
Clinical Exome Sequencing at Baylor Whole Genome Laboratory: Molecular Diagnosis and Disease Gene Discoveries

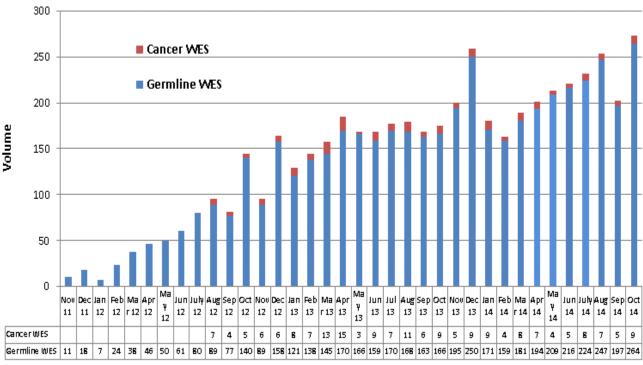
Yaping Yang, Ph.D. Associate Professor, Department of Molecular and Human Genetics Laboratory Director, Whole Genome Laboratory

	Unique	Unique			Targets	Bases
	12	Batche	s of Cli	nical Sa	mples	
	50	10	0	150	200	
80%						
85% -						
90%						
95% -	A A					
100%	Adda a			with the local data		

WHOLE GENOME LABORATORY

Baylor College of Medicine

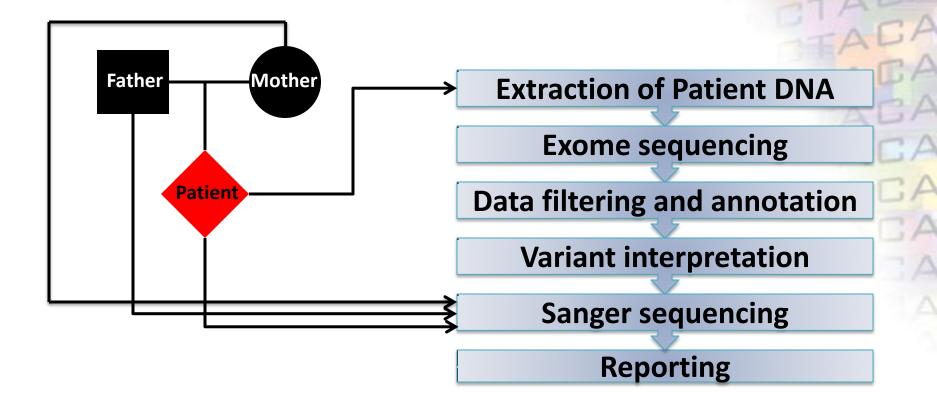
Dept of Molecular and Human Genetics



BCM WGL Launches Clinical Exome Sequencing Oct 2011

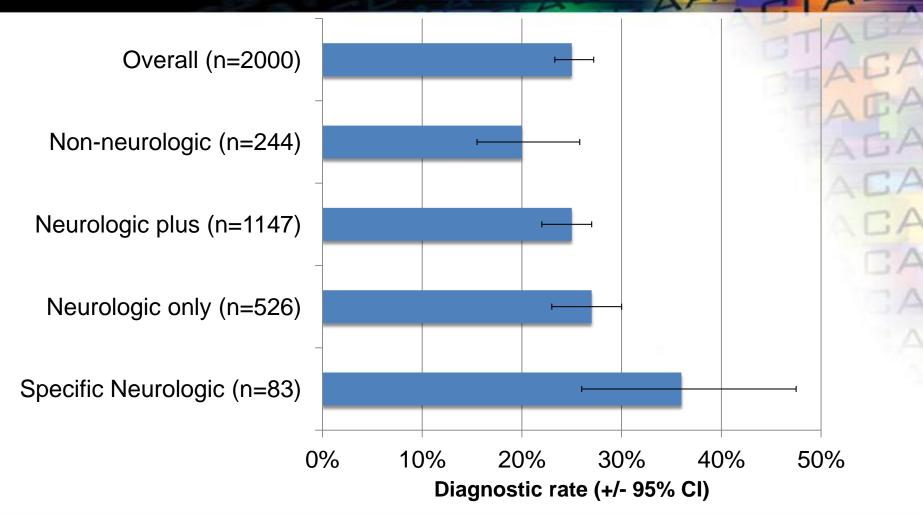
WGL Sample Volume through October 30, 2014

- ~ 5200 samples received, ~4200 cases finalized
 - 85% peds; 15% adult
- Mostly neurologic
- In addition: skeletal disorders, pulmonary artery hypertension, cardiovascular dz
- Variety Of referral sources – academic medical centers, private hospitals


MONTHLY GERMLINE AND CANCER WES SAMPLES: ~230

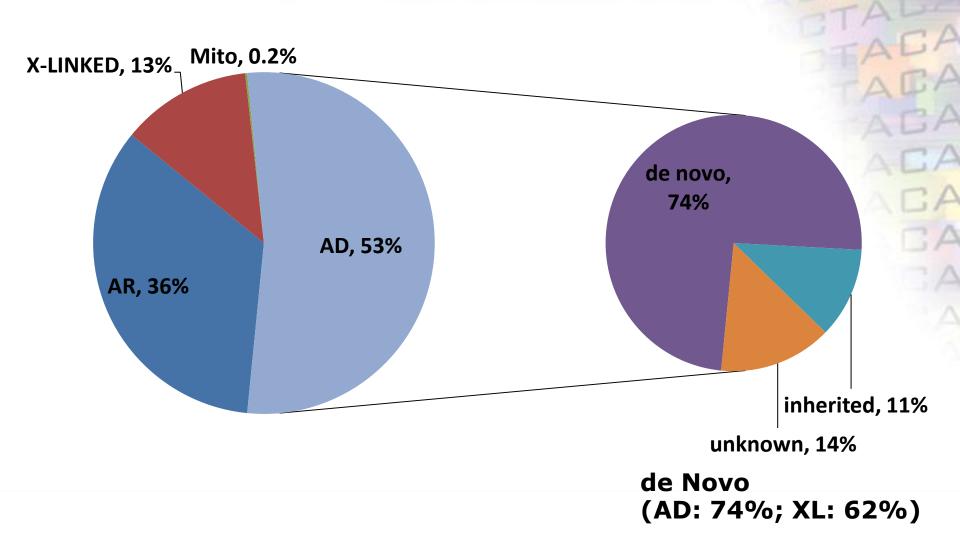
N=4200 ~25% molecular Dx fits with clinical picture - Pts now given option to consent to research analysis for 75% no Mol. Dx. rendered

Clinical Exome Sequencing at WGL


- Discoveries made
 - Diagnostic rates
 - Rare genetic events identified
 - New disease genes
- Lessons learned
 - Key elements of clinical exome

WES-Workflow for Proband Exome

Trio exome sequencing is also available from our laboratory now


Molecular Diagnosis Rate: Overall and by Phenotypic Groups

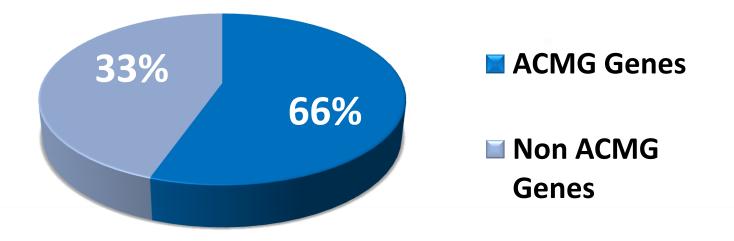
504/2000=25% 25% Diagnostic Rate Maintained for 3384 patients

Yang, et al., JAMA, 2014

Inheritance Manners among the 504 Positives in WES 2000

Findings against Textbook Expectations: Cases with Two Molecular Diagnoses (23/504) ~ 5%

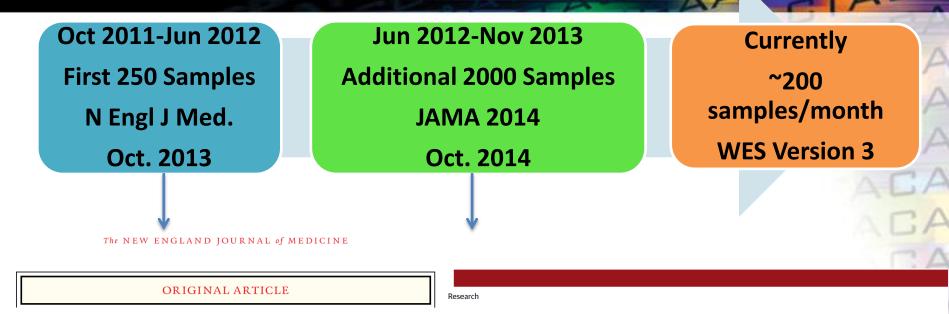
Cases	AD	AD	AR	AR	X-linked	Two Diagnoses
1	ANKRD11	ARID1B				
2	ASXL3	ENG				
з	CHD2	PRRT2				
4	CREBBP	PRICKLE2				
5	DYRK1A	KAT6B				
6	SCN1A	SMARCA2				
7	GLI2	IRF6				AD+AD (7)
8	DES		CLCN1			
9	KCNT1		TTN			
10	KIF5C		NRXN1			
11	KMT2A		TCIRG1			
12	NF1		GALNT3			
13	NF1		MEGF8			
14	SYNGAP1		МТЕМТ			
15	THRA		DGAT1			AD+AR (8)
16	ARID1B				GRIA3	
17	EFHC1				SMC1A	
18	FBN2				PQBP1	
19	TPM1				DMD	AD+XL (4)
20			AP4M1	АТМ		
21			PAPSS2	TRDN		
22			RECQL4	XPC		AR+AR (3)
23			BBS10		PDHA1	AR+XL (1)


Findings against Textbook Expectations: Uniparental Disomy Detected in 5/504 Positive Cases

Cas e	Age/Se x	UPD	lsodisomy Type	Causal Genes/disease	Mat age/ Pat age
1	1.1/M	Mat UPD 2	Partial	SCN9A (epilepsy, insen. Pain)	36/41
2	9.6/M	Pat UPD 2	Complete	<i>CHRNG</i> (pterygium, lethal)	19/18
3	20/F	Pat UPD 9	Complete	<i>SIGMAR1</i> (ALS 16, juvenile)	32/28
4	4/M	Mat UPD 22	Complete	<i>PLA2G6</i> (neuraxonal dystrophy)	27/33
5	15/F	UPD 3 a	Complete	<i>SLC25A38</i> (anemia, sideroblastic)	n.a./n.a. ^a

^a Parental samples not available

Medically actionable incidental findings (95/2000: ~5%)


- Unrelated to the phenotype but with immediate implications
- ACMG recommended genes (56): Cancer predisposition, Cardiomyopathy, Long QT
- Non-ACMG: G-6-PD, Fabry disease, mt mutation conferring risk for hearing loss

Examples of New Gene Discoveries Leading to Updated Reporting

Case	Date- Original Report	Date-Disease Gene Discovery	Date- Updated Report	Gene	Disease
1-3	Dec 2012	Sep 2013	Oct 2013	MAGEL2	Prader-Willi-like, intellectual disability, autism
4	Feb 2013	Sep 2013	Sep 2013	FBXL4	Mitochondrial Encephalopathy
5-6	Oct 2012	Dec 2012	Jul 2013	WDR45	Neurodegeneration with brain iron accumulation 5
7	Mar 2013	May 2013	Jul 2013	DEPDC5	Familial focal epilepsy with variable foci
8	April 2012	Jun 2012	Jul 2013	SERAC1	3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like syndrome
9	Dec 2013	May 2014	May 2014	ADHC1	Xia-Gibbs syndrome
10	Jan 2013	Oct 2014	Oct 2014	PURA	Neonatal hypotonia, seizures and encephalopathy (5q31.3 microdeletion syndrome)

Clinical Exome Sequencing on Proband

Clinical Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders

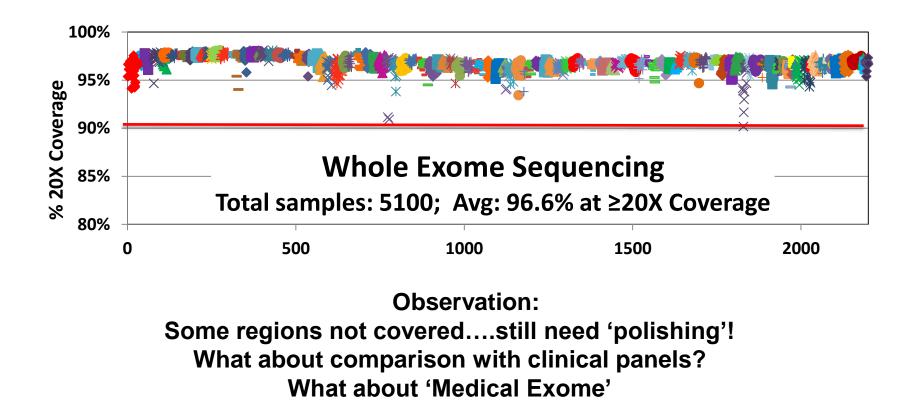
Yaping Yang, Ph.D., Donna M. Muzny, M.Sc., Jeffrey G. Reid, Ph.D., Matthew N. Bainbridge, Ph.D., Alecia Willis, Ph.D., Patricia A. Ward, M.S., Alicia Braxton, M.S., Joke Beuten, Ph.D., Fan Xia, Ph.D., Zhiyv Niu, Ph.D., Matthew Hardison, Ph.D., Richard Person, Ph.D., Mir Reza Bekheirnia, M.D., Magalie S. Leduc, Ph.D., Amelia Kirby, M.D., Peter Pham, M.Sc., Jennifer Scull, Ph.D., Min Wang, Ph.D., Yan Ding, M.D., Sharon E. Plon, M.D., Ph.D., James R. Lupski, M.D., Ph.D., Arthur L. Beaudet, M.D., Richard A. Gibbs, Ph.D., and Christine M. Eng, M.D.

Original Investigation

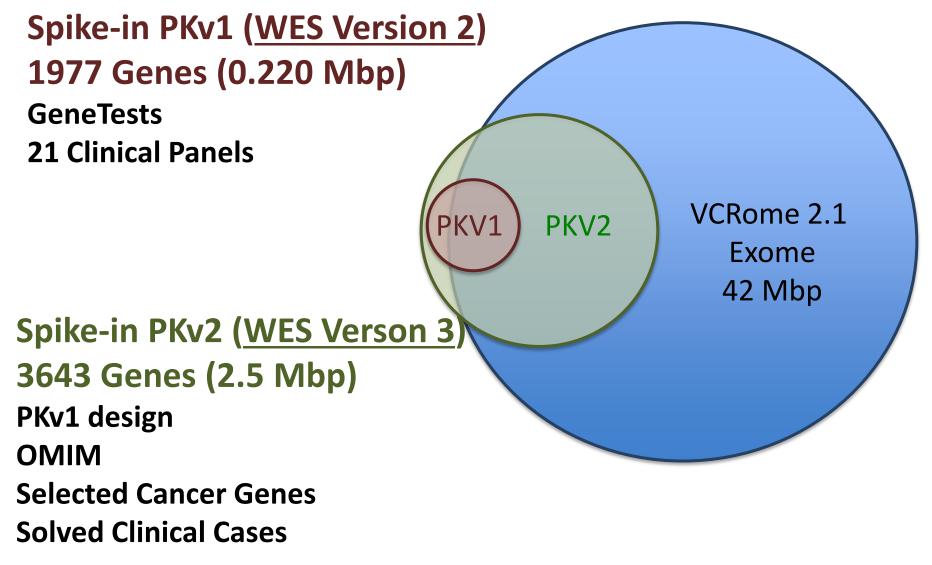
Molecular Findings Among Patients Referred for Clinical Whole-Exome Sequencing

Yaping Yang, PhD; Donna M. Muzny, MS; Fan Xia, PhD; Zhiyv Niu, PhD; Richard Person, PhD; Yan Ding, MD; Patricia Ward, MS; Alicia Braxton, MS; Min Wang, PhD; Christian Buhay, BS; Narayanan Veeraraghavan, PhD; Alicia Hawes, BS; Theodore Chiang, MS; Magalie Leduc, PhD; Joke Beuten, PhD; Jing Zhang, PhD; Weimin He, PhD; Jennifer Scull, PhD; Alecia Willis, PhD; Megan Landsverk, PhD; William J. Craigen, MD, PhD; Mir Reza Bekheirnia, MD; Asbjorg Stray-Pedersen, MD, PhD; Pengfei Liu, PhD; Shu Wen, PhD; Wendy Alcaraz, PhD; Hong Cui, PhD; Magdalena Walkiewicz, PhD; Jeffrey Reid, PhD; Matthew Bainbridge, PhD; Ankita Patel, PhD; Eric Boerwinkle, PhD; Arthur L. Beaudet, MD; James R. Lupski, MD, PhD; Sharon E. Plon, MD, PhD; Richard A. Gibbs, PhD; Christine M. Eng, MD

Clinical Exome Sequencing at WGL

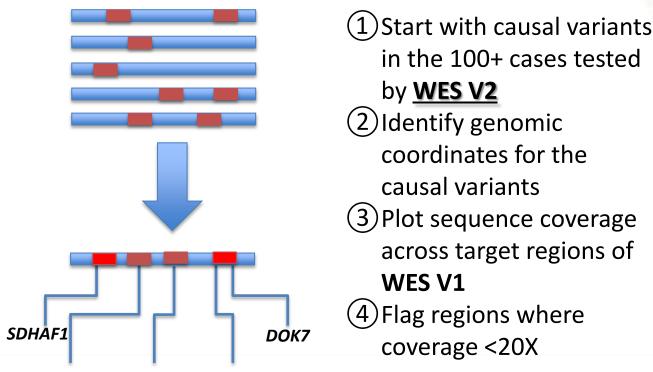

- Discoveries made
 - Diagnostic rates
 - Rare genetic events identified
 - New disease genes
- Lessons learned
 - Key elements of clinical exome

Key Elements of Clinical Exome


- Optimization wet lab assays
 - Improve exome coverage and turn-around time (TAT)
- Variant interpretations and classifications
 - SNVs, CNVs and AOH analyses
 - Don't stop at one diagnosis, the patient could have blended phenotypes resulting from two single gene defects
 - Incorporating clinical expertise in exome reporting
- Building and sharing knowledge database
- New disease gene discoveries

Wes Version 1: 'WGL' – VCRome2.1 is 'just right'

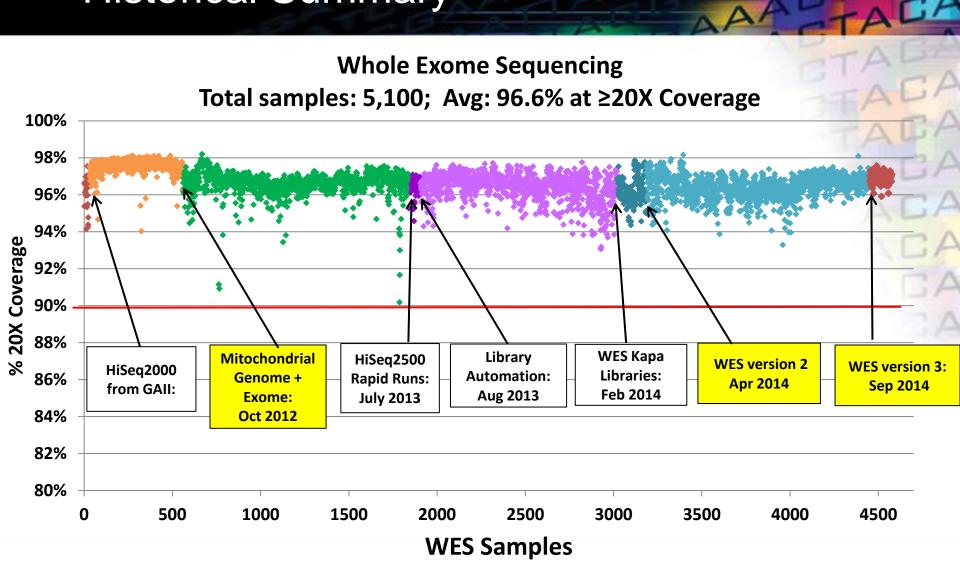
- Coding Exons from: Vega, CCDS, RefSeq,
- Predicted coding exons from: Contrast and GenScan.
 - 197K targets, 42Mb genomic region; NimbleGen Rebalanced x2



Exome "Spike-in" design content

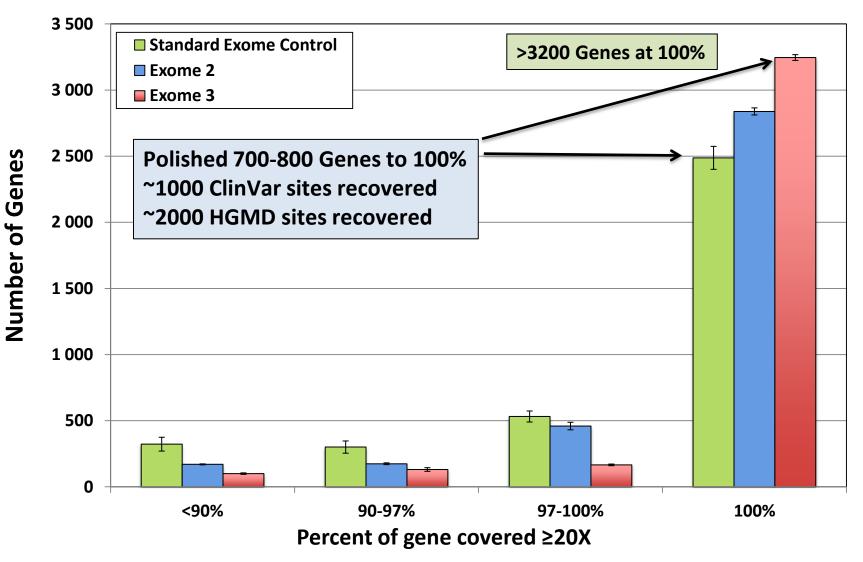
Evaluation of ~100 Positive Samples Tested by WES Version 2

 Would the molecular diagnoses for the 100+ cases have been made definitively if the samples had been tested by WES Version 1?

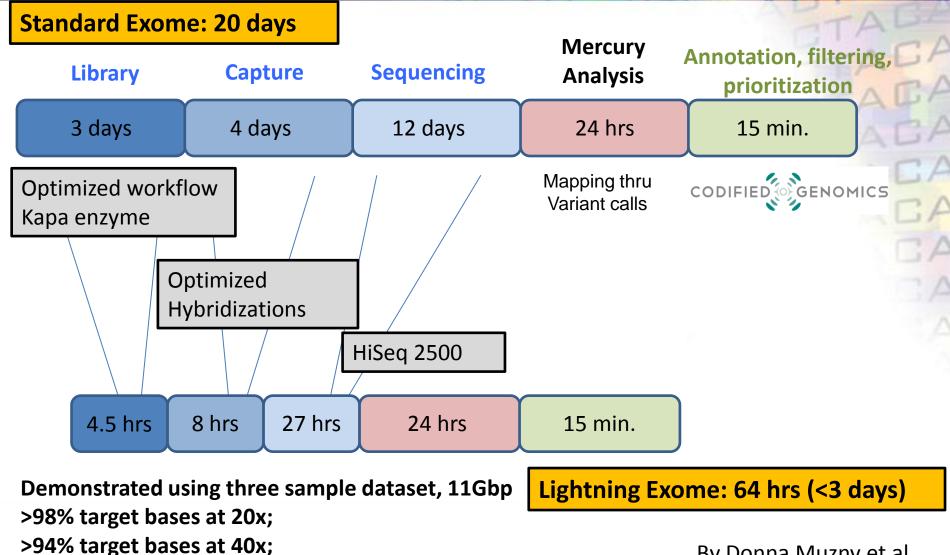

WES Version 1 Would Have Missed Molecular Diagnoses for Three Cases

- 1.7 yr old male
 - *SDHAF1* Mitochondrial complex II deficiency [MIM:252011]
 - Homozygous pathogenic variant: c.156C>A (p.Y52X), 1/1:50:1:51

AAA


- 19.3yr old male
 - DOK7 Familial limb-girdle myasthenia (LGM) [MIM: 254300]
 Fetal akinesia deformation sequence [MIM:208150]
 - Compound heterozygous <u>c.1138dup (p.A380fs), 1/0:45:40:85</u>, and c.1476_1485dup (p.G496fs),
- 13 year old female
 - ADCY5, Dyskinesia, familial, with facial myokymia [MIM 606703]
 - <u>c.1253G>A (p.418Q), 0/1:8:18:26</u>, de novo

WGL Whole Exome Sequencing Historical Summary

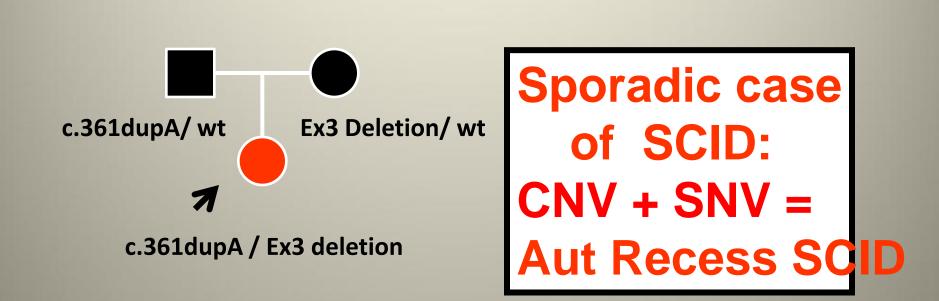

PKv2 (WES Version 3) Design Performance

Includes GeneTests and OMIM (n=3643) 11Gbp, VCRome 2.1 exome + PKv2 Spike-in Design

By Donna Muzny et al.

Lightning Capture: Reduced turnaround time in the wet lab

By Donna Muzny et al.

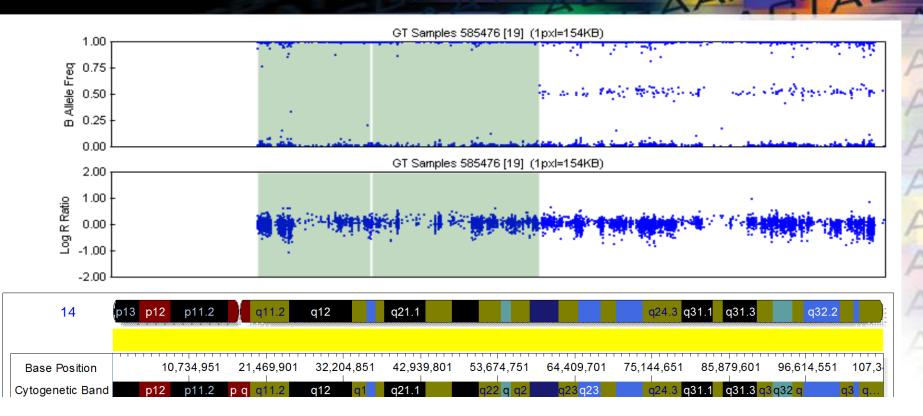

AAA

Key Elements of Clinical Exome

- Optimization wet lab assays

 Improve exome coverage and turn-around time (TAT)
- Variant interpretations and classifications
 - Analyses of single nucleotide variants (SNVs), as well as copy number variants (CNVs) and absence of heterozygosity (AOH) regions
 - Thorough data analyses
 - Explore all possible inheritance manners
 - Don't stop at one diagnosis, the patient could have blended phenotypes resulting from two single gene defects
 - Incorporating clinical expertise in exome reporting
- Building and sharing knowledge database
- New disease gene discoveries

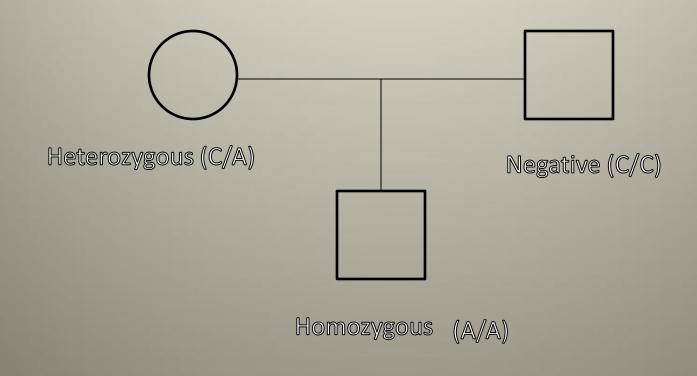
Rare Genetic Events: SCID due to compound heterozygous *IL7R* Mutations (SNV+CNV) Detected by WES and CMA



The case is solved combining genomic analysis by BOTH WES and CMA

Case example

- 5 year old male
- Father is 39 yrs old, mother is 27 yrs old
- Clinical Presentation:
 - Global developmental delay (a history of hypotonia, rolled at 12 mo, sat at 12 mo, walked at 2 yr, first words at 2.5 yr, still receives ST)
 - Overweight (at 4y 8 mo, weight 90-95th ile)
 - Mild joint laxity
 - Genital anomalies
 - Mild facial dysmorphisms
 - Behavioral problems (aggression)
- Tested negative for Prader-Willi Syndrome (PWS)


Absence of Heterozygosity (AOH) on chromosome 14

Concurrent Illumina HumanExome-12v1 (cSNP) array analysis revealed contiguous regions of copy neutral Absence of Heterozygosity (AOH) on chromosome 14 (approximate 39 Mb, 14q11.2-14q22)

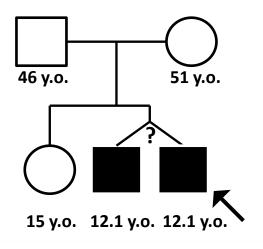
Case 5

Sanger sequencing revealed that a novel variant c.896C>A (p.S299Y) in the *RIPK3* (NM_006871, chr14:24806905, *14q12*, non disease associated gene) is homozygous in this individual, heterozygous in the mother and negative in the father. These data support maternal uniparental disomy (UPD) on chromosome 14 in this individual.

UPD(14)mat Resembles PWS

MATERNAL UNIPARENTAL DISOMY 14

	This Patient	UPD(14)mat (n=36)
IUGR	-	12/13
Low birth weight	20ile	18/21
Short statue	25-50ile	20/24
Obesity	90-95ile	10/15
Hypotonia	+	18/21
Feeding difficulties	+	9/25
Joint laxity	+	7/11
Facial dysmorphisms	+	16/20
Motor delay	+	17/25
Mental delay	Language delay	8/24
Premature puberty	Too young	11/12


Mitter et al, Am J Med Genet A, 2006

Key Elements of Clinical Exome

- Optimization wet lab assays
 - Improve exome coverage and turn-around time (TAT)
- Variant interpretations and classifications
 - SNVs, CNVs and AOH analyses
 - Thorough data analyses
 - Explore all possible inheritance manners
 - Don't stop at one diagnosis, the patient could have blended phenotypes resulting from two single gene defects
 - Incorporating clinical expertise in exome reporting
- Building and sharing knowledge database
- New disease gene discoveries

Mosaicism in a parent causing recurrent AD condition in the family

- Clinical Presentation:
 - Twin brother delayed speech, developmental regression, autism/autistic spectrum, intellectual disability, seizure disorder, short stature, microcephaly, dysmorphic features, and congenital heart disease.
- WES was requested on the proband only
- Samples from twin brother, unaffected sister and parents were available for Sanger studies

SHANK3 SH3 and multiple ankyrin repeat domains 3, c.3329_3332del (p.I1110fs), chr. 22q13.33.

Both parents are negative, the twin brother is also heterozygous, the unaffected sister is negative,

Associated disease: Phelan-McDermid syndrome [MIM:606232], **AD**

Blended Phenotypes with Two Diagnoses

Case	Disease I	Disease II
1	Ataxia-telangiectasia	Spastic paraplegia 50
2	Carpenter Syndrome	Neurofibromatosis, type 1
3	Nicolaides-Baraitser syndrome	Dravet syndrome
4	Contractural arachnodactyly, congenital	Renpenning syndrome
5	Epilepsy, progressive myoclonic 5	Rubinstein-Taybi syndrome 🔼 🛆
6	Leigh syndrome, X-linked	Bardet-Biedl syndrome 10
7	Mental retardation, autosomal dominant 12	Mental retardation, X-linked 94
8	Cardiomyopathy	Duchenne muscular dystrophy
9	Malformations of cortical development and microcephaly	Pitt-Hopkins-like syndrome 2
10	Rothmund-Thomson syndrome	Xeroderma pigmentosum, group C
11	Epilepsy, juvenile absence, susceptibility to, 1	Cornelia de Lange syndrome 2

Key Elements of Clinical Exome

- Optimization wet lab assays

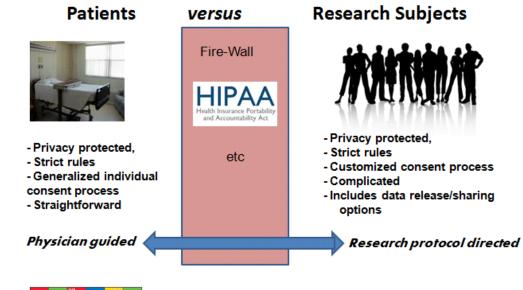
 Improve exome coverage and turn-around time (TAT)
- Variant interpretations and classifications
 - SNVs, CNVs and AOH analyses
 - Explore all possible inheritance manners
 - Don't stop at one diagnosis, the patient could have blended phenotypes resulting from two single gene defects
 - Incorporating clinical expertise in exome reporting
 - Weekly WGL meeting
 - Monthly WES sign-out meeting: accessible worldwide from the internet
- Building and sharing knowledge database
- New disease gene discoveries

Key Elements of Clinical Exome

- Optimization wet lab assays
 - Improve exome coverage and turn-around time (TAT)
- Variant interpretations and classifications
 - SNVs, CNVs and AOH analyses
 - Explore all possible inheritance manners
 - Don't stop at one diagnosis, the patient could have blended phenotypes resulting from two single gene defects
 - Incorporating clinical expertise in exome reporting
- Building and sharing knowledge database
 - Data submission from WGL to ClinVar, etc.
- New disease gene discoveries

New Gene Discoveries

AAA


LETTERS

REPORT		GTAD
De Novo Truncating Mutations in <i>AHDC1</i> in Individuals with Syndromic Expressive Language Delay, Hypotonia, and Sleep Apn	AJHG ea	TAD
	F	REPORT
Mutations in <i>PURA</i> Cause Profound Neonatal Hypotonia, Seizures, and Encephalopathy in 5q31.3 Microdeletion Syndrome	AJHG	
		LETT
	genetics	
Bainbridge et al. Genome Medicine 2013, 5:11 http://genomemedicine.com/content/5/2/11	licine ———	
	U	mutations of MAGEL2 cause Prader-Willi
RESEARCH Open	Access	and autism
<i>De novo</i> truncating mutations in <i>ASXL3</i> are associated with a novel clinical phenotype with	th	

similarities to Bohring-Opitz syndrome

New Disease Gene Discoveries

 Opportunity for unsolved exome negative cases to join research studies

Clinical variant data sharing: technically easy

Obeying the rules: NOT TRIVIAL

Clinical lab beginning to be preferred pathway for sample recruitment!!!!

Global Collaborations are Essential

2nd IRDiRC Conference - Shenzhen

7-9 NOVEMBER, 2014 FUTIAN SHERATON HOTEL, SHENZHEN, CHINA

http://www.bcm.edu/geneticlabs/index.cfm?PMID=21319

genetictest@bcm.edu