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1. INTRODUCTION 

The sense of taste allows animals to detect food-derived chemicals, guiding to 

identify and consume nutrients, while avoiding toxins and harmful substances. 

Mammalian, and so humans, can detect and distinguish between, at least, five 

basic taste qualities: sweet, bitter, umami, sour and salty (Breslin et al., 2008) 

[Fig.1]. Each one is referred to nutritional and physiological requirements or to 

potential hazards:  

 

 Sweet taste signals the presence of carbohydrates used as energy by 

organism. This taste has been proposed to activate the reward circuit in the 

brain and thus to induce feeding behavior. 

 Salty taste governs intake of Sodium and other salts, to maintain blood 

circulation and body’s water balance. 

 Umami is thought to be important to detect L-glutamate and other L-amino 

acids, representing food’s protein content. 

 Sour and bitter tastes are important to perceive potentially noxious 

substances. Sour taste signals the presence of acids and generally is 

aversive, preventing from ingesting excess of acids or acid substances 

produced during spoilage of food.  

 Bitter taste is naturally aversive and is thought to be protective against 

ingestion of toxins, many of which are of genuine plant origin or produced 

during aging, spoilage or processing of food, like fermentation reactions. 

Therefore the ability to detect bitter substances and the onset of aversive 

response to these foods is thought to be an evolutionary advantage. 
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Figure 1: Taste qualities and receptors that detect them. Bitter taste is thought to protect against 

ingestion of harmful substances and is transduced by G protein-coupled receptors, as well as sweet 

and umami tastes. Sweet taste detects sugars and carbohydrates. Umami taste signals L-amino acid 

and nucleotides. Na+ is detected by salty taste. Sour taste is another defender of organism sensing 

organic acids (from Chaudari & Roper 2010). 

 

1.1 Taste morphology 

Humans taste with the edge and the dorsal of the tongue, soft palate and pharynx. 

(Breslin et al., 2006). These tissues comprise gustatory epithelia which contains 

taste buds, the sensory organs. A taste bud is a cluster of 60-70 up to 100 

polarized cells, embedded in the stratified epithelium and shielded from the 

environment by means of tight junctions in basolateral region (Michling et al., 

2007) [Fig.2]. On the tongue, taste buds are within small bumps or folds, called 

papillae. We can find fungiform papillae on the anterior tongue, circumvallate 

papillae on the posterior tongue and taste buds buried in folds on lateral sides of 

the tongue, in foliate papillae [Fig.3]. 
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Figure 2: On the left, micrograph of three taste buds in the circumvallate papilla of a mouse. It is 

possible to note Type II taste cells stained red and gustatory afferent fibers stained green. In this 

longitudinal section surface of the epithelium is at the top of the micrograph (from Kinnamon & 

Finger, 2013). On the right, scheme of taste bud with afferent nerve fibers reaching TCRs and Type 

III cells (adapted from Mennella et al., 2013). 

 

 

Figure 3 : Human papillae on tongue. Taste buds cluster in three types of papillae. The simplest are 

fungiform papillae located on the tip of tongue. Circumvallate and foliate papillae are more 

complex and are located on the posterior tongue, near the root, and on the sides of the tongue, 

respectively (from Martin et al., 2009). 
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Every taste bud is a community of interacting cells falling into three major 

categories, defined by their morphological appearances (Murray, 1993; Pumplin et 

al., 1997; Yee et al., 2001), by proteins expression (Yang et al., 2000; Yee et al., 

2001; Clapp et al., 2004) and by their gustatory responses. 

Type I cells are believed to have glial-like functions (Dvoryanchikov et al., 2009) as 

synthesize and deposit ecto-ATPase on their surface that degrades the transmitter 

released by other taste cells (Bartel et al., 2006). Even more they express GLAST, 

a transporter of glutamate, thus Type 1 cells appear to be involved in terminating 

synaptic transmission. In the end Type 1 cells may exhibit ionic currents involved 

in salt taste transduction (Vandenbeuch et al., 2008). 

Type II cells are called also Taste Receptor Cells (TRCs) (DeFazio et al., 2006), 

expressing G protein-coupled receptors (GPCRs) for sweet, umami and bitter 

taste compounds. Moreover these cells express the downstream proteins of 

GPCRs taste signal pathway as PLCβ2 (Chaudari & Roper, 2010). Every TRC is 

tuned only to one specific taste stimuli but bitter responsive taste cells can express 

subsets of TAS2Rs with partially overlapping receptive ranges (Chandrashekar et 

al., 2006; Yarmolinsky & Zuker, 2009, Behrens et al., 2007). 

TRCs are electrically excitable cells, due to the expression of voltage-gated Na+ 

and K+ channels essential for evoking action potentials (Chen et al., 1996) and 

secreting ATP as neurotransmitter (Finger et al., 2005). The release of ATP likely 

happens through Pannexin-1 hemichannels (Dando & Roper, 2009; Romanov et 

al., 2012). It is interesting to note that Type 2 cells do not form identifiable 

synapses, but nerve fibers are found in close proximity to these cells (Murray et 

al., 1993; Yang et al., 2000; Yee et al., 2001; Clapp et al., 2004). 

Type III cells are also called “presynaptic” (DeFazio et al., 2006) because they 

form synaptic junctions with nerve terminals and express proteins associated with 

synapses or neuronal cells, like SNAP25 and NCAM (Clapp et al., 2004; DeFazio 

et al., 2006). Even more they show depolarization-dependent Ca2+ transients 

typical of synapses (DeFazio et al., 2006). Like receptor cells, presynaptic cells 

express voltage-gated Na+ and K+ channels to support action potentials 

(Vandenbeuch & Kinnamon, 2009). Type III cells also respond directly to sour 

stimuli and are responsible of this taste quality, likely involving apically located ion 
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channels. The sour stimuli leads to secretion of neurotransmitters serotonin and 

GABA (Huang et al., 2011). 

A very important role of presynaptic cells seems to be receiving input and 

integrating signals coming from TRCs. Thus, Type III cells are not tuned to specific 

taste qualities, but rather respond to every detected compound (Tomchik et al., 

2007). 

Another type of cells found in taste buds is basal cells, the so-called Type IV, that 

comprises spherical and ovoid cells that are likely undifferentiated or immature 

taste cells (Farbman, 1965). 

 

 

1.2 Signal transduction 

Only at the pore of taste bud the apical region of the cells is directly in contact with 

the external environment, sensing taste stimuli present in the oral cavity. Like 

stated above, presynaptic cells detect sour taste stimuli. Even though the specific 

transduction channels or receptors remain elusive, seems that the permeation of 

protonated acid (RCOOH) across plasma membrane and the consequently 

dissociation in anion (RCOO-) and proton (H+) leads to cytosolic acidification and 

this allows cation influx and then membrane depolarization (Lyall et al., 2001; 

Huang et al., 2008). Type III cells express voltage-gated Ca2+ channels, so the 

depolarization allows Ca2+ influx that determines vesicular secretion of serotonin, 

GABA (Huang et al., 2011), and probably norepinephrine (Huang et al., 2008). 

Cells and receptors responsible of salt taste detection are still unknown. It has 

been proposed that Epithelial Na+ Channels (ENaC) guide salt transduction in 

rodents (Heck et al., 1984; Chandrashekar et al., 2010) and that Type I cells 

express ENaC (Vandenbeuch et al., 2008). This would lead to the conclusion that 

type I cells are responsible for Na+ taste, but there are not yet definitive evidences. 

Type II cells express GPCRs to sense sweet, bitter and umami tastes. In the last 

two decades two families of these receptors have been identified, renamed 

TAS1R and TAS2R for sweet and bitter compounds, respectively. Cells 

expressing the heterodimer TAS1R2+TAS1R3 detect sugars, synthetic 

sweeteners and sweet-tasting proteins (Nelson et al., 2001; Jiang et al., 2004; Xu 
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et al., 2004). Although mice lacking TAS1R3 conserve sweet perception (Damak 

et al., 2003), suggesting the existence of additional sweet receptor, candidate has 

not yet been proposed. 

Umami taste is sensed by heterodimer TAS1R1+TAS1R3 which responds 

particularly to the combination of L-glutamate and GMP/IMP, found in food after 

hydrolysis of proteins and nucleotides (Li et al., 2002; Nelson et al., 2002). 

Being GPCRs, TAS1Rs and TAS2Rs are seven helices transmembrane receptors, 

but while TAS1Rs are dimeric Class III GPCRs, with a large N-terminal 

extracellular domain (Max et al., 2001) and more binding sites, TAS2Rs belong to 

Class I GPCRs with a short N-terminal domain, with ligand binding region in the 

extracellular loop and transmembrane domains, similar to the opsins and the 

olfactory receptors (Adler et al., 2000; Chandrashekar et al., 2000) [Fig.4]. 

Relatively recent data suggest that intracellular carboxy terminal regions are 

particularly important for agonist selectivity (Brockhoff et al., 2010). In this study 

swapping amino acids in transmembrane segment 7 was used to invert agonist 

selectivity. TAS2R43, TAS2R44 and TAS2R46 were used and the result was 

indeed the reversal of specificity. This suggested that TAS2Rs have a single 

binding pocket overlapping a set of amino acids to accommodate different 

agonists, while the contribution of extracellular loop regions seems to be less 

important. 

Both cytoplasmic part of transmembrane domain and intracellular loops are well 

conserved, while extracellular part are much less. Another well-conserved region 

lies in second extracellular domain where N-glycosylation sites are present. Since 

TAS2Rs are transmembrane receptors an effective signal targeting is 

fundamental. Indeed TAS2Rs missing N-glycosylation have low membrane 

expression (Reichling et al., 2008). 
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Figure 4 : hTAS2R46 snake plot. Roman numbers indicate transmembrane domains. Extracellular 

loops are indicated as ec, intracellular loops as ic (from Brockhoff et al., 2010). 

 

 

When bitter tastant binds to one or more bitter taste receptor, subsequent 

conformational change leads to activation of a taste-specific G protein, α-gustducin 

(McLaughlin et al., 1992) and it’s βγ partners, β3 or β1 and γ13 (Huang et al., 

1999). The principal pathway of bitter taste transduction appears to be via Gβγ, 

receptor conformational change causes Gα and βγ subunits to split from each 

other, thus allowing βγ subunit to activate a specific phospholipase PLCβ2, an 

unusual isoform activated by Gβγ rather than Gαq family subunits (Rӧssler et al., 

1998). PLCβ2 converts the membrane lipid PIP2 into the second messengers 1, 4, 

5-inositol trisphosphate (IP3) and diacylglycerol (DAG). While the role of DAG is 

still unclear, IP3 binds to the Type III IP3 receptor (IP3R) on the membranes of 

endoplasmic reticulum (ER) leading to Ca2+ release from the intracellular stores 

(Clapp et al., 2001; Miyoshi et al., 2001). The elevation of intracellular Ca2+ 

([Ca2+]i) causes the activation of transient receptor potential channel M5 (TRPM5) 

(Perez et al., 2002; Zhang et al., 2007). Opening of this channel allows 

monovalent cations entry causing depolarization of plasma membrane and action 
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potential generation (Vandenbeuch & Kinnamon, 2009; Yoshida et al., 2009a). 

The outcome is the release of ATP through gap junction hemichannels, most likely 

composed of Pannexin-1 [Fig.5] (Huang et al., 2007). There are many evidence 

favoring hypothesis of hemichannels composed in Panx-1, for instance, it is highly 

expressed in TRCs, these hemichannels are gated by elevation of intracellular 

Ca2+ and Panx1-selective agonists block ATP release after taste stimulation 

(Romanov et al., 2007; Locovei et al., 2006; Dando & Roper, 2009). 

 

 

 

Figure 5: Signal cascade occurring in Type II cells. When tastants bind the specific receptor, βγ-

subunits activate PLCβ2 which catalyzes formation of IP3. The latter binds IP3 receptors on 

endoplasmic reticulum leading to release of Ca2+ from internal stores. Elevation of [Ca2+]i actives 

TRPM5 causing entry of Na+ and membrane depolarization. Ca2+ activates also Pannexin-1 channel 

through which ATP is released (from Chaudhari & Roper, 2010)  

 

1.3 Taste genetic  

Vertebrates differ in Tas2Rs genes, for instance chickens have three genes, 

humans 25 and mice 35 (Shi & Zhang, 2006). The human genes locate in four 

chromosomal loci (Adler et al., 2000; Bufe et al., 2002; Meyerhof, 2005). A single 

gene (TAS2R1) is present on the short arm of chromosome 5. Two loci are 
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present on the chromosome 7, first consisting in the TAS2R16 and the other in a 

cluster of eight genes. The remaining genes locate on the short arm of 

chromosome 12. TAS2Rs genes are known to show extensive genetic variation, 

including several single nucleotide polymorphism (SNPs), insels and copy number 

variation. In particular, SNPs are responsible for coding over 151 different 

haplotypes suggesting that at least some of them may also be functionally different 

(Kim et al., 2005; Pronin et al., 2007).  

Despite the small number of genes, humans can detect numerous bitter 

compounds, likely due to the large amount of polymorphism and high level of 

variability between TAS2Rs. Indeed they can share 17 % up to 90 % sequence 

identity. In general we could say that TAS2Rs respond to several bitter 

compounds and that a bitter chemical usually activates many receptors. This is 

possible due to the different receptive ranges of the different TAS2Rs: some being 

more broadly tunes, thus able to bind a wide array of different compounds, some 

being more narrowly tuned, able to bind only few possible structurally related 

compound, even though most of the receptors shows an intermediate degree of 

promiscuity (Meyerhof et al., 2010). 

 

 

1.4 Aim of the project 

The receptive range of TAS2Rs has been studied using heterologous expression 

system and calcium imaging experiments in human embryonic kidney 293 cells 

(HEK293T) stably expressing the chimeric G protein α subunit, Gα16-gust44, a 

chimeric subunit shown to be very effective in coupling the receptor in such a 

heterologous system (Chandrashekar et al., 2000; Bufe et al., 2002; Meyerhof et 

al., 2010; Ueda et al., 2003). To date 21 out of 25 receptors have been 

deorphanized, but four receptors are still orphan and some are notoriously poor 

responders, making further investigations difficult. Furthermore, TAS2Rs are 

known to be poorly expressed on the membrane in heterologous system, thus they 

do not always show a feasible signal. Indeed, although some receptors give a 

strong signal with one tastant, the same receptors could give a lower signal with 

other molecules, or some receptors may give low signal per se, if any (Meyerhof et 
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al., 2010). These limitations raised the necessity to find a way to enhance the Ca2+ 

signal, the readout of the response of TAS2Rs in presence of different tastants. 

One way to improve the overall outcome might be to provide the above cell line 

with additional components. A good candidate could be Transient Receptor 

Potential channel M5 (TRPM5), but being this channel permeable only to 

monovalent cations it is not suitable for a Ca2+ readout (Zhang et al., 2007). 

Anyway, TRPM5 provide a useful model to improve the heterologous system. 

Furthermore, mouse TRPC2 is involved in extracellular Ca2+ entry through PLC-

signaling in vomeronasal organ (Zhang et al., 2010) [Fig.6]. In humans, TRPC2 is 

a pseudogene, but it still helps useful suggestion. TRPC1 is the archetype of 

classical TRP channels and is thought to be activated by the same PLC pattern 

and to be Ca2+ permeable, as well (Minke, 2001).  

 

 

 

Figure 6: Schematic of the hypothetical vomeronasal organ transduction model. Binding of 

pheromones to related G protein-coupled receptors actives PLCβ through βγ subunits. PLCβ 

hydrolyzes PIP2 producing IP3 that binds IP3 receptors opening internal stores and releasing Ca2+. 

Diacylglycerol is thought to activate TRPC2 allowing entry of cations and thus depolarization of 

cells (from Mast et al., 2010). 

 

Transient receptor potential (TRP) channels are a group of unique ion channels 

that serve as cellular sensors for a variety of stimuli, as temperature, taste and 
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pain. These channels are identified by their homology and it is possible to classify 

them into several subfamilies: TRPC (canonical), TRPM (melastatin), TRPP 

(polycystin), TRPV (vanilloid), TRPA (ankyrin), TRPML (mucolipin) (Clapham et 

al., 2001; Clapham, 2003). The first TRP channel was discovered in a mutant 

strain of Drosophila melanogaster which lacked the functional trp gene with 

consequential impairment in the fly’s visual system. TRPC family is the most 

related to the Drosophila TRP channels and comprises seven subunits that can 

assemble into homotetrameric and also in heteromeric channels (Hofmann et al., 

2002; Schaefer, 2005). For instance, TRPC1 can assemble with TRPC3, TRPC4 

and TRPC5 (Liu et al., 2005; Gudermann et al., 2004; Strubing et al., 2001). All 

TRP channels are expected to have six-transmembrane polypeptide chains that 

assemble as tetramers to form cation-permeable pores. Both the N- and C-

terminal are intracellular, with multiple N-terminal ankyrin repeats. The gate and 

selectivity filter are formed by the segments S5 and S6 facing the center of 

channel. Cations are selected for permeation by the extracellular loop [Fig.7]. All 

the TRPC channels are not selective with low Ca2+ permeability (Parekh & Penner, 

1997). 

TRPC1 was the first mammalian homologous of Drosophila identified (Zhu et al., 

1995; Wes et al., 1995) and cloned in heterologous system in order to study its 

activity (Zitt et al., 1996). In this study permeability to cations was demonstrated as 

well as activation by Ca2+ release from ER stores. This event links TRPC1 to 

TAS2Rs, since the latter, like stated above, lead to emptying of internal stores, 

then the consequential increase of [Ca2+]i.  
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Figure 7: Structure of TRPC1. Transmembrane domains are represented by vertical rectangles, P 

indicates the pore loops allowing cations entry, CC the coiled-coil domain. Other shown domains 

are ankyrin repeats (A) and TRP domain (from Venkatachalam & Montell, 2007). 

 

This common feature brought us to choose TRPC1 as useful tool to overcome the 

limitations described above. TRPC1 cDNA sequence was cloned in an eukaryotic 

expression vector, with the aim of enhancing Ca2+ signal in a cellular model of 

bitter taste transduction. We started from an extract of fetal human brain mRNA to 

obtain the cDNA of TRPC1 (Wes et al., 1995; Zhu et al., 1995; Zitt et al., 1996). 

cDNA was then cloned in an expression vector and HEK293T Gα16gust44 cells, 

one of the most successful system to characterize the TAS2Rs because very 

efficient in driving the signal transduction cascade subsequent to bitter receptor 

activation, have been transiently co-transfected with both TRPC1 and a TAS2R, or 

the TAS2R alone. Using a fluorescent probe able to bind to intracellular Ca2+ and 

a fluorometric imaging plate reader, Ca2+ signals elicited by bitter compounds 

application were measured, both on cells exclusively transfected with a TAS2R 

and on cells co-transfected with TRPC1. 

We had different results with diverse TAS2Rs, for instance with TAS2R14 and 

TAS2R43 the signal detected in co-transfected cells was higher than signal in cells 

transfected only with taste receptor. On the other hand with TAS2R10 we had the 

opposite result, with a higher signal in cells expressing only the receptor. 
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Enhancing Ca2+ signal in the current assay could allow us to deorphanize 

receptors whose tastants are not yet known merely because of low signal in the 

system, or to find others molecules that activate a given TAS2R, thus 

widening/expanding the range of activators of that receptor. A further 

characterization of TAS2Rs receptive ranges and activation modulation is of 

primary interest for food/nutritional and taste sciences, as well for the food/taste 

industry. Moreover, it could be possible to study inhibitors in those receptors that 

have strong signal with a tastant and low signal with other substance(s). In this 

case pharmacological industry could be interested in finding inhibitors for those 

bitter substances used in medicines, to make better-tasting drugs improving 

pediatric adherence to drugs therapy (Mennella et al., 2013). Finally, food industry 

could be interested in using bitter inhibitors “to virtually eliminate bitterness from 

the world” (Drewnowsky & Gomez-Carneros, 2000). 
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2. MATERIALS AND METHODS 

 

2.1 Bitter compounds 

Bitter compounds were purchased from Sigma Aldrich Chemie Gmbh 

(Taufkirchen, Germany). The substances were both dissolved and administered in 

a mixture of dimethyl sulfoxide (DMSO) and buffer C1 (see section 2.4), not 

exceeding a final DMSO concentration of 0.1% to avoid noxious effects on the 

cells. 

We chose to transfect hTAS2R10, hTAS2R14, hTAS2R43, thus we used 

strychnine to activate hTAS2R10 and aristolochic acid that binds both hTAS2R14 

and hTAS2R43 (Bufe et al., 2002; Behrens et al., 2004; Kuhn et al., 2004). Both 

the substances were used in two different concentrations, the higher known to 

elicit a robust response by the relative receptor: 

 

Aristolochic Acid 

(TAS2R14) 

Aristolochic Acid 

(TAS2R43) 

Strychnine 

(TAS2R10) 

1 µM 0.1 µM 30 µM 

3 µM 0.3 µM 100 µM 

 

 

Bitter-tastant solutions have been prepared 3-times more concentrated than the 

indicated concentrations because FLIPR device adds 50 µl to 100 µl volume 

present in every well, thus diluting three times and obtaining the correct 

concentrations. 
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2.2 Isolation of TRPC1 cDNA sequence and creation of expression vector 

Retrotranscription has been performed from fetal human brain mRNA extract (Wes 

et al 1995, Zhu et al., 1995; Zitt et al., 1996). DNAase I (Invitrogen) has been used 

to remove DNA contamination from RNAs. 

 

DNA digestion mix 

RNA  1.5 µg (volume differs on the basis of RNA 

concentration) 

RNAase Inhibitor Ribolock 40 U/µl 

(Fermentas) 

0.25 µl 

Dithiothreitol (DTT) 10mM (Invitrogen) 1.5 µl  

10X DNAase I Buffer (Invitrogen) 1.5 µl 

DNAase I 2 U/µl (Invitrogen) 1 µl 

Water Up to 15 µl final volume 

 

The digestion has been performed for 30 minutes at room temperature, following 

the manufacturer’s instructions. We added 1.25 µl of EDTA 25 mM and solution 

has been incubated 10 min at 65°C. Briefly on ice. The product has been divided 

in two tubes, one for negative control without retrotranscriptase (-RT).  

For the cDNA synthesis: 

 

cDNA synthesis initial mix (+RT reaction) 

DNA digestion mix 10 µl 

Random primer 3000 

ng/ µl (Invitrogen) 

1 µl (Final concentration 

= 250 ng/ µl) 

dNTPs 10mM 1 µl 

 

 –RT reaction has been performed with half of the volumes listed above. The 

solution has been incubated for 5 min at 65°C, then briefly on ice. 
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After that, we added to previous solution: 

 

cDNA synthesis final mix (+RT reaction) 

MgCl2 25 mM 0.85 µl  

DTT 100 mM 1.9 µl  

RNAase Inhibitor Ribolock 0.25 µl 

5X Reverse Transcriptase 

Buffer 

4 µl 

Reverse Transcriptase 

SuperScript II 

200U/µl(Invitrogen) 

1 µl 

 

The same reaction has been performed with half of previous quantities and 

omitting reverse transcriptase for –RT control. Both the mixes have been 

incubated 10 min at room temperature, then 50 min at 42°C, finally 15 min at 

70°C. The solutions have been centrifuged and put briefly on ice. In the end, we 

reached the final volume of 100 µl for +RT solution and 62.5 µl for –RT reaction, 

with autoclaved, distilled water. 

We performed a control Polymerase Chain Reaction (PCR) for housekeeping 

gene Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to verify the success 

of retrotranscription. Cycling parameter were as follows: 

 

GAPDH PCR protocol 

First 

denaturation 

95°C 1 min  

Denaturation 95°C 30 sec  

29 cycles  Annealing 58°C 30 sec 

Elongation 68°C 1 min 

Final annealing 58°C 10 min  

Final 

elongation 

68°C 10 min  

Storing 4°C ∞  
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GAPDH PCR reaction mix 

cDNA synthesis final mix 2.5 µl 

Primer Forward (10 mM) 2 µl 

Primer Reverse (10 mM) 2 µl 

dNTPs 2.5 µM 1 µl 

10x Advantage 2 PCR Buffer 5 µl 

50X Advantage 2 

Polymerase Mix (Clontech 

Laboratories) 

0.7 µl 

Water 36.8 µl 

 

The used primers for GAPDH PCR were the forward 5’-ACCACAGTCCATGCCATCAC-3’ 

and the reverse 5’-TCCCACCACCCTGTTGCTGTA-3’, both purchased from Clontech. 

These are internal primers amplifying a sequence of ~500 bp. 

PCR products have been checked by agarose gel 1%. 

cDNA sequence PCR has been performed with sequence-specific primers. In 

forward primer 5’-ACGATATCCACCATGATGGCGGCCCTGTACCCGA-3’ (melting temperature 

Tm = 77°C), restriction site of enzyme EcoRV (GATATC) as well as Kozak 

sequence (CCACC), has been included at 5’ terminal restriction site. The reverse 

primer 5’-GTTATTGTCTAGGTTTTCTGATATAACGTATTGAACGCCGGCGCT-3’ contained the NotI 

restriction site (GCGGCC). Primers have been purchased from Eurofins Scientific. 

The used protocol was: 

 

TRPC1 cDNA PCR protocol 

First 

denaturation 

95°C 1 min  

Denaturation 95°C 30 sec  

35 cycles Annealing 66°C 2 min 30 sec 

Elongation 68°C 2 min 30 sec 

Final 

elongation 

68°C 7 min  

Storing 4°C ∞  

 



18 
 

TRPC1 cDNA PCR reaction mix 

cDNA synthesis final mix 2 µl 

Primer Forward (10 mM) 1 µl 

Primer Reverse (10 mM) 1 µl 

dNTPs 2.5 µM 0.5 µl 

10x Advantage 2 PCR Buffer 2.5µl 

50X Advantage 2 

Polymerase Mix (Clontech 

Laboratories) 

0.4 µl 

Water 17.6 µl 

 

The fragment has been checked by agarose gel 1% and extraction of the cDNA 

fragment from the electrophoresis gel was performed with QIAquick Gel extraction 

kit (Qiagen). We eluted in 50 µl of water. 

We first submitted TRPC1 fragment to TOPO TA cloning reaction (Life 

Technologies) for 30 minutes at room temperature. On a final volume of 6 µl we 

used 4 µl of cDNA solution, 1µl of salt solution and 1µl of TOPO vector. One Shot 

TOP10 chemically competent E. coli cells (Invitrogen) have been transformed with 

2 µl of TOPO cloning solution. The cells have been incubated 30 minutes on ice, a 

heat-shock for 30 s at 42°C was performed and the tube was cooled on ice for 2 

min. Then we added 250 µl of S.O.C. medium warmed at room temperature to the 

transformed cells. Pre-growth has been performed for 1 hour at 37°C, shaking the 

vial horizontally. Samples were spread on pre-warmed solid medium plates added 

with ampicillin 100 µg/ml and plates were cultured at 37°C overnight. 

The next day grown colonies were picked and amplified in Liquid Broth (LB) 

medium pH 7.4 with ampicillin 100 µg/ml at 37°C overnight. In order to collect 

TOPO vector/TRPC1 constructs, MINI preparation reaction of the grown colonies 

were performed with JETQUICK Plasmid purification spin kit (Genomed). 

In order to confirm successful subcloning of TRPC1 cDNA fragment, the purified 

plasmids have been digested with restriction enzyme EcoRI (20,000 units/ml, 

Fermentas) giving a specific restriction pattern if the fragment has been inserted in 

vector. Samples showing expected EcoRI restriction pattern were double digested 
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with the EcoRV (20,000 units/ml) and NotI (10,000 units/ml) restriction enzymes 

(New England BioLabs). Both digestions have been performed for 1 hour at 37°C. 

On a final volume of 10 µl we used 0.3 µl of each restriction enzyme, 1 µl of 

relative 10X buffer and ~ 250 ng of DNA. 

Samples showing expected restriction pattern, as well as pcDNA 3.1/Zeo+ 

(Invitrogen), were digested overnight at 37°C with restriction enzymes EcoRV and 

NotI in order to obtain fragments and pcDNA complementary with each other. 3 µg 

of DNA were digested with 3 µl of each enzyme and 2.5 µl of 10X buffer, on a final 

volume of 25 µl. 

In order to eliminate contamination from cDNA fragments and pcDNA solutions, 

these were run in agarose gel 1% and then extracted from gel as above. In order 

to clone the fragment in the expression plasmid, the cDNA and pcDNA were 

ligated with T4 DNA Ligase (New England BioLabs) overnight at 16°C. We used 

50 ng of pcDNA and two different ratio between plasmid and digested fragment, to 

optimize cells transformation. 

The required volume of cDNA has been calculated as follows: 

 

𝑏𝑝 𝑐𝐷𝑁𝐴 ×  𝑛𝑔 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 

𝑏𝑝 𝑝𝑙𝑎𝑠𝑚𝑖𝑑
 × 𝑟𝑎𝑡𝑖𝑜 = 𝑛𝑔 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 =>  

𝑛𝑔 𝑐𝐷𝑁𝐴

[𝑐𝐷𝑁𝐴]
=  𝜇𝑙 𝑐𝐷𝑁𝐴 

 

Ligation mix 

Ratio 1:2 1:3 

Plasmid [23 ng/µl] 2.17 µl 2.17 µl 

cDNA From formula above 

10X T4 DNA ligase 

Buffer 

2 µl 2 µl 

T4 DNA ligase 400 

U/ µl 

1 µl 1 µl 

water Up to 20 µl Up to 20 µl 

 

One Shot TOP10 chemically competent E. coli cells were transformed (see above 

for protocol) with 5 µl of ligation solution and then cultured on solid medium plates, 

added with ampicillin, overnight at 37°. Once again, the next day plasmid 
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purification has been performed (see above) and two control digestions have been 

carried out on positive samples with EcoRI, EcoRV and NotI (see above for 

quantities). 

Positive samples for correct TRPC1 sequence, from both TOPO cloning reaction 

and cloning in pcDNA 3.1/Zeo+, have been verified for EcoRV and NotI restriction 

sites, for Kozak sequence and for a portion of the pcDNA 3.1/Zeo+ up and 

downstream the cDNA insert by direct sequencing by Eurofins Scientific. The 

correct constructs were used to transiently transfect HEK293T. 

 

 

2.3 Functional expression 

Human Embryonic Kidney (HEK)-293T cells, already stably expressing the 

chimeric G-protein subunit Gα16gust44, were transiently transfected with obtained 

constructs. This cell line stably express human Gα16 at the N-terminus fused with 

44 amino acids of human α-gustducin (Ueda et al., 2003). This chimera is very 

effective in coupling to hTAS2Rs (Kuhn et al., 2004; Brockhoff et al., 2010). 

Plasmids carrying TAS2Rs sequence are based on pcDNA5/FRT (Invitrogen) and 

they present a sequence of the rat somatostatin type 3 receptor at the N-terminus 

of the recombinant polypeptide in order to improve membrane targeting of the 

receptors and a herpes simplex virus glycoprotein D (HSV) epitope at its C-

terminal, necessary for immunocytochemical expression analysis (Bufe et al., 

2002). 

The first day HEK293T cells were plated in 96-wells dark plate, pre-coated with 10 

µg/ml Poly-D-lysine, at a density of 1-2 * 104/well. 

After ~24 hours cells were transfected with the same quantity (75 ng) of TRPC1 

cDNA construct and TAS2Rs cDNA constructs, or with TAS2Rs cDNA constructs 

and mock (empty vector used as negative control) or only with mock, to a final 

quantity of 150 ng of DNA/well. This is fundamental to have a comparable amount 

of cells expressing TAS2R and thus comparable signals between test and control 

cells. 

The mixtures of plasmids have been incubated in 12.5 µl/well serum-free medium 

for 5 minutes at room temperature. 12.5 µl/well of mix of Lipofectamine 2000 
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(Invitrogen) and serum-free medium were added to the DNA mixtures and 

incubated for 20 minutes at room temperature. 

Plates have been washed and filled with 50 µl/well of serum-free medium and 24 

µl of corresponding transfection solution were further added in every well. After 3-5 

hours of incubation at 37°C serum-free medium was replaced by 100 µl/well 

complete DMEM medium. Calcium analysis was performed 24 hours after the 

transfection. 

 

 

2.4 Calcium imaging 

24-26 hours after transfection, cells were loaded with calcium-sensitive dye Fluo-

4-AM (Life Technologies), in serum-free culture medium. To minimize the loss of 

dye from the cells, Probenecid (Invitrogen), an inhibitor of organic anion transport, 

was added at concentration of 2.5 mM. To 5.5 ml DMEM medium/96-well plate, 

5.5 µl Fluo-4-AM (50 µg of dye diluted in 22 µl DMSO, thus we obtain a final 

concentration of 2.5 µg/ml for every plate) and 55 µl Probenecid were added. 

Plates were washed and every well was filled with 50 µl of solution with dye. 96-

well plates were incubated at 37°C for 1 hour. 3 washes with C1 buffer (130 mM 

NaCl, 5 mM KCl, 10 mM HEPES, 2 mM CaCl2, 10 mM glucose, pH 7.4) at interval 

of 20 minutes followed. Between washes plates were incubated at room 

temperature in the dark. The last wash was performed right before Ca2+ analysis. 

Cellular Ca2+ signal was recorded at 510 nm following excitation at 488 nm using 

an automated Fluorometric Imaging Plate Reader (FLIPR, Molecular Devices), 

after application of bitter compound. A second application of 100 nM somatostatin 

14 (Bachem), activating the endogenous somatostatin receptor type 2 known to 

lead to [Ca2+] variations, assessed functionality of Ca2+ signaling. 
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Figure 8: Ca2+ imaging in a model of taste transduction. The chimeric G α-subunit, after 

administration of substance on related receptor, allows activation of PLCβ leading to hydrolyzation 

of PIP2 and to IP3 production. IP3 receptors are activated and allow release of Ca2+ from ER stores. 

Fluo-4-AM binds Ca2+ located in cytosol emitting a characteristic fluorescence detected by a CCD 

camera and displayed in real time by the software. (Anne Brockhoff © ) 

 

 

Data were collected from at least 3 independent experiments performed in 

duplicate, extracted with ScreenWorks 3.1 software and analyzed by Microsoft 

Excel (2007). The maximal fluorescence after administration of compound was 

corrected for and normalized to background fluorescence (ΔF/F = (F – F0)/F0). 

Baseline noise was subtracted. 
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3. RESULTS AND DISCUSSION 

3.1 Isolating and cloning of TRPC1 cDNA 

Taste receptors are known to be poorly expressed in heterologous system, even 

more they respond with high variability against relative compound and some 

receptors have low signal per se (Meyerhof et al., 2010). Both these reasons 

cause low Ca2+ signal in calcium imaging functional assay, thus making deeper 

investigation difficult. This raised the necessity to overcome these limitations. In 

order to find a useful tool able to improve the intracellular Ca2+ concentration, 

attention has been focused on those channels that could be involved in Store-

Operated Ca2+ entry (SOCE), a Ca2+ entry pathway through a dedicated channel 

activated by depletion of internal stores. Implication of TRPM5 in taste 

transduction, activated by increasing of [Ca2+]i, shed a light on TRP channels 

(Hofmann et al., 2003; Prawitt et al., 2003). Moreover, the role of TRPC2 in 

vomeronasal organ (VNO) in mice confirmed this idea. Indeed pheromones 

receptors (VR) in VNO are GPCR activating PLCβ2 that hydrolyzes 

phosphatidylinositol 4, 5–bisphosphate (PIP2) in plasma membrane producing 

diacylglycerol (DAG) and IP3. TRPC2 has been proposed to be activated by DAG 

leading to increase of [Ca2+]i, [Fig.6] (Lucas et al., 2003). While in humans TRPC2 

is a pseudogene, TRPC1 has been the first TRP channel identified in humans and 

resulted functional when expressed in heterologous system (Wes et al., 1995; Zitt 

et al., 1996). Several studies have demonstrated that TRPC1 is involved in SOCE 

and is activated by increase of [Ca2+]i released from internal stores (Wu et al., 

2000; Wes et al., 1995; Liu et al., 2003). It has been reported that TRPC1 is 

expressed in a variety of tissue, including brain where for instance seems to be 

responsible of an excitatory postsynaptic current in Purkinje cells (Wes et al., 

1995; Kim et al., 2003). Hence, we started from mRNA extracts of fetal human 

brain, on which a reverse transcription was performed, in order to amplify TRPC1 

cDNA. Reverse transcription was validated through PCR reaction for 

housekeeping Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, 

constitutively expressed in most tissues, thus commonly used as control. The 

primers here used amplify a region of 450 bp of the sequence. Presence and 
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concentration of the fragment indicate successful reverse transcription and the 

quality of mRNA extract. It is possible to notice the amplified fragment in the first 

lane and negative control in the second lane. [Fig.9]. 

 

 

Figure 9: Agarose gel run of PCR for GAPDH. The primers amplify a region of 450 bp. 

GeneRuler Marker has been used as molecular weight on the left of the gel. 

 

 

From reverse transcription, TRPC1 cDNA was amplified through a PCR reaction 

with primers designed on gene sequence deposited in PubMed data base (NCBI 

Reference Sequence: NM_001251845.1). The protocol described in section 2.2 

provided a 2382 bp long fragment and an aspecific fragment [Fig.10]. A gel 

extraction was performed in order to isolate the right PCR product and avoid the 

aspecific. Length-correct fragment was used for a TOPO cloning reaction with the 

aim to obtain a larger quantity of TRPC1 product. This passage was necessary 

since the concentration of PCR product was not abundant enough for subsequent 

steps of gel extraction and purification, prior directional cloning. Thus, subcloning 

in TOPO vector provided a higher cDNA concentration useful for subsequent steps 

and cloning in an eukaryotic expression vector. 
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Figure 10: Agarose gel run of PCR for TRPC1 cDNA. Gel shows TRPC1 cDNA at 2382 bp. An 

aspecific fragment can be seen under TRPC1 fragment, hence the latter has been extracted from the 

gel. GeneRuler Marker has been used as molecular weight on the left side of the gel. 

 

After plasmid purification from colonies transformed with TOPO cloning reaction 

mix, presence of TRPC1 cDNA has been confirmed through two control 

digestions, using the restriction enzymes EcoRI, NotI and EcoRV whose restriction 

sites were included upstream and downstream of cDNA through PCR amplification 

from product of reverse transcription (see section 2.2). Thus, while the enzymes 

EcoRV and NotI excise cDNA sequence from plasmid, EcoRI enzyme provides 

specific restriction pattern, since TOPO vector contains 2 EcoRI restriction sites 

upstream and downstream multicloning site (MCS) [Fig. 11 A] and TRPC1 

sequence contains 4 EcoRI sites [Fig.11 B]. Hence, we expected six fragments: 

3931 bp for TOPO vector and five fragments of different length from cDNA TRPC1 

(444 bp, 314 bp, 74 bp, 555 bp, 995 bp). 
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Figure 11: (A) pCR 2.1 TOPO map. EcoRI sites are red squared (Life Technologies). (B) Positions 

of EcoRI sites on TRPC1 Isoform 1 sequence. 
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Figure 12: Agarose gel run of EcoRI control digestion of TOPO vector/TRPC1 constructs. Red 

arrow shows the sample with the correct restriction pattern for EcoRI digestion. GeneRuler Marker 

has been used as molecular weight on both sides of the gel. 

 

 

The results of control digestion with EcoRI was checked through an agarose gel 

run. Fig.12 shows the empty vectors in the first two lanes, while in the third there is 

an example of sample showing the correct restriction pattern, even if in place of 

expected 444 bp fragment we obtained a shorter fragment. To validate TRPC1 

cDNA the sequence has been checked through a direct sequencing and was not 

found corresponding to the TRPC1 Isoform 1 deposited sequence [NCBI 

Reference Sequence: NM_001251845.1] (data not shown). This unexpected result 

brought us to inquire into both databases and literature about TRP channels. We 

found that TRPC1 is expressed in more than one splice variant (Zitt et al., 1996; 

Ong et al., 2013). In particular TRPC1 variant 2 lacks of 102 bp corresponding to 

exon 2. Comparing this isoform with the variant 1 we turned out that this 
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alternative splicing is responsible of the shorter fragment obtained from EcoRI 

digestion [Fig.13]. TRPC1 sequence checked by direct sequencing was confirmed 

to be corresponding to human TRPC1 variant 2 [NCBI Reference Sequence: 

NM_003304.4]. Despite lacking 102 bp encoding the amino acids 109-143, this 

variant was reported to be still functional (Zitt et al., 1996). 

 

 

 

 

Figure 13: EcoRI sites on TRPC1 Isoform 2 sequence. 
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Afterwards, EcoRV and NotI double digestion has also been performed on those 

samples having a correct EcoRI restriction pattern and was possible to notice the 

2280 bp fragment excised from TOPO vector [Fig 14]. 

 

 

Figure 14: Agarose gel run of EcoRV and NotI control digestion of TOPO vector/TRPC1 

construct. These enzymes excide TRPC1 sequence from TOPO vector, thus it is possible to see the 

bands at 3931 bp corresponding to TOPO plasmid and TRPC1 sequence at 2280 bp. GeneRuler 

Marker has been used as molecular weight on left side of the gel. 

 

Afterwards TRPC1 sequence has been ligated to the pcDNA 3.1/Zeo+ plasmid and 

One Shot TOP10 chemically competent E. coli cells have been transformed. The 

constructs obtained after a plasmid purification have been checked by control 

digestion, again with EcoRI. 
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Figure 15: Agarose gel run of EcoRI control digestion of pcDNA 3.1 Zeo+/TRPC1 constructs (A 

and B). White arrows indicate bands at 7295 bp, comparable to cDNA ligated to pcDNA. No 

samples showed correct expected restriction pattern (see text for further information). GeneRuler 

Marker has been used as molecular weight on both sides of the gel. 

 

 

In this case the results were not as expected, as the characteristic restriction 

pattern described at p.25, but four samples showed a single ~7300 bp band (white 

arrows), likely corresponding to linearized expected constructs (2280 + 5015 = 

7295 bp) [Fig. 15 A-B]. Probably the EcoRI sites have been methylated by E.coli 

enzymes preventing restriction enzyme’s activity. All the other samples showed 

different digestion patterns not corresponding to any suitable result. Thus, control 

digestion with EcoRV and NotI has been performed on 7295 bp-long fragment to 

verify presence of TRPC1 sequence. 
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Figure 16: Agarose gel run of EcoRV and NotI control digestion of pcDNA 3.1 Zeo+/TRPC1 

construct. Image shows the result of control digestion with enzymes whose restriction sites were 

included in oligonucleotides used for amplification of TRPC1 cDNA. Only in two samples cDNA 

has been excised from plasmid (indicated by red arrows), indeed is possible to note a band at 5015 

bp corresponding to linearized plasmid, and a band at 2280 bp related to TRPC1 sequence. 

GeneRuler Marker was used as molecular weight on left side of the gel 

 

In Fig.16 results of control digestion are shown. Only two samples present the 

excised fragments at 2280 bp and linearized plasmid at 5015 bp (first two lanes), 

the other two samples probably were partially digested plasmids and they did not 

contain cDNA fragment, indeed the length of these fragments is slightly higher 

than empty linearized vector.  

The correct constructs were checked by direct sequencing for mutations, for 

presence of EcoRV and NotI sites, for Kozak sequence, fundamental for 

eukaryotic translation, for initial ATG codon and TAA stop codon [Fig.17]. 
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Figure 17: Alignment between directly sequenced constructs and original TRPC1 Isoform 2 

deposited sequence (red square) [NCBI Reference Sequence: NM_003304.4]. (A): EcoRV site, 

Kozak sequence used to start eukaryotic translation, and initial ATG codon are highlighted. The 

chromatogram related to sequence obtained from CMV forward primer is also shown. Absence of 

background noise represents the correctness of sequencing. (B): NotI restriction site is shown 

downstream of TAA stop codon at cDNA 3’-terminal (C). In (B) is also shown chromatogram 

obtained from sequencing of cDNA using BGH reverse primer. CMV and BGH sequence are 

located up- and downstream of MCS of plasmid, respectively. 
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While a sample was highly mutated (data not shown), in the other cDNA sequence 

a mutation was found in position 1701 bp, corresponding to the third base of triplet 

coding for amino acid 567. Mutation turned out to be a silent mutation changing 

TTA in TTG triplet, both coding amino acid Leucine [Fig. 18]. 

 

Figure 18: Alignment between sequenced constructs and original TRPC1 Isoform 2 deposited 

sequence (red square) [NCBI Reference Sequence: NM_003304.4] showing in (A) position of 

mutated base. (B) Alignment between amino acid sequence of original TRPC1 (indicated as 

TRPC1) and the one encoded by the mutated construct (indicated as mutated). The involved amino 

acid is squared in red and is possible to note that in both sequences is a Leucine.  



34 
 

Sample resulted mutated in position 1701 is also found correct for both restriction 

sites, Kozak sequence downstream of EcoRI site, initial codon ATG and stop 

codon TAA upstream of NotI site [Fig.17] and it has been used to transfect 

HEK293T cells with a TAS2R. 

 

 

3.2 Calcium imaging and statistical analysis 

 

Cells used as model of taste transduction were Human Embryonic Kidney 293T 

cells. Since these cells do not possess all the molecules involved in taste 

transduction cascade this heterologous system have been modified by stably 

expressing chimeric G-protein α subunit, very effective in coupling with TAS2Rs 

(Ueda et al., 2003). 

The TAS2Rs sequence-carrying constructs were already cloned in expression 

vector described in Section 2.3. Trying to overcome ineffective membrane 

targeting, the sequence encoding the first 45 amino acids of rat somatostatin 

receptor 3 was cloned upstream of coding region, because very efficient in 

transmembrane targeting (Bufe et al., 2002; Ammon et al., 2002). At 3’-terminal 

the coding region was cloned with the sequence encoding for Herpes simplex 

virus Glycoprotein D, useful for subsequent immunocytochemical expression 

analysis (Bufe et al., 2002). 

The choice of TAS2Rs to test fell on those receptors with strong signal against 

specific compound to verify the effective action of TRPC1 on Ca2+ signal. Hence, 

we chose TAS2R14 and -43, both having a strong signal when stimulated with 

aristolochic acid (Kuhn et al., 2004; Meyerhof et al., 2010) and for TAS2R10 

strychnine has been chosen (Meyerhof et al., 2010; Born et al., 2013). Both the 

substances are notoriously bitter and also toxic: aristolochic acid is known to have 

carcinogenic, mutagenic and also nephrotoxic effects, while strychnine is a famous 

poison being an inhibitor of glycine and acetylcholine receptors in motor neurons 

(DeBroe, 2012). 
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Figure 19: Structures of bitter compound used (from Kuhn et al., 2004).  

 

 

The 96-well plates were designed to have, in every plate, cells co-transfected with 

TRPC1 and TAS2R, TAS2R and empty vector and only empty vector as negative 

control. Every condition was replicated at least two time for a minimum of three 

experiments. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 

A  

TAS2R + TRPC1 

 

TAS2R + TRPC1 

 

TAS2R + TRPC1 

 

TAS2R + TRPC1 B 

C 

D  

TAS2R + mock 

 

TAS2R + mock 

 

TAS2R + mock 

 

TAS2R + mock E 

F 

G mock mock mock mock 

H 

 

Figure 20: Layout of transfection in 96-well plate. Every combination of TAS2R and TRPC1 or 

mock have been used to transfect 9 wells, while every negative control relative to every 

combination were 6 wells. 
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To have preliminary quantitative results about TRPC1 activity, each substance has 

been tested in two different concentrations. The lower concentration were used to 

point out possible differences in presence of TRPC1 that could be overlooked by 

strong signal in case of saturation due to the higher concentration.  

After administration of solutions we could observe improved signals already from 

the real time data of FLIPR for both receptors TAS2R14 and TAS2R43, results 

that have been confirmed by statistical analysis.  

 

 

 

Figure 21: Layout of real-time Ca2+ imaging through FLIPR device. Transfection has been 

performed as shown in Fig.20. The columns 1-4-7-10 have been stimulated by C1 buffer. The 

columns 2-5-8-11 have been stimulated by the lower concentrated solutions of the specific tastant 

for the TAS2R transfected. The columns 3-6-9-12 have been stimulated by the higher concentrated 

solutions. 

 

For every experiment we calculated the averages of each experimental condition, 

these values were then used to obtain a final mean of signal from TRPC1+TAS2R 

transfected cells and mean of TAS2R+mock transfected cells from at least three 

independent experiment. These results were analyzed by Student t-test obtaining 

p-values considered statistically significative if less than 0.05 (p-value < 0.05). 

In Fig.22 signals, expressed as percent, relative to experiments of TAS2R14 are 

reported. It is possible to notice that signal of cell transfected with both TAS2R14 
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and TRPC1 (blue) is almost 120% with respect to signal of cells exclusively 

transfected with TAS2R14 (red). 

 

 

 

 

Figure 22: Histograms related to cells transfected with TAS2R14 and mock (red) and cells 

transfected with TAS2R14 and TRPC1 (blue), both stimulated by 1 µM (A) and 3 µM (B) 

aristolochic acid (indicated as AA) and corresponding standard deviation between at least three 

independent experiments. Y-axis: relative fluorescence intensity expressed as percent. The p-values 

are 0.045 and 0.007, respectively, resulting statistically significative (p-value < 0.05). In graphs 

signals are expressed as percentage of the signal obtained from non-TRPC1/TAS2R transfected 

cells. 
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Even cells transfected with TAS2R43 and TRPC1 have a stronger signal than cells 

transfected with the only TAS2R43 [Fig.23]. 

 

 

 

 

Figure 23: Histograms related to experiments with TAS2R43 transfected with TRPC1 (blue) or 

mock (red) and stimulated by aristolochic acid (indicated as AA) in two different concentration 

corresponding to 0.1 µM (A) and 0.3 µM (B) and corresponding standard deviation among at least 

three independent experiments. Y-axis: relative fluorescence intensity expressed as percent. 

Calculated p-values are in both cases 0.03 resulting statistically significative (p-value < 0.05). In 

graphs signals are expressed as percentage of the signal obtained from non-TRPC1/TAS2R 

transfected cells. 
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Analyzing these data through T-student test, resulting p-values were statistically 

significative indicating that differences between signal from test and control cells 

are most likely due to the presence of TRPC1 that enhances Ca2+ signal. 

On the other hand, cells transfected with both TRPC1 and TAS2R10 showed 

decreased signal respect to control cells in both performed experiments [Fig.24]. 
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Figure 24: Histograms related to TAS2R10 transfected with TRPC1 (blue) or mock (red), 

stimulated by strychnine (indicated as Stry) and corresponding standard deviation between two 

independent experiments. Y-axis: relative fluorescence intensity expressed as percent. The used 

concentrations were 30 µM (A) and 100 µM (B). The p-values were 0.1 and 0.06, respectively. In 

graphs signals are expressed as percentage of the signal obtained from non-TRPC1/TAS2R 

transfected cells. 

 

In this case the calculated p-values were 0.1 for stimulation with 30 µM solution 

and 0.06 with 100 µM resulting not statistical significative. 

Testing TRPC1 overexpressed in HEK293T we found different results for diverse 

co-transfected TAS2Rs. Cells transfected with TAS2R14 or TAS2R43 and TRPC1 

showed an improved signal, occurring in both experimental conditions when cells 

were stimulated by either concentrations. Since we obtained an increased signal, 

statistically confirmed by T Student test, we could affirm that co-transfection of 

TRPC1 could allow to overcome limitations due to receptors having low signal per 

se or could be used when a receptor is stimulated by a compound known to give a 

weak signal.  

This conclusion yet is hampered by experiments with TAS2R10 showing a 

reduced signal if co-transfected with TRPC1 in both experimental condition. These 

results raise questions on the possibility to use TRPC1 to enhance intracellular 
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Ca2+ concentration for every taste receptor because seems to reduce TAS2R10 

functionality. 

Yet these data resulting opposite one another raise questions about why receptors 

belonging to the same family behave so differently. First hypothesis could raise 

from the knowledge that TAS2Rs couple with different G protein α-subunit and 

have also different affinity to diverse G protein βγ subunits. For instance TAS2R47 

couples more efficiently with transducin, while TAS2R14 and TAS2R43 are more 

efficient to couple with G αo. Moreover TAS2R47 has more affinity to Gβ1γ1, 

whereas TAS2R14 has a lower affinity for these subunits. These differences in 

affinity and selectivity among G protein could suggest that different TAS2Rs may 

activate different signal pathway (Sainz et al., 2007). 

Many studies have shown that TRPC1 co-immunoprecipitated with all three IP3 

receptor types and even with the PLCβ-coupled G protein αq/11 subunit. All these 

elements and TRPC1 have been found in lipid raft domains, thus it is thought that 

they form a Ca2+ signal complex in those regions (Singh et al., 2001; Rosado & 

Sage, 2001; Lockwich et al., 2000; Singh et al., 2002). 

Both the facts that TAS2Rs bind different G protein α or βγ subunits and TRPC1 

would be involved in such a Ca2+ signal complex might interfere with the correct 

TAS2R10 signal cascade and thus leading to a lower signal. 

It has been already reported that TAS2Rs need plasma membrane-targeting 

sequence to be expressed on membrane of heterologous system or auxiliary 

protein as receptor transporting protein (RTP) or members of the family of receptor 

expression enhancing proteins (REEP). But it has been shown that TAS2R10 is 

not higher expressed in plasma membrane when co-expressed with RTP or 

REEP. TAS2R10 might interacts with other not yet known chaperones, 

preferentially binding TRPC1 in our heterologous expression system, leading to a 

lower targeting of TAS2R10 to the membrane, thus to a lower signal 

(Chandrashekar et al., 2000; Bufe et al., 2002; Behrens et al., 2006). 

Another hypothesis can be based on the observation that some substances can 

permeate plasma membrane and directly activate G protein (Naim et al., 1994). It 

is known that lipid bilayer of plasmatic membrane can be passively crossed by 

small molecules and non-polar molecules. Strychnine, being a plant alkaloid, is a 
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weak base and in water solution could be present in ionized and non-ionized 

forms. The latter form of strychnine could be transported by passive diffusion 

across the membrane and thus straight starts GPCRs signal cascade. If this were 

the case, TRPC1 could be activated by events after G protein activation and thus 

intracellular Ca2+ concentration would be due only to TRPC1, fitting to our results. 

One should also keep in mind that TRP channels can form heteromeric channels, 

for instance TRPC1 can bind TRPC3 (Lintschinger et al., 2000; Storch et al., 

2012), TRPC4 (Hofmann et al., 2002) and TRPC5 (Hofmann et al., 2002; Strubing 

et al., 2001). In particular it is known that HEK293 cells already express both 

TRPC1 and TRPC3, hence it is possible that in our heterologous expression 

system the overexpressed TRPC1 interacts with the native TRPC3 forming a 

heterotetramer maybe not functional in co-expression with TAS2R10 (Wu et 

al.,2000). 

More over all these events could occur all together in our expression system, 

leading to our unexpected result for TAS2R10. 

Another aspect to consider is that GPCRs control nearly all events of eukaryotic 

cells physiology, thus other partners still unknown could be involved, as well as for 

PLCβ2 signal cascade. For instance, both roles of DAG and α-gustducin are not 

yet well understood. 

To validate TRPC1 as a tool to improve [Ca2+]i more experiments are needed. First 

of all, for instance, TAS2R10 should be tested with all its activators to verify if 

every tastant leads to a reduced signal, this could point out whether it is the 

receptor that behaves differently to the other TAS2Rs tested or it is rather 

strychnine responsible of lower signal. 

More TAS2Rs should be tested in co-expression with TRPC1 trying to understand 

if it could be a universal tool for taste transduction model or if it works only for 

some receptors, whereas the others behave as TAS2R10. In the latter case it 

should be investigated why TAS2Rs behave differently, maybe checking 

implication of different G protein α-subunit, or the interaction between TRPC1 and 

G protein in our heterologous expression system. 

Once TRPC1 will be confirmed as reliable tool leading to improved Ca2+ read out it 

could be desirable to create a cell line stably expressing TRPC1 in order to reduce 
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expression differences due to transient transfection. This procedure, even if 

performed trying to minimize every event causing fluctuations in expression level, 

implies differences among wells and among experiments that could impair the 

analysis. Furthermore differences incurring between experiments raise the 

necessity of a big number of tests trying to reduce the weight of experimental error 

on final results. Indeed our results were obtained from cells exclusively transiently 

transfected, thus we expect more improved signals once a cell line stably over-

expressing TRPC1 will be established. 

Stably expression of TRPC1 could also allow deeper investigations. For instance, 

it is known that TRPC1 can heteromerize with other TRP channel, thus could be 

possible to test co-expression of TRPC1 and TRPC4 to verify if the heteromeric 

channel is more functional than homomeric channel (Hofmann et al., 2002). This 

because several studies on TRPC1 brought to different results: Zitt et al. have 

found that heterologous expression gave a functional channel, whereas other 

studies did not detected any differences in cells over-expressing TRPC1 but found 

higher signal in cells co-transfected with TRPC1 and TRPC4 (reviewed in Beech 

et al., 2003). 

If TRPC1 will be confirmed functional in our taste transduction model deeper 

analysis of bitter taste receptors will be possible.  
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4. CONCLUSIONS 

The aim of the project were to find a useful tool to improve Ca2+ signal in the 

currently available model of bitter taste transduction. This necessity raised from 

limitations due to weak signal of some receptors in our system or low signal of a 

given TAS2R against a given substance (Meyerhof et al., 2010). Studies of Ca2+ 

Imaging take advantage of Ca2+ entry through dedicated channels and of Ca2+ 

release from internal stores. Thus, the obvious consequence was to research a 

channel improving intracellular Ca2+ concentration. It is known that taste 

transduction leads to empty of Ca2+ ER stores and it is also known that some 

channels are activated by this event (Roper, 2007; Parekh & Penner, 1997). Some 

TRP channels have been demonstrated to be activated by store depletion 

(reviewed in Venkatachalam & Montell, 2007). The first isolated, cloned and 

functionally expressed TRP channel was TRPC1 (Wes et al., 1995; Zhu et al., 

1995; Zitt et al., 1996). This channel has been demonstrated being a store-

operated channel and it has also demonstrated being permeable to Ca2+ when 

activated (Zitt et al., 1996). These features matched with what we were looking for. 

Thus we cloned TRPC1 from a sample of mRNA extract of fetal human brain and 

it has been functionally expressed in our taste model. The purpose was to verify if 

Ca2+ released from ER stores in consequence of TAS2R activation was able to 

activate TRPC1 causing a further Ca2+ entry from extracellular medium. Our 

results show that co-expression of TRPC1 and TAS2R, after stimulation of the 

latter by a specific tastant, leads to an improved Ca2+ signal at least in two cases 

of three tested. Thus, TRPC1 is apparently a useful tool that could be used to 

obtain a higher signal when it is necessary. 

The possibility to improve Ca2+ read out will allow further analysis on TAS2Rs, 

maybe carrying to deorphanization of those receptors whose activators are not yet 

known or to discover new activators for already deorphanized TAS2Rs, widening 

the receptors’ receptive ranges.  

Moreover the response of different haplotypes could be further investigated maybe 

turning out that one so far thought non taster haplotype is slightly responsive 

instead. 
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Even more this system could also be used in studies about communication 

between taste cells and nervous system that is still poorly understood. 

It might also be possible to create a mice strain over-expressing TRPC1 in taste 

cells and to observe whether the higher Ca2+ concentration after taste stimulation 

affects the animals’ behavior. For instance if a slightly bitter substance in wild type 

mice could reverse in a strong aversive tastant thanks to TRPC1 over-expression, 

teaching more about cells communication between taste buds and nervous system 

and about coding of gustatory information. 

If this technique will be confirmed efficient could bring important benefits not only 

in bitter taste studies but also with sweet and umami receptors’ research, being 

these GPCRs too.  

Another interesting application of TRPC1 over-expression could be in the study of 

TAS2Rs found in extra-gustatory tissues as gastrointestinal epithelium and 

airways. In the latter case it has been found that activation of TAS2Rs in ciliated 

epithelial cells increases frequency of ciliary beating (Shah et al., 2009). But 

TAS2Rs have been found also in airway smooth muscle cells where, when 

activated, lead to relaxation of smooth muscle due to activation of a BK channel. 

Thus, the authors suggested that inhalation of bitter compounds could be used to 

treat airway diseases (Deshpande et al., 2010). The problem in this case could be 

the bitter taste and the probable consequent adverse reaction against the 

medicine. Over-expression of TRPC1 could allow to find tolerable bitter 

compounds, which elicit a low Ca2+ signal but strong enough to cause muscle 

relaxation. 

In the end improving of Ca2+ signal could help not only studies in taste field but 

also the other cases where TAS2Rs seem to have a role, leading to find out if they 

are involved in pathologies or if it is possible to use these receptors as a 

therapeutic target. 
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