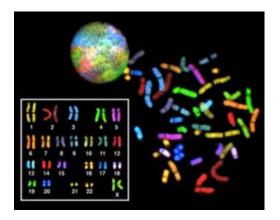


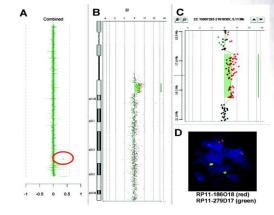
Clinical Whole Exome Sequencing: For the Evaluation of Genetic Disorders

Christine M. Eng, M.D. Professor of Molecular and Human Genetics Senior Director, Medical Genetics Laboratories Baylor College of Medicine

The patient with a suspected genetic disorder poses a challenge to diagnosis


- Thousands of genetic disorders
- Rare
 - Cystic fibrosis 1:2500
 - Hunter syndrome 1:150,000
- Clinical heterogeneity
- Specialized testing needed to confirm diagnosis

– 3.5 geneticists per 1 million population


Many patients do not have a diagnosis

Diagnostic Yield of Common Genetic Tests

Karyotype 5 -15%

Array-CGH – 15-20%

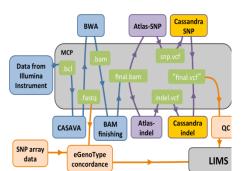
Pickup Rate for Selected Sanger Tests at MGL 50% 40% 30% 20% 10% 0% FOXG1 CDKL5 COL5A1 SLC2A1 UBE3A PTEN MECP2 GJB2 PTPN11 CHD7

Prior Studies of Exome Approaches to Cohorts of Undiagnosed Patients

- Gahl, et al, Genet in Med 14:52, 2012
 - Selected patients for undiagnosed genetic disorder
 - Battery of diagnostic approaches
 - 24% diagnostic rate
- deLigt, et al, NEJM 367:1921, 2012
 - Selected cohort of severe intellectual disability
 - Molecular diagnostic rate through exome of 16%

Whole Exome Sequencing:

CLINICAL UTILITY IN A CLINICAL DIAGNOSTIC LAB

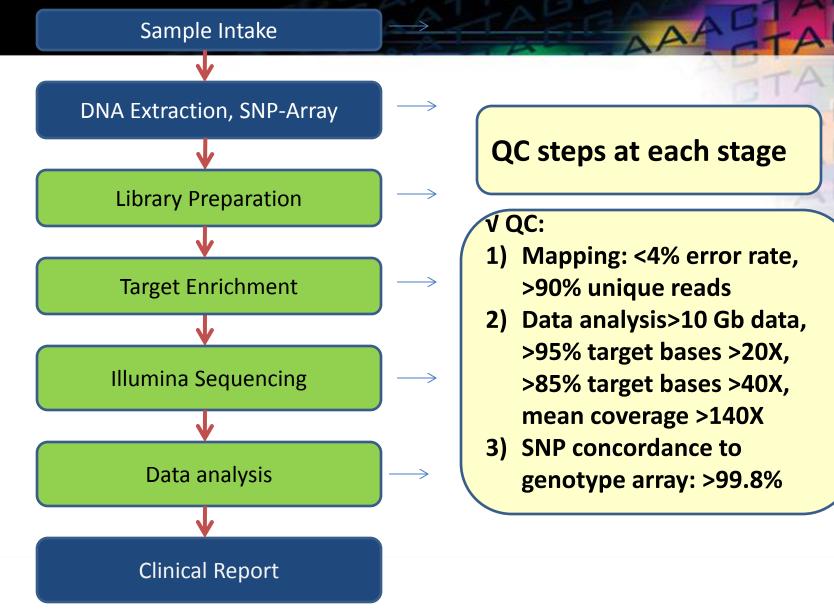


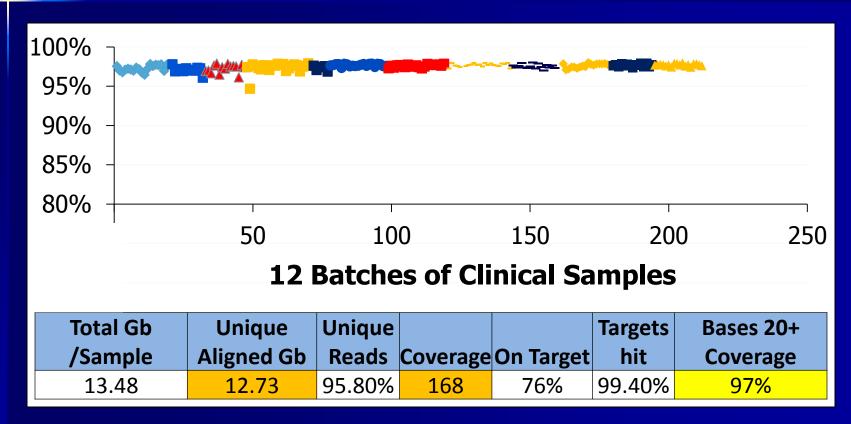
Total Gb /Sample	Unique Aligned Gb	Unique Reads	Coverage	On Target	Targets hit	Bases
	12	Batche	es of Cli	nical Sa	mples	
0070	50	10	0	150	200)
80%						
85% -						
90% -						
95% -	44 A					
100%	Adat			-	-	-

WHOLE GENOME LABORATORY

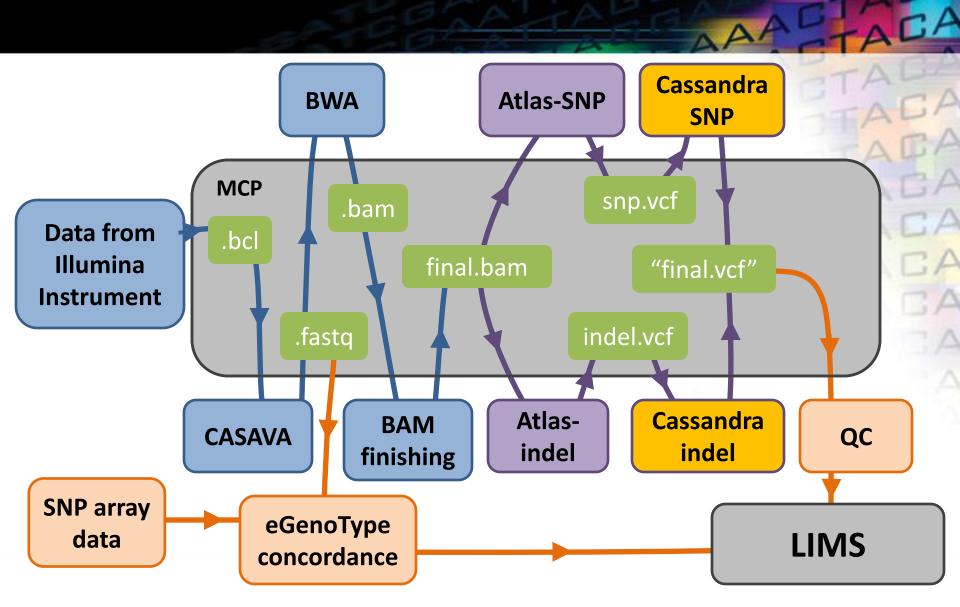
Baylor College of Medicine

Dept of Molecular and Human Genetics

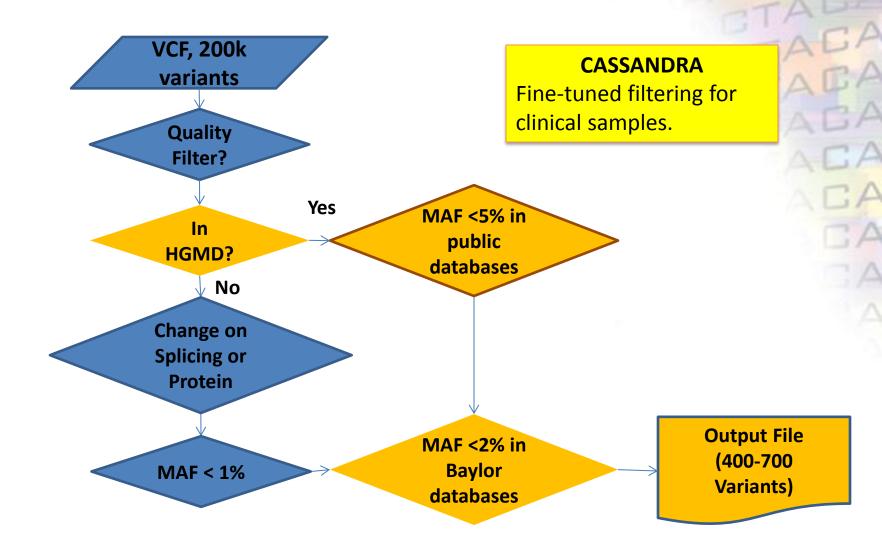




Whole Exome Sequencing Workflow



Baylor WES: 97% of Target Covered at 20+ Times



Robust lab performance to deliver highstandard consistency.

Analysis Pipeline (Mercury v1.0)

Variant Filtering for Clinical WES

Variant Interpretation

- Correlation with patient phenotype
- Public databases
 - ESP (NHLBI GO Exome Sequencing Project), TG
 - OMIM, HGMD, GeneTests, LSDB
- Internal knowledge base from 800 Clinical Exomes
 - Curated lists of variant classifications
 - Internally annotated mutations/VUS lists
 - Common variants
 - New gene list updated by WGL weekly

Clinical Reporting of Whole Exome

- Sign out team of ABMG-certified laboratory directors, medical directors, clinicians, genetic counselors
- Three levels of review
 - Disease-gene association, functional prediction, in silico prediction
- Focused and expanded report
- Components of WES
 - Sequence result
 - Sanger confirmation, parental inheritance of significant findings
 - Mitochondrial genome

Disease Phenotype

- Detailed phenotype informs analysis
- Questionnaire by organ system
- Request clinic note

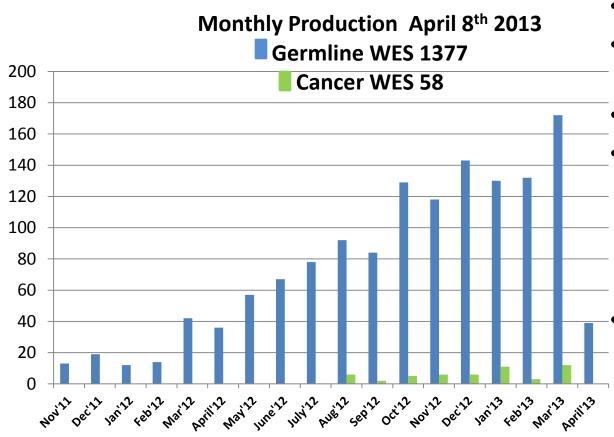
https://www.bcm.edu/genetictabu/index.cfm/genetiz21	320		💌 🄒 🤧 🗶 🚰 Geogle	6
Go To Favorites Help				
	• Search • 👪 Share More 1			🗶 Sign Ir
😪 🐲 Free Hotmail 😇 Suggested Sites 💌 😰 We	b Silce Gallery 🔹 🖪 google+ real life sharing, r., 👩 Suggested	Sites •	In a march of	• Page • Safety • Tools •
	The second second		154 · 60 · 00 eff	i • Page • Salety • Tour •
	🔡 況 🥒 Sign • 🤪 Comment • 🛛 Find	1		-
W out the following form. You can save data typed into this	iform.			- Highlight
	ORATORY (: 713-798-2787 www.bcmgen		SHIP TO: Medical Genetics Laborat Baylor College of Medicin 2450 Holcombe, Grand B Houston, TX 77021-2024 Phone: 713-798-6555	e IvdReceiving Dock
	EQUENCING REQUISITION (TEST CODE: TSOO)	Here same some ment stellt statt stellt	
NAME: LAST NAME	FIRST NAME	MI DATE OF BIRTH: /	DD / GENDER (Please select or	ne): FEMALE MALE UNKNOWN
	CHECKLIST	OF ITEMS TO INCLUDE		
PROBAND S	AMPLE		CLINICAL NOTE/SUMMARY	
REQUISITIO	N	F	PEDIGREE	
	FOR STUDY CHECK LIST		MATERNAL SAMPLE	
SIGNED WE	S CONSENT FORM	F F	PATERNAL SAMPLE	
	REQUIRED -	INDICATION FOR STUDY		
percentiles for growth parameters,	al information regarding the patient to be t type of limb abnormality, etc.). Please als uencing results. If the laboratory requires	o submit a clinic note and pedigree	if available. This information is needed ate the health care provider to be conta	to facilitate
199006		PHONE/PAGER		
	١	ES (Provide Description)	NO	UNKNOWN
Prematurity				

Focused Report: Based on Disease Phenotype

- Deleterious mutations in disease genes related to clinical phenotype
- Variants of unknown clinical significance in genes related to phenotype
- Immediately "medically actionable" mutations
 - Marfan, NF1, VHL, MEN2A
- Autosomal recessive carrier status
- Pharmacogenetic loci

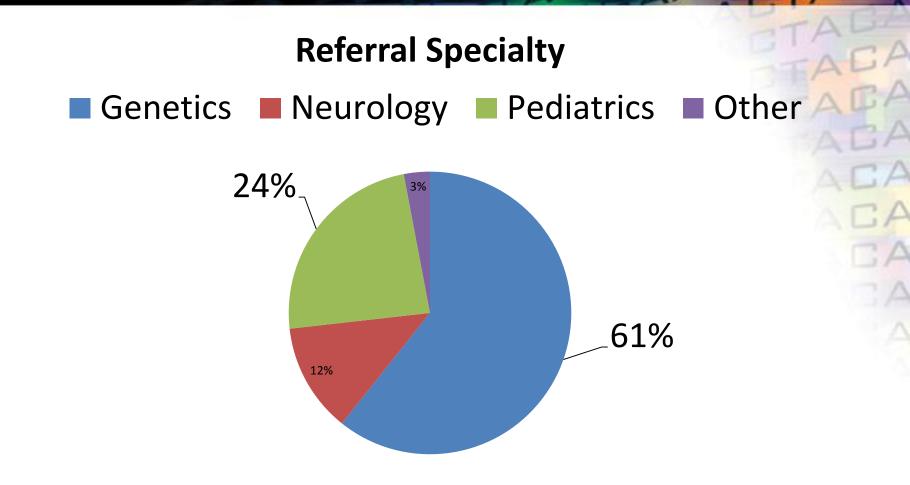
Medically Actionable Definition

- Finding with direct clinical utility based on established guidelines and/or medical literature
- Availability of treatment or established guidelines for disease prevention
- Unrecognized secondary diagnosis: Marfan, NF1, NF2
- Preventable disease: HNPCC, BRCA1,2


Whole Exome Report: Expanded Report

- Deleterious mutations in genes apparently unrelated to phenotype
- Variants of unknown significance

 For AR, a deleterious mutation in same gene must also be present
- Predicted clearly deleterious mutations in genes with no current association with disease


Baylor Experience with Clinical Exome Sequencing

BCM WGL Launches Whole Exome Sequencing Oct 2011

- ~1500 samples
- 85% peds; 15% adult
- Mostly neurologic
 - In addition: skeletal disorders, pulmonary artery hypertension, cardiovascular dz
 - Variety of referral sources – academic medical centers

Samples Referred by Specialty

WES Sample Positive Rate

- Of over 1,200 samples received since November 2011, 760 samples have been finalized
- Causative deleterious mutations related to patient phenotype have been identified in a minimum of 25% (190) patients
 - 52% (99) of the positive cases are AD disorders
 - 33% (62) of the positive cases are AR disorders
 - 12% (22) of the positive cases are X-linked disorders
 - 4% (7) of the positive cases have two molecular disorders

Molecular Diagnoses in Mendelian Disorders Positive Rate: 62/250, ~25%

Inherit.	Genes with mutant alleles (times observed)	de novo mutants (%)	Novel variants (%)	and
AD	ANKRD11 (2), <u>ARID1B (2)*</u> , ATL1 (2), KRAS (2) [¶] ; ABCC9, ARID1A, CBL [¶] , CHD7, COL3A1, CREBBP, CRYGD, DYRK1A, EP300, FGFR1, HDAC8 [§] , ITPR1, KANSL1, KAT6B, KIF1A, MLL2, NIPBL [§] , PTEN, PTPN11 [¶] , SCN2A, SCN8A, SETBP1, SHANK3, <u>SMARCB1*</u> , SPAST, SRCAP, SYNGAP1, ZEB2	27/32 (84%) (4 unknown)	24/36 (67%)	22 22 22 22 23 2
AR	SACS (2), C5orf42, CLCN1, COL7A1, FBNL5, GAN, GLB1, HIBCH, KIF7, NDUFV1, PEX1, PNPO, POMT2, PRKRA, RAPSN, SLC19A3, STRC, TREX1, WDR19	40 alleles 6 HMZ 14 cmpnd HTZ	20/40 (50%)	
XL	ATRX (2), OFD1 (2), CASK, MECP2, MTM1, PHEX, RBM10, <mark>SMC1A</mark> §	5/10=50% 1 mosaic	4/10 (40%)	
§ 3 dif	ferent genes for Cornelia de Lange; ¶ 3 different genes for	r Noonan		

*3 SWI/SNF complex genes for MR

Cases with Two Molecular Diagnoses 7/760

Cases	Genes	Diseases	Inheritance
1	SETBP1 CLCN1	Schinzel-Giedion midface retraction syndrome Myotonia congenita	AD AC
2	TREX1	Aicardi-Goutieres syndrome	AR
	PHEX	Hypophosphatemic rickets, X-linked dominant	X-linked
3	RAPSN	Congenital myasthenic syndrome	AR
	ABCC9	Cardiomyopathy dilated type 10	AD
4	POMT2	Muscular dystrophy-dystroglycanopathy	AR
	SCN2A	Seizures	AD
5	SMARCA2	ID, Coffin Siris	AD
	SCN1A	Seizures	AD
6	ATM	Ataxia telangiectasia (AT)	AR
	AP4M1	Spastic paraplegia	AR
7	NF1	Neurofibromatosis, type 1	AD
	MEGF8	Carpenter syndrome 2	AR

Medically Actionable Mutations Reported

- Strong evidence for pathogenicity and altering management
- Examples of medically actionable mutations
 - Seven patients with FBN1 mutations (Marfan Syndrome)
 - Four patients with mutations in hereditary cancer genes: APC, BRCA2, CDH1, MSH6
 - Three male patients with G6PD mutations
 - Other patients carry mutations mostly in cardiovascular disease genes

Use of WES in Different Clinical Scenarios

- Pediatric
- Adult
- Prenatal
 - DOK7 mutations in case of fetal akinesia
 - NIPBL mutation in case of multiple congenital anomalies
- Pre-conception in case of two previous affected children

WES Diagnoses: Impact on Medical Management

Cases	Genes	Diseases
1	SLC19A3	Biotin- or thiamine-responsive encephalopathy type 2
2	РНОХ2В	Central hypoventilation syndrome, congenital, with or without Hirschsprung disease (CCHS)
3	ENPP1	Arterial calcification of infancy, generalized, type 1 (GACI1)
4	RAPSN	Congenital Myasthenic Syndrome
5	DOLK	Congenital Myasthenic Syndrome
6	CHRNE	Congenital Myasthenic Syndrome
7	SLC25A38	Anemia, sideroblastic, pyridoxine-refractory, autosomal recessive
8	ТТСЗ7	Trichohepatoenteric syndrome 1

Statistics of WES Reports

	Focι	used Report			
Related Disease-causing	Related VUS	Medically Actionable	*Carrier Status	Pharmaco- genetics	
0-2	4-9	0-1	0-1	0-4	
Expanded Report (ordered by 1/3 clients)					
Unrelated Disease- Causing		Unrelated VUS (AD, 1 hit; AR, 2 hits)		ly deleterious y Unknown	
1-3	1	17-41		7-25	
Unrelated VUS (AR, 1 hit) 26-64		cularly Unclassifi nically Unknown 300-600			

Prior Diagnostic Evaluation

- Most cases had extensive prior genetic testing
- CMA, metabolic studies, single gene tests, panels, biopsies
- Suggestion that early use of WES may have cost savings but formal costeffectiveness studies need to be performed

Example of Previous Evaluation

- 1 metabolic screening, karyotype, PWS, brain MRI
- 2 –VLCFA, muscle bx, respiratory chain, mito DNA, mito depletion panel, PHOX2B, myotonic dystrophy, congenital disorders glycosylation next-gen panel,
- 3 CSF neurotransmitters, Cr/guanidinoacetate, urine purines/pyr, NCL, DNA testing for 7 genes – ARX, CDKL5, MECP2

「

Case Studies ľ

WHOLE EXOME SEQUENCING

Case 1

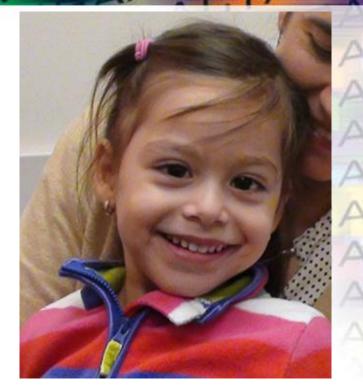
- 9.5 yo caucasian M
- H/o several episodes of extreme weakness, spells of apnea requiring intubation, increased respiratory secretions, ptosis, dysphagia, all usually when suffering from a febrile illness. At 8 mo was diagnosed with cardiomyopathy (note says has not recurred)
- <u>FH</u>: Younger sister died when 20 mo (developed febrile illness and stopped breathing), other siblings normal

- <u>PHE</u>: Wt 30th%, Ht 5th%, Ptosis, café au lait spot on right trunk, several small telangiectasias.
 Normal otherwise.
- <u>Testing</u>: muscle bx: type I fibers (slow), DNA studies: ETF-A, ETF-B, ETFDH (glutaric aciduria II), Acid Maltase (Pompe's) all normal. Fibroblast enzyme assays: PDH complex, CPT1, CPT2, CACT, CAT, SCAD, MCAD, LCHAD, VLCAD: all normal

Case #1 Compound heterozygous mutation/variant identified in RAPSN

- Gene: RAPSN (RECEPTOR-ASSOCIATED PROTEIN OF THE SYNAPSE), 11p11.2
- Mutation: c.457G>A, p.A153T mother is het c.872G>A, p.G291D – father is het
 - Both confirmed by Sanger sequencing
- Congenital Myasthenic Syndrome (CMS), AR
 - Symptoms include bilateral ptosis, weakness of limb, etc. Affects skeletal muscle
 - Frequent exacerbations with respiratory insufficiency provoked by illness/fever/stress
 - Treatment available

Case 1 Possible Second Diagnosis


- ABCC9 (ATP-BINDING CASSETTE, SUBFAMILY C, MEMBER 9), 12p12.1
 - c.4570_4572delTTA_insAAAT, p.V1524fs
 - Mother (age 33) is heterozygous
 - Confirmed by Sanger sequencing
- Cardiomyopathy Dilated Type 10 (CMD10), AD
 - Severely dilated hearts with compromised contractile function and rhythm disturbances

Case 2

- 38 month-old female with static encephalopathy, hypotonia, and seizures
- On Keppra for seizures
- Receives speech, PT and OT
- Physical exam
 - Non-dysmorphic facial features
 - FOC <3rd, length 34th, weight 25th
- Previously evaluated in genetics at 23 and 27 months of age for hypotonia and motor delays

Case 2: Previous work-up

- Ophthalmology
- Neurology x 3
- EEG and a brain MRI (unremarkable)
- Labs (all normal)
 - Thyroid function studies
 - CK
 - Lactate
 - Aldolase
 - Plasma amino acids
 - Acylcarnitine profile
 - Urine organic acids
 - N-glycan and transferrin
 - Very long-chain fatty acids
 - Plasma creatine and guanidinoacetate determination
- CMA- paternally inherited 0.27Mb loss at Xp22.11
- WES was ordered at her third genetics visit

Case 2: WES Results

- De novo heterozygous c.376C>T (p.R126C) mutation in SLC2A1 associated with GLUT1 deficiency syndrome
- Glucose transporter type 1 deficiency syndrome (OMIM #606777)
 - Characterized by infantile-onset seizures, delayed neurologic development, acquired microcephaly, and complex movement disorders, low-normal/low CSF lactate, normal blood glucose, and low CSF glucose
 - Inherited in an AD manner
 - Ketogenic diet is highly effective in controlling seizures and improving the movement disorder and alertness

Case 2: Results Follow-up

- Family was counseled on new diagnosis
- Recurrence risk for future siblings of this patient is low, germline mosaicism cannot be excluded
- AD inheritance reviewed with parents for patient's future children
- Patient was referred to epilepsy clinic to start ketogenic diet

Case 2: Update

- She's been on ketogenic diet for ~3 months and is tolerating it well
- Taken off of Keppra, no seizures to date
- Family reports improvement with development
 - More active and alert
 - No longer naps during the day
 - Balance has improved now rarely falls and is able to make quick turns without falling
 - Improvement in fine motor skills and speech

Summary for WES

- Strong, growing interest in whole exome testing
- Diagnose rare conditions and common conditions
 Positive rate of 25% in unselected clinical samples
- Early evidence of clinical utility and cost-effectiveness
- Reporting of non-phenotype findings can be challenging
- Expand phenotypic spectrum of many disorders

BCM Team

BCM Team	TEEAATTA	AAACTAC	A
Arthur Beaudet	Richard Gibbs	Jim Lupski	P
Christine Eng	Donna Muzny	Yaping Yang	A
Sharon Plon	Jennifer Scull	Jeffrey Reid	A
Will Parsons	Peter Pham	Alecia Willis	A
Jeff Mize	Michelle Rives	Alicia Braxton	A
Yan Ding Brandon Perthius	Joke Beuten Eric Burgess	Sean Kim Fan Xia	A
Mark Scheel Matthew Hardison	Neal Niu Robert Pace	Pat Ward Amy McGuire	
Nehad Saada William Craigan	Doreen Ng Megan Landswerk	Mir Reza Bekheirnia Magalie Leduc	
Wendy Liu	Richard Person	Alicia Hawes	

Clinical Whole Exome Sequencing (WES) Sign-Out Conference

http://www.bcm.edu/geneticlabs/index.cfm?PMID=21319