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Clustered impurities and carrier transport in supported graphene
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We investigate the effects of charged impurity distributions and carrier-carrier interactions on electronic
transport in graphene on SiO2 by employing a self-consistent coupled simulation of carrier transport and
electrodynamics. We show that impurity clusters of characteristic width 40–50 nm generate electron-hole puddles
of experimentally observed sizes. The residual conductivity and the linear-region slope of the conductivity versus
carrier density dependence are determined by the impurity distribution, and the measured slope can be used
to estimate the impurity density in experiment. Furthermore, we show that the high-density sublinearity in the
conductivity stems from carrier-carrier interactions.
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I. INTRODUCTION

Graphene, a single sheet of carbon with a honeycomb
lattice, is a two-dimensional (2D) material whose high carrier
mobility and carrier density tunable by a back gate [1–5]
make it attractive for electronic device applications [6–13].
Large-area, good-quality graphene is commonly fabricated
by chemical vapor deposition on metal substrates [7,14,15],
followed by transfer onto insulating substrates using polymers,
such as polydimethyl siloxane or polymethyl methacrylate
(PMMA). An important concern with these processing meth-
ods is the contamination of graphene with organic molecules
[16], residues of the transfer polymer and metal ions [17], or
charged impurities trapped in the supporting substrate [18].

Impurities near graphene are believed to be responsible for
several observed transport properties. Spatial inhomogeneities
in the carrier density, known as electron-hole puddles, are
formed due to the presence of charged impurities in the
substrate [19–21]. The charged impurities and the resulting
electron-hole puddles have been linked to the observed
nonuniversal minimum conductivity (also known as residual
conductivity) of graphene close to the Dirac point [22]. How-
ever, high-resolution scanning tunneling microscopy studies
[23] have shown that electron-hole puddles near the Dirac point
are typically 20 nm in diameter, while theoretical calculations
using a random charged impurity distribution near graphene
result in electron-hole puddle sizes of only about 9 nm
[21]. This evidence suggests that the underlying charged
impurities may be clustered. It has also been shown that
PMMA and metal ion residue can persist on graphene samples
even postannealing [17] and transmission electron microscopy
images [17] show that the residue is not uniformly distributed
but forms clusters. Furthermore, the formation of gold clusters
has been shown to affect the electron mobility in graphene
[24].

The linear dependence of conductivity, σ , on carrier density,
n, has been attributed to carrier scattering with charged
impurities [25,26]. However, experimental measurements dis-
tinctly display a sublinear σ (n) dependence away from the
charge-neutrality point [27–29]. The origin of the sublinear
σ (n) behavior is still under debate: it has been ascribed to
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different physical mechanisms, such as electron scattering
with residual organic molecules [30] or the effect of spatial
correlations in the distribution of the charged impurities near
graphene [31,32].

In this paper, we employ numerical simulation of coupled
carrier transport and electrodynamics to investigate the role
of carrier-carrier and carrier-ion Coulomb interactions on
the room-temperature, low-field transport in graphene on
SiO2, with focus on the effect of impurity clustering. We
solve the Boltzmann equation for carrier transport by using
the ensemble Monte Carlo (EMC) method, coupled with the
electrodynamics solver that incorporates the finite-difference
time-domain (FDTD) solution to Maxwell’s curl equations and
molecular dynamics (MD) for short-range carrier-carrier and
carrier-ion interaction. We show that clustered distributions of
impurities with an average cluster size of 40–50 nm result in
the formation of 20-nm-wide electron-hole puddles, the size
observed in several experiments [20,23,33]. We demonstrate
that the sublinear behavior of conductivity at high carrier
densities, which becomes more pronounced with decreasing
impurity density [27,28], stems from short-range carrier-
carrier interactions. Also, we show that the linear portion
of the conductivity versus carrier density curve is governed
by carrier-ion interactions, with the slope and the residual
conductivity dependent on both the sheet impurity density and
the impurity distribution. We characterize the dependence of
the conductivity slope on the impurity density for uniform
random and clustered distributions, which can be used to
estimate the impurity density in experiment.

This paper is organized as follows. In Sec. II, we present
an overview of the EMC, FDTD, and MD techniques and
their coupling (Sec. II A) and describe the generation of
a clustered impurity distribution (Sec. II B). In Sec. III,
we discuss electron-hole puddle formation (Sec. III A), the
role of impurity clustering in low-carrier-density transport
(Sec. III B), sublinearity in conductivity and its connection
to the short-range carrier-carrier interaction (Sec. III C), and
how to estimate impurity density from the linear-region
conductivity slope (Sec. III D). We conclude with Sec. IV.

II. THE SIMULATION FRAMEWORK

Our goal is to accurately simulate room-temperature elec-
tron and hole transport in supported graphene with charged
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impurities in the substrate, with focus on impurity clustering
and Coulomb interactions (carrier-ion and carrier-carrier).
Experiments have shown that charged impurities are the
dominant source of disorder in supported graphene [27,29,34].
As shown by Kohn and Luttinger [35], the Boltzmann
transport equation can be derived quite generally from the
density-matrix formalism for electrons in the presence of
dilute uncorrelated charged impurities. Indeed, at moderate
carrier densities in graphene, transport is diffusive and well
described by the Boltzmann transport equation, with the
conductivity being linear in the carrier density owing to
carrier-ion interactions [2,25]. In the vicinity of the Dirac
point, the average carrier density can be considerably lower
than the impurity density and charge inhomogeneities referred
to as puddles govern transport. However, the effective medium
theory [2,21,36,37] argues that, while the average carrier
density for the entire sample may be low, carrier density within
an individual puddle is fairly uniform and on the order of the
impurity sheet density, and the Boltzmann transport picture
remains applicable [22].

Therefore, we assume the diffusive transport regime, cap-
tured through the Boltzmann transport equation, throughout
the range of carrier and impurity densities and distributions
considered here. In fact, we find that clustered impurities
result in sizable puddles, with the carrier density that is
nearly uniform and is on the order of the impurity density, in
agreement with the effective medium theory. The assumption
of diffusive transport is further strengthened by the fact that
we work at room temperature and with macroscopic samples,
with size greater than the mean free path [22].

A. EMC/FDTD/MD for graphene on SiO2

In order to simulate diffusive carrier transport and elec-
trodynamics in supported graphene, we employ a coupled
EMC/FDTD/MD technique [38,39]. In a nutshell, EMC solves
the Boltzmann transport equation, FDTD solves Maxwell’s
curl equations, while MD accounts for the interaction of
charges located very close to one another. The coupled
EMC/FDTD/MD technique was successfully used to calculate
the high-frequency conductivity of bulk silicon, with very
good agreement to experimental data [38,40]. Below, we
briefly describe the key elements of the constituent techniques
and refer the interested reader to Refs. [38,39] for extensive
computational detail.

EMC is a stochastic numerical technique widely used
for solving the Boltzmann transport equation [41]. In EMC,
a large ensemble of carriers (typically of order 105) is
tracked over time, as they experience periods of free flight
interrupted by scattering events. Free-flight duration, the
choice of the relaxation mechanisms, and carrier momentum
direction postscattering are sampled stochastically according
to appropriate distributions. During free flight, carriers interact
with the local electromagnetic fields via the Lorentz force, �F =
q( �E + �v × �B), where q, �v, �E, and �B are the carrier charge,
carrier velocity, electric field, and magnetic flux density,
respectively. The fields are calculated using the electrodynamic
solver that includes the FDTD and MD components.

The FDTD method [42] is a popular and highly accurate
grid-based technique for solving Maxwell’s curl equations.

FIG. 1. (Color online) A schematic of the simulated structure,
depicting a monolayer of graphene on an SiO2 substrate, with air on
top. Clusters of substrate impurities near the graphene sheet are also
shown.

In FDTD, Maxwell’s equations are discretized in both time
and space by centered differences using the fully explicit Yee
algorithm [43]: the components of electric and magnetic fields,
�E and �H , are spatially staggered and solved for in time using
a leapfrog integration method, where the �E and �H updates
are offset by half a time step, yielding second-order accuracy
of the algorithm. The spatial grid-cell size and the time step
in FDTD must be chosen such that they satisfy the Courant
stability criterion [42].

Carrier motion in EMC gives rise to a current density, �J ,
which acts as a field source in FDTD; in turn, fields calculated
by FDTD affect the motion of carriers in EMC. However,
grid-based methods such as FDTD do not account for field
variations on the length scales shorter than a grid-cell size
[44], so we use the MD technique [45,46] to calculate the short-
range, sub-grid-cell fields stemming from pair-wise Coulomb
interactions among electrons, holes, and ions. Carrier-ion,
direct carrier-carrier, and exchange carrier-carrier (electron-
electron and hole-hole) interactions are included [38,39].

The simulated structure, shown in Fig. 1, consists of
a monolayer of graphene placed on a silicon-dioxide sub-
strate that contains charged impurities. On the four vertical
planes that bound the simulation domain perpendicular to
the graphene layer, we apply periodic boundary conditions
to the fields and carrier momenta. The top and bottom planes
that bound the simulation domain parallel to the graphene
layer are terminated using convolutional perfectly matched
layer absorbing boundary conditions [42]. In the FDTD/MD
electrodynamic solver, the monolayer of graphene is defined
by one plane of grid points with a dielectric constant of 2.45,
while the grid points above and below this plane are given
dielectric constants of 1 (air) and 3.9 (SiO2), respectively.

We assume that the Fermi level and carrier density in
graphene can be modulated by a back gate, located at the
bottom of the SiO2 substrate. For a given Fermi level and
temperature, the electron and hole densities are given by
n = niF1(η)/F1(0) and p = niF1(−η)/F1(0), respectively
[47]. Here, ni = π

6 ( kT
�vF

)2, η = EF/kT , and Fj (η) is the Fermi
integral of order j . EF is the tunable Fermi level and vF =
108 cm/s is the Fermi velocity in graphene on SiO2 [48]. The
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carrier ensemble in the 2D plane of graphene, comprising
electrons and holes, is initialized by using random numbers to
assign a position, momentum, charge, and spin to each carrier,
taking into account the appropriate statistical probabilities.
For the calculation of the grid-based charge density, carriers
localized throughout the simulation domain are assigned to
the grid using the cloud-in-cell method [49]. The initial
electric-field distribution is calculated by solving Poisson’s
equation using the successive-over-relaxation method [50]. We
use the tight-binding Bloch wave functions [51] to calculate
the electron-phonon scattering rates in graphene, accurately
reproducing the rates from first-principles calculations [52],
and to compute the electron-surface-optical phonon scattering
rates [53]. The scattering rates for holes are assumed to be
the same as those for electrons. These initialization steps
are followed by a time-stepping loop in which EMC and
FDTD/MD source each other and which terminates once a
steady state is achieved, as identified by the saturation of the
ensemble-averaged carrier velocity and energy.

B. Generating clustered impurity distributions in the simulation

In order to capture the influence of charged impurities on
electron and hole transport in graphene, we generate different
impurity distributions throughout the SiO2 substrate. The type
and charge of relevant impurities vary with the processing
details [54]; for simplicity, we use generic impurity ions with
unit positive charge. The impurity ions in the simulation
are distributed in three dimensions; however, impurities in
the graphene literature are typically described via a cumulative
sheet density, NI, in units of cm−2. For a generated three-
dimensional (3D) distribution of ions, the sheet density is
obtained by integrating over a depth equal to 2rd , where rd

represents the effective size of an impurity ion in the MD
calculation (see Willis et al. [38,40] for more details), followed
by averaging over the total depth of the 3D distribution.
rd is typically between 0.4 and 0.8 nm. We have observed
that charged impurities placed deeper than 10 nm do not
significantly affect carrier transport for reasonable impurity
sheet densities (NI < 1012 cm−2).

The problem of positioning individual impurities in three
dimensions to achieve a predetermined cluster size distribution
is related to 3D Voronoi tessellation [55–57]. Here, we have
developed a relatively simple algorithm that enables us to
generate an approximately Gaussian distribution of individual
impurities starting from a single numerical parameter, Lc,
which we refer to as the clustering parameter. For Lc = 0,
we distribute all the impurity ions stochastically according to
a uniform random distribution. For a nonzero Lc, we generate
Nc = A/L2

c impurity clusters, where A is the 2D area of the
graphene layer in the simulation. To initialize the positions of
individual impurities, we first distribute the centers of the Nc

clusters stochastically. Second, we pick the characteristic size
of each individual cluster from a uniform random distribution
between Lc/3 and 2Lc/3, the average being Lc/2. Next, we
distribute individual impurity ions around each cluster center
following a Gaussian distribution whose standard deviation
equals half of the cluster size. Examples of clustered impurity
distributions are shown in Figs. 2(a) (Lc = 10 nm) and 2(c)
(Lc = 50 nm), with the corresponding spatial autocorrelation

FIG. 2. (Color online) Examples of clustered impurity distri-
butions generated for clustering parameters (a) Lc = 10 nm and
(c) Lc = 50 nm. The corresponding normalized SACF are shown
in (b) and (d), respectively. The average impurity cluster size, λc, is
estimated from the FWHM (yellow ring) of the SACF. (e) Gaussian
fits (orange and blue solid lines) to the SACFs from (b) and (d) (red
and purple dotted lines, respectively). (f) λc vs Lc. Each data point
corresponds to the average of 14 simulation runs for a given Lc,
while the error bars denote the standard deviations. The dashed line
is a quadratic fit to guide the eye (λc = 0.005L2

c + 0.22Lc + 22.5).

functions (SACFs) depicted in Figs. 2(b) and 2(d), respectively.
As shown in Fig. 2(e), normalized Gaussians (orange and
blue solid lines) fit the SACFs well (red and purple dotted
lines, respectively). Moreover, the full width at half maximum
(FWHM) of the SACF agrees well with the correlation length
extracted from the Gaussian fits. Henceforth, the FWHM of the
impurity-distribution SACF will be referred to as the average
impurity cluster size and denoted by λc. Figure 2(f) presents λc

versus Lc. Each data point in Fig. 2(f) represents the average
of 14 slightly different impurity ion configurations obtained
stochastically for a given value of Lc (ranging from 0 to 60 nm
in increments of 5 nm) and the error bars on the data points
denote the standard deviations.

It is important to note that λc is conceptually different from
the correlation length r0 used by Li et al. [31]. r0 represents the
extent to which impurity ions can interact with one another and
diffuse; as a result, a larger r0 results in an impurity distribution
that is more spread out than clustered. In contrast, a larger λc
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[stemming from a larger Lc; see Fig. 2(f)] represents a more
clustered distribution.

III. RESULTS AND DISCUSSION

A. Formation of electron-hole puddles

Figure 3 shows the formation of electron-hole puddles in
the presence of clustered impurity distributions. We simulate
carrier transport at room temperature, for the Fermi level at
the Dirac point (EF = 0), and without external fields. The
initial positions of the charge carriers in the simulation are
generated randomly based on a uniform spatial distribution

FIG. 3. (Color online) Carrier density distribution (blue, elec-
trons; red, holes) depicting the electron-hole puddles formed in
graphene at the Dirac point for (a) uniform random (Lc = 0, λc =
22 nm) and (b) clustered (Lc = 50 nm, λc = 46 nm) impurity dis-
tributions, both with impurity sheet density equal to 5 × 1011 cm−2.
The average size of the electron-hole puddles, λp, is estimated from
the FWHM (yellow ring) of the normalized carrier density SACF,
shown in (c) and (d), corresponding to the random and clustered
impurity distributions from (a) and (b), respectively. The estimated
puddle size from (c) is λp = 6 nm and that from (d) is λp = 20 nm.
(e) Characteristic electron-hole puddle size λp as a function of the
average impurity cluster size λc. Each data point corresponds to a
single value of Lc (swept from 0 to 60 nm in the increments of 5 nm)
and is the average of 14 simulation runs; the error bars denote the
standard deviations. Insets: Illustrative impurity distributions, nearly
random on the left (Lc = 10 nm) and highly clustered on the right
(Lc = 50 nm).

and the calculated electron and hole sheet densities n = p =
8 × 1010 cm−2. As the simulation progresses, carriers move
and scatter until a steady state is reached. The motion of
carriers under the influence of the other charges in the domain
(the clustered ions as well as other carriers) results in a charge
redistribution and the formation of electron-hole puddles.
The average electron-hole puddle size is estimated from the
FWHM [21] of the SACF of the carrier density distribution. In
Figs. 3(a) and 3(b), we contrast the carrier density distributions
that stem from the underlying uniform random (Lc = 0, λc =
22 nm) and clustered impurity distributions (Lc = 50 nm,
λc = 46 nm). The corresponding SACFs of the carrier density
are shown in Figs. 3(c) and 3(d); the corresponding average
electron-hole puddle sizes, estimated from the FWHM of these
SACFs, are λp = 5 and 20 nm, respectively. These examples
show a very significant difference in the sizes of electron-hole
puddles that result from random and clustered impurity ion
distributions. Figure 3(e) shows the average electron-hole
puddle size, λp, as a function of the average impurity cluster
size λc. Different simulation runs for the same n, p, and
NI produce slightly different puddle and impurity cluster
sizes owing to the stochastic nature of the impurity position
initialization and the EMC routine. Therefore, each data point
in Fig. 3(e) represents the average of 14 simulations for a
given value of Lc (ranging from 0 to 60 nm in increments of
5 nm) and the error bars on the data points denote the standard
deviations. A uniform random impurity distribution results in
an average puddle size of only 6 nm, while impurity clusters
with an average size of 40–50 nm give rise to electron-hole
puddles with an average size of 20 nm, in agreement with
experimental observations [20,23,33].

B. Role of impurity distribution in carrier transport.
Residual conductivity

Next, we examine the effect of random and clustered im-
purity distributions on carrier transport in supported graphene.
We calculate the conductivity, σ , as a function of electron
density n for various spatial formations and total sheet densities
of impurity ions. The electron density is varied by varying
the Fermi level, mimicking the effect of a back gate. An
external dc electric field is applied in the plane of the graphene
sheet. The field is introduced using a total-field scattered-field
incident-wave source condition for a uniform plane wave with
a half-Gaussian temporal variation [42]; the magnitude of the
source remains constant once the peak value is achieved. The
conductivity is calculated from σ = �J · �E/| �E|2, where �E is
the local electric field and �J is the current density. As �E and
�J are noisy, we find σ in the steady state, upon averaging over

position and time. In the following simulation results, we have
used Lc = 0 (λc = 22 nm) for a uniform random and Lc =
50 nm (λc = 46 nm) for a clustered impurity distribution.

In Fig. 4, we present σ (n) for graphene on SiO2 at
several impurity sheet densities, ranging from impurity free to
NI = 1012 cm−2, with uniform random and clustered impurity
distributions. At low impurity densities (NI < 1011 cm−2),
the carrier density dependence of conductivity is nearly the
same for the random and clustered impurity distributions,
which is not surprising and agrees with the work of Li et al.
[31]: with few impurities present, their effect on transport
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FIG. 4. (Color online) Conductivity of graphene on SiO2 for
(a) uniform random (Lc = 0, λc = 22 nm) and (b) clustered (Lc =
50 nm, λc = 46 nm) impurity distributions, at impurity sheet den-
sities of 1011 cm−2 (triangles), 5 × 1011 cm−2 (squares), 1012 cm−2

(diamonds), and without impurities (circles).

is minor, while carrier interactions with phonons and other
carriers dominate. In contrast, at impurity densities higher
than 1011 cm−2, uniform random and clustered impurity
distributions result in significantly different σ (n) variations.
The most significant difference is seen at low carrier densities,
where the conductivity for randomly distributed impurities
increases nearly linearly with increasing carrier density, while
that for clustered impurities remains flat. The slow increase in
the conductivity near the charge neutrality point has also been
observed in experimental measurements [27,28], notably for
samples with considerable impurity contamination.

In Figs. 5(a) and 5(b), we zoom in on the low-density
behavior of σ (n) from Fig. 4. The low-density limit of
conductivity, σ0, known as the residual conductivity, has been
observed in experiment [27] and attributed to charged impurity

FIG. 5. (Color online) Conductivity at low carrier densities
(<1011 cm−2) for (a) uniform random (Lc = 0, λc = 22 nm) and
(b) clustered (Lc = 50 nm, λc = 46 nm) impurity distributions with
sheet densities of 1011 cm−2 (triangles), 5 × 1011 cm−2 (squares),
1012 cm−2 (diamonds), and no impurities (circles). Paths of sample
carriers in graphene for (c) uniform random and (d) clustered impu-
rity distributions, for NI = 5 × 1011 cm−2 and n = 8.9 × 1011 cm−2

(EF = 0.1 eV).

scattering [22]. Here, we see that the value of σ0 depends on the
impurity sheet density and distribution, with higher impurity
density and more clustered distributions resulting in a lower
σ0. We attribute the low-n flattening of conductivity and the
lower value of σ0 for clustered distributions to carrier trapping.
Figures 5(c) and 5(d) depict the paths of sample carriers
in graphene with underlying random and clustered substrate
impurity distributions, respectively. A large impurity cluster
effectively traps an electron, localizing the electron’s trajectory
to the cluster vicinity and preventing it from participating in
the current flow.

C. Sublinearity in σ (n) and carrier-carrier interactions

In Fig. 6, we examine the role of short-range Coulomb
interactions (carrier-carrier and carrier-ion) on dc transport in
graphene on SiO2. We account for these effects via the MD
part of the simulation and can selectively turn them on or off
to better elucidate their importance. Figure 6(a) presents σ (n)
for impurity-free graphene, with MD (circles) and without
MD (diamonds); without impurities, MD accounts only for the
short-range, direct, and exchange carrier-carrier interactions.
We deduce that the sublinearity in σ (n) at high carrier densities
occurs largely due to carrier-carrier interactions: when we
exclude their short-range component by turning off MD,
σ (n) becomes nearly linear. Any remaining sublinearity in
the “no MD” results can be attributed to the long-range,
direct carrier-carrier Coulomb interaction that is captured by
the FDTD solver. Carrier-carrier Coulomb interactions do
not directly affect conduction (the total momentum of an
interacting pair is conserved, as is the pair’s total energy),
but redistribute the momentum and energy among the pair
and therefore affect the single-particle distribution function,
pushing it toward a shifted Fermi-Dirac distribution [58–61].
The inset to Fig. 6(a) presents the computed distribution of
electrons over kinetic energy with and without carrier-carrier
interaction for the electron density of 7 × 1012 cm−2 (EF =
0.3 eV). This curve corresponds to g(E)f (E), where g(E)
is the electron density of states and f (E) is the distribution
function, and carrier-carrier interaction clearly leads to a
greater abundance of higher-energy carriers. Since electron
and hole scattering rates with phonons increase with increasing
energy, the redistribution of carriers over energy effectively
raises the average carrier-phonon scattering rate and leads to a
reduction in conductivity that we observe as the slopeover in
σ (n).

In Figs. 6(b) and 6(c), we plot σ (n) for uniform random
and clustered impurity distributions with all short-range inter-
actions accounted for through MD (circles, “with MD”), with
short-range carrier-ion but without carrier-carrier interactions
(triangles, “no e-e”), and without any short-range interactions
(diamonds, “no MD”). We have already discussed the low-n
region (see Fig. 5) and will focus here on the medium-to-high
electron density range. In both Figs. 6(b) and 6(c), the
sheet density of impurities is appreciable (5 × 1011 cm−2), so
carrier-ion interactions govern transport in the medium and the
σ (n) dependence is largely linear [25]. Turning off short-range
carrier-carrier interactions causes insignificant change to the
slope in either panel, while turning off short-range carrier-ion
interactions significantly affects the slope.
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FIG. 6. (Color online) Effect of short-range Coulomb interactions, accounted for via MD in the simulation, on transport in supported
graphene (a) without substrate impurities, as well as with (b) uniform random (Lc = 0, λc = 22 nm) and (c) clustered (Lc = 50 nm, λc = 46 nm)
impurity distributions. In all three panels, “no MD” indicates simulation results without any short-range interactions. In panel (a), “with MD”
denotes simulations with the short-range direct and exchange carrier-carrier interactions included via MD. The inset to (a) shows a representative
kinetic-energy distribution of electrons with and without carrier-carrier interaction (n = 7 × 1012 cm−2, EF = 0.3 eV). In (b) and (c), “no e-e”
indicates results of simulations with short-range carrier-ion interaction but without short-range carrier-carrier interactions, while “with MD”
indicates simulations with the full account of all short-range interactions through the coupled EMC/FDTD/MD simulation. Impurity sheet
density in panels (b) and (c) is 5 × 1011 cm−2.

D. Estimating impurity density from the inverse slope of σ (n)

The slope of the σ (n) curves in the linear region is governed
by the short-range carrier-ion interactions and is dependent on
both the impurity density (Fig. 4) and distribution [Figs. 6(b)
and 6(c)]. As the slope can be accurately measured in exper-
iment, we can use it to indirectly extract the impurity density
and cluster size. In Fig. 7, we present the EMC/FDTD/MD

FIG. 7. (Color online) Inverse slope of σ (n) as a function of the
sheet impurity density for graphene on SiO2 at room temperature.
Squares denote the uniform random impurity distribution (Lc =
0, λc = 22 nm), while triangles correspond to clustered impurity
distributions that would give realistic electron-hole puddle sizes
(Lc = 50 nm, λc = 46 nm). The horizontal lines a–d correspond
to the inverse slope values obtained in several experiments: line a,
Ref. [62]; line b, Ref. [12]; line c, Ref. [63]; and line d, Ref. [64].
The NI range between the intercepts of an inverse-slope horizontal
line with the clustered and random distribution curves (i.e., the range
within the lightly shaded area) yields an estimate of the impurity
density range.

simulation results for the inverse slope of σ (n) in the linear
region as a function of the sheet impurity density, with the
cluster size as a parameter. The solid markers represent the
simulation results for uniform random (Lc = 0, λc = 22 nm,
denoted by squares) and clustered impurity distributions (Lc =
50 nm, λc = 46 nm, denoted by triangles). The curves are
polynomial fits to guide the eye and indicate the range of
results for different impurity distributions. As we discussed
earlier, impurity cluster sizes of 40–50 nm correspond to
electron-hole puddle sizes obtained in experiment (see Fig. 3),
so it is likely that a reasonable sheet impurity density estimate
can be obtained from the clustered impurity curve in Fig. 7.

As examples, we present the inverse slopes extracted
from several room-temperature measurements on supported
graphene (line a, Ref. [62]; line b, Ref. [12]; line c, Ref. [63];
and line d, Ref. [64]). The intercepts of each inverse-slope
horizontal line with the clustered and random distribution
curves in Fig. 7 indicate an estimate of the impurity-density
range, with the clustered-curve intercept likely yielding a
good approximate value for NI . Note that the more recent
experiments (line a from 2012 [62] and line b from 2007
[12]), which arguably had samples with fewer impurities
than the early ones owing to the advances in processing,
indeed correspond to lower sheet impurity densities than
the earlier measurements (line c in 2005 [63] and line d in
2004 [64]).

IV. CONCLUSION

In summary, we have employed EMC/FDTD/MD coupled
simulation of carrier transport and electrodynamics to inves-
tigate the effects of carrier-carrier and carrier-ion Coulomb
interactions on the transport properties of graphene on SiO2,
with focus on the role of substrate impurity clustering. While
corrections due to many-particle correlations [19] and coherent
transport features [65,66] may play an important role in
extremely clean suspended graphene at low temperatures,
our simulations accurately capture the physics of diffusive,
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room-temperature carrier transport in supported graphene,
which is relevant for device applications. We have shown
that clustered impurity distributions with an average cluster
size of 40–50 nm result in the formation of electron-hole
puddles with a typical size of 20 nm, comparable to observed
values. We have also demonstrated that high-density clustered
impurities lead to carrier trapping and a flattening of the
low-n σ (n) dependence. By selectively controlling the short-
range Coulomb interactions of the carriers in the coupled
EMC/FDTD/MD simulation, we have shown that the sublinear
σ (n) dependence at high carrier densities can be attributed to
carrier-carrier interactions [27,28]. The slope of the linear-
region σ (n) relates to the strength of the carrier-ion Coulomb

interactions, and we have characterized its dependence on the
impurity density and distribution. The computed dependence
of the linear-region slope of σ (n) on the impurity density might
be used as a noninvasive technique for estimating the impurity
density in experiment.
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