
Cloud and Web Apps
CSCI 2541 Database Systems & Team Projects 

Wood & Chaufournier

Slides adapted from Prof. Bhagi Narahari; and Silberschatz, Korth, and Sudarshan

 

MMM



GW CSCI 2541 Databases: Wood & Chaufournier

Phase 2 has begun!
You should have an email / slack message about 
your phase 2 assignment


Builder: build REGS or APPS (whichever you were 
assigned)

뺻 APPS: No PhD apps or Sys Admin role

뺻 REGS: No user creation, no PhD students, no Sys Admin


Integration: Combine and improve 2-3 components

뺻 2 team members -> 2 components

뺻 3 team members -> 3 components

뺻 REGS is the bridge!

 2

m

in



GW CSCI 2541 Databases: Wood & Chaufournier

Timeline
Today: Web app architectures


Wednesday April 21: 

뺻 Web Services Lab

뺻 Mentor meetings


Monday April 26

뺻 Course Summary / wrap up


Wednesday April 28 (GW "Monday")

뺻 Mentor meetings


Monday May 4 - Tuesday May 11: Schedule an 
appointment to perform final demo

 3

4h9

I

to



GW CSCI 2541 Databases: Wood & Chaufournier

Phase 2 questions?

 4



GW CSCI 2541 Databases: Wood & Chaufournier

Your Project
What other ways are there to design this 

architecture?

 5

flask

apps() 
adv() 
regs()

mysql

student 
course 

…



GW CSCI 2541 Databases: Wood & Chaufournier

Multi-Tier Web Applications
Traditionally composed of 3 components


Separation of duties:

뺻 Front-end web server for static content (Apache, lighttpd, nginx)
뺻 Application (API) tier for dynamic logic (PHP, Flask, node.js)
뺻 Database back-end holds state (MySQL, MongoDB, Postgres)

Why divide up in this way?

 6

nginx Flask MySQL

FrontEnd
Back

End

timers
855 is

to

ma TT
UN un v M



GW CSCI 2541 Databases: Wood & Chaufournier

Stateful vs Stateless
The multi-tier architecture is based largely around whether a 
tier needs to worry about state


Front-end - totally stateless

뺻 There is no data that must be maintained by the server to handle 

subsequent requests


Application tier - maintains per-connection state

뺻 There is some temporary data related to each user, e.g., my 

shopping cart

뺻 May not be critical for reliability - might just store in memory


Database tier - global state

뺻 Maintains the global data that application tier might need 

뺻 Persists state and ensures it is consistent

 7

e

session



GW CSCI 2541 Databases: Wood & Chaufournier

N-Tier Web Applications
Sometimes 3 tiers isn’t quite right


Database is often a bottleneck

뺻 Add a cache! (stateful, but not persistent)


Authentication or other security services could be 
another tier


Video transcoding, upload processing, etc

 8

nginx
Node.js

MySQL

memcached

Flask

FE
v



GW CSCI 2541 Databases: Wood & Chaufournier

Replicated N-Tier
Replicate the portions of the system that are likely to 
become overloaded


How easy to scale…?

뺻 Apache serving static content

뺻 Flask application managing user shopping carts

뺻 MySQL cluster storing products and completed orders

 9

Apache Flask MySQLApacheApache MySQL

Tune number of replicas based on demand at each tier

00002



GW CSCI 2541 Databases: Wood & Chaufournier

Application Tier

 10

http://martinfowler.com/articles/microservices.html

Problems with 
monolithic approach?

Monolith: One piece of 
software that contains the 

full functionality of the 
application

VM VMq

VM 2 VM



GW CSCI 2541 Databases: Wood & Chaufournier

Monolithic Challenges
Scalability: Need to possibly use both up and out to reach 
performance goals. Hard to scale things like databases.


Reliability: A fault/memory leak in a single place can crash 
the entire app.


Orchestration: You need to rebuild and deploy the entire 
application every time you make a change.


Code Complexity: Code turns into spaghetti due to too 
many things happening at once. Hard to refactor features.


Upgradeability: Moving to newer tech stacks requires 
converting the entire app at once.

 11



GW CSCI 2541 Databases: Wood & Chaufournier

Microservices
Take your application API and split it into smaller 
components based on function.

 12

Monolithic API

Authentication API

API Gateway

Data Cleaning API

Data Persistence API

Business Logic API

API’s are then 
distributed across 
many machines and 
communicate using 
HTTP

API Gateway

Auth API

Logic 
API

Cleanin
g API

Persistence 
API

MYSQ
L

of

To



GW CSCI 2541 Databases: Wood & Chaufournier

Microservices

 13

Read more: https://martinfowler.com/articles/microservices.html



GW CSCI 2541 Databases: Wood & Chaufournier

Microservices

 14

Problems with 
microservices 

approach?

Microservice: A small 
piece of functionality 

which can be composed 
with others to build an 

application

Pyth

Python



GW CSCI 2541 Databases: Wood & Chaufournier

Microservices Challenges
Discovery: how to find a service you want?

Scalability: how to replicate services for speed?

Openness: how to agree on a message protocol?

Fault tolerance: how to handle failed services?

 15

All distributed systems face these challenges, 
microservices just increases the scale and diversity…

2



GW CSCI 2541 Databases: Wood & Chaufournier

Netflix
20th most popular website according to Alexa


Zero of their own servers

뺻 All infrastructure is on AWS (2016-2018)

뺻 Recently starting to build out their own Content Delivery Network

 16

Ranka

I



GW CSCI 2541 Databases: Wood & Chaufournier

Netflix
One of the first to really push microservices

뺻 Known for their DevOps

뺻 Fast paced, frequent updates, must always be available


700+ microservices


Deployed across  
10,000s of VMs and  
containers

 17

Netflix tech talk: https://www.youtube.com/watch?v=CZ3wIuvmHeM



GW CSCI 2541 Databases: Wood & Chaufournier

Netflix “Deathstar”
Microservice architecture results in a extremely 
distributed application

뺻 Can be very difficult to manage and understand how it is working at 

scale


What if there are failures?


How to know if everything  
is working correctly?

 18



GW CSCI 2541 Databases: Wood & Chaufournier

Netflix Chaos Monkey
Idea: If my system can handle failures, then I don’t 
need to know exactly how all the pieces themselves 
interact!


Chaos Monkey:

뺻 Randomly terminate VMs and  

containers in the production  
environment


뺻 Ensure that the overall system  
keeps operating


뺻 Run this 24/7

 19

http://principlesofchaos.org/

Make failures the 
common case, not an 

unknown!



GW CSCI 2541 Databases: Wood & Chaufournier

Team talk
Any more general Phase 2 questions?


Go to your team # breakout room


Call for help if you want to talk to a mentor


We will drop by a few rooms to check status


You can leave at end of period even if we haven't 
visited you


Get started! Be efficient! Communicate!

 20


