
Clock Tree Power reduction by clock latency reduction

By Sunny Arora, Naveen Sampath, Shilpa Gupta, Sunit Bansal, Ateet Mishra

Abstract

The Current Clock Tree Synthesis strategy used in chips target to build all leaf cells of a

clock at the same latency & skew targets. This causes addition of lots of extra clock

buffers in the design. Clock tree power contributes nearly 40-45% of the total dynamic

power in a chip. Reducing clock tree power will help in reducing the total power. Also,

OCV impact, which is proportional to the clock latency, has become a big concern in

high frequency design done on shrinking technology nodes. If bunches of leaf cells can

be built at a reduced latency, after ensuring minimal impact on timing, a reduction in

average & Dynamic power can be achieved. Also, OCV derate impact will be

minimized; reduced latency will also improve OCV effect. We present a method to build

leaf cells at lesser latencies.

Current Methodology

Fig 1 shows a typical implementation of clock tree being currently followed. All flops are

built at the same latency number, which is decided by the maximum latency in the

design, which is C in this case.

Fig 1 – Traditional Clock Tree Synthesis

This is done mainly for 2 reasons, to avoid hold violations in the design & for simpler

implementation. Flops are built at the same latency without even considering whether

flops are interacting or not. The design impact is obvious, by the addition of so many

Clock
source

Generated
clock

Clock
source

Generated
clock

B

C

D

8ns

8ns

8ns

8ns

clock buffers design becomes power hungry, which is the most critical problem our

digital world is currently facing. (40 -50 % of the total power is constituted by clock

tree).Also, because of simultaneous switching of so many flops, peak power goes very

high.

Our Idea

Fig 2 depicts the idea which we are proposing. Our idea is to build the flops at their

minimum possible latency, with minimum or no timing impact.

Fig 2 – Our Idea

As can be seen in Fig 2, flops have been built at different, but minimum possible

latencies. Unlike the previous implementation, they are not built at the same latency of 8

ns.

Basis of Proposal

Fig 3 & 4 depicts two sets of observation which was made on two SoC designs.

Fig 3

Setup slack graph in KIRIN3

0

2000

4000

6000

8000

10000

12000

14000

16000

< 1

ns

1-2

ns

2-3

ns

3-4

ns

4-5

ns

5-6

ns

6-7

ns

7-8

ns

8-9

ns

9-10

ns

> 10

ns

Setup slack at endpoint

N
u

m
b

e
r

o
f

e
n

d
p

o
in

t
fl

o
p

s

Series1

Setup slack graph In Spectrum 1.0

0

5000

10000

15000

20000

25000

<
 0
n
s

0-
1n

s

1-
2n

s

2-
3n

s

3-
4n

s

4-
5n

s

5-
6n

s

6-
7n

s

7-
8n

s

8-
9n

s

9-
10

ns

>
10

ns

Setup slack at endpoint

N
u

m
b

e
r
 o

f
e
n

d
p

o
in

t
fl

o
p

s

Series1

33

nnsseecc

44 nnsseecc

66nnssee

cc

X
por
t

88

nnsseecc Clock
source

Generated
clock

Fig 3 shows the Setup Slack distributions when flops are build at same latencies. It can be

seen that most of the endpoints are non-timing critical wrt setup checks. This indicates

that there won’t be too many setup critical paths to deal with when the flops are built at

different latencies.

Fig 4

Fig 4 shows the Clock path distribution in terms of number of logic levels in the clock

path from source to flop clock pins. As can be seen, there are a large number of flops

which have the potential to be built at a much lesser latency. Current clock tree

implementations aim to build all flops at the “maximum logic level clock path”, which in

this case is level 24. It is known fact that the minimum possible latency of a flop clock

pin is limited by the number of logic levels which the clock path has. Here logic level

means RTL instantiated cells like clock gating cells, muxes etc.

Another observation from Fig 4 is that the flops can be divided into 3 distinct “bins” on

the basis of number of clock levels, LOW, MEDIUM & HIGH.

Complexity & Challenges

Fig 5 shows the latency distribution of flops with the conventional clock tree

implementation, and our implementation

CLOCK PATH LOGIC LEVEL GRAPH KIRIN3 DESIGN

0

2000

4000

6000

8000

10000

12000

14000

1 3 5 7 9 11 13 15 17 19 21 23

Number of logic levels in clock path

N
u

m
b

e
r

o
f

fl
o

p
s

Series1

Series2

Fig 5 – Comparison b/w traditional & new approach

The advantages are obvious; there is a reduction in Dynamic power, peak power & OCV

impact.

But, the challenge is to still meet design timing in terms of setup & hold violations at

these flops. Also, we need to come with a criterion to decide the minimum possible

latency for each flop in design; parameters being the setup/hold timing criticality of the

flop, and the minimum latency at which it can actually be built.

Implementing this scheme/Idea can be very complex. Consider following 5 flops and

their interaction. It is very complex to determine the setup & hold dependencies and

deriving different latency numbers for each of them.

Also lot of calculations and iterations are required seeing the impact of new latency no.

on other interacting flops. The possibility of interaction will increase in factorials (of no.

of flops)

In general there are thousands of flops in the design. Looking at the complexity, amount

of calculation (memory) required, writing an algorithm which will derive flop dependent

latency number with its impact (setup & hold) on all the other interacting flops would be

an impossible task. We really need an intelligent implementing algorithm which will give

us the required benefit with ease in implementation.

Implementation Strategy

To reduce the computational complexity involved, we select a strategy shown in Fig 6.

Fig 6 – Implementation idea

Latency

Flops

Current approach

skew

La
te
nc
y

Flops

New approach

Bin L Bin M Bin H

Flops

La
te
nc
y

Flops

La
te
nc
y

The flops are divided into “N” bins on the basis of the minimum latency at which they

can be built. N needs to be an optimum number. Higher the number of bins more is the

improvement. But, the percentage improvement as we move to higher number of bins

reduces exponentially. Also, the implementation becomes tougher. A value of 3 is an

optimum number.

Fig 7 shows the implementation flowchart of our idea. It can be implemented after design

is timing clean in synthesis & placement, and before Clock tree synthesis. The flops are

divided into bins, by looking at the logic in the clock path. In this figure, number of bins

are 3. Script1.tcl looks at the setup critical paths, and recursively adjusts the latency

numbers of flops to meet setup timing. Script2.tcl looks at the hold critical paths, and

recursively adjusts the latency numbers of flops to meet hold timing.

Fig 7 – Implementation flowchart

Fig 8 shows the algorithm of Script1.tcl. As all flops are built at their minimum possible

latencies, the setup critical paths are from the highest latency bin to the lowest one. The

2
nd

 highest bin (Medium bin here) is selected, and setup timing is checked at all the flops

in this bin, as endpoints. If the timing does not meet, the flop is pushed by the appropriate

amount. A recursive algorithm is applied to account for new setup violations which can

SSyynntthheessiiss && PPllaacceemmeenntt

CClloocckk TTrreeee SSyynntthheessiiss

RRoouuttiinngg

Power Aware
CTS Planning

Checking clock gating bunches &
considering setup slack

BBiinnss aarree sshhuufffflleedd ((LLooww,, MMeeddiiuumm,,

HHiigghh))

Recursive check on
setup slack with
new latency no.

L M H

Hold critical paths

Script1.tcl

Flops are reconsidered seeing
hold violation introduced and later

new setup slack is also

considered

DDeecciissiioonn mmaakkiinngg
Fixing hold on data

path
Or

Bin change is
required ?

L M H

Script2.tcl

Low latency flops High latency flops

Seeing the clock logic (for minimum possible

latency) flops are divided among bins

L M H

Setup critical paths

come up when a flop is pushed. After finishing a bin, the next lower bin is selected. The

process is repeated till all bins are finished.

Whenever a flop is pushed, it can affect timing of 2 kinds of flops. First are flops present

in a lower bin. As we are moving from higher to lower bin, this is automatically taken

care of when the lower bin is considered. Second are flops in the same bin, which have

not been pushed so far. A recursive algorithm is applied to address these flops; setup

timing is checked on flops interacting with the pushed flop as startpoint. The flops for

which setup does not meet are also pushed. This process is repeated till there all

violations are resolved.

Fig 8 – Script1.tcl

As shown in Fig 8, in the end we will be left with a setup clean design, with some flops

being assigned intermediate latencies.

Fig 9 shows the working of Script2.tcl, which looks at hold violations.

lo
w

hig
h

mediu
m

X Y Z
CLOCK PATH LOGIC LEVEL GRAPH KIRIN3 DESIGN

0

2000

4000

6000

8000

10000

12000

14000

1 3 5 7 9 11 13 15 17 19 21 23

Number of logic levels in clock path

N
um

be
r

of
 fl

op
s

Series1

Series2

DDeecciiddeedd

nnoo.. ooff

bbiinnss
3
bins

SSEETTUUPP CClleeaann DDeessiiggnn wwiitthh

mmiinn.. LLaatteennccyy aassssiiggnneedd !!!!

Worst violation is 3
nsec

TThhiiss fflloopp wwiillll bbee ppuusshheedd bbyy 33 nnsseecc

!!!!

NNeeww llaatteennccyy == XX ++ 33

Worst violation is 2
nsec

TThhiiss fflloopp wwiillll bbee ppuusshheedd bbyy 22 nnsseecc

!!!!

NNeeww llaatteennccyy == YY ++ 22

CChheecckk ttiimmiinngg @@ EEnndd

ppooiinntt

SSttaarrttiinngg ffrroomm 22nndd hhiigghheesstt bbiinn ttoo lloowweerr

bbiinn

X Y Z

YY++

22

X+
3

RREECCUURRSSEE

AALLGGOO

X Y Z

YY++

22

RREECCUURRSSEE

AALLGGOO

Fig 9 – Script2.tcl

As opposed to setup, hold critical paths would be present from a lower bin or a lower

latency flop to a flop at higher latency. Again, flops which are built at latency just less

than that of the highest bin are considered first. Hold timing is checked as these flops as

startpoints. If there is a hold violation, a decision is taken whether the hold violation can

be fixed by adding buffers in data path, or by pushing the flop. Once all flops are

exhausted at the present latency number, the next lower latency flops are selected. A

recursive algorithm is also applied here to see if the pushing of flop causes a new hold

(flop as endpoint) or setup violation (flop as startpoint).

Results
The idea was implemented on one our designs having around 64K flop.

 Present

Approach

Proposed

approach

% saving

No. of buffers Inserted 2343 1900 18.9%

Net switch power 31.72mW 28.6mW 9.8%

Inst internal power 8.9mW 6.8mW 23.6%

Total clock distribution

power

40.6mW 35.4mW 12.8%

Fig 10 - Results

As can be seen in Fig 9, significant reduction in clock distribution power, and in number

of buffers added have been achieved.

Worst violation is 1
nsec

TThhiiss fflloopp wwiillll bbee ppuusshheedd bbyy 11 nnsseecc !!!!

NNeeww llaatteennccyy == YY ++ 33

CChheecckk ttiimmiinngg @@ SSttaarrttppooiinntt

DDeecciissiioonn mmaakkiinngg
Fixing hold on data path

Or
Latency change is

required ?

Y RREECCUURRSSEE AALLGGOO

Followed by other flops &
bins

X Z

YY++

33

Y+
2

X+
4 X+

1

X+
2

X+
6

SSEETTUUPP//HHOOLLDD CClleeaann DDeessiiggnn wwiitthh mmiinniimmuumm LLaatteennccyy aassssiiggnneedd !!!!

Opposite to setup, hold violations will be
there from lower bin to higher bin.
And to avoid hold ssttaarrtt fflloopp iiss ttoo bbee

ppuusshheedd.. SSttaarrttiinngg ffrroomm tthhee ffllooppss pprreevviioouuss ttoo llaasstt

bbiinn

X Y Z

YY++

22

X+
3

Summary

In this paper we have presented a new approach for clock tree synthesis, which is power

aware. Unlike traditional strategies, we proposed to build flops at their minimum

latencies, while keeping timing in mind. We proposed a method by which the

computational complexity involved can be significantly reduced. We also presented the

results from on of our designs where the idea was implemented.

