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Phase 2 has begun!
You should have an email / slack message about 
your phase 2 assignment


Builder: build REGS or APPS (whichever you were 
assigned)

뺻 APPS: No PhD apps or Sys Admin role

뺻 REGS: No user creation, no PhD students, no Sys Admin


Integration: Combine and improve 2-3 components

뺻 2 team members -> 2 components

뺻 3 team members -> 3 components

뺻 REGS is the bridge!
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Timeline
Today: Web app architectures


Wednesday April 21: 

뺻 Web Services Lab

뺻 Mentor meetings


Monday April 26

뺻 Course Summary / wrap up


Wednesday April 28 (GW "Monday")

뺻 Mentor meetings


Monday May 4 - Tuesday May 11: Schedule an 
appointment to perform final demo
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Phase 2 questions?
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Your Project
What other ways are there to design this 

architecture?
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Multi-Tier Web Applications
Traditionally composed of 3 components


Separation of duties:

뺻 Front-end web server for static content (Apache, lighttpd, nginx)
뺻 Application (API) tier for dynamic logic (PHP, Flask, node.js)
뺻 Database back-end holds state (MySQL, MongoDB, Postgres)

Why divide up in this way?
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Stateful vs Stateless
The multi-tier architecture is based largely around whether a 
tier needs to worry about state


Front-end - totally stateless

뺻 There is no data that must be maintained by the server to handle 

subsequent requests


Application tier - maintains per-connection state

뺻 There is some temporary data related to each user, e.g., my 

shopping cart

뺻 May not be critical for reliability - might just store in memory


Database tier - global state

뺻 Maintains the global data that application tier might need 

뺻 Persists state and ensures it is consistent
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N-Tier Web Applications
Sometimes 3 tiers isn’t quite right


Database is often a bottleneck

뺻 Add a cache! (stateful, but not persistent)


Authentication or other security services could be 
another tier


Video transcoding, upload processing, etc
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Replicated N-Tier
Replicate the portions of the system that are likely to 
become overloaded


How easy to scale…?

뺻 Apache serving static content

뺻 Flask application managing user shopping carts

뺻 MySQL cluster storing products and completed orders
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Application Tier
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http://martinfowler.com/articles/microservices.html

Problems with 
monolithic approach?

Monolith: One piece of 
software that contains the 

full functionality of the 
application
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Monolithic Challenges
Scalability: Need to possibly use both up and out to reach 
performance goals. Hard to scale things like databases.


Reliability: A fault/memory leak in a single place can crash 
the entire app.


Orchestration: You need to rebuild and deploy the entire 
application every time you make a change.


Code Complexity: Code turns into spaghetti due to too 
many things happening at once. Hard to refactor features.


Upgradeability: Moving to newer tech stacks requires 
converting the entire app at once.
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Microservices
Take your application API and split it into smaller 
components based on function.
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Microservices
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Read more: https://martinfowler.com/articles/microservices.html
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Microservices
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Problems with 
microservices 

approach?

Microservice: A small 
piece of functionality 

which can be composed 
with others to build an 

application
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Microservices Challenges
Discovery: how to find a service you want?

Scalability: how to replicate services for speed?

Openness: how to agree on a message protocol?

Fault tolerance: how to handle failed services?
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All distributed systems face these challenges, 
microservices just increases the scale and diversity…
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Netflix
20th most popular website according to Alexa


Zero of their own servers

뺻 All infrastructure is on AWS (2016-2018)

뺻 Recently starting to build out their own Content Delivery Network
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Netflix
One of the first to really push microservices

뺻 Known for their DevOps

뺻 Fast paced, frequent updates, must always be available


700+ microservices


Deployed across  
10,000s of VMs and  
containers
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Netflix tech talk: https://www.youtube.com/watch?v=CZ3wIuvmHeM
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Netflix “Deathstar”
Microservice architecture results in a extremely 
distributed application

뺻 Can be very difficult to manage and understand how it is working at 

scale


What if there are failures?


How to know if everything  
is working correctly?
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Netflix Chaos Monkey
Idea: If my system can handle failures, then I don’t 
need to know exactly how all the pieces themselves 
interact!


Chaos Monkey:

뺻 Randomly terminate VMs and  

containers in the production  
environment


뺻 Ensure that the overall system  
keeps operating


뺻 Run this 24/7
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http://principlesofchaos.org/

Make failures the 
common case, not an 

unknown!
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Team talk
Any more general Phase 2 questions?


Go to your team # breakout room


Call for help if you want to talk to a mentor


We will drop by a few rooms to check status


You can leave at end of period even if we haven't 
visited you


Get started! Be efficient! Communicate!
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