events can dramatically influence farmer and rancher livelihoods and enterprises. The early October 2013 snowstorm (named "Atlas") resulted in tens of thousands of livestock deaths in western South Dakota and northwestern Nebraska with ripple economic effects to the businesses and local economies of these agricultural communities. Excessive rainfall in September 2013 in Colorado flooded crops and farmland, damaged houses and agricultural structures, and impaired water quality downstream.

Drought

The extensive and extreme drought conditions of 2012 had substantial negative economic results for land managers and local rural economics. Forage and hay production was less than half of average, resulting in low stocks of hay. Over 2,000 counties nationwide were designated as disaster areas due to the 2012 drought. The Northern Plains largely recovered from the 2012 drought by late 2013 and fully by 2014 with continued increase

Colorado Climato Chango		Climate Impact	Key Vulnerabilities			
Julnerability Study	Field Crops Crop	Rising temperatures	 Crop yields vulnerable to reductions due to heat stress 			
vaniciasinty stady		 Increasing frequency and severity of dreaght 	 More frequent losses of crops, forage, and soil 			
2014 CSU + CU Study		 Earlier mset of spring; longer growing seasons 	 Crops vulnerable to increased weeds and pests due to longer growing season 			
+ Colorado Energy Office		Impact	Potentially reduced streamflow	 Production losses due to irrigation shortages 		
c, key vuir		lerability	 Increased CO₂ levels 	 Crops potentially affected by weeds encouraged by CO₂ fertilization 		
Climate Overview	• Extreme weather events		 Continued losses of crops, facilities (structures, ditches, equipment) 			
Sectors	Fruits and Vegatables	 Earlier spring thaws 	 Fruit crops vulnerable to frost damage worsened by early budburst 			
Ecosystems		 Increasing frequency and severity of drought 	 Increased potential for water shortages occurring simultaneously with higher 			
Public Health		 Reduction streamflow, 	 Reduced production due to limited 			
 Energy 		especially in late summer	irrigation supply, increased water prices			
• Water	Livestock	 More favorable conditions for pathogens 	 Cattle vulnerable to lower weight gain and other health problems due to 			
 Transportation 		iei peinegene	higher temperatures			
AgriculturePocreation		 Increasing temperatures 	 Loss of weight and animal health in higher temperature; increased costs of facilities 			
		Green Industry	Extreme weather events	 Damage to facilities and products 		
		 Potential reduction in streamflow 	 Loss of production due to water use restrictions 			

Agricultural Adaptation Options

Technology

New cultivars Weather and Climate Information Water Management Innovations

Government Programs and Insurance Ag Subsidy and Price Support Programs **Private Insurance**

Farm Production Practices Diversify crop and livestock types Alternative Fallow and Tillage Irrigation Timing of Operations (plant/harvest)

Farm Financial Management **Crop Insurance**

United States Department of

Agriculture

Economic Research Service

Economic Research Report Number 136

July 2012

Agricultural Adaptation to a Changing Climate

Economic and Environmental Implications Vary by U.S. Region

Scott Malcolm, Elizabeth Marshall, Marcel Aillery, Paul Heisey, Michael Livingston, and Kelly Day-Rubenstein

Malcolm et al, 2012

Key Drivers	Adaptation Strategies	 Farm Production Practices 	Farm Mana	Financial gement	Farm Infrastructure	Technological Developments	Govt Programs and Insurance
Climate Varia	oility				United States Department of Agriculture Agriculture Research Service Church Channe	USDA	ALAN
Soil Degradati	on		Key Adaptation Drivers Increased variability in growing conditions (changes in seasonal temperature and pre-	Farm Production Practices Change crop variety and breed, change timing of farm operations, use season extension and irriga-	Program Office Technical Bulletin 1935		
Pests			cipitation patterns)	tion, Build soil health Soil conservation practices (eg. no-till, mulch), Build	Agricultu	re in the Uni	ted States:
Droughts			Increased pest pres- sure, novel pests	soil health IPM practices, Resistant crop varieties and breeds, Farmscaping	Effe	cts and Adapt	ation
Floods			Increased number, length and/or intensity of drought events	Resistant varieties/breeds, adjust crop/livestock devel- opment, build soil health			
Govt Policy			Increased number and/ or intensity of flood events	Avoid high risk locations/ time periods			
Economic (e.g Markets)	g. Carbon		Shift in optimum zones for current production systems	Change in crop/livestock systems	P P		
			Government climate change policy	Use GHG emissions reduc- tion practices	P t		
Consumer Bel	havior (diets)		Economic (eg. carbon markets)	Adjust crop/livestock mix appropriate to new market	P		
Perception of	Risk		Consumer behavior (eg, diet change)	Adjust crop/livestock mix to meet demand	P		
			Perception of climate risk	Short-term vs. long-term adjustments			

AL ANIMON

1100

Alternatives to Permanent Fallowing

- Provide a Literature Review of what we know about
 - Deficit Irrigation
 - Rotational Fallowing
 - Crop Switching
 - Irrigation Efficiency
- Colorado River Basin Focus
 - Upper Basin Agriculture very different from Lower Basin
- Purpose:
 - Provide Information to policy makers, NGOs, producers and others on alternatives to permanent fallowing
 - CSU not advocates for/against
- Meetings held
 - Grand Junction
 - Tucson
 - Washington, DC

Agricultural Contribution to Atmospheric CO2 Increases

Contributions to CO2 increases from 1870 "Pre-Industrial" to 2014

Key contributors to the increase:

Land Use: = 27 %

Coal = 35 % Oil = 26 % Gas = 11 %

Soil Carbon / Health

- "Living Epidermis of the Planet"
- Plants, Animals, Microbes in soil
- Largest Temporary Storage of Water
- \$4T in agricultural products yearly
- Huge, Dynamic Carbon Reservoir
 - 2-4x size of atmospheric carbon
 - critical part of carbon cycle
- Cultivation 'ignited' vast store of carbon
 - ~ 130 Billion Tons of Carbon Lost
 - = 25% of total emissions since 1850
- Soils have been fundamentally altered
 - 'Domesticated' soils
- Up until mid-20th century biomass burning and cultivation carbon loss exceeded fossil fuel emissions

Soil Carbon / Health

- Soil Carbon
 - 0.5 to 4% naturally
 - helps to holds water
 - provides nutrients from decomposition
 - provides structure to soil
- Original Loss from Northern areas, now equator
- Possible to recover some of lost carbon
 - 1.3 GtC/year max (15% total GHG emissions)
- Difficulties
 - Measurement, retaining SOC
- Erosion is big problem
 - water is biggest culprit but also wind
 - with cover crop, less erosion possible
 - water preferentially moves lightest, carbon-rich top soil

Crop and Grazing Areas

Soil Health Benefits

- Science not always clear that increased soil carbon will provide a yield benefit
 - Fertilizer can offset low soil carbon
- But clear yield benefits to
 - Tubers
 - Cereals
- Other Benefits
 - Soil structure
 - Water holding
 - Micro nutrients
 - Carbon sequestration
- How to increase soil carbon ?
 - Less tillage
 - Leave residues on surface
 - Cover crops (where water)
 - Crops with more roots (new crops?)
 - grasses especially good
 - Improved crop rotations
 - Amendments/Biochar

Climate Smart Practices can reduce GHG emissions and improve soil health

Paustian et al., 2016

Climate Smart Agriculture: GHG Mitigation

- US Agriculture GHGs are ~10% of US Total Emissions
- USDA Building Blocks were part of **US Paris Pledge to** reduce GHGs
- Built on existing NRCS programs
- Status Unknown

USDA BUILDING **FLOCKS TO REDUCE GREENHOUSE** GAS EMISSIONS

n mid-2015, U.S. Department of Agriculture (USDA) Secretary Vilsack announced a comprehensive, detailed and voluntary approach to support farmers, ranchers and forest owners who want to respond to climate change. The framework contains 10 building blocks that reduce greenhouse gas emissions, increase carbon storage, or provide alternative energy. USDA will use the authorities in the 2014 Farm Bill to provide incentives and technical assistance to implement the initiative. USDA estimates that the initiative should reduce total U.S. emissions by two percent nationally in 2025.

Participation will be entirely voluntary within USDA's existing 'cooperative conservation' model. The program will be focused on multiple economic and environmental benefits including efficiency improvements, increased yields and reduced risks. This strategy is designed for working farms, ranches, forests, and production systems. Quantitative goals and objectives will be established for each building block and USDA will track and report on progress. Opportunities to leverage efforts by industry, farm groups, conservation organizations, municipalities, public and private investment products, tribes, and states will be sought.

ENERGY GENERATION AND EFFICIENCY

Promote renewable energy technologies and improve energy efficiency. Through rogram, work with utili Ising the Rural Energy fo merica Program and othe rograms, develop addition On-Farm Energy Initiative haring and energy audi

URBAN FORESTS

additional trees in urban areas

per year through 2025

PRODUCTS

as a building material, to store additional carbon I buildings while offsetting the use of energy from ossil fuel. USDA plans to nrougn cooperat and technical assistance market promotion for nev innovative wood building

Encourage tree planting in urban areas to reduce energy costs, stormwater runoff, and urban heat island effects while increasing carbon sequestration, curb appeal and property values. Working with partners, USDA plans to plant an average of 9,000

OF FEDERAL FORESTS Reforest areas damaged by wildfire, insects, or disea

STEWARDSHIP

and restore forests to increase their resilience to those disturbances. USDA plans to reforest 5,000 additional post disturbance acres by 2025.

PROMOTION OF WOOD

PRIVATE FOREST GROWTH AND

Through the Forest Legacy Program and the Community

RETENTION

Forest and Open Space Conservation Program, protect almost 1 million additional acres of working landscapes. Employ the Forest Stewardship Program to cover an average of 2.1 million acres annually (new or revised plans), in addition to the 26 million acres covered by active plans.

type, placement and quantity of nutrients to reduce nitrous digesters, lagoon covers oxide emissions and provide cost savings through efficient composting, and solid eparators to reduce cattle, dairy, and swin perations. USDA plans to upport 500 new digesters over the next 10 years, as well as expand the use of CONSERVATION

LIVESTOCK

Encourage broader

PARTNERSHIPS

well as expand the use of covers on 10 percent of anaerobic lagoons used n dairy cattle and hog Reserve Program (CRP) and the Agricultural Conservation

NITROGEN

application

LANDS

STEWARDSHIP

Focus on the right timing,

OF SENSITIVE

Use the Conservation

Easement Program (ACEP) to reduce GHG emissions

025, USDA aims to enro

with high greenhouse gas

by transferring expiring

CRP acres to permanent

100,000 acres of CRP land

SOIL HEALTH

Improve soil resilience and increase productivity by promoting conservation tillage and no till systems, planting cover crops. planting perennial forages, managing organic inputs and compost application, and alleviating compaction. USDA aims to increase no-till implementation from the current 67 million acres to over 100 million acres by 2025

GRAZING AND PASTURE LANDS Support rotational grazing management, avoiding soil carbon loss through improved management of proved management

tock. By 2025, USDA razing management on ar additional 4 million acr a total of 20 million acr

Source: CSU Climate Smart Agriculture Newsletter

Existing NRCS Conservation Practices that build soil carbon

Table 2

Soil carbon sequestration rates under USDA Natural Resources Conservation Service (NRCS) conservation practices for cropland (adapted from Swan et al. [2015]).

Climate Change Mitigation	NRCS Conservation	NRCS Conservation	Atmospheric/soil benefit
Building Block	Practice Standard Number	Practice Standard	(Mg C ha⁻¹ y⁻¹)
Soil Health	327	Conservation cover (ac) - retiring marginal soils	0.42 to 0.94
	328	Conservation crop rotation (ac)	0.15 to 0.17
	329	Residue and tillage management, no-till (ac)	0.15 to 0.27
	329A	Strip till (ac)	0.07 to 0.17
	329B	Mulch till (ac)	0.07 to 0.18
	330	Contour farming (ac)	0.07 to 0.19
	332	Contour buffer strips (ac)	0.42 to 0.94
	340	Cover crop (ac)	0.15 to 0.22
	345	Residue and tillage management, reduced till (ac)	0.02 to 0.15
	386	Field border (ac)	0.42 to 0.94
	393	Filter strips (ac)	0.42 to 0.95
	412	Grassed waterways (ac)	0.42 to 0.96
	585	Strip-cropping (ac)	0.02 to 0.17
	601	Vegetative barriers (ft)	0.42 to 0.94
Chambers et al., 2016	603	Herbaceous wind barriers (ft)	0.42 to 0.95

Existing NRCS Conservation Practices that build soil carbon

Table 3

USDA Natural Resources Conservation Service (NRCS) atmospheric-beneficial grazing and pasture lands and degraded lands conservation practices (adapted from Swan et al. [2015]).

Climate Change Mitigation	NRCS Conservation Practice	NRCS Conservation	Atmospheric/soil benefit	
Building Block	Standard Number	Practice Standard	(Mg C ha⁻¹ y⁻¹)	
Grazing and Pasture	512	Forage and biomass planting (ac)	0.02 to 0.17	
	528	Prescribed grazing	0.17 to 0.44	
	550	Range planting	0.22 to 0.35	
Degraded Lands Restoration	342	Critical area planting (ac)	0.66 to 1.28	
(Not an official	453	Land reclamation: landslide treatment (ac)	0.49 to 1.28	
mitigation building block)	543	Land reclamation: abandoned mine lands (ac)	0.67 to 1.28	
	544	Land reclamation: currently mined lands (ac)	0.27 to 1.28	

Chambers et al., 2016

Proposal for US to join 4 Parts per Thousand

Global Soil Initia Figure 1 USDA Natural Resources Conservation Service (NRCS) progress tracking of soil organic carbon (SOC) enhancements on croplands and grasslands. 60 50 40 SOC (Mt CO₂e) If fully implemented, 30 practices would offset 20 50% of US Ag 10 GHG emissions 2006 2008 2009 2010 2011 2012 2005 2007 2013 2014 Year Legend NRCS Soil Health Building Block (actual conservation practice data)

NRCS Grazing and Pasture Land Building Block (actual conservation practice data)

Ag Best Management Practices Compilation

- CSU Professor Jim Ippolito lead
- Compiling list of BMPs for Ag
 - Ranching Casey Shawver
 - Field Crops Dustin Diaz
- Rollout
 - Summer 2019

Climate Smart Ag Online Courses

- Target: Extension Agents and Producers
- Format: Short Mini-courses
- Topics
 - Colorado's Climate Doesken
 - Climate Change Basics Denning
 - Climate Change and the Water Cycle Udall
 - Agriculture Impacts and Adaptation Udall
 - Agricultural GHG Mitigation Paustian
 - Climate Change Myths Udall
- Late Spring 2019 Rollout

Climate Smart Ag Course Format

- Course composed of 5-12 'modules' or 'weeks'
- Each Module
 - Video Lecture (5-10 minutes)
 - Reading(s) (30-45 minutes)
 - Possible Quiz
 - Total Time each Module under 1 hour
 - Short Test
- End of Course Exam
 - ~20 Questions

¹² Water Cycle and Climate Change

The Water Cycle

Overview

The Earth's water, or hydrologic, cycle is critical for all life. It is driven by heat, and thus as the Earth warms, it will change in significant ways. On a global scale, as the atmosphere warms, we will get more rain and less snow, more evaporation and precipitation but with regional winners and losers, earlier snowmelt and runoff, and fewer days with precipitation.

▶ Lecture: The Water Cycle [01:33]

Watch the video on YouTube: https://youtu.be/D83onC5SLxo

Closing Thoughts

- Climate Change is here, and it is a really big deal
 - San Luis Valley will have higher temperatures and less water
- Agriculture is both...
 - a cause of climate change and,
 - is impacted by climate change
- Agriculture can also help solve climate change
 - By reducing GHG emissions (N20, Methane especially)
 - By pulling Carbon (CO2) out of the air
- Soil Health has a role
 - Adaptation Role Yield, Structure, Water Holding, Nutrients
 - Can help with sequestering carbon, too
- CSU has a duty to help Colorado Agriculture...
 - Adapt to the coming changes
 - Reduce Ag's impact on climate change
- Climate Smart Agriculture is CSU's first, tentative steps to help
 - Colorado Ag is Diverse, Complicated
 - Education is the first step, but much more needed
 - But we can't do it alone
 - We need your help, too

San Luis Valley will see less precipitation

National Climate Assessment, 2018

References

Climate Change and Agriculture in the United States: **Effects and Adaptation**

COLORADO CLIMATE CHANGE VULNERABILITY STUDY

A report submitted to the Colorado Energy Office

EDITORS

Eric Gordon, University of Colorado at Boulder Dennis Ojima, Colorado State University

Climate Change and Agriculture in the United States: Effects and Adaptation

2015 Report on the Health of Colorado's Forests 15 YEARS OF CHANGE

CLIMATE SMART AGRICULTURE

U.S. Global Change Research Program

Fourth National **Climate Assessment**

Grazed and confused?

and Adaptation and Mitigation Strategies

Photo Credit: David Augustine, ARS

Authors: Justin Derner (ARS), Northern Plains Hub Lead; Linda Joyce (Forest Service) Northern Plains Hub; Rafael Guerrero (NRCS), Northern Plains Hub; Rachel Steele, National Climate Hubs Coordinator

Northern Plains Climate Hub USDA ARS, Natural Resources Research Center 2150 Centre Avenue Fort Collins, CO 80526

May 2015

Contributors: Our thanks to Juliet Bochicchio, RD; Wendy Hall and Marlene Cole, APHIS; Sharon Hestvik, RMA; Aaron Krauter, FSA; Dana Coelho and Trey Schillie, Forest Service; Michele Scheneberger and Gary Bentryn National Agre-foresty Center (Forest Service) Material Anno Papiernik, Ann Heckart, and Lee Panella, ARS; and David Buland, Elise Bocke, Joyce Swatzendruber, Neil Domity, Ted Alme, Jeffrey Zimprich, and Dennis Kimbertin, NRCS. We acknowledge ICF International for their contributions to the Greenhouse Gas Profile

Edited By: Terry Anderson, ARS.

Journal Articles

- Lal, et al, 2015, Carbon Sequestration in Soil
- Amundson et al., 2015 Soil and Human Security in the 21st Century
- Chabbi et al., 2017, Aligning Agriculture and Climate Policy
- Rumpel, et al., 2018, Put more carbon in soils to meet Paris climate pledges
- Sanderman et al., 2017, Soil Carbon debt of 12,000 years of human land use
- Paustian et al., 2016, Climate-smart soils
- Smith 2008
- NAS, 2018, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda
- Chambers et al., 2016, Soil carbon sequestration potential of US croplands and grasslands: Implementing the 4 per Thousand Initiative

What are the USDA Climate Hubs?

USDA's Climate Hubs are a unique collaboration across the department's agencies. They are led by Agricultural Research Service and Forest Service senior Directors located at ten regional locations, with contributions from many other programs including the Natural Resources Conservation Service, Farm Service Agency, Animal and Plant Health Inspection Service, and the Risk Management Agency. The Climate Hubs link USDA research and program agencies in their regional delivery of timely and authoritative tools and information to agricultural producers and professionals.

Mission

The mission of the Climate Hubs is to develop and deliver science-based, region-specific information and technologies, with USDA agencies and partners, to agricultural and natural resource managers that enable climate-informed decision-making, and to provide access to assistance to implement those decisions. This is in alignment with the USDA mission to provide leadership on food, agriculture, natural resources, rural development, nutrition, and related issues based on sound public policy, the best available science, and efficient management.

Modules - Climate Change and the Water Cycle

- 1. Course Intro (and Introduction to Climate Smart Agriculture)
- 2. Introduction to the Water Cycle
- 3. Changes in Historical Air Temperature
- 4. Changes in Historical Precipitation
- 5. Projected Temperature and Precipitation Trends
- 6. Changes in Water Demands
- 7. Changes in Snowpack Amounts and Runoff Timing
- 8. River Basin Flow Projections
- 9. Changes in Water Quality
- 10. Changes in Floods and Droughts
- 11. Changes in Water Management
- 12. Wrap Up

