
CLIO: Enabling automatic compilation of deep learning
pipelines across IoT and Cloud

Jin Huang*, Colin Samplawski*, Deepak Ganesan*, Benjamin Marlin*, Heesung Kwon†
*University of Massachusetts Amherst, †US Army Research Laboratory

{jinhuang,csamplawski,dganesan,marlin}@cs.umass.edu,heesung.kwon.civ@mail.mil

ABSTRACT
Recent years have seen dramatic advances in low-power neural
accelerators that aim to bring deep learning analytics to IoT de-
vices; simultaneously, there have been considerable advances in
the design of low-power radios to enable efficient compute offload
from IoT devices to the cloud. Neither is a panacea — deep learning
models are often too large for low-power accelerators and band-
width needs are often too high for low-power radios. While there
has been considerable work on deep learning for smartphone-class
devices, these methods do not work well for small battery-powered
IoT devices that are considerably more resource-constrained.

In this paper, we bridge this gap by designing a continuously
tunable method for leveraging both local and remote resources
to optimize performance of a deep learning model. Clio presents
a novel approach to split machine learning models between an
IoT device and cloud in a progressive manner that adapts to wire-
less dynamics. We show that this method can be combined with
model compression and adaptive model partitioning to create an
integrated system for IoT-cloud partitioning. We implement Clio
on the GAP8 low-power neural accelerator, provide an exhaustive
characterization of the operating regimes where each method per-
forms best and show that Clio can enable graceful performance
degradation as resources diminish.

CCS CONCEPTS
• Computer systems organization → Cloud computing.

KEYWORDS
edge computing, cloud computing, computation off-loading, deep
neural networks

ACM Reference Format:
JinHuang*, Colin Samplawski*, DeepakGanesan*, BenjaminMarlin*, Heesung
Kwon†. 2020. CLIO: Enabling automatic compilation of deep learning pipelines
across IoT and Cloud. In The 26th Annual International Conference on Mobile
Computing and Networking (MobiCom ’20), September 21–25, 2020, London,
United Kingdom. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3372224.3419215

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiCom ’20, September 21–25, 2020, London, United Kingdom
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7085-1/20/09. . . $15.00
https://doi.org/10.1145/3372224.3419215

1 INTRODUCTION
While traditional IoT and sensor networks have focused on con-
necting simple sensors (e.g., thermostats, humidity sensors, etc), we
are seeing a shift towards richer, always-on sensors (e.g. cameras,
microphones, IMUs) which have become considerably more energy-
efficient in recent years [9, 18, 35, 55]). In turn, these capabilities are
driving more sophisticated applications of battery-powered sensors
(e.g. home security, mobile health).

These trends have led to an emerging marketplace for associ-
ated compute elements that support continuous analytics at low
power consumption. Several recently announced neural accelera-
tor chipsets such as GreenWaves GAP8 [51], EtaCompute Tensai
[50] and Syntiant NDP [52]) consume less than 100mW, thereby
allowing us to envisage Mote-class devices equipped with neural
accelerators.

Despite these developments, there remains a substantial gap be-
tween available resources on low-power accelerators and resources
needed for efficient execution of state-of-art deep learning mod-
els. While model compression methods have been successful at
squeezing large models into embedded devices like smartphones
and Raspberry PIs, low-power accelerators represent a huge step
up since they have two to three orders of magnitude less resources
than these embedded processors (e.g. the GAP8 has a convolutional
accelerator with 1 GFlops whereas Raspberry Pi has 24 GFlops and
iPhone X has 350 GFlops). The successes of most model compres-
sion methods to date has been with relatively small compression
ratios (e.g. less than 2× in compute and memory footprint without
significant loss of accuracy [17]) but fitting even the smallest ver-
sions of state-of-art deep learning models like ResNet-18, VGG-16,
and MobileNetV2 into an IoT device requires a 5–20× compression
in compute and memory footprint, which is beyond the capability
of existing methods. As a result, existing work on optimizing ma-
chine learning models for IoT has used simpler models and relied on
hand-crafted optimizations rather state-of-art deep learning models
and automated model compression techniques [26]. With either
approach, the price is a substantial reduction in prediction accuracy
due to the extreme levels of compression required to fit the model
into available resources.

An alternative to model compression is to leverage wireless com-
munication for transmitting data to the cloud for processing. Rather
than compressing the model, we can instead compress the raw data
using lossy compression techniques, transmit it to the cloud, and
use cloud resources for prediction. This is particularly attractive
since the efficiency of low-power radio front-ends and their duty-
cycling efficiency has steadily improved over the last two decades
(e.g. BLE, Zigbee, etc [1, 36, 49]). However, the challenge is that
low-power radios have limited bandwidth and are also sensitive

773

https://doi.org/10.1145/3372224.3419215
https://doi.org/10.1145/3372224.3419215
https://doi.org/10.1145/3372224.3419215

to range and environmental dynamics since they transmit at low
power levels. This can be problematic in low bandwidth settings
since squeezing data into a narrow wireless link via lossy compres-
sion can lead to poor inference performance due to information
loss.

These developments raise an interesting question — can we si-
multaneously leverage both model compression (where the model
is squeezed to fit local compute resources) and data compression
(where the data is squeezed to fit the narrow wireless link) to maxi-
mize inference quality? A growing body of research is exploring
the benefits of partitioning deep learning models such that the
IoT device executes the initial layers of a convolutional neural net-
work (CNN) and transmits the intermediate results to the cloud
where the remaining stages of execution occur (e.g. [21, 24, 40]).
However, for most state-of-art models, intermediate results from
various layers are often quite large and inefficient to transmit using
low-bandwidth IoT radios. This issue is exacerbated by the fact that
only the early layers of a deep learning model are viable as partition
points given compute and memory constraints on the IoT device. In
mobile settings, wireless dynamics also presents a significant issue
— existing techniques need to be carefully trained for specific band-
width settings and cannot adjust on-the-fly to dynamic changes in
bandwidth.
The CLIO Approach: In this work, we seek to tackle these
problems and answer the important fundamental question of how
ultra-low compute and communication components can be simul-
taneously leveraged to improve inference accuracy. We propose
Clio1, a novel model compilation framework that provides a con-
tinuum of options for deep learning models to be partitioned across
a low-power IoT device and the cloud while gracefully degrading
performance in the presence of limited and dynamically varying
resources. Clio achieves this by combining the idea of partitioning
a deep learning model together with progressive transmission of
intermediate results — put together, these techniques can deal with
both resource constraints and resource dynamics. Importantly,Clio
integrates progressive transmission with model compression and
adaptive partitioning in response to wireless dynamics. By doing
so, Clio significantly expands the possible endpoints for model
compilation for IoT-cloud networks.

One of the key benefits of Clio is that it allows model compila-
tion techniques to be used even for stringently resource-constrained
IoT devices which may have orders of magnitude less resources
than the original model requires. By fully utilizing available band-
width for remote execution, Clio limits the portion of the original
model that needs to be compiled to the resource-constrained device
thereby reducing the extent of compression that is required. This
has significant advantages from a deployment perspective — rather
than having to hand-tune a model for deployment, automatic model
compilation allows us to deploy large models over resource-limited
networks of devices.

We present an exhaustive evaluation of Clio across a spectrum
of compute architectures [6, 51] radio architectures [1, 3, 5] and
datasets [14, 25, 37]. We show that Clio can be used to compile
state-of-art models like MobileNetV2 [38] and ResNet-18 [16] into
resource-constrained IoT settings, and can reduce both end-to-end

1CLIO stands for Cloud-IoT partitioning

Figure 1: Many IoT devices with rich sensors like cameras
are continuously connected to the cloud.We need newmeth-
ods to execute deep learning models across IoT-Cloud while
respecting resource constraints and adapting to wireless
variability.

latency and power consumption without a noticeable drop in infer-
ence accuracy. We demonstrate significant gains over state-of-art
approaches for data compression [32], model compression [17, 33]
and partitioned execution [21, 29].

2 CASE FOR CLIO
While there has been significant prior work on deep learning in em-
bedded systems, low-power IoT systems present unique challenges
due to their extreme resource constraints.

From a radio perspective, the main challenge is dealing with
uncertain wireless conditions. IoT radios operate in a highly duty-
cycled manner to save power; however, this comes at the cost of
not knowing available bandwidth upon wakeup since the channel
may have changed since the previous wake period. The situation
is exacerbated by the fact that IoT radios transmit at low power
(typically 0dBm) and uplink bandwidth is therefore more sensitive
to factors like body blockage, device mobility, and attenuation due
to walls. In addition, it is not practical to pre-train and deploy a
large number of different models for different available bandwidths
in resource constrained settings. Finally, due to loss of synchroniza-
tion during sleep, there is additional connection latency to start
transferring data when an event occurs. This in turn adds to the
end-to-end delay for remote computation approaches that rely on
the cloud.

From a computation perspective, the key challenge is the lack
of sufficient local resources. While low-power accelerators have
the architectural building blocks to execute deep learning models
quickly, they are still limited by computation ability, memory size
andmaximumoperating frequency. For example, the GAP8 operates
at 1 GFlops (with convolutional accelerator), 64KB L1 cache and
512KB L2 cache, and a maximum operating frequency of 175 MHz.
This is a challenge since state-of-art deep learning models need
two to three orders of magnitude more computational resources
than are available.

We now look at canonical approaches for execution of deep
learning models at the edge and describe why they are inadequate
for low-power IoT scenarios.

774

Figure 2: (a) Remote execution is bottlenecked by band-
width availability. High data compression ratios lead to
poor accuracy. (b) Local execution is bottlenecked by com-
pute/memory availability. At low compute, model compres-
sion perform particularly poorly.

Data compression vsmodel compression: Two commonmeth-
ods for dealing with limited resources are data compression (i.e.,
we squeeze the data volume by transmitting a lossy version of
the data for remote execution) and model compression (i.e., we
squeeze larger models to execute locally within desired latency
bounds). However, in severely resource-constrained scenarios, both
approaches can have low prediction performance.

We illustrate this tradeoff in Figure 2 — the figure shows the
effect of reducing data transmission size and reducing model size
on accuracy when executing the MobileNetV2 model on CIFAR-10
images. On the left is the effect of data compression using JPEG,
a popular lossy compression method for images. The curve cor-
responds to accuracy when executing the MobileNetV2 model on
images compressed at different JPEG compression qualities. We
train a separate classification model for each JPEG quality to show
best-case performance given images of a particular JPEG quality. On
the right is the effect of a particular model compression approach
based on scaling down the layer widths of the MobileNetV2 model,
which reduces the required computation.2

The figure shows that accuracy degrades rather quickly once
the data or model are reduced in size. Even at relatively low com-
pression levels, the accuracy drops below 90% and steadily reduces
thereafter. We see a similar trend for ImageNet.

We note that replacing model compression with hand-crafted
models that are specifically designed to fit into resource-constrained
MCUs does not resolve the problem. For example, the CMSIS-NN is
a convolutional neural network specifically optimized for the ARM
STM32 F7 [27], but the model only achieves around 80% accuracy
for the CIFAR-10 dataset compared to the 93% accuracy that the full
MobileNetV2 model achieves. Hence, such hand-crafted methods
can also come with significant performance degradation.

Model partitioning: Another approach that has become popular
is edge-cloud model partitioning to take advantage of both remote
and local compute resources to optimize performance [15, 21, 29, 41].
While partitioning is appealing, existing methods assume knowl-
edge of bandwidth to determine how to partition the model and do

2We note that there are many approaches to model compression including weight
quantization, weight sparsification, compact filters, and so on. The example we provide
is one illustration of the general trend.

not directly tackle the issues of bandwidth uncertainty and variabil-
ity that we described earlier. Also, resource constraints and high
dynamic range of bandwidth also make it infeasible to store a large
number of models optimized for different bandwidths.

The Clio approach: Clio is a model compilation technique
that allows us to execute large state-of-art models over resource-
constrained IoT networks while gracefully degrading performance
in the face of uncertain wireless bandwidth. At the core of Clio is
a joint IoT-cloud optimization technique for progressively trans-
mitting intermediate results from a partitioned model in-order to
deal with bandwidth variations. In addition to introducing a new
technique for enhancing the operation of partitioned models, Clio
also presents an integrated solution that combines various pieces of
the puzzle — model compression, model partitioning and progres-
sive transmission — to create an integrated system for partitioned
execution under dynamic bandwidth settings. Thus, our work is
holistic and leverages multiple methods to provide the best overall
performance. We describe our proposed solution in more detail in
the following section.

3 CLIO DESIGN
We start with an overview of the Clio run-time and then describe
the core techniques involved.

3.1 Overview of Clio run-time
The Clio runtime operates differently in response to short-term
and long-term bandwidth dynamics. There are two cases where
rapid adaptation to bandwidth is required. The first is when channel
conditions are unknown when a node wakes up after operating in
deep sleep (i.e. during duty-cycled operation). The second is when
link bandwidth varies unpredictably due to mobility. Clio adapts
on-the-fly to these conditions by operating in a progressive manner.

When bandwidth changes persist for longer periods, then Clio
adapts the partition point so that it can operate at the best partition
for the current conditions. For example, say the model is partitioned
at layer 5 and progressive slicing can allow it to deal with bandwidth
swings from 250 kbps to 1 Mbps. If the average bandwidth now
drops to 100 kbps, then switching to a different partition point is
needed in-order to further shrink the size of intermediate results
and better cope with the lower available bandwidth.

3.2 Progressive slicing

Preliminaries: A deep learning model M can be represented by
a directed acyclic computation graph G = (V, E) consisting of a set
of layers V and a set of directed edges E. The partition point of
the graph is a cut C ⊂ E in the computation graph G that separate
the model M into two parts.

To simplify this optimization problem, we restrict the cut to
occur between two successive layers in the model. We assume a
model with 𝐾 layers and a cut occurs between L𝑘 and L𝑘+1, 𝑘 ∈
{1, ..., 𝐾 − 1}. Thus, in the layered case, the choice of the cut C ∈
C determines the trade-off between end-to-end latency and total
energy consumption. At this point, accuracy is unchanged as we
are simply distributing a computation graph across the edge device
and the cloud.

775

Figure 3: Example of progressive slicing.

Learning Ordered Hidden Representations: Clio continu-
ously adapts the size of the intermediate activations transmitted in
a progressive manner to maximize best inference under the given
bandwidth conditions. We achieve this via a novel training proce-
dure that learns a single model that can continually adapt the size
of the hidden representation that it transmits from layer L𝑘 on the
edge device to layer L𝑘+1 on the cloud. We learn a separate model
for the cloud for each hidden representation size. These models
receive and decode the transmitted representation from layer L𝑘 of
each size, producing a final output.

Let O𝑘 = 𝑓\ (x) be a function implementing the computation
graph for a model 𝑀 up to the output of layer 𝑘 and assume
that this layer includes𝑊𝑘 units. Now, define the slicing function
O1:𝑖 = slice(𝑖,O) to map the input vector O to the sub-vector of O
consisting of its first 𝑖 channels, O1:𝑖 . Define 𝑦 = 𝑔𝜙𝑖 (O1:𝑖,𝑘) to be a
function implementing the computation graph for a model𝑀 that
receives as input only the first 𝑖 hidden unit values from layer 𝑘 and
produces the final output of the network. Note that this function
has a separate set of parameters for each value of 𝑖 .

The model transmits as many hidden units as possible from layer
𝑘 to layer 𝑘 + 1 across the wireless link given the latency constraint
and available bandwidth. The final prediction output by the model
is then given by: 𝑦 = 𝑔𝜙𝑖 (slice(𝑖, 𝑓\ (x)))

The key to the success of this approach is to train the model
using a loss function that takes into account a distribution over
available bandwidths and thus over the representation sizes that
can be transmitted. Let 𝜋𝑖 be the probability that there is suf-
ficient bandwidth available to send slice(𝑖, 𝑓\ (x)). Given a data
set D = {(x𝑛, 𝑦𝑛), 𝑛 = 1 : 𝑁 } and a prediction loss function
ℓ (𝑦,𝑦′), we define the loss based on the intermediate represen-
tation slice(𝑖, 𝑓\ (x)) by L𝑖 (D;\, 𝜙𝑖). The overall loss that we opti-
mize is the expected value of L𝑖 (D;\, 𝜙𝑖) where the expectation is
taken over the probability 𝜋𝑖 that we can send the representation
slice(𝑖, 𝑓\ (x)). The model thus learns parameters that result in an
ordered hidden representation with the property that it minimizes

Figure 4: For each choice of partition point, progressive slic-
ing offers a range of accuracy–bandwidth tradeoffs. The en-
velope (in bold) is the best operating regime for given band-
width.

expected error under the progressive slicing operation for the given
distribution over representation sizes 𝜋 . The details are provided
below.

\∗, 𝜙∗1:𝑊𝑘
= argmin
\,𝜙1:𝑊𝑘

E𝜋 [L𝑖 (D;\, 𝜙𝑖)] (1)

L𝑖 (D;\, 𝜙𝑖) =
𝑁∑
𝑛=1

ℓ (𝑦𝑛, 𝑔𝜙𝑖 (slice(𝑖, 𝑓\ (x𝑛)))) (2)

Example: We illustrate progressive slicing with the example
shown in Figure 3. Here, the IoT device executes the initial layers
until layer 3, and the rest of the pipeline is executed at the cloud. In
this example, the output of layer 3 is partitioned into three slices,
and depending on the bandwidth, a different number of slices are
transmitted to the cloud. There are three corresponding versions
of layers on the cloud to handle the three possible slices as input.
During inference time, IoT devices will execute layers 1 − 3 locally
and pass the intermediate result of layer 3 to radio for transmission.
Due to network dynamics, the radio will send as much as possible
in the available time and the cloud will activate the corresponding
path for the received progressively sliced intermediate results.

3.3 Adaptive partitioning
So far, we have assumed that we know the best partition point. But
the choice of partition point impacts performance since changing
it affects both the latency for computation, as well as the size of the
activations. While progressive slicing does provide the ability to
deal with variations in the data transmission size, a single partition
point may not provide sufficient dynamic range across bandwidth
conditions.

Figure 4 illustrates this interplay between partitioning and pro-
gressive transmission with an example. For each partition point,
progressive transmission is a curve that offers different accuracy
- bandwidth tradeoffs. Thus, the best operating point given some
specific bandwidth is the ⟨partition, slice⟩ tuple that has the highest
accuracy at that bandwidth.

776

Thus, we build a performance profile similar to that shown in
Figure 4 i.e. a set of performance curves offered by different pro-
gressive slices across different partition points. These profiles can
be calculated using platform-level benchmarking as we do on the
GAP8 device in §4.2. Once we have such a profile, we can select the
optimal partition point and progressive slice for a given bandwidth.
We note that building such a profile may be expensive in terms of
training time due to the number of possible partition points and
progressive slices; we discuss how to optimize training time in §3.4.
Incorporating model compression: Augmenting progressive
slicing with model compression can improve performance, partic-
ularly for computation of the IoT-portion of the model which is
slower due to resource constraints at the IoT node. There are several
approaches used for model compression onto embedded devices
[10] including weight quantization, weight sparsification, compact
filters and others. We apply these model compression methods at
different stages of our pipeline — pruning happens prior to progres-
sive slicing whereas weight quantization and sparsification happens
after the progressively sliced model has been trained. This allows
us to easily integrate progressive slicing with state-of-the-art model
compression techniques (e.g. our implementation integrates with
AutoML [17] and Meta-pruning [33]).

3.4 Reducing training time
So far, we assume that we train across all possible slices of the
intermediate layer (for progressive transmission) and across all
possible layers as potential partition points. Clearly, this can in-
cur significant training time. In this section, we describe several
optimizations to reduce training time.

Let 𝐶 (L1:k) be the computation cost of the model M of layers
L1:k and 𝑘 be the partition points. For the training of progressive
slicing, the early layers L1:k will be shared (since they are unaffected
by slicing), and the set of layers Lk+1:K will be different for each
slice. Thus, the computation cost of the model will be 𝐶 (M) =

𝐶 (L1:k) + #slices×𝐶 (Lk+1:K). Therefore, training cost is affected by
two parameters — the number of slices and the number of partition
points (i.e. 𝑘). We now look at how to optimize these two aspects.
Reducing training time for progressive slicing: There are
two optimization that we use in our training to greatly reduce
training complexity for training across progressive slices. First, we
limit the number of different hidden representation sizes that are
considered by setting some values of 𝜋𝑖 to 0. For example, in our
work we consider only sending a number of hidden units that is a
multiple or power of a given integer. This approach can be used to
restrict the number of different parameter sets required in the cloud
to a more manageable number for large models. Second, we tie the
parameters starting at layer 𝑘 + 2 so that we are only expanding
the required parameters at the first layer on the cloud. For example,
in Figure 3 we see that the cloud uses separate pipelines depending
on which slice is transmitted. Instead, the cloud can only have
different versions of Layer 4 to deal with the different number
of intermediate activations transmitted and use the same Layer 5
across all these Layer 4 options. Our implementation uses both of
these optimizations to accelerate training.
Reducing potential partition points: To reduce training across
partition points, we use a bandwidth coverage heuristic to choose

a few promising partition points to reduce training time. For each
layer where we can partition the model, progressive slicing can pro-
vide some tolerance to bandwidth swings by changing how many
slices are transmitted. So, we use a greedy algorithm to select only
layers that can extend the bandwidth range to which the model can
adapt. We now describe this process in more detail.

In-order to estimate how much bandwidth range can be sup-
ported via progressive slicing on a layer, we first need to know
how much time is available for communication. Let 𝐶𝑖𝑜𝑡 (·) and
𝐶𝑐𝑙𝑜𝑢𝑑 (·) denote the computation latency at the IoT device and
cloud respectively. These functions can be estimated for each layer
through one-time offline profiling.

For a model partitioned at layer 𝐾 , L1:𝑘 are executed at the IoT
device and L𝑘+1:𝐾 at the cloud. The total latency for computation,
𝜖𝐶
𝑘
, is 𝐶𝑖𝑜𝑡 (L1:𝑘) + 𝐶𝑐𝑙𝑜𝑢𝑑 (L𝑘+1:𝐾); total energy for computation

will be 𝜖𝐶
𝑘
, is𝐶𝑖𝑜𝑡 (L1:𝑘). Given an end-to-end latency target or total

energy consumption of 𝜖𝑡𝑎𝑟𝑔𝑒𝑡 , we can now only use 𝜖𝑡𝑎𝑟𝑔𝑒𝑡−𝜖𝐶𝑘 for
communication to transmit intermediate results. If O𝑘 denotes the
different sizes of the progressively sliced intermediate results from
layer 𝑘 and 𝑅(·) denotes the function that maps the transmission
sizes back into the required bandwidths based on target latency, we
can calculate the bandwidth range B𝑘 that progressive slicing at
layer 𝑘 can dynamically adjust to as:

B𝑘 = 𝑅(O𝑘 , 𝜖𝑡𝑎𝑟𝑔𝑒𝑡 − 𝜖𝐶𝑘) (3)

Given this range, we just select the most promising partitions
as the minimum set of intervals that cover the bandwidth range
of interest (e.g. from 50kbps to 2Mbps for Bluetooth). This is a
simple interval coverage problem that can be solved using a greedy
algorithm [12].

4 IMPLEMENTATION
We instantiateClio for several state-of-the-art neural network mod-
els and IoT accelerators and processors, and evaluate on different
datasets. We describe the implementation details below.

4.1 Compiling Clio to Models
To prove the generalization of our approach, we apply Clio to
several different state-of-the-art neural network models including
MobileNetV2 [38], VGG [42] and ResNet [16]. We partition af-
ter any layer or blocks (residual blocks in ResNet or bottleneck
structures inMobileNetV2) and do not partition within each block
structure.

Skip connections: MobileNetV2 uses skip connections to con-
nect the beginning and end of a convolutional block; by doing so,
the network has the opportunity of accessing earlier activations
that were not modified in the convolutional block. Skip connections
usually exist when the input and output have the same size. Since
Clio progressively slices the intermediate results into different sizes
during training, we change the skip connection from an addition
operation to a 1 × 1 convolutional operation so that we can deal
with different sizes of input and output.

777

Model compression: As mentioned in §3.4, Clio can be incor-
porated with state-of-the-art compression techniques. In our im-
plementation, we apply AutoML[17] and Meta Pruning [33] to Mo-
bileNetV2. We also use width multiplier as a baseline to compress
the MobileNetV2 model.
Reducing training time: In order to reduce training time when
compiling Clio to MobileNetV2, we choose every second channel
number for early partition points and every fourth channel number
for later partition points for progressive slicing. For example, when
we use a target latency of 300ms in our implementation, partition
points after layer 3, 5 or 8 of MobileNetV2 are chosen based on our
heuristic because they can extend our bandwidth range to 195 kbps,
175 kbps and 98 kbps respectively.

4.2 Compiling Models to IoT Devices
Clio compiles models into two sub-models — a sub-model that is
locally executed on IoT devices and a sub-model that is remotely
executed on cloud servers. We look at two IoT processors. TheGAP
8 is an ultra-low power neural accelerator that has the Hardware
Convolutional Engine (HWCE) that can accelerate the convolu-
tional operations [51]. The STM32F7 is a popular ARM7-based
IoT processor without a convolutional accelerator [6]. Our evalu-
ation of MobileNetV2 on the GAP8 accelerator is based on a full
end-to-end implementation (described in more detail below). For
the ARM7 processor, we estimate the computational cost based on
our implementation on the GAP8 but using ARM7 frequency and
Risc-V cycles per instructions. In the ARM7, operations such as
multiplication, addition and comparison are executed in parallel in
the MCU.
GAP8 implementation: The GAP8 platform only has basic sup-
port for shallow models and wireless communication, and we were
using both larger models as well as integration of IoT and cloud
models. We implemented the necessary drivers and optimized them
to achieve continuous operation over BLE. We also wrote software
to take the model from PyTorch/TFLite and split it/load it onto the
GAP8, which dealt with changes in format and optimized it to make
it fit in memory.

We use TFLite [53] files for model deployment on GAP8. When
converting a model into a TFLite file, some of the operations such
as batch normalization are fused for deployment. As GAP8 only
supports fixed-point arithmetic operations, all the weights and
inputs are transformed into 8-bit Q-format fixed-point numbers
during quantization. Meanwhile, the intermediate results are also
stored and transmitted as 8-bit fixed point numbers.

There are two kinds of convolutions in MobileNetV2 – the first
is basic convolution and the second is expanded convolution, which
in-turn consists of three basic convolutions — expansion, depthwise
and projection convolutions. Even though the GAP8 has a hard-
ware convolution engine to speed up convolution operations, some
operations are not supported due to the hardware design and are
executed on the computing cores in parallel. Also, operations such
as ReLU6 and padding are fused and executed on the computing
cores in parallel.

On the hardware side, we integrated the GAP8 board with a
HIMAX camera, LCD screen, and a radio shield which connects via
UART interface (shown in Figure 5). The integrated board captures

(a) Integrated GAP8 node (b) Latency Breakdown

Figure 5: (a) Integrated GAP8 node with Greyscale HIMAX
HM01B0 camera, BLE shield, and LCD display, (b) latency
specs based on empirical measurement.

an image from camera, shows it on the LCD screen, executes the
early layers of themodel and then transmits the intermediate results
via radios.
Cloud Execution: Execution at the cloud is considerably faster
than at the IoT device. For our benchmarks, we use a Xeon Silver
4116 2.10 GHz with 32 GB DDR4 2400 MHz and GTX 1080 Ti GPU.
Demo of real-time operation: We have integrated the above
pieces to support continuous live operation. We made a full video
demo of our system (see code[2]) — to make the demo, we had to
re-train and optimize the model for the greyscale format coming
from the GAP8 board’s HIMAX camera which was different from
the ImageNet/CIFAR-10 data that we used for our results.
BenchmarkingMobileNetV2 onGAP8: We profiled the GAP8
to obtain latency and energy benchmarks for different computa-
tional blocks.

For latency profiling, we use the hardware counters to evaluate
total cycles for computation, memory copying and other operations.
We transform the total cycles to latency by dividing by the GAP8
clock frequency setting. Figure 5 shows the breakdown of latency
consumed by the execution of our GAP8 implementation of the
MobileNetV2 early layers. Based on the latency breakdown, we es-
timate the equivalent compute ability of the GAP8 when executing
MobileNetV2 to be approximately 525MMAC/s.

For wireless, we found that the maximum speed at which we
could transfer data from the GAP8 to the BLE shield is 250kbps
(due to UART speed limitations). We use these numbers in our
evaluation when evaluating latency and energy.

5 EVALUATION
We start by describing the datasets we use and schemes we compare
against before evaluating Clio against these methods.

5.1 Datasets
The two main datasets that we will use for evaluation are based
on CIFAR-10 and ImageNet — these datasets have different im-
age sizes and demonstrate the performance of our methods under
different workloads. The CIFAR-10 [25] dataset consists of 60000
32×32 color images in 10 classes, with 6000 images per class. There
are 50000 training images and 10000 test images. The ImageNet
[14] dataset has the 224× 224 color images. The original ImageNet

778

(a) CIFAR-10 (b) ImageNet-20

Figure 6: Prog. Slicing vs Prog. JPEG for CIFAR-10 and
ImageNet-20 datasets. Latency corresponds to GAP8 and
BLE radio (numbers in §4.2). Prog. Slicing has significantly
better performance than Prog. JPEG for both CIFAR10 and
ImageNet-20 datasets.

dataset consists of 1000 classes. In practice, however, IoT devices
are typically focused on specific tasks. Rather than classify over
1000 classes, so we create a smaller dataset, ImageNet-20, with a
random set of 20 classes and use this for our evaluation. We have
26000 images for training in 20 classes with 1300 images per class
in training; 1000 images for evaluation.

5.2 Comparisons
We compare against several methods in this evaluation.
Data Compression: In terms of data compression, we com-
pare Clio against transmission of JPEG-compressed raw data to the
cloud for remote processing. We use a state-of-art JPEG-based en-
coder, DeepN-JPEG [32], which is specifically engineering for deep
learning workloads and therefore performs better than traditional
JPEG for deep learning tasks.

We evaluate against two versions of JPEG: a) Baseline JPEG
where the image is compressed to a desired quality and the coeffi-
cients are sequentially transmitted, and b) Progressive JPEG where
the compressed coefficients are interlaced in different passes of
progressively higher detail.
Model Compression: In terms of model compression, we
compare against several state-of-art local compression options:
meta-pruning [33], adapting the width-multiplier and AutoML [17].
Partitioning: Finally, we also compare against state-of-art model
partitioning methods including Neurosurgeon [21], JALAD [29],
and 2-step Pruning [41].

5.3 Prog. Slicing versus Prog. JPEG
We now compare Progressive Slicing in Clio for a fixed choice
of partition point (layer 5) against Progressive JPEG that uses the
state-of-art DeepN-JPEG encoder [32]. Both operate in an interlaced
manner and can stop at any time.

We first look at the performance benefits when compared with
remote computation on JPEG-compressed data. Figure 6 shows
latency results for two datasets (CIFAR-10 and ImageNet-20) and
a BLE radio operating at 250kbps. We see that Clio with fixed
partition point clearly outperforms Progressive JPEG, particularly
at low latencies. Results are almost identical when the metric is
energy instead of latency, hence we do not show these results.

(a) CIFAR-10 (b) ImageNet-20

Figure 7: Clio vs Model Compression. Latency corresponds
to GAP8 and BLE radio@ 250kbps. On CIFAR10, only width
multipliers are effective and Clio is better than this method.
On ImageNet-20, Clio is better than AutoML, meta-pruning
and width multipliers except at low latencies where there is
insufficient time for communication.

5.4 Clio versus Model Compression
We now evaluate the benefits of Clio over model compression
approaches that seek to squeeze the entire MobileNetV2 model into
the resource constraints of the GAP8.

Figure 7 shows the results. For small image sizes in CIFAR-10,
Clio is significantly better than the width multiplier. The results for
ImageNet-20 are more instructive. At low latency, we see that local
compression methods generally perform better as expected since
Clio can only transmit a very small amount of intermediate results
to the cloud, which diminishes accuracy. Once latency increases
above about 220ms, Clio performs better than all local model com-
pression methods. Finally, when the latency is sufficiently high,
the techniques start to converge since there is sufficient compute
and sufficient data transfer for both local and remote processing to
work well.

We note that these results are only based on progressive slic-
ing and do not adapt the partition point. Augmenting progressive
slicing with adaptive partitioning further improves the benefits of
Clio over model compression (we defer this discussion to §5.6)

5.5 Comparing Local, Remote, and Clio
So far, we have separately evaluated Clio against model compres-
sion and data compression. We now look more holistically at these
three methods to try to understand the operating regimes where
each of them works best. The design space, however, is rather large
since different factors affect the different methods — local execution
depends on compute/memory resources and compute efficiency;
remote execution depends on available bandwidth and radio effi-
ciency; and Clio depends on all of the above factors. Rather than
looking at each design parameter separately, we illustrate the gen-
eral trends and tradeoffs by taking a few example architectures and
the MobileNetV2 model.

We now compare end-to-end latency across a few exemplar ar-
chitectures corresponding to different processors (GAP8 – 50mW@
150MHz and STM32F7ARM7– 60mW@200MHz), radio power/bandwidth
combinations (LoRa – 50kbps @ 60mW, ZigBee – 200kbps @ 60mW,
BLE – 250kbps @ 15mW, WiFiax – 1 Mbps @ 100 mW), and im-
age sizes (CIFAR-10 vs ImageNet-20). Since we cannot show the

779

entire envelope for each setting, we look at the performance ratio
between each method and Clio corresponding to 90% accuracy
(trends are similar for other choices of accuracy). For each method,
we evaluate the ratio of its performance against Clio— so a latency
or energy ratio greater than one means that the method has higher
latency/energy compared to Clio.

Figure 8 shows the results for CIFAR-10 and ImageNet-20 — the
caption describes how to interpret the table and color code. We see
that as we go from left to right (low to high bandwidth), perfor-
mance gains of Clio over remote processing diminishes whereas
performance gains over local processing improves. As we go from a
general-purpose ARM7 processor to a specialized GAP8 accelerator,
local processing improves in performance. We see a significant
band of configurations where Clio has better performance than
local and remote processing. The results are intuitive and generally
follows the trend of available compute and bandwith resources —
when compute is more plentiful than bandwidth, local compute
is better; when bandwidth is more than local compute resources,
remote computation is better andCliowhen there is roughly equiv-
alent compute and bandwidth resources hence using both together
provides advantages.

5.6 Benefits of adapting the partition point
So far, our results have focused exclusively on progressive slicing.
We now turn to optimizing the selection of the partition point
together with progressive slicing. We consider two versions of
Clio — a fixed partition version as before (layer 5) and an adaptive
version that uses the average bandwidth over the last minute to
determine what partition point to use (as described in §3.3). We
also show the performance of two versions of JPEG — Progressive
JPEG which makes no bandwidth assumptions and Baseline JPEG
which compresses based on the recent bandwidth history.

We look at performance across a range of dynamic bandwidth
scenarios on synthetic and real traces to allow us to understand
the performance of Clio in a dynamic environment. We focus on
ImageNet-20 images due to their larger size and consider the case
where images need to be processed within 300ms.

Synthetic Trace-driven Evaluation: To demonstrate the abil-
ity ofClio to adapt to dynamics, we use synthetic bandwidth traces
where we systematically vary the amount of dynamics. The mecha-
nism for constructing traces is based on the procedure in [34] and
uses a Markovian model in which each state represented an average
bandwidth in the selected range. State transitions were performed
at a 1 second granularity and followed a geometric distribution.
Each bandwidth value was then drawn from a Gaussian distribution
centered around the average bandwidth for the current state, with
variance uniformly distributed in [0.05, 𝜎𝑀𝐴𝑋]. We vary 𝜎𝑀𝐴𝑋 to
control the amount of variance in the trace and plot the perfor-
mance of different schemes to show how they adapt to dynamics.
Our synthetic dataset covers typical wireless network conditions
for low-power radios, with average bandwidth ranging from 50
Kbps to 1 Mbps.

Figure 9 shows how gracefully different methods degrade in
accuracy as a result of divergence between the real bandwidth and
estimated bandwidth. The larger this gap is, the more likely it is
that the partition point or compression ratio is improperly chosen.

We see that Clio with adaptive partitioning has the least degra-
dation in accuracy as the bandwidth variability increases. The ac-
curacy degradation for Baseline JPEG is 2–3× worse than that for
Clio with adaptive partitioning. In fact, even Clio with a fixed par-
tition point performs marginally better than Baseline JPEG albeit.
Progressive JPEG performs significantly worse than the Clio-based
methods.
Real-world Trace-driven Evaluation: We now evaluate Clio
across several real-world bandwidth traces. Specifically, we look
at HSDPA mobility traces which were collected in different mobile
environments such as buses, trains, and ferries [37].

Figure 10 shows the results. We note that when the bandwidth is
less than the minimum bandwidth required for the technique used
(e.g. first scan/slice) to generate a prediction result, then we record
the corresponding accuracy as zero. We see that Progressive Slicing
is better than Progressive JPEG across all traces; in fact, our method
is also comparable to Baseline JPEG even though the method makes
no assumptions about available bandwidth. Clio augmented with
partition point adaptation improves performance and is as good or
better than JPEG-based methods.

We expand on the above results in two ways. First, we take all the
instances from the trace where there the predicted bandwidth does
not match the actual bandwidth, and look at what effect that has
on accuracy. Figure 11(a) shows the loss in accuracy for different
methods across different gaps between predicted and actual band-
widths. We see that Cliowith adaptive partitioning can achieve the
best overall accuracy and minimal accuracy degradation even when
there is a substantial gap between real and estimation bandwidths
result from network dynamics.

Second, we illustrate the difference between adaptive partition-
ing versus fixed partitioning using a time-series snippet from the
traces with bandwidth dynamics. We see that adaptive partitioning
adapts to larger bandwidth changes effectively to minimize the loss
in performance due to dynamics.
Performance under known bandwidth: In the trace-driven
evaluation, we had to predict bandwidth based on past measure-
ments; now, we take a more favorable scenario for Baseline JPEG
where bandwidth is known and quality of compressed JPEG is opti-
mized for the given bandwidth. These results are for the ImageNet-
20 dataset.

Figure 12 shows the results. We see that choosing the optimal
partition point improves the classification performance particularly
at lower latencies. We see that Baseline JPEG compression is signifi-
cantly better than Progressive JPEG. The graph also shows interest-
ing tradeoffs between Baseline JPEG versus Clio. We see that for
very low latency, Baseline JPEG is superior since JPEG computation
has lower latency than that incurred by Clio to compute the initial
layers. As available latency increases above a minimum threshold
to execute a few layers locally, Clio starts to perform better. Both
the progressive-only and optimal-partitioning + progressive-based
versions of Clio perform better than JPEG-based options. Once the
latency is long enough to transmit sufficient data, all approaches
converge in performance.
Compute overhead of switching partition: Changing the par-
tition point incurs some additional overhead since the IoT-portion
of the model needs to be changed. We assume that the different

780

(a) CIFAR10: Latency (b) CIFAR10: Energy (c) ImageNet-20: Latency (d) ImageNet-20: Energy

Figure 8: Heatmaps representing the regimes where local, remote and partitioned computation offer benefits. The left two
graphs correspond to CIFAR-10 and the right two correspond to ImageNet-20. The band in the middle of each graph corre-
sponds to the regime where Clio is the best approach; to the left of the band is the region where remote computation (on
jpeg-compressed data) is better and the right of the band is the region where local computation (via a compressed model) is
more efficient.

Figure 9:Weuse synthetic traces and gradually increase vari-
ance in bandwidth to show robustness of different meth-
ods. Clio with adaptive partitioning is most robust to band-
width variations and degrades more gracefully than Base-
line JPEG.

models are stored on the GAP8 flash and the cost only involves
switching between the models. On the GAP8, the weights of the
model are stored as files in HyperFlash and need be copied to cache
or HyperRAM before the model can be run. Therefore, when a par-
tition point change is triggered, we need to first free the cache and
HyperRAM for the current model and allocate new space for the
new model. We empirically evaluated that this process only takes
around 20ms on the GAP8, which is a small overhead given rela-
tively infrequent switching between partition points (for example,
the 20ms overhead is barely visible in Figure 11(b)).

5.7 Evaluation over GAP8 Hardware
We now look at an end-to-end evaluation over the actual GAP8
platform and BLE radio. One key difference between the results
so far and our real experiments over the GAP8 is the effect of
radio duty-cycling. So far, we have assumed that the radio can
be instantly connected to the cloud whenever needed. This is, of
course, unrealistic for duty-cycled radios — for example, a BLE
sender and receiver wakeup at periodic intervals to see if there is

new data to transmit and this interval determines how quickly data
transmission can begin. The choice of wakeup interval influences
duty-cycling efficiency — if the interval is high, then the radio
consumes less power (e.g. BLE consumes only 45`W if connection
latency is 1 second), and if the interval is low, frequent wakeups
increase power consumption (e.g. BLE consumes 460`W at 40ms
connection latency) [46].

Figure 13 shows the results when we use BLE 4.0 and BLE 4.2
as the radio. The difference between these is that BLE 4.0 can only
transmit data via notification packets whose maximum size is 20
bytes while BLE 4.2 enlarges the maximum size to 251 bytes. We
see that the end-to-end latency of Clio increases very little even
as connection interval increases significantly from 7.5ms to 40ms
whereas the end-to-end latency for JPEG increases steeply in a
step-wise manner (corresponding to each additional layer being
transmitted). One advantage for Clio in the presence of connection
latency is that since Clio processes several initial layers before
transmitting to the cloud, it is able to mask a significant fraction of
the end-to-end latency.

Thus, an important advantage of Clio in the context of deploy-
ments that use duty-cycled radios is thatClio is effective at masking
the wake-up delays by locally processing the data until the connec-
tion becomes available. In contrast, the computation time of JPEG
is small and does not benefit as much from the wake-up delay.

5.8 Other models and methods
We now look at how Clio performs for models other than Mo-
bileNetV2 and compare against several other partitioning methods.

Compatibility with othermodels and techniques: So far, we
have looked only at MobileNetV2 but Clio can also be used with
other deep learning models. Figure 14 compares Progressive Slic-
ing, Progressive JPEG and Model Compression for another popular
model, ResNet [16]. Since ResNet has higher compute requirements,
the bandwidth point at which it becomes better than remote com-
putation is lower than for MobileNetV2. We generally see that
ResNet is most effective at bandwidth lower than 200kps, so we
show results for ResNet when the wireless interface is a LoRa radio
operating at 50kbps. For this radio, we see that the latency envelope
from ResNet is better than local and remote computation. We see

781

(a) Bus (b) Car (c) Ferry - CLIO vs. JPEG (d) Metro (e) Train (f) Tram

Figure 10: CDF of performance of Clio and JPEG for different mobility traces.

(a) Effect of estimation error (b) Time Series

Figure 11: (a) Even when there is a large gap between esti-
mated and actual bandwidth, Clio with partition point adap-
tation performs best. (b) Time series showing bandwidth
changes and partition point adaptation to minimize loss in
accuracy

similar trends with VGG-19 which is also a large model but do not
show results due to space constraints.

Another technique to reduce communication is to use early
exit which allows the model to stop execution at the IoT device
if the prediction result can be predicted with high confidence [44,
45]. This technique is compatible with Clio and early exit can
be folded into Clio pipeline. However, we found that early exit
at the IoT device has poor accuracy (less than 70%) for models
like MobileNetV2 given the IoT device constraints so we did not
incorporate this into Clio.
Comparison against JALAD: Figure 15 shows results of our
comparison against JALAD[29], a technique for reducing the size
of intermediate results by quantizing with fewer bits. Clio per-
forms better across the entire range, particularly at low compres-
sion ratios. This is because Clio can leverage the sparsity of the
intermediate results while JALAD only leverages the sparsity in
the fixed-point representation. We note that the quantization opti-
mizations in JALAD can also be incorporated with Clio to improve
results. For example, performance is unaffected by 6-bit quantiza-
tion as opposed to 8-bit quantization and this can help improve
Clio’s results.
Comparison against NeuroSurgeon: Table 1 compares Clio
against Neurosurgeon across different radios and presents two
numbers — the first is for similar accuracy as Neurosurgeon (i.e.
less than 0.5% accuracy loss) and the second is for lower accuracy
(roughly 3% accuracy loss). We see that even at almost identical

Bandwidth−−−−−−−−−→
LoRA ZigBee BLE WiFi

STM32F7 2.3x|3.6x 1.5x|1.8x 1.3x|1.7x 1.1x|1.2x
GAP 8 2.8x|6.3x 2.2x|3.4x 2.0x|3.0x 1.3x|1.5x

Table 1: Comparison against Neurosurgeon on end-to-end
latency on ImageNet-20.

Bandwidth−−−−−−−−−→
LoRA ZigBee BLE WiFi

STM32F7 1.65x 1.39x 1.32x 1.08x
GAP 8 1.64x 1.64x 1.63x 1.27x

Table 2: Comparison against 2-step pruning on end-to-end
latency on VGG/CIFAR-10.

accuracy, Clio performs better since it uses progressive slicing and
adaptive partitioning to improve performance. Clio provides signif-
icantly better performance if the application can tolerate additional
accuracy loss.

Comparison against 2-step Pruning: We also compare Clio
with a two-step pruning method proposed in [41]. This method
prunes the original model in two passes and partitions the pruned
model into two parts (edge and cloud). In the first pruning pass,
all layers of the model are pruned by using state-of-art pruning
methods; in the second pass, each layer is pruned one-by-one while
keeping other layers intact. Finally, the partition point is determined
such that end-to-end latency requirements are met.

The 2-step pruning method is evaluated using VGGNet and
CIFAR-10, so we compare withClio for the samemodel/dataset. We
compare end-to-end latency of these methods for comparable accu-
racy. Table 2 shows that Clio performs better than 2-step pruning
across the different bandwidth settings.

Overall, we see that Clio performs better than alternate parti-
tioning methods since the progressive slicing method manipulates
the intermediate feature maps, which is critical for dealing with
highly constrained network conditions.

782

Figure 12: Adaptive Parti-
tioning Benefits

Figure 13: Experimental Re-
sults on GAP8

Figure 14: Clio vs JPEG for
ResNet18

Figure 15: Comparison be-
tween Clio and JALAD

6 RELATEDWORK
Related efforts can be largely classified into three categories —
deep learning for resource-constrained devices, cloud offload and
partitioned execution.
Model compilation for single device: There has been much
recent interest on optimizing deep learning models for embedded
MCUs [8, 27, 28, 31, 56]. While most of this work assumes less
stringent constraints than required by IoT devices, some specifi-
cally target such devices [27, 31, 56]. Model compression is a more
mature field for smartphone-class devices — companies like Google
and Amazon offer model compression tools to make it easy for
developers to optimize deep learning models for mobile devices
[47, 48]. Our work is complementary to these efforts and enables
model compilation techniques to also leverage low-power wireless
radios and compile large models to distributed IoT-Cloud networks.
Cloud offload: There has been more than a decade of work on
optimizing cloud offload and this is one of the most common ways
of deploying IoT systems [7, 11, 13, 19, 23, 30, 39]. Generally, cloud
offload methods are agnostic to the specific computation performed
at the edge (IoT) device versus the edge cloud. They primarily deal
with variations in network delay and bandwidth at the network
layer. In contrast, we develop an end-to-end method for compiling
machine learning models such that they can seamlessly adapt to
fluctuations in network conditions.
Partitioning analytics: Several recent efforts have looked at
partitioning deep learning models across the cloud and edge (e.g.
Neurosurgeon [21]). There has been some work that also extends
the idea of partitioning — [29] quantizes and compresses interme-
diate results, [24] also lossily compresses intermediate results, and
[40] describes additional model pruning of the local IoT model to
reduce bandwidth. We show that progressive slices can provide
benefits over compression of intermediate results and over model
compression techniques.

7 CONCLUSIONS
In conclusion, we present a new approach to model compilation
for low-power IoT where we automatically split a deep learning
model between the IoT device and the cloud to optimize latency
and energy while also being resilient to bandwidth dynamics. Our
work is a departure from prior work in that Clio operates in a
progressive manner and simultaneously reasons about model com-
pression (for local computation) and data compression (for cloud

computation). Our approach is end-to-end and optimizes overall
inference performance while taking into consideration resource
limitations such as bandwidth, energy, and computation ability. We
believe that our approach is generalizable and paves the way for
leveraging both low-power accelerators and low-power radios. It
can be used in a host of IoT and sensor network deployments.

Our work also opens up several research directions. While we fo-
cused on images, we suspect similar methods will work for complex
audio processing models, for example, methods to enable speech
processing in noisy environments [4]. Also, we are currently work-
ing on extending Clio to models for video analytics – these mod-
els are quite different since they learn temporal dependencies via
LSTMS, 3D convolutions, or some combination of CNNs and opti-
cal flow tracking [20, 22, 43, 54, 57]. Our expectation is that as the
complexity of these models increases, partitioning between edge
and cloud becomes more essential and model compilation methods
such as Clio will be even more important.

ACKNOWLEDGMENTS
The research reported in this paper was sponsored in part by the
CCDC Army Research Laboratory (ARL) under Cooperative Agree-
ment W911NF-17-2-0196 (ARL IoBT CRA) and by National Science
Foundation under Grant No. 1719386 and No. 1815347. The views
and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official
policies, either expressed or implied, of the ARL, NSF or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation herein.

REFERENCES
[1] cc2531 zigbee chip. http://www.ti.com/lit/ds/symlink/cc2531.pdf.
[2] Github repo. https://github.com/jinhuang01/CLIO.
[3] Long range, low power rf transceiver 860-1000 mhz with lora technology. https:

//www.semtech.com/products/wireless-rf/lora-transceivers/sx1272.
[4] Nsf: Hearables challenge. https://www.nasa.gov/feature/nsf-hearables-challenge.
[5] St spbt2632c2a bluetooth module. http://www.st.com/web/en/resource/technical/

document/datasheet/DM00048919.pdf.
[6] Stm32f7: A very high-performance mcus with arm cortex-m7 core. https://www.

st.com/en/microcontrollers-microprocessors/stm32f7-series.html.
[7] A. Ashok, P. Steenkiste, and F. Bai. Enabling vehicular applications using cloud

services through adaptive computation offloading. In Proceedings of the 6th
International Workshop on Mobile Cloud Computing and Services, pages 1–7. ACM,
2015.

[8] S. Bhattacharya and N. D. Lane. Sparsification and separation of deep learning
layers for constrained resource inference on wearables. In Proceedings of the 14th
ACM Conference on Embedded Network Sensor Systems CD-ROM, pages 176–189.
ACM, 2016.

[9] Bosch. BMI160: Ultra Low Power Inertial Measurement Unit.

783

http://www.ti.com/lit/ds/symlink/cc2531.pdf
https://github.com/jinhuang01/CLIO
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1272
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1272
https://www.nasa.gov/feature/nsf-hearables-challenge
http://www.st.com/web/en/resource/technical/document/datasheet/DM00048919.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/DM00048919.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32f7-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f7-series.html

[10] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of model compression and
acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[11] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud: elastic
execution between mobile device and cloud. In Proceedings of the sixth conference
on Computer systems, pages 301–314. ACM, 2011.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT press, 2009.

[13] E. Cuervo, A. Balasubramanian, D. ki Cho, A. Wolman, S. Saroiu, R. Chandra,
and P. Bahl. Maui: Making smartphones last longer with code offload. In In
Proceedings of ACM MobiSys, 2010.

[14] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[15] Y. Han, X. Wang, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen. Conver-
gence of edge computing and deep learning: A comprehensive survey. CoRR,
abs/1907.08349, 2019.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[17] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 784–800, 2018.

[18] Himax. HM01B0: Ultra Low Power Image Sensor.
[19] J. Huang, A. Badam, R. Chandra, and E. B. Nightingale. Weardrive: Fast and

energy-efficient storage for wearables. In 2015 USENIX Annual Technical Con-
ference (USENIX ATC 15), pages 613–625, Santa Clara, CA, July 2015. USENIX
Association.

[20] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human
action recognition. IEEE transactions on pattern analysis and machine intelligence,
35(1):221–231, 2013.

[21] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang. Neuro-
surgeon: Collaborative intelligence between the cloud and mobile edge. In ACM
SIGARCH Computer Architecture News, volume 45, pages 615–629. ACM, 2017.

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-
scale video classification with convolutional neural networks. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, pages 1725–1732,
2014.

[23] E. C. Kevin Boos, David Chu. Flashback: Bringing immersive virtual reality to
mobile devices through aggressive rendering memoization. In Proceedings of
the 14th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’16, 2016.

[24] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay. Edge-host partitioning of deep
neural networks with feature space encoding for resource-constrained internet-
of-things platforms. In 2018 15th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pages 1–6. IEEE, 2018.

[25] A. Krizhevsky. Learning multiple layers of features from tiny images, 2009.
[26] L. Lai and N. Suda. Enabling deep learning at the iot edge. In Proceedings of the

International Conference on Computer-Aided Design, ICCAD ’18, 2018.
[27] L. Lai, N. Suda, and V. Chandra. Cmsis-nn: Efficient neural network kernels for

arm cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.
[28] N. D. Lane, P. Georgiev, and L. Qendro. Deepear: robust smartphone audio sensing

in unconstrained acoustic environments using deep learning. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
pages 283–294. ACM, 2015.

[29] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu. Jalad: Joint accuracy-and
latency-aware deep structure decoupling for edge-cloud execution. In 2018 IEEE
24th International Conference on Parallel and Distributed Systems (ICPADS), pages
671–678. IEEE, 2018.

[30] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li. Gearing resource-poor
mobile devices with powerful clouds: architectures, challenges, and applications.
Wireless Communications, IEEE, 20(3):14–22, 2013.

[31] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du. On-demand deep model
compression for mobile devices: A usage-driven model selection framework.
2018.

[32] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan. Deepn-jpeg: a
deep neural network favorable jpeg-based image compression framework. In
Proceedings of the 55th Annual Design Automation Conference, pages 1–6, 2018.

[33] Z. Liu, H. Mu, X. Zhang, Z. Guo, X. Yang, K.-T. Cheng, and J. Sun. Metapruning:
Meta learning for automatic neural network channel pruning. In Proceedings of
the IEEE International Conference on Computer Vision, pages 3296–3305, 2019.

[34] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 197–210, 2017.

[35] Maxim Integrated. Ultra-Low Power, Single-Channel Integrated Biopotential (ECG,
R to R Detection) AFE.

[36] Nordic Semiconductor. NRF51822: Bluetooth low energy and 2.4GHz proprietary
SoC.

[37] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen. Video
streaming using a location-based bandwidth-lookup service for bitrate planning.

ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 8(3):24, 2012.

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: In-
verted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4510–4520. IEEE, 2018.

[39] M. Satyanarayanan. A brief history of cloud offload: A personal journey from
odyssey through cyber foraging to cloudlets. GetMobile: Mobile Computing and
Communications, 18(4):19–23, 2015.

[40] W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng. Improving device-
edge cooperative inference of deep learning via 2-step pruning. arXiv preprint
arXiv:1903.03472, 2019.

[41] W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng. Improving device-edge
cooperative inference of deep learning via 2-step pruning. CoRR, abs/1903.03472,
2019.

[42] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[43] L. Sun, K. Jia, D.-Y. Yeung, and B. E. Shi. Human action recognition using
factorized spatio-temporal convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4597–4605, 2015.

[44] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Branchynet: Fast inference via
early exiting from deep neural networks. In 2016 23rd International Conference
on Pattern Recognition (ICPR), pages 2464–2469. IEEE, 2016.

[45] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Distributed deep neural net-
works over the cloud, the edge and end devices. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pages 328–339. IEEE, 2017.

[46] J. Tosi, F. Taffoni, M. Santacatterina, R. Sannino, and D. Formica. Performance
evaluation of bluetooth low energy: a systematic review. Sensors, 17(12):2898,
2017.

[47] https://aws.amazon.com/sagemaker/neo/. Amazon SageMaker Neo: Train models
once, run anywhere with up to 2x performance improvement.

[48] https://developers.google.com/ml-kit/. Google ML Kit: Bringing Google’s ML
expertise to mobile developers.

[49] https://en.wikipedia.org/wiki/IEEE_802.11ah. 802.11ah WiFi HaLow: WiFi for
Internet of Things.

[50] https://etacompute.com/. Etacompute TENSAI: Machine Learning Platform with
Ultra-Low-Power Consumption for Edge Devices.

[51] https://greenwaves-technologies.com/gap8-product/. GAP8: Ultra-low power,
always-on processor for embedded artificial intelligence.

[52] https://www.syntiant.com/. SYNTIANT: Always-on machine learning solutions
for battery-powered devices.

[53] https://www.tensorflow.org/lite. Tensor Flow Lite: Deploy machine learning
models on mobile and IoT devices .

[54] G. Varol, I. Laptev, and C. Schmid. Long-term temporal convolutions for ac-
tion recognition. IEEE transactions on pattern analysis and machine intelligence,
40(6):1510–1517, 2018.

[55] Vesper. VM1010: Wake-on-Sound Piezoelectric MEMS Microphone.
[56] S. Yao, Y. Zhao, H. Shao, S. Liu, D. Liu, L. Su, and T. Abdelzaher. Fastdeepiot:

Towards understanding and optimizing neural network execution time on mobile
and embedded devices. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, pages 278–291. ACM, 2018.

[57] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici. Beyond short snippets: Deep networks for video classification. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4694–4702, 2015.

784

https://aws.amazon.com/sagemaker/neo/
https://developers.google.com/ml-kit/
https://en.wikipedia.org/wiki/IEEE_802.11ah
https://etacompute.com/
https://greenwaves-technologies.com/gap8-product/
https://www.syntiant.com/
https://www.tensorflow.org/lite

	Abstract
	1 Introduction
	2 Case for Clio
	3 Clio Design
	3.1 Overview of Clio run-time
	3.2 Progressive slicing
	3.3 Adaptive partitioning
	3.4 Reducing training time

	4 Implementation
	4.1 Compiling Clio to Models
	4.2 Compiling Models to IoT Devices

	5 Evaluation
	5.1 Datasets
	5.2 Comparisons
	5.3 Prog. Slicing versus Prog. JPEG
	5.4 Clio versus Model Compression
	5.5 Comparing Local, Remote, and Clio
	5.6 Benefits of adapting the partition point
	5.7 Evaluation over GAP8 Hardware
	5.8 Other models and methods

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

